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Abstract

In an environment in which the primitive is the space of distribution functions, we
characterize the quantile functions by the axioms ordinal covariance, monotonicity with
respect to first order stochastic dominance, and upper semicontinuity. We show how to
characterize the VAR in a similar manner.
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A Simple Axiomatization of Quantiles on the
Domain of Distribution Functions ∗

Christopher P. Chambers

1. Introduction

Here, our primary purpose is to understand quantiles from an axiomatic perspective.
Given is the space of distribution functions. We understand an α-quantile of a distrib-
ution function F to be the smallest value x for which F (x) > α. Properties of quantile
functions are well-understood. Two particular appealing properties of quantile functions
stand out. First, they are covariant with respect to arbitrary ordinal transformations.
Thus, transforming the units of measurement of the outcome of the random variable in an
arbitrary monotonic way transforms the quantile in the same way. Secondly, quantiles
are weakly monotonic with respect to first order stochastic dominance. These prop-
erties of quantiles are both well-known; see, for example, Manski [7] or Denneberg [4].
Our primary contribution in this note is to show that these two properties essentially
characterize the quantiles. Our characterization theorems utilize a simple continuity
condition; however, this condition simply allows us to obtain a one-parameter family of
quantiles. Without the continuity condition, we would have an axiomatization of two
one-parameter families of quantiles (usually referred to in the literature as “upper” and
“lower” quantiles).

The related literature is relatively small, given the importance of quantiles. This note
is essentially a translation of the more general results of Chambers [3] into the framework
of distribution functions. In that paper, the concern is not with the space of distribution
functions, but with the space of bounded real-valued functions on some measurable space.
A general representation theorem for all functions which are invariant under ordinal
transformation and monotonic is provided. The results in that paper generalize several
results found in the social choice and mathematics literature, namely [2, 5, 6, 8, 9, 11, 12].
Manski [7] suggests using quantiles in a decision-theoretic framework similar to that of
Savage [14]. Rostek [13] provides a decision-theoretic analysis of quantiles in terms
of order structures. She uses Savage-style axioms to uncover the complete behavioral
implications of a decision maker who behaves as if she forms a unique probability measure
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over the measurable space, as well as a state-independent utility index. The decision
maker chooses that random variable which maximizes some α-quantile of her utility
index according to the endogenous probability measure. Her axiomatization does not
rely on the ordinal invariance concept per se, although one axiom in her analysis is closely
related.

In the next section, we introduce the model and results. We show how to characterize
quantiles on the space of bounded distribution functions, as well as on the space of
unbounded distribution functions. We also show how to axiomatize a popular risk
measure, the Value at Risk. A Value at Risk is simply a negation of a quantile; therefore,
simple restatements of our axioms allow us to characterize these as well.

2. The model

We will consider two domains. One is the domain of all bounded random variables, and
the other is which returns can be unbounded.

In the bounded case, the domain Fbdd is the set of all functions F : R→ R satisfying
the following conditions:

i) {0, 1} ⊂ F (R) ⊂ [0, 1]

ii) F is nondecreasing

iii) F is right-continuous

The domain F consists of all functions F : R→ R satisfying the following conditions:

i∗) {0, 1} ⊂ F (R) ⊂ [0, 1]

ii) F is nondecreasing

iii) F is right-continuous

We study mappings ρ : F → R from an axiomatic perspective. A function ρ : Fbdd →
R or ρ : F → R is interpreted as a statistic. Our primary purpose is to understand the
theoretical properties of quantiles as statistics. A few definitions are necessary.

For a strictly increasing and continuous onto function ϕ : R→ R, F ◦ϕ−1 : R→ R is
that function which results when the payoffs are altered according to the function ϕ. Let
F,F 0 ∈ F and say that F0 first order stochastically dominates F if for all x ∈ R,
F 0 (x) ≤ F (x). In this case, we write F 0 ≥FOSD F . This means for any value x,
F guarantees a weakly greater probability of achieving at most x. We will say that a
sequence {Fn}⊂F converges to F ∈F in distribution if for all x ∈ R at which F is
continuous, Fn (x)→ F (x). In this case, we will write Fn → F .
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2.1. Bounded distribution functions

When random variables are bounded, the following axioms are meaningful.

Monotonicity: If F 0 ≥FOSD F , then ρ (F 0) ≥ ρ (F ).

