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Abstract

We study the ordinal content of assuming supermodularity, including conditions under
which a binary relation can be represented by a supermodular function. When applied to
revealed-preference relations, our results imply that supermodularity is some times not
refutable: A consumer’s choices can be rationalized with a supermodular utility function
if they can be rationalized with a monotonic utility function. Hence, supermodularity is
not empirically distinguishable from monotonicity. We present applications to assortative
matching, decision under uncertainty, and to testing production technologies.
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Supermodularizability

Christopher P. Chambers Federico Echenique

1 Introduction

Supermodularity has proved a useful assumption in very different areas in economics.
It has been useful because it has strong theoretical implications.1 Here, we study the
strength of supermodularity from a different perspective: When is a finite set of data
incompatible with a supermodular structure? We find that supermodularity is typically
quite weak, in the sense that it is difficult to refute with a finite set of data.

Supermodularity is a cardinal property of a function defined on a lattice. Quasisuper-
modularity, introduced by Milgrom and Shannon (1994), is an ordinal property implied
by supermodularity. It is a powerful and essential theoretical property in the study of
monotone comparative statics, and the economics literature recognizes this. Nevertheless,
supermodularity has dominated quasisupermodularity as an assumption in economic ap-
plications. This is true even in the case where the function assumed to be supermodular
has only ordinal significance. It is therefore surprising that there have been no studies
clarifying the ordinal significance of supermodularity. Our work attempts to fill this
gap. The results identify exactly the ordinal conditions assumed when supermodularity
is assumed.

We proceed to outline our results and their implications for a number of economic
environments.

First, consider a consumer with preferences over a finite set of consumption bundles
in Rn. We characterize the preferences that can be represented by a supermodular utility
function, and we show that any antisymmetric and monotone preference relation can be
represented by a supermodular utility function. Hence, if one observes a finite number
of a consumer’s choices (for example for different prices), supermodular representation
is implied by monotonicity. Our result is reminiscent of Afriat’s (1967) (see also Varian
(1982)) finding that the concavity of utility functions has no testable implications be-
yond monotonicity. We find that supermodularity has no testable implications beyond
monotonicity.

1See the books by Topkis (1998) and Vives (1999) and the recent survey by Vives (2005).



Secondly, consider matching in the marriage market (Becker, 1973) where, if woman
w and man m marry, they generate surplus f(m,w). In Becker’s model of assortative
matching, f is a supermodular function. Now, suppose one observes men and women’s
characteristics, and who matches to whom. We characterize those observations that
are compatible with a supermodular surplus function. For the case when individual
characteristics are one-dimensional, we prove that the matchings are compatible with
supermodularity if and only if they are assortative.

Our third application is to decision-making under uncertainty. Supermodularity is
used to model uncertainty aversion in the Choquet expected utility model (Schmeidler,
1989). We show that, in many situations, uncertainty aversion has no testable implica-
tions. In particular, uncertainty aversion is not refutable using data on choices over binary
acts when each event is perceived as having a different likelihood. It is only refutable
using data on more complicated acts, but such acts also entail attitudes towards risk.

Our fourth and final application considers data on a firm’s factor demands (as in
e.g. Afriat (1972) and Varian (1984)). We present conditions under which the data is
compatible with, respectively, monotone and supermodular technologies.

We end with a note on the previous literature. The seminal papers on supermodularity
and lattice programming in economics are Topkis (1978), Topkis (1979), Vives (1990)
and Milgrom and Roberts (1990). Li-Calzi (1990) presents classes of functions f such
that a continuous increasing transformation of f is supermodular. Most of our proofs
apply an integer version of the Theorem of the Alternative (Aumann, 1964; Fishburn,
1970). Fostel, Scarf, and Todd (2004) and Chung-Piaw and Vohra (2003) present proofs
of Afriat’s theorem using similar ideas. For consumer-maximization problems, where
constraints take the form of a budget set, supermodularity is not sufficient for monotone
comparative statics results. Quah (2004) shows that a concave and supermodular utility
implies a class of monotone comparative statics. It seems important, then, to study the
testable implications of the joint assumptions of supermodularity and concavity. Neither
our nor Afriat’s results give an answer to this problem. The problem is that Afriat’s
separation argument is in the so-called “Afriat numbers,” while ours is in the utility
indexes themselves.

