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Abstract

We build a model where an individual sees higher returns to investments in human

capital when their neighbors in a social network have higher levels of human capital.

We show that the correlation of human capital across generations of a given family is

directly related to the sensitivity of individual investment decisions to the state of the

social network. Increasing the sensitivity leads to increased intergenerational correlation,

as well as more costly investment decisions on average in the society. We calibrate a

simple threshold version of the model to data from a variety of EU nations. We also

show how directly analyzing sensitivity of decisions to social circumstances can lead to

information that is not captured by intergenerational correlation.

JEL classi�cation numbers: A14, J64, J31, J70

Key words: Social Mobility, Networks, Labor Markets, Human Capital



Like Father, Like Son: Social Networks, Human Capital

Investment, and Social Mobility

Antoni Calvó-Armengol�and Matthew O. Jacksony

November 18, 2005

1 Introduction

Wages and social class are strongly correlated across parents and their children, and the strength of

this intergenerational correlation is similar across countries, and persistent over time. Economists�

evidence for this is based on parent-child correlation of (log) earnings and income. Recent estimates

of the intergenerational correlation of long-run log earnings lie in the range [:4; :6] for the U.S.

and the U.K., and [:2; :4] for Germany and Sweden.1 Sociologists� analyses of intergenerational

correlation focus on mobility tables. Given a hierarchy of occupational classes (or social classes),

mobility tables relate the children-class destination to the parents-class origin. Odds ratios compute

the relative likelihood of identical versus di¤erent parent-child class. Estimated odds ratios vary

from 1 and 15 depending on the occupational class and for a large set of countries.2

It is important to note that there are strong similarities in mobility patterns despite drastic

di¤erences in countries in terms of their labor market regulations, level of development, education
�Support from the Fundación Ramón Areces, the Spanish Ministry of Education through grant BEC2002-02130,

and the Barcelona Economics Program CREA is gratefully acknowledged.
yFinancial support from the Guggenheim Foundation, the Lee Center for Advanced Networking, the Center for

Advanced Studies in the Behavioral Sciences, and the NSF under grant SES-0316493 is gratefully acknowledged. We

are very grateful to Simona Comi for making her data available to us. We also thank Rachel Kranton and Alison

Watts for helpful conversations and discussions.
1See Björklund and Jännti (1999), Solon (2002), Piketty (2000) and references therein, in particular, Solon (1992),

Zimmerman (1992), Bjö rklund and Jännti (1997), Dearden et al. (1997), and Mulligan (1997). Note that the data

sets used for the di¤erent national studies di¤er in some important statistics (such as the average age of children and

parents, etc.), which may introduce some national biases in the estimates. The income correlation is even higher and

lies in the [:7; :8] range for the U.S. (Mulligan 1997). Also, most of the data analyzed concerns only fathers and sons,

which introduces some (gender) bias in the estimates. When daughters are included in the data set, the observed

intergenerational correlation of income is usually higher (Mulligan 1997).
2See Ganzenboom and Treiman (1996) and Erikson and Goldthorpe (1992, 2002). Björklund and Jännti (1999)

describe an alternative measure of social mobility based on the intergenerational correlation of an index of occupational

status.
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policies, and other characteristics.3 Altogether, the observed dynastic correlation of earnings can

hardly be explained by resorting to country-speci�c institutional and market variables.

In this paper, we propose a simple model based on social structure that exhibits strong family

persistence in human capital investments and resulting earnings across generations.4 In our model,

skills are agent-speci�c. The intergenerational correlation in human capital investments and earn-

ings is solely driven by the in�uence of the social setting on economic decisions. More precisely,

we suppose that the marginal returns from higher human capital levels increase with the human

capital composition of an agent�s social network. This means that an agent�s investment decisions

are positively related to the state of the agent�s social network. This, in turn, correlates with the

parent�s social decision to the extent that the social situations are related.

Economists and sociologists propose di¤erent channels for this social externality, including role-

models, peer-pressure, and heredity of preferences or cultural traits.5 Social networks, which are

pervasively used in labor markets to disseminate job information, can also lead to substantial

complementarities in human capital investment decisions.6 We show that this social externality

correlates human capital investments across generations, which further translates into correlation

of parent-child earnings. We also establish a monotonicity of the intergenerational correlation as a

function of the strength of the social externality. Higher sensitivity of investment decisions to social

circumstance leads to high correlation across generations. Lastly, we show that higher sensitivity of

investment decisions to social circumstance leads to less e¢ cient investment decisions in a speci�c

sense.

