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Abstract

When can a collection of matchings be stable, if preferences are unknown? This
question lies behind the refutability of matching theory. A preference profile rationalizes
a collection of matchings if the matchings are stable under the profile. Matching theory
is refutable if there are observations of matchings that cannot be rationalized. I show
that the theory is refutable, and provide a characterization of the matchings that can be
rationalized.
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What Matchings Can Be Stable? The Refutability of

Matching Theory

Federico Echenique ∗

1 Introduction

Two-sided matching models are described by two sets of agents (think of workers and
firms or men and women) and a preference relation for each agent in each set over
potential partners from the other set. The theory studies matchings of agents that have
the core property; the core matchings are called “stable.” Matching models have been
studied very extensively since Gale and Shapley’s (1962) seminal paper (Al Roth’s online
bibliography lists almost 500 papers).

The literature has focused on, given agents’ preferences, determining which matchings
may occur. It assumes that the stable matchings are the ones that may occur, and
proceeds to study the structure of stable matchings. Instead, I study the problem of
which matchings can be stable when agents’ preferences are not know. Concretely, given
a collection of matchings, µ1, µ2 . . . µk, I ask if there are preferences for the agents involved
so that all these matchings are stable. When this is the case, I say that the set of
matchings is rationalizable.

The problem is important because it is often difficulty to infer agents’ preferences. It
is important to understand the implications of the theory—its predictions—when pref-
erences are unknown. If one assumes that matchings are observable but preferences are
not, one needs to know if a set of matchings can be incompatible with the theory—that
is, if the theory has testable implications. And, if the theory is testable, one needs a
characterization of the matchings that can be stable in order to empirically determine
the validity of the theory in particular instances.

The problem of rationalizing matchings is part of a larger research program of studying
refutability in economics. Early results in this program include Samuelson’s (1947) and
Afriat’s (1967) theories of revealed preference. Refutability has been studied in General
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Caltech SISL retreat.



Equilibrium Theory and Non-cooperative Game Theory, but not for matching problems.
In matching, one can think of the agents as choosing a partner from the opposite side
of the market, but revealed preference theory has no bite because agent 1 not choosing
agent 2 does not necessarily mean that 1 is revealed preferred to 2; it can also mean that
2 prefers not to be with 1.

In this paper, I show: (1) that the theory is testable, so there are non-rationalizable
sets of matchings; and (2) I provide a series of results, leading up to a characterization,
of the rationalizable sets of matchings.

The classical result on stable matchings imply a coincidence of interest within the
same side of the market, and opposition of interest across the market. I show that, es-
sentially, stability is characterized by a version of the coincidence/opposition property
for any pair of matchings. In the classical results, certain distinguished matchings have a
coincidence/opposition of interest for all agents. And for any two matchings, the coinci-
dence/opposition holds for certain agents. I show that there is a coincidence/opposition
property that holds for all agents in any pair of matchings, and that this property is
essentially the content of the theory.

A simple but important insight is that the testable implications of the theory stem
from agents who are matched to the same partner in more than one matching. Thus,
in any empirical test of the theory, being able to treat some individuals in different
matchings as the same individual is crucial. For example, consider data on a cross-
section of matches between buyers and sellers of a certain good. Each match corresponds
to the outcome in one market, for example domestic markets for a good that is not traded
internationally. One can then assume that firms with similar observable characteristics
(size, technology) have the same preferences over potential buyers and are considered to
be the same by the buyers. These are exactly the assumptions in (positive) empirical
work on matching. One recent example is Choo and Siow (2006), working on marriage
matchings. Choo and Siow assume that there are “types” of men and women, and that
individuals of the same type have the same preferences over partners and are considered
identical by their potential partners. Choo and Siow build on the theoretical results
of Dagsvik (2000), who also assumes that the population can be partitioned in types
according to their observable characteristics. An alternative, but related, approach is to
model preference as parametrically dependent on the agents’ observable characteristics.
This is the approach in econometric studies of matching markets (a recent example is
Hitsch, Hortaçsu, and Ariely (2006)).

In sum, in testing matching theory, it is crucial to control agents’ preferences using
observables. My methods are viable using one procedure for controlling preference, and
this procedure is already being used by empirical researchers.

I should make a distinction between the positive empirical applications I have in mind
and normative applications of matching theory. The latter have been very successful Roth
and Peranson (1999); Roth, Sönmez, and Ünver (2004); Abdulkadiroglu, Pathak, Roth,
and Sönmez (2005), and in no way rely on rationalizing matchings. The positive applica-
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tions, to labor economics and marriage markets, do rely on finding testable implications
of matching theory.

I also obtain some secondary results. The first is that, if a collection of matchings is
rationalizable, then it is typically rationalizable by a large number of different preference
profiles. So matching theory is not exactly identified, in the econometric sense. This
confirms an argument Choo and Siow (2006) make informally by counting observations
and unknowns. In fact, it is not clear from Choo and Siow’s argument that the theory is
testable; my results imply that it is testable, despite the existence of fewer observations
than unknowns.

Finally, I consider the problem of when purely randomly generated matchings would
be rationalizable. I show the, admittedly unsurprising, result that the probability of
rationalizing a fixed number of random matchings remains bounded away from zero
as the number of agents grows. So for large populations, one needs large samples of
matchings for the theory to have power.

2 Statement of the problem.

2.1 Preliminary definitions.

In this paper, I use the language of graph theory, but no results from graph theory. A
graph is a pair G = (V, E), where V is a set and E is a binary relation on V , i.e. a subset
of V × V . The set V is called the vertex set of G, and E is the set of edges of G. Say
that G is loop-free if (v, v) /∈ E, for all v ∈ V . Say that G is undirected if (v, v′) ∈ E
implies that (v′, v) ∈ E, that is if E is a symmetric binary relation.