For a random variable X and an arbitrary continuous and strictly increasing function
ϕ : R→ R, ϕ ◦X is that random variable whose returns are the returns of X composed
with ϕ. Note that if F is the distribution function of X, then F ◦ϕ−1 is the distribution
function of ϕ ◦X.

Ordinal covariance: For all ϕ : R → R satisfying ϕ (R) = R, strictly increasing and
continuous, ρ (F ◦ ϕ−1) = ϕ (ρ (F )).

Our last axiom in this environment is a simple continuity condition, requiring that
there are no “downward jumps” in the behavior of a statistic.

Upper semicontinuity: If {Fn}→ F and ρ (Fn) ≥ α for all n, then ρ (F ) ≥ α.

We could equivalently define a notion of lower semicontinuity, and characterize the
resulting functions. However, imposing both upper semicontinuity and lower semiconti-
nuity together with monotonicity and ordinal covariance leads to an impossibility.

Theorem 1: The function ρ : Fbdd → R satisfies monotonicity, ordinal covariance,
and upper semicontinuity if and only if there exists α ∈ [0, 1) such that ρ (F ) =
inf {x ∈ R : F (x) > α}.1

Proof. Suppose ρ : F → R can be represented as ρ (F ) = inf {x ∈ R : F (x) > α}
for some α ∈ [0, 1). To see that ρ is monotonic, suppose that F ≥FOSD F 0. Then
{x : F (x) > α} ⊂ {x : F 0 (x) > α}, so that inf {x : F (x) > α} ≥ inf {x : F 0 (X) > α},
or ρ (F ) ≥ ρ (F 0). To see that ρ satisfies ordinal covariance, let ϕ : R → R such that
ϕ (R) = R, ϕ strictly increasing and continuous. Then

ρ
¡
F ◦ ϕ−1

¢
= inf

©
x :
¡
F ◦ ϕ−1

¢
(x) > α

ª
= inf

©
x : F

¡
ϕ−1 (x)

¢
> α

ª
= inf {ϕ (x) : F (x) > α}
= ϕ (inf {x : F (x) > α})
= ϕ (ρ (F )) .

1Dropping the upper semicontinuity condition would admit functions of the following form:

ρ (F ) = sup {x ∈ R : F (x) < α} ,

for some α ∈ (0, 1]. These are the only additional functions that satisfy the monotonicity and ordinal
covariance conditions.

3



Here, the fourth equality follows from continuity of ϕ. Lastly, to verify upper semicon-
tinuity, let {Fn} ⊂ F for which ρ (Fn) ≥ β. Suppose that {Fn} → F . Therefore, for
all n, inf {x : Fn (x) > α} ≥ β. Hence, for all β0 < β, Fn (β

0) ≤ α. Let {βm} → β
be a sequence of continuity points of F for which βm < β for all m. As {Fn} → F ,
Fn (βm) → F (βm) for all m, so that F (βm) ≤ α for all βm. As F is nondecreasing, if
F (x) > α, then x ≥ β. Conclude that inf {x : F (x) > α} ≥ β.

Conversely, suppose that ρ : F → R satisfies monotonicity, ordinal covariance, and
upper semicontinuity.

First, let I be any interval for which F |I is constant. We claim that if y ∈ int I, then
ρ (F ) 6= y. To see this, suppose by means of contradiction that the statement is false.
Then there exists ε > 0 such that (y − ε, y + ε) ⊂ int I. Define

ϕ (x) ≡
½

x for x /∈ (y − ε, y + ε)
(x−(y−ε))2

2ε
+ (y − ε) for x ∈ (y − ε, y + ε)

.

Note that ϕ−1 (x) = x for all x /∈ (y − ε, y + ε), and ϕ−1 (x) 6= x for all x ∈
(y − ε, y + ε). Clearly, F ◦ ϕ−1 = F . But ρ (F ) = ρ (F ◦ ϕ−1) = ϕ (ρ (F )) 6= ρ (F ), a
contradiction.

Therefore, if F is of the following form:

F (x) =

½
0 if x < y
1 if x ≥ y

,

then ρ (F ) = y. Moreover, if F is of the following form,

F (x) =

⎧⎨⎩ 0 if x < y
α if y ≤ x < z
1 if x ≥ z

,

then ρ (F ) ∈ {y, z}.