Of course, there are other theories of social immobility. Ours is complementary to those theories.

The central economic theories of social mobility resort to the family transmission of economically

relevant traits, capital market imperfections, or community-wide e¤ects. For instance, wealth trans-

fers in the form of bequests by altruistic parents are a clear source of dynastic correlation of income,

while the genetic inheritance of productive abilities correlates human capital and labor earnings

3The time-series persistence also suggests some resilience of mobility patterns to school reforms and other labor

market policies.
4Parent-o¤spring correlation in labor earnings explains much of the income correlation: �the main component (at

least 70%) of the intergenerational correlation of welfare is due to the persistent inequality of labor earnings�Piketty

(2000), p. 446.
5Role-model theories assert that children learn how to behave by observing the adults in their social network

(Jencks and Mayer 1990). Exogenous norm-enforcing mechanisms also induce conformism among peers (Cole-

man 1990). A setting where preferences for conformity are endogenized appears in Calvó-Armengol and Jackson

(2004,2005) for the case of �drop-out�decisions based on the state of one�s network contacts. Heredity of preferences

theory presumes that low-class children inherit preferences that discount future payo¤s more than children from

wealthier parents, and hence they invest less in human capital (Boudon 1973). Heredity of cultural traits theories

claims that high-class children inherit better suited attitudes and aptitudes for culture and education, and then cor-

relation follows from a parental earnings bias in social capital endowment for the o¤spring (Bourdieu and Passeron

1964).
6See Calvó-Armengol and Jackson (2004,2005) for details.
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across generations (Becker and Tomes 1979). Also, imperfect credit markets impose borrowing

constraints at the bottom of the earnings distribution, and so children of poor parents under-invest

in human capital, and initial inequalities persist across generations (Loury 1981). Finally, segrega-

tion of individuals into homogeneous communities spurs positive spillover e¤ects (e.g., local public

goods) that homogenize economic outcomes across community members and generations (Bénabou

1993, 1996 and Durlauf 1996).

One caricature of the di¤erence between our work and some of these others is as follows. Inter-

generational interaction a¤ects both the relative costs and bene�ts of investing in human capital,

which in turn leads to correlation in decisions across generations. Things like wealth bequests,

capital market frictions, and local public good provision e¤ectively work on the cost side of the

equation. Genetic inheritance can be thought of as working on either (or both) sides. Here we are

focussing on the social interactions that operate e¤ectively on the bene�t side.7

While all of these factors are likely present, our model highlights the role of the social envi-

ronment as a driver for social immobility, and shows how the sensitivity of investment decisions to

social circumstances alone can drive intergenerational correlation. This is consistent with empirical

evidence that identi�es parental community traits and social background characteristics, instead

of credit market imperfections or genetic inheritance, as the leading force in shaping the observed

mobility patterns.8 Thus, it is important to model social network in�uence on mobility and human

capital investments.

We also note that with increased sensitivity to social circumstance comes increased overall

investment costs, even for the same overall average level of investment. This can be seen as a

type of ine¢ ciency. Our conclusion that the dependence on a social channel leads to ine¢ cient

human capital investment decisions, echoes conclusions found by modeling immobility due to other

sources. For instance, ine¢ ciencies are also present in incomplete market models of social mobility

(Loury 1981, and Banerjee and Newman 1991) and assortative matching models (Becker 1973,

Cole, Mailath, and Postlewaite 1994).

Finally, we also show that there is information obtained by examining the parameters of our

7While we model it this way, it is not always exclusively so. For instance, access to well-placed friends may lower

costs of capital or lower other barriers. We focus on the bene�t side to isolate the importance of social interaction.
8The family inheritance of innate abilities is claimed to account for around 1/4 of the observed persistence in

intergenerational earnings (Bowles and Gintis 2002). Borrowing constraints do not seem to explain more than 8%

of the observed di¤erences in returns to human capital investment, while non-cognitive skills related to the social

background play a major causal role (Borjas 1992, Carneiro and Heckman 2002, Heckman and Krueger 2004). In