A path is a sequence v1, v2, . . . , vK in V with K > 1 and (vk, vk+1) ∈ E for all k,
1 ≤ k ≤ K − 1. Say that v and v′ are connected if there is a path v1, v2, . . . , vK with
v = v1 and v′ = vK or a path v1, v2, . . . , vK with v = vK and v′ = v1. Say that v and v′

are disconnected if they are not connected. A connected component of G is a set C ⊆ V
such that, for all v, v′ ∈ C, v and v′ are connected. The set of all connected components
of G form a partition of V .

2.2 The Model

Let M and W be disjoint, finite, sets. I call men the elements of M and women the
elements of W . A matching is a function µ : M ∪W → M ∪W ∪ {∅} such that for all
w ∈ W and m ∈ M ,

1. µ (w) ∈ M ∪ {∅},

2. µ (m) ∈ W ∪ {∅},
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3. and m = µ (w) if and only if w = µ (m).

Denote the set of all matchings by M. The notation µ(a) = ∅ has the interpretation
that a ∈ M ∪W is unmatched in µ, while w = µ(m) denotes that m and w are matched
in µ.

A preference relation is a linear, transitive and antisymmetric binary relation. A
preference relation for a man m ∈ M , denoted P (m) is understood to be over the set
W ∪ {∅}. Similarly, P (w), for w ∈ W , denotes a preference relation over M ∪ {∅}. A
preference profile is a list P of preference relations for men and women, i.e.

P =
(
(P (m))m∈M , (P (w))w∈W

)
.

Note that no man or woman is indifferent over two different partners; preferences with
this property are normally called strict.

Denote by R(m) the weak version of P (m). So w′ R(m) w if w′ = w or w′ P (m) w.
The definition of R(w) is analogous.

Fix a preference profile P . Say that a matching µ is individually rational if, for any
m and w, µ(m) R(m) ∅ and µ(w) R(w) ∅. Say that a pair (w,m) blocks µ if w 6= µ(m),
w P (m) µ(m) and m P (w) µ(w). A matching is stable if it is individually rational and
there is no pair that blocks it. Denote by S(P ) the set of all stable matchings.

This model was first studied in Gale and Shapley (1962); see Roth and Sotomayor
(1990) for an exposition of the theory. It should be clear that one can adapt the definition
of the core as a solution for this model, and that the set of stable matchings coincides
with the core.

2.3 Statement of the problem.

Let H = {µ1, . . . µK} ⊆ M be a set of matchings. The problem I study is: When is
there a preference profile P such that H ⊆ S(P ). I shall say that H can be rationalized
when this is the case, and that P rationalizes H.

Note that I assume the same sets of agents are involved in each of the matchings in
H. See Section 8 on the consequences of relaxing this assumption.

Assume that M and W have the same number of elements, and that µ(m) 6= ∅ and
µ(w) 6= ∅, for all m and w, and for all µ ∈ H. These assumptions are without loss
of generality for the purpose of studying rationalizability. The reason is that, if H is
rationalizable, then the single agents must be the same for all the matchings in H (see
Roth and Sotomayor (1990)) and we can therefore ignore them and assume that the
number of men and women is the same.
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I start with two very simple motivating results. The first (Proposition 1) is that not
all matchings can be rationalized, so there is potential for refuting matching theory. The
second (Proposition 2) says that the source of refutability is quite specific: that some
agents match with the same partner in different matchings.

Proposition 1. If |M | ≥ 3, then M is not rationalizable.

Proof. Suppose, by way of contradiction, that there is P with M ⊆ S(P ). Let µM =∨
S(P ) and µW =

∧
S(P ). Since |M | = |W | ≥ 3, there is a pair (m, w) such that

m 6= µM(w) and w 6= µW (m).

Let µ′ ∈M be such that µ′(m) = µW (m) and µ′(w) = µM(w). There is a matching µ′′

such that µ′′(m) = w. Since M⊆ S(P ), and µ′′(m) 6= µW (m), w = µ′′(m) P (m) µW (m).
Similarly, m P (w) µM(w). Then (m, w) blocks µ′. So µ /∈ S(P ) and M * S(P ).

Proposition 2. If, for all m, µi(m) 6= µj(m) for all µi, µj ∈ H, then H is rationalizable.

Proof. For each m, define P (m) by w′ P (m) w if and only if there is µi, µj ∈ H with
µi(m) = w′, µj(m) = w and i < j. And ∅ P (m) w if w 6= µ(m), for all µ ∈ H.

For each w, define P (w) by m′ P (w) m if and only if there is µi, µj ∈ H with µi(w) =
m′, µj(w) = m and i > j. And ∅ P (w) m if m 6= µ(w), for all µ ∈ H.

Let P be the resulting preference profile. It is clear that all matchings in H are
individually rational under P . In addition, for any (m, w) and µ ∈ H with m 6= µ(w),
w P (m) µ(m) implies that µ(w) P (w) m. So there can be no blocking pair of µ. So
H ⊆ S(P ).

The following example shows that the constructed preferences in the proof of Propo-
sition 2 do not imply H = S(P ).

Example 3. Let M = {m1, m2, m3, m4} and W = {w1, w2, w3, w4}. Consider the match-
ings µ1 and µ2 defined as:

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w2 w1 w4 w3 .

Then the matching that matches m1 and m2 as in µ1, and m3 and m4 as in µ2, is
also stable for the preferences constructed in the proof of Proposition 2.

Propositions 1 and 2 place very rough bounds on what can be rationalized, in the rest
of the paper I build up a characterization of the sets of matching that can be rationalized.
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3 An Illustration.

Here I present a simple example that illustrates the ideas behind the results in the paper.
Consider the following example, with three men, three women and three matchings.