In Section 2 we present basic definition and preliminary results. In Sections 3 and 4
we present results on the representation of binary relations by supermodular and qua-
sisupermodular functions. We present some implications for a model of decision-making
under uncertainty in Section 6. Section 5 has our results on assortative matching. Finally,
Section 7 contains results on the refutability of supermodularity in production.

2 Preliminary definitions and results.

Let X be a set. A preorder on X is a binary relation that is reflexive and transitive.
A partial order on X is a preorder that is also antisymmetric. A partially-ordered
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set is a pair (X,�) where X is a set and � is a partial order on X. A lattice is a
partially-ordered set (X,�) such that for all x, y ∈ X, there exists a unique greatest
lower bound x ∧ y and a unique least upper bound x ∨ y according to �.

For a lattice (X,�), we write x �1 y if there exists z 6= y for which y = x ∨ z, and
we write x �2 y if there exists z 6= x for which x = y ∧ z. We will write x ‖ y if neither
x � y or y � x.

Given a finite lattice (X,�), let R be a preorder on X. Define the binary relation
PR by xPRy if xRy and not yRx. A representation of R is a function u : X → R for
which i) for all x, y ∈ X, if xRy, then u (x) ≥ u (y), and ii) for all x, y ∈ X, if xPRy,
then u (x) > u (y). We will be concerned with representations of R satisfying interesting
properties.

Say a function u : X → R is supermodular if for all x, y ∈ X, u (x ∨ y)+u (x ∧ y) ≥
u (x) + u (y), and strictly supermodular if the inequalities are strict for all x, y ∈ X
for which x ‖ y. A function u : X → R is quasisupermodular if for all x, y ∈ X,
u (x) ≥ u (x ∧ y) implies u (x ∨ y) ≥ u (y) and u (x) > u (x ∧ y) implies u (x ∨ y) > u (y).
Say a function u : X → R is monotonic if for all x, y ∈ X, x � y implies u (x) ≤ u (y),
and strictly monotonic if the inequality holds strictly for all x, y ∈ X for which x � y
and x 6= y.

For a binary relation R, an R-cycle is a set {x1, ..., xK}, where K > 1 for which for
all i = 1, ..., K − 1, xiRxi+1 and xKRx1.

2

The following proposition is simple, and its proof illustrates a method we use exten-
sively in the paper.

Proposition 1 Let (X,�) be a finite lattice. Then there exists a strictly supermod-
ular u : X → R.

Proof. We may view a function u : X → R as an element of RX . The existence of a
strictly supermodular u is equivalent to the existence of u ∈ RX for which for all x, y ∈ X
such that x ‖ y, (1x∧y + 1x∨y − 1x − 1y) · u > 0. By the integer version of the Theorem
of the Alternative (Aumann, 1964; Fishburn, 1970), such a u does not exist if and only if
for each {x, y} for which x ‖ y, there exists n{x,y} ∈ Z+, at least one of which is strictly
positive, for which

∑

{{x,y}:x‖y}

n{x,y} (1x∨y + 1x∧y − 1x − 1y) = 0. (1)

We shall construct an infinite sequence {xk} of elements of X such that, for all xk, there
exists some y for which n{xk,y} > 0, xk+1 6= xk and xk+1 � xk. Such a sequence is
unbounded, which contradicts the finiteness of X together with the antisymmetry and
transitivity of �. There exists n{x,y} > 0, so define x1 ≡ x. Now, suppose that xk has

2This definition is somewhat nonstandard, as it permits cycles of length two.
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been defined. Then there exists some y for which, without loss of generality, n{xk,y} > 0.
Define xk+1 ≡ xk ∨ y. Then xk+1 6= xk and xk+1 � xk. Lastly, as (1) is satisfied and
n{xk,y} > 0, there must exist some z for which n{z,xk+1} > 0. This completes the induction
step. We have therefore derived a contradiction by constructing an unbounded sequence.
Hence, a supermodular u must exist.

Our next result is a characterization of monotonic representation. The result is simple
and rather basic to utility theory, but apparently it is new. We shall use it to establish
Corollary 4 of Theorem 3.

Define the binary relation T by xTy if either y � x or xRy.

Proposition 2 There exists a monotonic representation u of R if and only if for
all {x1, ..., xK} ⊆ X, if xiTxi+1 for all i = 1, ..., K − 1, then xKPRx1 is false.