France, higher social origin leads to better-paid �rst jobs for identical educational achievements, and the di¤erence

widens with seniority (Goux and Maurin, 1997). In the U.S., the convergence of the college enrollment rates per race,

together with the persistence in the white-black wage di¤erential, provides indirect evidence of the (long-standing)

labor market value of the social background (Card and Krueger 1992, Kane 1994). More generally, the strength of the

parents-children income relationship varies non-linearly with the parental neighborhood income levels, with a higher

persistence at the two tails of the distribution � a­ uent and poor areas (Cooper et al. 1994).
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model that is not exhibited by the use of correlation as a measure of immobility. To illustrate

this point, we show how calibration of our model suggests that there are substantial di¤erences in

behavior and mobility across countries that are not being picked up by looking at intergenerational

correlations.

Before proceeding, let us emphasize at the outset that although we focus on human capital

investment and social mobility, the same model can be applied to a much wider variety of decisions

that depend on social context. E¤ectively, many situations where individuals are making choices

where an individual�s choice of whether or not to undertake an action depends on neighbors�

decisions can be viewed through this lens.

Section 2 presents the model. Section 3 describes an example with two dynasties. Section 4

analyzes a threshold investment model and estimates it for fourteen european countries using data

from the European Community Household Panel. Section 5 presents results on the general model.

Section 6 concludes. All proofs are relegated to an appendix.

2 The model

We focus on the behavior of a given community of families (dynasties), who interact in a symmetric

way. This abstracts from more general networks of interactions, but provides a simple and clean

analysis that already captures many of the critical e¤ects.

2.1 Dynasties and (Random) Over-lapping Generations

There are n dynasties indexed by i = 1; : : : ; n. Time evolves in discrete periods indexed by t =

1; 2; : : :. Each generation of a given dynasty consists of only one member. When there is no

confusion, we identify current generation members by their dynasty index i.

At the beginning of each period, one dynasty is randomly chosen and its member replaced by

his or her o¤spring. This happens with equal probability across dynasties.9

2.2 Human Capital Investment and the Social Setting

When they are born, o¤spring invest in human capital. This is a once-and-for-all decision.

We let human capital take two values: high and low. The analysis has an obvious extension to

any �nite set of values. Letting hti denote the human capital of the agent in dynasty i at time t,

we set hti = 1 for the high level, and h
t
i = 0 for the low level.

Let wi(h) denote i�s expected discounted stream of wages conditional on the vector of current

human capital levels being h.10

9Therefore, the expected life span of any generation in dynasty i is
P+1

t=1 t
1
n
(1� 1

n
)t = n� 1. Thus, the length of

a time period could be taken to be proportional to the expected lifetime of an agent divided by n� 1.
10Given the Markov properties of the model, this is the same in any period, conditional on h.
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We normalize wi(0; h�i) = 0 for all h�i, so that if i does not invest in human capital then his

or her wage is 0. We let wi(1; h�i) > 0 for all h�i so that high human capital leads to higher wages

than low human capital. More importantly, we assume that wi(1; h�i) is non-decreasing in hj for

all j 6= i. As we argue below, this monotonicity arises endogenously when social contacts convey
job information, a fact largely documented in many labor markets.11

For simplicity in what follows we look at a symmetric setting. That is, we suppose that the

functions wi are the same across i, denoted simply by w, and that this function depends on h�i
in a symmetric manner. Thus, it depends only on the number of an agent�s neighbors who have

invested and not the speci�c identities. As will be clear, the model has straightforward extensions

to cases where these simplifying assumptions are discarded.

We thus let kt =
P
i h
t
i, and for any i let k

t
�i =

P
j 6=i h

t
j .

Agents are also born with a randomly drawn cost c of investing in the high human capital level,

which is described by a cumulative distribution function F (c). We assume that at birth each agent

gets a draw from F . An agent�s human capital level is 0 unless the agent decides to invest.

This cost encompasses innate skills and abilities, as well as direct costs of education. Note that

we completely abstract from any correlation in costs of education across generations. We do not do

this because we believe that costs are independent across generations, but rather because we wish

to isolate the social setting as a driver of social immobility.12

Thus, an agent i�s decision can be completely characterized by a vector p = (p0; : : : ; pn�1),

where pk = F (w(1; k)) is the probability that he or she invests in a high human capital level when

the human capital levels of his or her neighbors are summarized by k�i = k. The human capital

level is 0 with complementary probability 1� pk.
The non-decreasing nature of w(1; �) in k�i implies that p(k�i) is also non-decreasing in k�i.