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w1 w3 w4 w2

µ3 w2 w3 w1 w4

Let us construct preferences that would rationalize H = {µ1, µ2, µ3}. We can consider
all women that a man is never matched to as unacceptable. For example, set ∅P (m1)w3.
To do this can only help in rationalizing H. The real issue is how to specify preferences
among the mens’ partners in µ1, µ2 and µ3.

Start with how men could rank their partners in µ1 and µ2. For m1, the rank is
trivial because µ1(m1) = µ2(m1). Consider m2. Let us say (arbitrarily) that w3 =
µ2(m2)P (m2)µ1(m2) = w2. Next, consider m3. Could we have that µ1(m3)P (m3)µ2(m3)?
No, because it would imply that µ1 and µ2 cannot both be stable: (m3, w3) blocks µ2 if
m3 P (w3)m2, and (m2, w3) blocks µ1 if m2 P (w3)m3. Hence, to set µ1(m3)P (m3)µ2(m3)
presents a problem, regardless of what we assume about P (w3). So, if we are to rationalize
H, we have that µ2(m2) P (m2) µ1(m2) implies µ2(m3) P (m3) µ1(m3).

Suppose then that µ2(m2) P (m2) µ1(m2) and µ2(m3) P (m3) µ1(m3). Now µ2(m3) =
µ1(m4), so m3 and m4 are in the same situation as m2 and m3. Hence µ2(m3) P (m3)
µ1(m3) implies that µ2(m4) P (m4) µ1(m4), by the same argument as in the previous
paragraph. So the men m2, m3 and m4 must agree on how they compare their partners
in µ1 and µ2.

What if we had started with µ1(m2)P (m2)µ2(m2)? Then m4 and m2 are in the same
situation as m2 and m3 under the previous assumption: µ2(m4) = µ1(m2). By the same
argument, µ1(m2)P (m2)µ2(m2) implies µ1(m2)P (m2)µ2(m2). Repeating the argument,
we obtain that m2, m3 and m4 must agree on how they compare their partners in µ1 and
µ2.

The general result is: For any two matchings, µi and µj, all the men (m, m′) who
stand in the relation “m’s partner in µi is m′’s partner in µj” must agree on how they
rank their partners in µi and µj. The following diagram presents a graph among the men
for each pair of matchings in H. In the first graph, there is a directed edge m2 → m4

because µ1(m2) = µ2(m4); there is an edge m3 → m2 because µ1(m3) = µ2(m2), and so
on.

The graph corresponding to µ1 − µ2 has two connected components, {m1} and C =
{m2, m3, m4}. By our previous argument, all the men in C must agree on how they rank
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their partners in µ1 and µ2. Similarly, reading the corresponding connected components
from the diagram, all the men in C ′ = {m1, m2, m3} must agree on µ1 and µ3. And all
the men in C ′′ = {m1, m3, m4} must agree on µ2 and µ3.

It is clear how these arguments restrict the possible preference profiles that might
rationalize H, but it does not by itself give a criterion for deciding that H is not ratio-
nalizable. The criterion arises from the presence of men who have the same partner in
different matchings.

Say that µ2(m) P (m) µ1(m) for all m ∈ C. Since m2 ∈ C, and µ2(m2) = µ3(m2),
we must have that µ3(m2) P (m2) µ1(m2). But m2 ∈ C ′ so µ3(m) P (m) µ1(m) for all
m ∈ C ′. Similarly, m4 ∈ C with µ1(m4) = µ3(m4). So µ2(m4) P (m) µ1(m2) now implies
that µ2(m) P (m) µ3(m) for all m ∈ C ′′. The problem is that m1 ∈ C ′ ∩C ′′, so we would
need that µ2(m1) P (m1) µ3(m1) P (m1) µ1(m1). This is a violation of the antisymmetry
of P (m1), as µ2(m1) = µ1(m1). Hence H is not rationalizable.

The idea—which is formalized below—is that the presence of men with the same
partner in different matchings gives a relation between objects such as C, C ′ and C ′′.
These relations must satisfy a consistency condition for H to be rationalizable.

4 Preferences over Partners in Pairs of Matchings

The discussion in Section 3 suggests that two objects are important in studying rational-
izability. The first is the set of connected components obtained from pairs of matchings
in H, which I denote by C below. Second are the relations between connected compo-
nents in C derived from having agents with the same partners in two different matchings.
In this section I describe the connected components, and show how these capture the
essence of stability.

Fix a pair of matchings µi and µj in H. Consider the (directed) graph for which M
is the vertex-set, and E(µi, µj) is the set of edges, defined by: (m, m′) ∈ E(µi, µj) if
and only if µi(m) = µj(m

′). Denote by C(µi, µj) the set of all connected components of
(M, E(µi, µj)).
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There is an analogous graph with the women as vertexes: Let (W, F (µi, µj)) be the
graph for which the vertex-set is the set of women, and where (w,w′) ∈ F (µi, µj) if
µj(w) = µi(w). A first result relates the women’s graph and the men’s graph.

Lemma 4. The following statements are equivalent:

1. C is a connected component of (M, E(µi, µj))

2. µi(C) is a connected component of (W, F (µi, µj))

In addition, if C is a connected component of (M, E(µi, µj)), then µj(C) = µi(C).

Proof. I first prove that (m, m′) ∈ E(µi, µj) if and only if (µi(m), µi(m
′)) ∈ F (µi, µj),

which establishes the equivalence of (1) and (2) in the lemma. First, µi(m) = µj(m)
if and only if µj(µi(m)) = µj(µj(m

′)) = m′, as µj is one-to-one. Hence, (m, m′) ∈
E(µi, µj) if and only if µj(µi(m)) = m′. Second, (µi(m), µi(m

′)) ∈ F (µi, µj) if and only
if µj(µi(m)) = µi(µi(m

′)). But m′ = µi(µi(m
′)), so (µi(m), µi(m

′)) ∈ F (µi, µj) if and
only if m′ = µj(µi(m)).