Proof. The existence of such a function is equivalent to the existence of a vector
u ∈ RX satisfying the following three properties: i) for all x, y ∈ X for which x � y and
x 6= y, (1x − 1y) · u ≥ 0, ii) for all x, y ∈ X for which xRy and x 6= y, (1x − 1y) · u ≥ 0,
and iii) for all x, y ∈ X for which xPRy, (1x − 1y) · u > 0. Clearly, these inequalities are
satisfied if and only if for all x, y for which xTy and x 6= y, (1x − 1y) · u ≥ 0, with the
inequality strict in the case of xPRy. By the Theorem of the Alternative, such a u does
not exist if and only if for all x, y ∈ X for which xTy and x 6= y, there exists nx,y ∈ Z+

so that
∑

{(x,y):xTy}

nx,y (1x − 1y) = 0,

where there exists a pair xPRy for which nx,y > 0. Modifying results of Diestel (2000)
1.9.7, or Berge (2001) (15.5), demonstrate that such equality can be true if and only if
there exist a collection of T -cycles, say

{

x1
1, ..., x

1
K1

}

, ...,
{

xN
1 , ..., xN

KN

}

for which nx,y is the number of times xTy appears in one of the T -cycles. In other words,
the equality can only hold if and only if there exists a set {x1, ..., xK} ⊆ X for which for
all i = 1, ..., K − 1, xiTxi+1 and xKPRx1.

3 Supermodular Representation.

Let (X,�) be a finite lattice and R be a preorder on X. We present results on when R
has a supermodular representation. We first present a simple sufficient condition which
implies that a monotonic representation must yield a supermodular representation. We
then provide a necessary and sufficient condition for supermodular representation, and
discuss the notion of quasi-supermodularity.

Our results have implications for the refutability of supermodularity on finite sets
of data: With data on prices and consumption vectors x ∈ X, one can let R be the
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revealed preference relation (Afriat, 1967). Our results give conditions on when revealed
preference can falsify a supermodular utility. By Corollary 4 below, supermodularity is
not distinguishable from monotonicity using finite data on consumption.

Define the binary relation T1 as xT1y if either x �1 y or xRy, and define T2 by xT2y
if either x �2 y or xRy.

Theorem 3 Suppose that R is antisymmetric. Suppose that for all {x1, ..., xK}, if
xiT1xi+1 for all i = 1, ..., K − 1, then xKPRx1 is false. Then there exists a super-
modular representation u of R. The preceding statement also holds if T1 is replaced
by T2.

Proof. We will only show that the first statement is true; the second will follow by
symmetric arguments. As in previous proofs, the existence of such a representation u is
equivalent to the existence of a vector u ∈ RX for which i) for all x, y ∈ X for which x ‖ y
, (1x∨y + 1x∧y − 1x − 1y) ·u ≥ 0, and ii) for all x, y ∈ X for which xPRy, (1x − 1y) ·u > 0.
If such a u does not exist, there exist a pair of collections, n{x,y} and nx,y, each in Z+,
such that

∑

{{x,y}:x‖y}

n{x,y} (1x∨y + 1x∧y − 1x − 1y) +
∑

{(x,y):xPRy}

nx,y (1x − 1y) = 0, (2)

where some nx,y > 0. We will construct a sequence of elements ranked according to T1.

We will construct a sequence such that yk+1T1yk, yk+1 6= yk, and there exists some z
for which either n{z,yk} > 0 or n(z,yk) > 0. Since there exists some nx,y > 0, let y1 = y.
Now suppose that yk is defined. Then there exists z for which either n{z,yk} > 0 or
n(z,yk) > 0. In the first case, (z ∨ yk) T1yk, so define yk+1 = z ∨ yk. In the second case,
zPRyk, so define yk+1 = z. Then yk+1 6= yk and yk+1T1yk. In either case, the fact that (2)
is satisfied implies that there exists a w for which either n{w,yk+1} > 0 or n(w,yk+1) > 0.
This completes the construction of the sequence.

As X is finite, this demonstrates the existence of a T1-cycle. Since � is asymmetric
and transitive, we conclude that there must exist a set {x1, ..., xK} ⊆ X for which for all
i = 1, ..., K − 1, xiT1xi+1, and xKPRx1.