Now, let Fα ∈ F be defined as

Fα (x) =

⎧⎨⎩ 0 if x < 0
α if 0 ≤ x < 1
1 if x ≥ 1

.

By the preceding argument, for all α ∈ [0, 1], ρ (Fα) ∈ {0, 1}. By monotonicity, if
α < β, then Fα ≥FOSD Fβ, so that ρ (Fα) ≥ ρ (Fβ). Therefore, there exists some α∗

so that for α > α∗, ρ (Fα) = 0 and for α < α∗, ρ (Fα) = 1. If α∗ = 0, we know that
ρ (F0) = 0. Suppose α∗ > 0. Let {αn} be an increasing sequence approaching α∗.
Then {Fαn} → Fα∗. Moreover, ρ (Fαn) ≥ 1 for all n, so that by upper semicontinuity,
ρ (Fα∗) = 1. This tells us, in particular, that α∗ < 1.
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It is easily verified that for all α ∈ [0, 1], ρ (Fα) = inf {x : Fα (x) > α∗}.

Let F ∈ F . Define α∗ (F ) ≡ inf {x ∈ R : F (x) > α∗}. We establish that ρ (F ) =
α∗ (F ).

Let ε > 0. Define

F+
ε (x) =

⎧⎨⎩ 0 if x < inf F−1 ([α∗ + ε, 1])
α∗ + ε if inf F−1 ([α∗ + ε, 1]) ≤ x < inf F−1 (1)

1 if inf F−1 (1) ≤ x
.

Clearly, F+
ε ≥FOSD F . Therefore, ρ (F+

ε ) ≥ ρ (F ). Moreover, it is clear from
the preceding arguments that ρ (F+

ε ) = inf F−1 ([α∗ + ε, 1]). Therefore, ρ (F ) ≤
inf F−1 ([α∗ + ε, 1]), but as ε is arbitrary, we conclude ρ (F ) ≤ inf F−1 ((α∗, 1]) = α∗ (F ).

Define

F− (x) =

⎧⎨⎩ 0 if x < inf F−1 ((0, 1])
α∗ if inf F−1 ((0, 1]) ≤ x < inf F−1 ((α∗, 1])

1 if inf F−1 ((α∗, 1]) ≤ x
.

F− is clearly well-defined for α∗ = 0. Clearly, F ≥FOSD F−. Therefore,
ρ (F ) ≥ ρ (F−). Moreover, it is clear from the preceding arguments that ρ (F−) =
inf F−1 ((α∗, 1]). Therefore, ρ (F ) ≥ inf F−1 ((α∗, 1]) = α∗ (F ).

We have shown that α∗ (F ) ≤ ρ (F ) ≤ α∗ (F ). Therefore, ρ (F ) =
inf {x : F (x) > α∗}. ¥

2.2. Unbounded distribution functions

In this section, we discuss the theory of unbounded distribution functions. While we do
not wish to allow for infinite payoffs, there is a limiting sense in which unbounded risks
are ordinal transformations of bounded risks. Thus, we need to strengthen the notion
of ordinal covariance in this section.

Strong ordinal covariance: Let ϕ : R→ R∪ {−∞,∞} be increasing, strictly increas-
ing and continuous on ϕ−1 (R), and R ⊂ ϕ (R). Let F ∈ F . Suppose that
F ◦ ϕ−1 ∈ F . Then ρ (F ◦ ϕ−1) = ϕ (ρ (F )).

This is distinct from ordinal covariance in that it allows for transformations that
result in unbounded random variables. Note the requirement that F ◦ ϕ−1 ∈ F . This
requirement is necessary as for general ϕ, it is possible that F ◦ ϕ−1 puts an atom at an
infinite value (which we do not wish to allow).

Theorem 2: The function ρ : F → R satisfies monotonicity, strong ordinal covariance,
and upper semicontinuity if and only if there exists α ∈ (0, 1) such that ρ (F ) =
inf {x ∈ R : F (x) > α}.
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Proof. It is straightforward to verify that such functions satisfy monotonicity, strong
ordinal covariance, and upper semicontinuity (similarly to Theorem 1).