To prove the second statement in the lemma, note that w ∈ µi(C) if there is m ∈ C
with w = µi(m). Since m ∈ C there is m′ ∈ C with (m, m′) ∈ E(µi, µj). Then
w = µj(m

′) and therefore w ∈ µj(C). Similarly, if w ∈ µj(C) then w ∈ µi(C).

Lemma 5. Let H be rationalized by preference profile P . If µi, µj ∈ H, and C ∈
C(µi, µj), then either (1) or (2) hold:

µi(m) P (m) µj(m) for all m ∈ C

and µj(w) P (w) µi(w) for all w ∈ µi(C); (1)

µj(m) P (m) µi(m) for all m ∈ C

and µi(w) P (w) µj(w) for all w ∈ µi(C). (2)

Further, if P is a preference profile such that: for all µi, µj ∈ H, and C ∈ C(µi, µj),
either (1) or (2) hold, and in addition

∅ P (m) w if and only if w /∈ {µ(m) : µ ∈ H}
∅ P (w) m if and only if m /∈ {µ(w) : µ ∈ H} ,

then P rationalizes H.

Remark. In part, Lemma 5 is a refinement of the classical result on opposition and
coincidence of interest in matching markets. The classical result says that the agents
on the same side of the market agree, and agents on opposite sides disagree, on their
preferences among certain pairs of matchings. The first part of Lemma 5 says that the
coincidence/opposition holds for any pair of matchings, but it holds within the connected
components of the corresponding graph.
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The second part of the lemma says that this opposition and coincidence is all that
stability requires—up to the ability to construct well-defined preferences with the oppo-
sition and coincidence property. As I show in the rest of the paper, to construct such
preferences is not trivial.

Lemma 5 is a variation on well-known results. For example, Knuth (1976) contains
a weaker statement in his Theorem 3 of Chapter 2, and then a stronger statement in
his Corollary 1. But the idea of studying the components of the graphs (M, E(µi, µj))
is new, and, as we shall see, crucial to studying refutability. It is clear from the second
part of the lemma that the existing results on conflict/coincidence are either too weak
or too strong as a characterization of stability.

Proof. I prove first the first statement. If C is a singleton there is nothing to prove.
Assume, then that C has two or more elements. Note that C is a cycle, C =

{
m1, . . . mL

}
,

with (ml, ml+1) ∈ E(µi, µj) (modulo L) for l = 1, . . . L. This is because, for each m ∈ M
there is a unique m′ ∈ C with (m′, m) ∈ E(µi, µj) and a unique m′′ ∈ C with (m, m′′) ∈
E(µi, µj).

Now, say that µi(m
l)P (ml)µj(m

l) for some l. I shall prove that µi(m)P (m)µj(m) for
all m ∈ C. We must have µi(m

l+1) P (ml+1) µj(m
l+1) because µj(m

l+1) P (ml+1) µi(m
l+1)

would imply that µi and µj are not both stable: (ml, ml+1) ∈ E(µi, µj), so µi(m
l) =

µj(m
l+1); thus (ml, µi(m

l)) blocks µj if ml P (µi(m
l))ml+1 and (ml+1, µi(m

l)) blocks µi if
ml+1 P (µi(m

l))ml. The result that µi(m)P (m)µj(m) for all m ∈ C follows by induction.

Let w ∈ µi(C). We must have that µi(w) 6= µj(w) or the component of (W, F (µi, µj))
that w lives in would be a singleton and would not coincide with µi(C) (Lemma 4). Now
I show that µj(w)P (w)µi(w): if we instead have µi(w)P (w)µj(w), then (µi(w), w) would
block µj, as µi(w) ∈ C and thus w P (µi(w)) µj(µi(w)).

So we have established that µi(m
l) P (ml) µj(m

l) for some l implies statement (1) of
the lemma. The argument hat µj(m

l) P (ml) µj(m
l) for some l implies statement (2) is

analogous.

I now prove the second part of the lemma. Let µ ∈ H. It is clear that µ is individually
rational by the requirement on P . Let w and m be such that w P (m) µ(m). Let i and
j be such that w = µi(m) and µ = µj. There must exists such a i because ∅ P (m) w
if w is not m’s partner in some matching in H. Let C ∈ C(µi, µj) with m ∈ C. Then
w ∈ µi(C) and, by statement (1) of the lemma, µj(w) P (w) µi(w0 = m. Hence (m, w) is
not a blocking pair. Since (m, w) was arbitrary, µ is stable.
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5 Relations Between Components, and a Necessary

Condition for Rationalization

The discussion in Section 3 suggests that there are relations between components of the
pairwise graphs, relations that come from the presence of some agents who are with
the same partner in two (or more) matchings. The discussion also suggests that the
rationalizability of H depends on the restrictions imposed by these relations. Here I
define the relations and show how they give a simple necessary condition for H to be
rationalizable.

Let C be the set of all elements of C(µi, µj), for any two distinct µi, µj ∈ H with
i < j. That is,

C = ∪{C ⊆ M : |C| ≥ 2 and ∃(µi, µj) s.t. i < j and C ∈ C(µi, µj)} .

Note that a set may be a connected component of more than one graph (M, E(µi, µj)). If
a set C is in C(µi, µj) and in C(µh, µk) I abuse notation and regard each “copy” of C as
a different element of C. As a result, for each C ∈ C there is a unique pair (µi, µj) such
that C ∈ C(µi, µj). This abuse does not, I believe, confuse, and it makes the notation
lighter.