Corollary 4 Let R be antisymmetric. If R has a monotonic representation, then it
has a supermodular representation.

Proof. Note that �1 is a coarser order than �. So the inexistence of {x1, ..., xK} ⊆ X
with xiTxi+1 for all i = 1, ..., K − 1 and xKPRx1 implies the sufficient condition in
Theorem 3. The result follows then from Proposition 2.

To see why we require R to be antisymmetric in Theorem 3, consider the following
example.

Example 5 Let X = {0, 1}2 with the usual ordering. Let R be representable by the
function u : X → R for which u ((0, 0)) = 0, and u ((0, 1)) = u ((1, 0)) = u ((1, 1)) = 1.

5



Clearly, R cannot be represented by a supermodular function (any such function v would
require v ((0, 1)) = v ((1, 0)) = v ((1, 1)) > v ((0, 0)), so that v ((0, 0)) + v ((1, 1)) <
v ((1, 0))+v ((0, 1)). Nevertheless, the relation PR consists of (1, 1) PR (0, 0), (0, 1) PR (0, 0),
and (1, 0) PR (0, 0). For all x 6= (0, 0), (0, 0) T1x is false, so that the hypotheses of Theo-
rem 1 are satisfied (except for antisymmetry).

To see that the condition in Theorem 3 is not necessary (even under the assumption
of antisymmetry of R), consider the following example.
Example 6 Let X = {0, 1}2 with the usual ordering. Let R be representable by the
function u : X → R for which u ((0, 0)) = 0, u ((0, 1)) = −1, u ((1, 0)) = 2, and
u ((1, 1)) = 1.5. Clearly, u is strictly supermodular. However, note that (1, 1) T1 (1, 0),
yet (1, 0) PR (1, 1). Moreover, (0, 0) T2 (1, 0), yet (1, 0) PR (0, 0).

In light of Example 6, one may ask for a necessary and sufficient condition for su-
permodular representation. We obtain one from an application of the Theorem of the
Alternative:

Theorem 7 Let (X,�) be a finite lattice. There exists a supermodular u : X → R

which represents R if and only if for all N,K ∈ N, for all {xi}
N

i=1 , {yi}
N

i=1, {zl}
K

l=1,

{wl}
K

l=1 ⊆ X for which for all l = 1, ..., K − 1, zlRwl and for which

N
∑

i=1

(1xi∨yi
+ 1xi∧yi

) +
K

∑

l=1

1zl
=

N
∑

i=1

(1xi
+ 1yi

) +
K

∑

l=1

1wl
,

wKPRzK does not hold.

Proof. As in previous proofs, the existence of such a representation u is equivalent
to the existence of a vector u ∈ RX for which i) for all x, y ∈ X for which x ‖ y ,
(1x∨y + 1x∧y − 1x − 1y) · u ≥ 0, and ii) for all x, y ∈ X for which xPRy, (1x − 1y) · u > 0.
By the integer version of the Theorem of the Alternative, this statement is false if and
only if for all x, y ∈ X for which x ‖ y, there exists some n{x,y} ∈ Z+ and for all x, y ∈ X
for which xRy, there exists some nx,y ∈ Z+, and there exists at least one nx,y > 0 (for
which xPRy) such that

∑

{{x,y}:x‖y}

n{x,y} (1x∨y + 1x∧y − 1x − 1y) +
∑

{(x,y):xRy}

nx,y (1x − 1y) = 0.

Separating terms, we obtain
∑

{{x,y}:x‖y}

n{x,y} (1x∨y + 1x∧y) +
∑

{(x,y):xRy}

nx,y1x

=
∑

{{x,y}:x‖y}

n{x,y} (1x + 1y) +
∑

{(x,y):xRy}

nx,y1y.

It is easy to see that this is equivalent to the existence of N,K ∈ N, {xi}
N

i=1 , {yi}
N

i=1,

{zl}
K

l=1, {wl}
K

l=1 ⊆ X such that for all l = 1, ..., K − 1, zlRwl and for which

N
∑

i=1

(1xi∨yi
+ 1xi∧yi

) +
K

∑

l=1

1zl
=

N
∑

i=1

(1xi
+ 1yi

) +
K

∑

l=1

1wl
,

and zKPRwK .
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4 Quasisupermodular Representation.