It remains to establish that if ρ satisfies monotonicity, strong ordinal covariance, and
upper semicontinuity, then there exists α for which ρ (F ) = inf {x : F (x) > α}. The
function ρ|Fbdd has such a representation, as established in the preceding theorem.

Let F ∈ F . Consider the function

ϕ (x) =

⎧⎨⎩ tan (x) for x ∈ (−π/2, π/2)
+∞ for x ≥ π/2
−∞ for x ≤ −π/2

.

Define F 0 as follows:

F 0 (x) ≡

⎧⎨⎩ F (tan (x)) for x ∈ (−π/2, π/2)
1 for x ≥ π/2
0 for x ≤ −π/2

.

Clearly, F 0 ∈ Fbdd. This follows as tan is strictly increasing and continuous, and
limx→−π/2 tan (x) = −∞, so that limx→−π/2+ F

0 (x) = 0, so that right continuity is main-
tained. Therefore, ρ (F 0) = inf {x : F 0 (x) > α}. Now, we verify that F 0 ◦ ϕ−1 = F .
Clearly, ϕ−1 : R → R is simply the arctan function. Thus, let x ∈ R be arbitrary.
Then F 0 (arctan (x)) = F (tan (arctan (x))) = F (x), where the second equality follows as
arctan (R) ⊂ (−π/2, π/2).

Hence, F 0 ◦ ϕ−1 ∈ F , so by strong ordinal covariance, ρ (F ) = ρ (F 0 ◦ ϕ−1) =
ϕ (ρ (F 0)). Therefore,

ϕ (ρ (F 0))

= ϕ (inf {x : F (tan (x)) > α})
= ϕ (inf {arctan (x) : F (tan (arctan (x))) > α})
= inf {tan (arctan (x)) : F (x) > α}
= inf {x : F (x) > α} .

Therefore, ρ (F ) = inf {x ∈ R : F (x) > α}. Lastly, we rule out the possibility that α = 0
by noting that for any F ∈ F which is everywhere positive, inf {x ∈ R : F (x) > 0} =
−∞, contradicting the fact that ρ (F ) ∈ R. ¥

2.3. Risk measures and the Value at Risk

The preceding theorems can also be investigated in a financial setting. Formally, a risk
measure ρ : F → R is a function which, for any state-dependent monetary outcome,
recommends an amount of money that needs to be added to each state to induce an
agent to take the risk. The less risky something is, then, the better it is to take it.

By changing our ordinal covariance axiom to the following, we are able to characterize
an important class of risk measures, namely, the Value at Risk measures:

6



Inverse strong ordinal covariance: Let ϕ : R→ R∪ {−∞,∞} be increasing, strictly
increasing and continuous on ϕ−1 (R), and R ⊂ ϕ (R). Let F ∈ F . Suppose that
F ◦ ϕ−1 ∈ F . Then ρ (F ◦ ϕ−1) = −ϕ (−ρ (F )).

Antimonotonicity: For all f, g ∈ F , if f ≤FOSD g, then ρ (f) ≥ ρ (g).

These two conditions are natural for a risk measure. Inverse ordinal covariance is
the requirement that a risk measure should be invariant under units of measurement;
thus, the tax structure should not affect the choices recommended by a particular risk
measure.

Define the α-VaR, or VaRα : F → R by

VaRα (F ) ≡ − inf {x ∈ R : F (x) > α} .

This definition coincides with the definition given by Artzner et al [1].

We also need the following:

Lower semicontinuity: If {Fn}→ F and ρ (Fn) ≤ α for all n, then ρ (F ) ≤ α.

Together with real-valuedness, these axioms are enough to characterize the α-VaR for
α ∈ (0, 1).

Theorem 3: A risk measure ρ : F → R satisfies antimonotonicity, inverse strong ordinal
covariance, and lower semicontiuity if and only if there exists α ∈ (0, 1) for which
ρ = VaRα.

Proof. Clearly, if there exists such an α, ρ satisfies the corresponding axioms
(verified similarly to Theorem 1).

Conversely, suppose that ρ satisfies the axioms. Consider the function −ρ. Then it
is simple to see that −ρ satisfies monotonicity, ordinal covariance, and upper semiconti-
nuity. Therefore, there exists some α ∈ (0, 1) for which −ρ (F ) ≡ inf {x : F (x) > α}.
Consequently, ρ (F ) = − inf {x : F (x) > α}. ¥
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