I define two binary relations on the elements of C, and denote them by 4 and 5.

Definition (4). Let C, C ′ ∈ C. Say that C 4 C ′ if there are three distinct numbers,
i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj), C ′ ∈ C(µi, µk)
or C ∈ C(µj, µi), C ′ ∈ C(µk, µi), and

• there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Definition (5). Let C, C ′ ∈ C. Say that C 5 C ′ if there are three distinct numbers,
i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj), C ′ ∈ C(µk, µi)
or C ∈ C(µj, µi), C ′ ∈ C(µi, µk), and

• there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Let E4 be the set of pairs (C, C ′) with C 4 C ′ and E5 be the set of pairs (C, C ′)
with C 5 C ′. So E4 is another way of writing the binary relation 4 and E5 is just the
binary relation 5. This duplicate notation is useful.

Now, (C,E4 ∪ E5) represents the (loop-free and undirected) graph with vertex-set
C and where there is an edge between C and C ′ if either C 4 C ′ or C 5 C ′.

Theorem 6. If H is rationalizable then (C,E4 ∪ E5) can have no cycle with an odd
number of 5.

10



Theorem 6 follows from Theorem 7 below.

In a sense, the necessary condition in Theorem 6 is the content of the theory of stable
matchings. I will show in the rest of this section, and in Section 6, that as long as
the necessary condition in Theorem 6 is compatible with a specification of well-behaved
preferences, then H can be rationalized.

A first requirement of the compatibility with well-behaved preferences is that C, E4
and E5 cannot imply intransitiveness. I express this requirement by making 4 a larger
relation: I define a monotone increasing sequence

{
Ek
4

}
, and work with the larger binary

relation D4 = ∪∞k=1E
k
4. Let E0

4 = E4. Given Ek
4, for k ≥ 0, let Ek+1

4 be those edges

(C, C ′) between elements in C such that either (C, C ′) ∈ Ek
4 and/or there is i, j, h and

C̃ ∈ C with C ∩ C̃ ∩ C ′ 6= ∅ such that C ∈ C(µi, µj) and either 1 or 2 hold:

1. i < j < h, C̃ ∈ C(µj, µh), C ′ ∈ C(µi, µh), and C and C̃ are connected in
(
C,Ek−1

4
)

2. i < h < j, C̃ ∈ C(µh, µj), C ′ ∈ C(µi, µh), and there is a path in
(
C,Ek−1

4 ∪ E5
)

between C and C̃ with an odd number of 5s.

Let D4 = ∪∞k=1E
k
4. Note that D4 = EL

4, for some L ≥ 1, as the sequence of Ek
4 is

monotone increasing and C is finite.

Theorem 7. If H is rationalizable then (C,D4 ∪ E5) can have no cycle with an odd
number of 5.

The proof of Theorem 7 requires Lemmas 5 and 8.

Let H be rationalizable. Define the function d : C → {−1, 1} as follows. For each
C ∈ C, let i, j be such that C ∈ C(µi, µj). Say that d(C) = 1 if (∀m ∈ C)(µiP (m)µj) and
−1 otherwise. Note that Lemma 5 says that all m ∈ C must agree on their preferences
over µi(m) and µj(m).

Lemma 8. Let H be rationalizable and (C1, . . . CN) be a cycle in (C,E4 ∪ E5). For
each n and L, mod N ,

d(Cn) = ΠL
l=n(−1)

1{Cl5Cl+1}d(CL) (3)

Proof. Let P rationalize H. I only prove the case L = n + 1; the result then follows by
induction. Let Cn4Cn+1. There are i, j and k such that (say) Cn ∈ C(µi, µj) and Cn+1 ∈
C(µi, µk). There is m∗ ∈ Cn ∩ Cn+1 with µj(m

∗) = µk(m
∗), so µi(m

∗) P (m∗)µj(m
∗) if

and only if µi(m
∗) P (m∗)µk(m

∗). Since m∗ ∈ Cn ∩ Cn+1, Lemma 5 implies

(∀m ∈ Cn) (µi(m) P (m) µj(m)) iff (∀m ∈ Cn+1) (µi(m) P (m) µk(m)) .

Hence d(Cn) = d(Cn+1). Similarly when Cn ∈ C(µj, µi) and Cn+1 ∈ C(µk, µi).

On the other hand, when Cn 5 Cn+1 and i, j and k are such that Cn ∈ C(µi, µj)
and Cn+1 ∈ C(µk, µi), the existence of m∗ ∈ Cn ∩ Cn+1 with µj(m

∗) = µk(m
∗) implies

(Lemma 5) that d(Cn) = 1 if and only if d(Cn+1) = −1.

11



Proof of Theorem 7. Let H be rationalizable by preference profile P . First note that
Lemma 8 implies Theorem 6 because any cycle C1, . . . CN with an odd number of 5s
implies that d(C1) = (−1)d(C1).

We prove Theorem 7 by induction. In the previous paragraph we proved that (C,E4 ∪ E5) =(
C,E0

4 ∪ E5
)

can have no cycle with an odd number of 5, and Lemma 8 implies that

the formula (3) holds in
(
C,E0

4 ∪ E5
)
. Suppose this statement is true of

(
C,Ek

4 ∪ E5
)
;

if we prove that it is true of
(
C,Ek+1

4 ∪ E5
)

then the proof of the theorem is done.