Milgrom and Shannon (1994) introduce the notion of quasisupermodularity as an ordinal
generalization of supermodularity. They show that quasisupermodularity is necessary
and sufficient for a class of monotone comparative statics. Here we state a simple charac-
terization of when R can be represented by a quasisupermodular function. The purpose
of the result is mainly as a comparison with Theorem 7.

Note that the condition in Theorem 7 implies that there are no R-cycles with PR-
elements, a well-known necessary and sufficient condition for representability (see e.g.
Richter (1966)). The analogous condition for quasisupermodularity will have no such
implication; so we assume outright that R is complete and transitive.

Theorem 8 Let (X,�) be a finite lattice, and that R is complete and transitive.
Then there exists a quasisupermodular u : X → R which represents R if and only if
for all x, y, {zl}

2
l=1, {wl}

2
l=1 ⊆ X for which z1Rw1, zlRwl and for which

(1x∨y + 1x∧y) +
2

∑

l=1

1zl
= (1x + 1y) +

2
∑

l=1

1wl
,

w2PRz2 does not hold.

Proof. R is representable by a quasisupermodular function u if and only if there
exists a function u : X → R that represents R. This is equivalent to the statement that
xR (x ∧ y) implies (x ∨ y) Ry and xPR (x ∧ y) implies (x ∨ y) PRy. This is equivalent to
the condition displayed in the statement of the Proposition.

Milgrom and Shannon (1994) present an example of a quasisupermodular function
for which no monotonic transformation yields a supermodular function. We show how
their example fails the condition in Theorem 7.

Example 9 Let X = {1, 2} × {1, 2, 3, 4} and f : X → R be f(1, 1) = f(1, 4) = 1,
f(1, 2) = f(1, 3) = 2, f(2, 1) = f(2, 4) = 3, f(2, 2) = 4, and f(2, 3) = 5.

Let x1 = (2, 1), y1 = (1, 2), and x2 = (2, 3), y2 = (1, 4). Then the vector

2
∑

i=1

(1xi∨yi
+ 1xi∧yi

) −
2

∑

i=1

(1xi
+ 1yi

)

is
1 2 3 4

2 −1 1 −1 1
1 1 −1 1 −1

(3)

Let R be the order on X induced by f . So R is the order that a supermodular trans-
formation of f should represent.
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Let w1 = x2∨y2 = (2, 4) and z1 = x1; so z1Rw1. Let w2 = x1∧y1 = (1, 1) and z2 = y2;
so z2Rw2. Let w3 = x2 ∧ y2 = (1, 3) and z3 = y1; so z3Rw3. Let w4 = x1 ∨ y1 = (2, 2)
and z4 = x2; so z4Pw4. It is clear that (3) equals

4
∑

k=1

(1zk
− 1wk

) .

The theorem thus implies that there is no supermodular function that represents R.

5 Assortative matching.

We now consider a model of marriage where supermodularity predicts which types of
matches one will observe. The model was formulated by Becker (1973); it is based on
Shapley and Shubik’s (1972) assignment game.3 Let M = {m1, . . . mn} be a set of men,
and W = {w1, . . . wn} a set of women. Suppose that the marriage of a man and a
woman generates a surplus that only depends on certain measurable characteristics of
the pair. Becker assumes that the surplus is a supermodular function of the couples’
characteristics.

Here, we study a finite set of data on who matches with whom, and on their indi-
vidual characteristics. First, following Becker’s (1973) first model, we consider general
multidimensional characteristics. We present a condition that guarantees the data are
compatible with a supermodular surplus. Second, we follow Becker in specializing to
one-dimensional characteristics and present a necessary and sufficient condition for the
data to be compatible with supermodular surplus. The condition is that all matchings
in the data must be “assortative,” i.e. high-value women must match to high-value men.

A matching is a subset µ of M × W such that for each m there is exactly one w
such that (m,w) ∈ µ, and for two distinct m and m′ there is no w with (m,w) ∈ µ and
(m′, w) ∈ µ. So a matching is a bijection from M onto W . Note that we ignore the
possibility that an agent remains unmatched.

Let K be a finite set of observations, indexed by k. An observation consists of how
men and women match, and their characteristics. Concretely, consider collections

(a) of vectors (θk
m)m∈M and (πk

w)w∈W , where θk
m ∈ RdM and πk

w ∈ RdW ,

(b) and for all k = 1, ..., K, matchings µk.