Let (C, C ′) ∈ Ek+1
4 \Ek

4. I shall prove that d(C) = d(C ′). Let i, j, h and C̃ ∈ C with

C ∩ C̃ ∩C ′ 6= ∅ such that C ∈ C(µi, µj) is in the situation described by Item 1 or Item 2.
Suppose that they are in the situation described by Item 1. Since C and C̃ are connected
in

(
C,Ek−1

4
)
, by Lemma 8, we have d(C) = d(C̃). Suppose, without loss of generality,

that d(C) = 1. Let m ∈ C ∩ C ′ ∩ C̃; then d(C) = d(C̃) = 1 implies µi(m) P (m) µj(m)
and µj(m) P (m) µh(m). So µi(m) P (m) µh(m) and we must have d(C ′) = d(C) Suppose
now the situation described by Item 2. The existence of a path with an odd number of
5s connecting C and C̃ implies that d(C) 6= d(C̃). Suppose, without loss of generality,
that d(C) = 1. Let m ∈ C ∩ C ′ ∩ C̃; then 1 = d(C) 6= d(C̃) implies µi(m) P (m) µj(m)
and µj(m) P (m) µh(m). So µi(m) P (m) µh(m) and we must have d(C ′) = d(C)

Now, since d(C ′) = d(C) for all (C, C ′) ∈ Ek+1
4 \Ek

4, and holds in
(
C,Ek

4 ∪ E5
)
, (3)

holds in
(
C,Ek+1

4 ∪ E5
)
. Then

(
C,Ek+1

4 ∪ E5
)

has no cycles with an odd number of
5s.

6 A Necessary and Sufficient Condition for Ratio-

nalization

The graph (C,D4 ∪ E5) captures some of the requirements put by transitivity of pref-
erences, but not all. In this section I express the remaining requirements as a system
of polynomial inequalities. The idea is that C ∈ C(µi, µj) be assigned a value of 1 if
all m ∈ C prefer µi over µj and value −1 if they prefer µj. It is then simple to control
the transitivity of preferences by controlling the values one can assign to the different C.
The result is a characterization of the H that can be rationalized.

The characterization poses the question of when the rationalizing P is unique; in
econometrics such a situation is called (exact) identification. It is easy to show (Proposi-
tion 10) that, when H is rationalizable, the rationalizing P will generally not be unique.

One first step in the characterization is that all C and C ′ that are connected in
(C,D4) must have the same value, so we can treat them as the same object. Let C be
the set of all connected components of (C,D4). Let (C, D) be the graph that has C as
vertex-set, and where (C, C ′) ∈ D if there is C ∈ C and C ′ ∈ C ′ with C 5 C ′.
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If (C,D4 ∪ E5) has no cycle with an odd number of 5s, (C, D) is a well-defined
loop-free graph: For any two C and C ′ in the same component C ∈ C it cannot be that
C5C ′, as there is a path from C to C ′ in (C,D4) and C5C ′ would imply a cycle with
exactly one 5.

Let B be a ternary relation on C defined as follows: (C, C ′, C ′′) ∈ B if there is i, j,
and h, i < j < h, and C ∈ C ∩ C(µi, µj) C ′ ∈ C ′ ∩ C(µj, µh) and C ′′ ∈ C ′′ ∩ C(µi, µh)
with C ∩ C ′ ∩ C ′′ 6= ∅.
Theorem 9. H is rationalizable if and only if (C,D4 ∪ E5) has no cycle with an odd
number of 5s, and for the resulting graph (C, D), there is a function d : C → {−1, 1}
that satisfies:

1. C 5 C ′ ⇒ d(C) + d(C ′) = 0,

2. (C, C ′, C ′′) ∈ B ⇒ (d(C) + d(C ′)) d(C ′′) ≥ 0.

Further, there is a rationalizing preference profile for each function d satisfying (1) and
(2).

Proof of Theorem 9. I only prove the “if” statement; “only if” is straightforward given
the results in the previous section. Let (C,D4 ∪ E5) have no cycle with an odd number
of 5s, and d be a function in the conditions of the theorem. Abusing notation, interpret
d as defined on C by letting d(C) = d(C) for all C ∈ C. Note that, for all C there is some
C 3 C.

For each m ∈ M , construct preferences P (m) by setting ∅ P (m) w for all w /∈
{µ(m) : µ ∈ H}, w P (m) ∅ for all w ∈ {µ(m) : µ ∈ H}, and µi(m) P (m) µj(m) if ei-
ther i < j and d(C) = 1 for C ∈ C(µi, µj) with C 3 m, or j < i and d(C) = −1 for
C ∈ C(µj, µi) with C 3 m.

For each w ∈ W , define P (w) by ∅ P (w) m for all m /∈ {µ(w) : µ ∈ H}, m P (w) ∅
for all m ∈ {µ(w) : µ ∈ H}, and µi(w) P (m) µj(w) if either i < j and d(µi(C)) = −1 for
µi(C) ∈ C(µi, µj) with µi(C) 3 µi(w) or j < i and d(µi(C)) = 1 for µi(C) ∈ C(µj, µi)
with µi(C) 3 µi(m). Extend P (m) and P (w) arbitrarily to pairs of agents that are
ranked below ∅.

Note that P (m) and P (w) are antisymmetric. I show that P (m) is transitive. The
proof that P (w) is transitive is analogous. Let µi(m)P (m)µj(m) and µj(m)P (m)µh(m).
I shall prove that µi(m) P (m) µh(m).

Case 1. Let i < j < h, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µj, µh) and m ∈ C ′′ ∈
C(µi, µh). Note that µi(m)P (m)µj(m) implies d(C) = 1 and µj(m)P (m)µh(m) implies
d(C ′) = 1. If C and C ′ are connected in (C,D4), then, by the construction of D4, C and
C ′′ are also connected. So (3) implies that d(C ′′) = d(C) = 1; thus µi(m) P (m) µh(m).
Now let C and C ′ not be connected in (C,D4). If C and C ′′ are connected then there
is nothing to prove, as (3) gives d(C ′′) = d(C) = 1 and µi(m) P (m) µh(m). Similarly, we
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obtain µi(m)P (m)µh(m) if C ′ and C ′′ are connected. Suppose then that C, C ′ and C ′′ are
not connected in (C,D4). Let C, C ′, C ′′ ∈ C be such that C ∈ C, C ′ ∈ C ′, and C ′′ ∈ C ′′; C,
C ′, and C ′′ are all different because C, C ′ and C ′′ are disconnected. Since m ∈ C∩C ′∩C ′′,
(C, C ′, C ′′) ∈ B. Now, d(C) = d(C ′) = 1 imply d(C) = d(C ′) = 1, so Item (2) of the
theorem requires that 2d(C ′′) ≥ 0, i.e. d(C ′′) = 1. Hence µi(m) P (m) µh(m).

The argument in Case 1 also yields that,

i < j < h
µj(m) P (m) µi(m)
µh(m) P (m) µj(m)

 implies µh(m) P (m) µi(m). (4)

This gives us µi(m)P (m)µh(m) in the case h < j < i by applying (4) to (i′, j′, h′) defined
as i′ = h, j′ = j and h′ = i.

Case 2. Let i < h < j, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µh, µj) and m ∈ C ′′ ∈
C(µi, µh). So d(C) = 1 and d(C ′) = −1.

First, if C 4 C ′′ we have d(C) = d(C ′′) so there is nothing to prove. Suppose then
that C 4 C ′′ is false. It cannot be that C ′ 4 C ′′, since that would imply C ′ 4 C by
the construction of D4, and d(C ′) 6= d(C) implies that C ′ and C are disconnected in
(C,D4). So it must be the case that all of C, C ′ and C ′′ are disconnected in (C,D4).
Let C, C ′, C ′′ ∈ C be as in Case 1. Then (C ′′, C ′, C) ∈ B. By Item (2) of the theorem,
d(C ′′) must satisfy (d(C ′′)− 1) ≥ 0. So d(C ′′) = 1 and µi(m) P (m) µh(m).

The argument in Case 2 also covers the case h < i < j, by a reasoning similar to the
one for h < j < i at the end of Case 1.

Case 3. Let j < i < h, m ∈ C ∈ C(µj, µi), m ∈ C ′ ∈ C(µj, µh) and m ∈ C ′′ ∈
C(µi, µh). Now we have d(C) = −1 and d(C ′) = 1. First, if C ′4 C ′′, then d(C ′′) = 1 so
there is nothing to prove. Second, it cannot be that C4C ′′, since that would imply C4C ′

by the construction of D4, and d(C ′) 6= d(C) implies that C ′ and C are disconnected in
(C,D4). Let C, C ′, C ′′ ∈ C be as in Case 1. Then (C, C ′′, C ′) ∈ B. By Item (2) of the
theorem, d(C ′) must satisfy (d(C ′′)− 1) ≥ 0. So d(C ′′) = 1 and µi(m) P (m) µh(m).

The argument in Case 3 also covers the case j < h < i by a reasoning similar to the
one in Case 1.

Finally, I show that all µ ∈ H are stable under the constructed preferences. Let µ ∈ H.
It is clear that µ is individually rational. Let w and m be such that w P (m) µ(m). Let i
and j be such that w = µj(m) and µ = µi. There must exists such a j because ∅P (m) w
if w is not m’s partner in some matching in H. Without loss of generality, say that i < j.
Let C ∈ C(µi, µj) with m ∈ C, so d(C) = −1. Then w ∈ µi(C), so the construction of
P (w) implies that µi(w) P (w) µj(w). So µi(m) P (w) m, and hence (m, w) cannot block
µ.

14



Finally, I show that, generally, matching theory is not exactly identified; if H is
rationalizable there are generally many different preference relations that rationalize it.
The source of the different preferences is that, if m is not matched to w in any matching in
H, then the data in H contains very little information on m’s standing in w’s preference
relation.

Let Um be the set of women m is not matched to in a matching in H. Say that
two preference profiles are essentially different if there is at least agent on which the
preference for two acceptable partners is different.

Proposition 10. If H is rationalizable, then it is rationalizable by at least

(2 |M |)|M | Πm∈M |Um|

essentially different preference profiles.

Proof. Let P rationalize H. For each w ∈ Um, I can modify P by setting ∅ P (w) m and
vary P (m) by placing w in any of the possible |W | (= |M |) places in the ranking of m’s
preferences. This will not change the fact that all µ ∈ H are individually rational, and
the only blocking pair it could give rise to is (m, w), but having set ∅P (w) m guarantees
that (m, w) will not be a blocking pair. The same is true if I set ∅P (m) w. So we obtain
2 |M | different preference relation for each w ∈ Um.

7 The lattice structure of stable matchings.

Here I discuss the problem of the universe of lattices that can be stable sets of matching
problems; this problem is related to the question of rationalizability. Recall the classical
result in matching theory that the set of stable matchings is a non-empty distributive
lattice. The problem, first stated by Knuth (1976), is to characterize the distributive
lattices that can be stable matchings for some instance of the matching problem.

Blair (1984) gave what seems to be both the first and definitive answer to the problem.
Blair proves that, for any distributive lattice L, there is a set of men and women, and a
preference profile, so that the resulting set of stable matchings is lattice isomorphic to L.
Blair’s proof is constructive; Gusfield, Irving, Leather, and Saks (1987) improve on his
construction by requiring a smaller set of men and women to generate any given lattice.

The interpretation of Blair’s result in the literature is that the lattice structure of the
set of stable matchings has no properties beyond distributivity. In the words of Roth
and Sotomayor (1990):

“We might (. . .) hope to say something more about what kinds of lattices
arise as sets of stable matchings, in order to use any additional properties
thus specified to learn more about the market. (Blair’s) Theorem shows that
this line of investigation will not bear any further fruit.”
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Gusfield and Irving (1989) make a similar observation:

“There is no special structure that holds in general for marriage lattices . . .
that does not also hold for general distributive lattices.”