Here dW and dM is the number of dimensions on, respectively, men and women’s
characteristics. We assume that the vectors θk

m are different, for different m and k;
similarly for the vectors πk

w. Formally, (m, k) 6= (m′, k′) implies θk
m 6= θk′

m′ and (w, k) 6=
(w′, k′) implies πk

w 6= πk′

w′ .

3Assortative matching is referred to by Becker as assortive mating.
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Let X =
{

(θk
m, πk

w) : k = 1, ..., K and (m,w) ∈ M × W
}

. We assume that X is a
lattice under the usual order.

A function f : X → R+ assigns a value to each possible matching, for each observed
vector of characteristics. The value of a matching µ in observation k is given by

V k
f (µ) =

∑

(m,w)∈µ

f(θk
m, πk

w).

Say that f rationalizes the observations in (a) and (b) if, for all k, µk 6= µ′ implies
that V k

f (µk) > V k
f (µ′).

Define the binary relation R on X by xRy if and only if there is k, m,m′, w and w′

such that

• x = (θk
m, πk

w), y = (θk
m′ , πk

w′),

• (m,w) ∈ µk and (m′, w′) /∈ µk.

The following result follows from Theorem 3.

Proposition 10 Suppose that for all {x1, ..., xK}, if xiT1xi+1 for all i = 1, ..., K−1,
then xKPRx1 is false. Then there is a supermodular function that rationalizes the
observations in (a) and (b).

Becker (1973) introduces the model above, for general dM and dW but presents no
results. Our condition in Proposition 10 is, to the best of our knowledge, the first positive
implication of Becker’s general model. Now let dM = dW = 1. Say that a matching µ is
assortative if, for any (m,w) and (m′, w′) in µ, θm < θm′ implies that πw < πw′ .

Proposition 11 Suppose that dM = dW = 1. Then there is a supermodular func-
tion that rationalizes the observations in (a) and (b) if and only if the matchings µk

are assortative.

Proof. (Only if) was shown by Becker (1973).4 We shall prove (if).

The existence of f rationalizing the observations is equivalent to the existence of a
vector u ∈ RX such that x ‖ y implies that (1x∨y + 1x∧y − 1x − 1y) ·u ≥ 0, and such that,
for each µk and µ 6= µk

(

1(θk
m,πk

w):(m,w)∈µk − 1(θk
m,πk

w):(m,w)∈µ

)

· u > 0.

Note that the last statement is equivalent to
(

1(θk
m,πk

w):(m,w)∈µk\µ − 1(θk
m,πk

w):(m,w)∈µ\µk

)

· u > 0.

4Becker attributes the proof to William Brock.
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Suppose there is k such that µk is not assortative. Let (m,w) and (m′, w′) in µk be
such that θk

m < θk
m′ but πk

w > πk
w′ . Let µ be the matching obtained from µk by adding

(m,w′) and (m′, w), and subtracting (m,w) and (m,w).

Then (θk
m′ , πk

w) = (θk
m, πk

w) ∨ (θk
m′ , πk

w′) and (θk
m, πk

w′) = (θk
m, πk

w) ∧ (θk
m′ , πk

w′). So,

1(θk
m,πk

w):(m,w)∈µk\µ −1(θk
m,πk

w):(m,w)∈µ\µk

−
(

1(θk
m,πk

w) + 1(θk
m′

,πk
w′

)

)

+
(

1(θk
m,πk

w)∨(θk
m′

,πk
w′

) + 1(θk
m,πk

w)∧(θk
m′

,πk
w′

)

)

= 0

By the Theorem of the Alternative, there can not be a rationalizing f .

6 Uncertainty aversion and the Choquet expected

utility model.

We now turn to a model of decision under uncertainty where supermodularity models
uncertainty aversion.

For a finite measurable space,
(

Ω, 2Ω
)

, a capacity is a function ν : 2Ω → R for which
ν (∅) = 0, ν (Ω) = 1, and A ⊆ B implies ν (A) ≤ ν (B). A capacity is supermodular if it
is supermodular when 2Ω is endowed with the set-inclusion order.