Roth and Sotomayor’s, and Gusfield and Irving’s, is one interpretation of Blair’s re-
sult, but it may be useful to think of the result in a different way. While only distributivity
is preserved by lattice homomorphism, the lattice structure of stable matchings may still
have additional properties, properties that are not shared by other lattices of matchings.
In fact, one can rewrite Lemma 5 as a characterization of the lattices of stable matchings.
The lemma implies that these lattices have properties in addition to distributivity.

The additional properties refer to the opposition and coincide of interest property
of any pair of stable matchings. This opposition/coincidence property is characteristic
of lattices of stable matchings, and may not be present in other lattices, even in other
lattices of matchings. Concretely, Lemma 5 implies that, if µi and µj are stable, then,
for any C ∈ C(µi, µj), either (5) or (6) must hold:

(µi ∧ µj)|C = µi|C and (µi ∨ µj)|C = µj|C (5)

(µi ∧ µj)|C = µj|C and (µi ∨ µj)|C = µi|C . (6)

One can endow a set of matchings with ∨ and ∧ operations so that it is a distributive
lattice, but violates (5) and (6). One example is the set of matchings in Section 3; these
cannot be endowed with a lattice structure that respects (5) and (6) because any such
structure would involve the matchings being totally ordered, and we have seen that a
total order is incompatible with stability.

I should emphasize that one can make this point using existing results. For example,
if µi and µj are stable, ∨ cannot be such that µi(m) ∨ µj(m) /∈ {µi(m), µj(m)} (see
e.g. Roth and Sotomayor (1990)). The contribution here is that, by the second part of
Lemma 5, (5) and (6) are also sufficient for a set of matchings to be stable.

Finally, Lemma 5 provides an answer to one interpretation of Knuth’s problem. Knuth
wrote “Can one obtain all distributive lattices from suitable preference matrices ?” (I
refer to preference matrices as preference profiles). If we interpret the question as: given
M and W , can all distributive lattices of matchings be obtained with suitable preference
profiles? The answer is negative, as exemplified by the matchings in Section 3.

8 Different agents for different matchings

I have assumed that the sets of agents involved in each of the matchings in H is the
same. In empirical applications, it is likely that some agents who are present in one
matching are not present in others. The results above can be modified to account for
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different sets of agents. The modification is straightforward but cumbersome, so I only
outline how the basic argument extends. I need to emphasize, though, that the source of
refutability comes from some agents having the same partner in different matchings. The
looser are the ties across matchings, the more degrees of freedom one has in rationalizing
the observations.

Say that Mi and Wi are the sets of men and women who are matched by µi. A
straightforward modification of the arguments above gives that, if there is a path from m
to m′ in (Mi ∩Mj, E(µi, µj)), then µi(m) P (m) µj(m) implies that µi(m

′) P (m′) µj(m
′).

One can now partition each component in (Mi ∩Mj, E(µi, µj)) which is not a cycle into
the paths that start at the different elements of the component. Saying that µi(m)P (m)
µj(m) for one m implies that all the paths that start at m, or at one of m’s successors in
(Mi ∩Mj, E(µi, µj)), agree on how they compare their partners in µi and µj. Adapting
the definitions of 4 and 5 gives the appropriate versions of the results above.

9 Probability of rationalizing

The results on rationalizability have some implications for the statistical “power” of
matching theory. Power refers here to how likely it is that purely random outcomes will
look as if they were generated by the theory; i.e. how likely it is that one can rationalize
random matchings.

I show that, for a fixed number of observed matchings, in a large population, the prob-
ability of rationalizing purely random matchings is bounded away from zero. The result
says that large populations require large sample sizes, which is probably not surprising.

Let Mn be a set of men and Wn a set of women, each with n elements. Let Mn be the
resulting set of possible matchings with no single agents. Endow Mn with the uniform
distribution, and consider sets Hk of k matchings chosen independently at random from
Mn.

Proposition 11. If k is fixed,

lim inf
n→∞

P {Hk is rationalizable } ≥ e−k(k−1)/2

Proof. Fix k and n. Consider the realizations of Hk such that, for all m, µi(m) 6= µj(m)
for all µi, µj ∈ Hk, then Hk is rationalizable in (Mn, Wn) by Proposition 2. For each such
realization of Hk, form a k × n array (ast) by setting ast = µs(mt). Then each woman
will appear exactly once in each row, as the µs are matchings. And each woman will
appear at most once in each column, by the assumption that for all m, µi(m) 6= µj(m)
for all µi, µj ∈ Hk. The resulting array thus forms a latin rectangle (see e.g. Denes and
Keedwell (1974)).

Thus there are as many realizations of Hk in the hypothesis of Proposition 2 as there
are k × n latin rectangles. In turn, Erdös and Kaplanski (1946) proved that, as n →∞,
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the number of k × n is asymptotic to

(n!)ke−(k
2). (7)

On the other hand, an arbitrary realization of Hk forms an array where each woman
appears exactly once in each row, but may be repeated in columns. So each row is a
permutation of the women, and there are as many Hk as ways of making k permutations,
that is (n!)k. The probability then of a draw of Hk in the hypothesis of Proposition 2 is

asymptotic to e−(k
2), which gives the result.

As I remarked above, the message in Proposition 11 is probably not surprising, but it
hopefully illustrates a potential for statistical applications of the rationalizability results
developed in the paper. The proof of the proposition builds on the very crude sufficient
condition for rationalizability in Proposition 2 of Section 2; there is clearly potential for
refining this result.
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