For some outcome space X, the set of acts is the set of functions f : Ω → X. Denote
the set of acts by F . A binary relation R over F conforms to the Choquet expected

utility model if there exists some u : X → R and a capacity ν on Ω for which the
function U : F → R represents R, where

U (f) ≡

∫

Ω

u (f (ω)) dν (ω) ; 5 (3)

Schmeidler (1989) introduces this model and axiomatizes those R conforming to it in
an Anscombe and Aumann (1963) framework (such an environment allows him to ob-
tain uniqueness of the representing ν). Let us suppose therefore that X = ∆ (Y ) for
some finite set Y , and that u : ∆ (Y ) → R is expected utility. A binary relation R

5The Choquet integral with respect to ν is defined as:

∫

Ω

g (ω) dν (ω)

=

∫ +∞

0

ν ({ω : g (ω) > t}) dt +

∫ 0

−∞

[ν ({ω : g (ω) > t}) − 1] dt
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which conforms to the Choquet expected utility model exhibits Schmeidler uncer-

tainty aversion if and only if ν is supermodular.6

For a given binary relation R over F conforming to the Choquet expected utility
model, define the likelihood relation R∗ over 2Ω by ER∗F if there exist x, y ∈ X for
which xPRy7 and

[

x if ω ∈ E
y if ω /∈ E

]

R

[

x if ω ∈ F
y if ω /∈ F

]

.

Note that for the Choquet expected utility model, this relation is complete. R∗ reflects
a “willingness to bet” relation.

Corollary 12 Suppose that R conforms to the Choquet expected utility model. Then
if the likelihood relation R∗ is antisymmetric, it is consistent with Schmeidler uncer-
tainty aversion.

This result implies that in many situations, there are no testable implications of
Schmeidler uncertainty aversion from a purely ordinal standpoint. Preferences over bi-
nary acts are not enough to refute the hypothesis of Schmeidler uncertainty aversion.
Preferences over more complicated acts must be observed, but preferences over more
complicated acts also involve attitudes toward risk. Thus, the Schmeidler definition of
uncertainty aversion requires observing preferences over risky acts. Of course, this is al-
ready clear from his definition. Other theories of uncertainty aversion are due to Epstein
(1999) and Ghirardato and Marinacci (2002). Epstein discusses the issue of observability
of uncertainty aversion from the likelihood relation at length. We believe our result
illustrates just how difficult Schmeidler uncertainty aversion is to refute. The theories
of Epstein and Ghirardato and Marinacci are more general and are based on compara-
tive notions of uncertainty aversion, an idea due to Epstein. The differences in the two
theories are as to what they take to be the benchmark of “uncertainty neutral.” Both
theories have implications for the Choquet expected utility model. Epstein uncertainty
aversion turns out to be characterized by the likelihood relation when adapted to this
framework, whereas Ghirardato-Marinacci uncertainty aversion is not.

7 Supermodular production technology.

We now study when a supermodular technology can rationalize data on factor demands.
This exercise follows Afriat (1972), who studied the refutability of concave and monotone
production functions. Afriat assumes that both factor demands and production output
are observable. When output is observable, one can directly test if the output is super-
modular in the factors used. We assume instead that only factors and their prices are
observed, and we ask when these can be rationalized using a supermodular technology.
Varian (1984) makes the same assumption when testing for cost minimization.

6Schmeidler’s definition in terms of R states that for any two acts f, g ∈ F , and α ∈ [0, 1], if fRg,
then αf + (1 − α) gRg.

7Here we are abusing notation by identifying a constant act with the value that constant act takes.
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The data consists of pairs (w, z), where w is a vector of factor prices and z is a vector
of factor demands at prices w. Concretely, assume a collection of K observations (wk, zk),
k = 1, . . . K, such that, for every k, wk ∈ Qn and zk ∈ Qn. We require the observations to
be rational because of our use of the integral version of the Theorem of the Alternative.
When convenient, we write wk as wzk

. Let X = {zk : k = 1, . . . K} be a finite lattice
under the usual order on Rn.

We denote the revealed-preference binary relation on X by P , so zkPz for all z 6= zk,
and all k.

Say that a function f : X → R+ rationalizes the data (wk, zk)
K
k=1 if, for each k,

f(zk) − wk · zk ≥ f(z) − wk · z,

for all z ∈ X. Interpret f(z) as the revenue the firm receives when it uses factors z; if
the firm is competitive, f(z) is proportional to its production function.

We first show that monotonicity has no testable implications using data on factor
demands. This result does not concern supermodularity, but it is apparently new and
the condition for representation (statement 3 in Proposition 13) can be compared to the
condition for supermodular representation. The result is a formalization of the notion
that a profit-maximizing firm will not operate where its revenue function is decreasing.

Define the binary relation R on X by zRz ′ if either z �2 z′ or zPz′.

Proposition 13 The following statements are equivalent.

1. There is a rationalizing function.

2. There is a monotone increasing rationalizing function.

3. For any P -cycle {z1, ..., zN}, we have

N
∑

n=1

wzn
(zn − zn+1) ≤ 0

(read N + 1 as 1).

Proof. The existence of a rationalizing function is equivalent to the existence of a
vector u ∈ RX

+ that satisfies the following K × |X| conditions: for each k and z ∈ X,

(1zk
− 1z) ≥ wk · (zk − z) (4)

The equivalence of 1 and 3 follows directly from the integer version of the theorem of the
alternative, by a similar argument to the proof of Theorem 3. Trivially, 2 implies 1.

We now prove that 3 implies 2, which finishes the proof of the proposition. The
existence of a monotone increasing rationalizing function is equivalent to the existence of

12



a vector u ∈ RX
+ satisfying the conditions in (4) and, in addition, that for each z, z ′ ∈ X

with z > z′, (1z − 1z′) ≥ 0. Suppose there is no monotone rationalizing function. By
the integer version of the theorem of the alternative, there are collections of non-negative
integers, (ηk,z) and (ηz,z′) such that

∑

k,z

ηk,z (1zk
− 1z) +

∑

{(z,z′):z>z′}

ηz,z′ (1z − 1z′) = 0 (5)

and
∑

k,z

ηk,zwk · (zk − z) > 0.

Define the collection (η′
k,z) by

η′
k,z = ηk,z +

∑

{z′:zk>z′}

ηzk,z′ .

Then
∑

k,z η′
k,z (1zk

− 1z) = 0 and, since zk > z implies that wzk
(zk − z) ≥ 0, we have

that

∑

k,z

η′
k,zwk · (zk − z) =

∑

k,z

ηk,zwk · (zk − z) +
∑

{(k,z):zk>z}

ηzk,zwzk
· (zk − z) > 0.

There is then a P -cycle violating the condition in 3.

Proposition 14 There is a supermodular rationalizing function if, for any R-cycle
{z1, ..., zN}, we have

∑

{n:znPzn+1}

wzn
(zn − zn+1) ≤ 0

(read N + 1 as 1).

Proof. The existence of a supermodular rationalizing function is equivalent to the
existence of a vector u ∈ RX

+ satisfying the conditions in (4) in the proof of Proposition 13,
and, in addition, that for each z, z ′ ∈ X with z ‖ z′ (1z∨z′ + 1z∧z′ − 1z − 1z′) ≥ 0.

Now suppose there is no supermodular rationalizing function. By the integer version
of the theorem of the alternative, there are collections of non-negative integers, (ηk,z) and
(ηz,z′) such that

∑

k,z

ηk,z (1zk
− 1z) +

∑

z‖z′

ηz,z′ (1z∨z′ + 1z∧z′ − 1z − 1z′) = 0 (6)

and
∑

k,z

ηk,zwk · (zk − z) > 0.
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Define the collections (η′
k,z) and (η′

z,z′) by

η′
k,z = ηk,z +

∑

{{z,z′}:zk=z∨z′}

ηz,z′

and by η′
z,z′ =

∑

{{z′,z′′}:z=z′∧z′′} ηz′,z′′ .

We decompose each summand in the sum on the right of (5) by

ηz,z′ (1z∨z′ + 1z∧z′ − 1z − 1z′) = ηz,z′ (1zk
− 1z) + ηz,z′ (1z∧z′ − 1z′) ,

where k is such that z ∨ z′ = zk. Hence, (5) and the definition of (η′
k,z) and (η′

z,z′) imply
that

∑

k,z

ηk,z (1zk
− 1z) +

∑

{{z,z′}:∃z′′z=z′′∧z′}ηz,z′

(1z∨z′ + 1z∧z′ − 1z − 1z′) = 0

Note that, for each k and z such that zk = z∨z′ for some z′, we have that wk(zk−z) ≥ 0.
So

∑

k,z η′
k,zwk(zk − z) > 0, as we have only added non-negative terms.
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