The human capital composition of the social setting positively a¤ects individual human capital

investment decisions, as it increases the marginal returns from education.

As mentioned in the introduction, economists and sociologists have proposed and documented a

variety of channels for this positive social externality, including role-model theory, peer-pressure for

conformism, heredity of cultural traits or skills. Given the direct modeling of the social interaction

through the variation of pk as a function of k, our model encompasses all such channels. Our model

is also compatible with the prevalent use of social networks in many labor markets, and its e¤ect

on the individual and aggregate dynamics of labor market outcomes, which we discuss shortly.

11See, for instance, the recent evidence reported in Santamaría-García (2003), as well as the discussion and refer-

ences in Calvó-Armengol and Jackson (2004) and the recent survey of Ioannides and Loury (2004).
12 Intergenerational correlation in costs of education has been studied as a driver of social immobility, both theo-

retically and empirically. See Bowles and Gintis (2002) and references therein.
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2.3 A Markov Process

The random overlapping generations model, together with the human capital investment decision

with idiosyncratic costs generates a Markov process. The state is the number of agents kt at the

high human capital level at the end of a period t, and transition probabilities can be derived from

the vector p = (p0; : : : ; pn�1).

This is a �nite-state irreducible and aperiodic Markov process. We characterize the long-run

steady-state distribution of this process.13 Given the symmetry in the model, we need only to keep

track of how many agents are of the high type in any period. Thus, the steady-state of the Markov

process can be described by � = (�0; : : : ; �n), where �k is the probability that k agents are of the

high type.

We examine the parent-o¤spring correlation in human capital levels under this steady-state

distribution.

2.4 An Example: Labor Market Networks

The critical assumption for our results is that pk is non-decreasing in k.

We now brie�y show that one (among many) justi�cations for this assumption is having job

information dispersed through social connections. Such a formal model is fully developed by Calvó-

Armengol and Jackson (2004,2005), so we simply describe the results informally here, and refer the

reader to those articles for the details.

Assume that individuals are connected by a social network, where network links represent direct

communication channels between pairs of agents who know each other. The labor market is subject

to turnover, with some agents randomly losing their jobs and others randomly hearing of available

jobs in any give time period. When a currently employed worker cannot obtain a wage raise with

one of these outside o¤ers, he or she relays this information to his or her friends or acquaintances in

the social network. When information about job opportunities is disseminated in this way, wages

and employment are positively correlated across agents in both the short and long run.14

Let individual payo¤s be the expected discounted stream of wages conditional on a given net-

work. The correlation in wages implies that individual payo¤s depend positively on the status of

the whole of the individual�s component of network. Therefore, the payo¤ to every agent in the

13For such a Markov process, it is well-known that the steady-state distribution has several nice features. First, it

represents the relative frequencies spent in each state over long time horizons. Second, starting with a random draw

from that distribution, the distribution over next period states is governed by the same distribution. Third, starting

from any state, given a long enough horizon, the probability that one will end up in any give state is approximately

given by the steady state distribution.
14See Propositions 1 and 2 in Calvó-Armengol and Jackson (2004) for the case of constant wages, a �xed network

and uniform information transmission to direct connections, and Theorem 1 in Calvó-Armengol and Jackson (2005)

for the general case with heterogeneous wages, general networks (random, weighted, directed, etc.) and general

information di¤usion (relayed information, preferential passing, etc.).
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market is non-decreasing in the human capital level of every other agent. Formally, (1; k�i) is

non-decreasing in kj for each j 6= i.
For the purpose of illustration, let us explore a very simple example where n agents are connected

through a complete network (they all know each other directly). In each period, a currently

employed worker loses his or her job with a probability b = :015, and all workers (both employed

an unemployed) independently hear of a new job opportunity with probability a = :100 (which

roughly calibrates reasonable employment rates). If a worker is currently at the highest wage level,

the worker passes any job information on to an unemployed neighbor. If the worker is not currently

at the highest wage level, then he or she keeps the information. A low human capital level h = 0 is

normalized to pay w = 0. A high human capital level h = 1 pays either w = 1 when the agent has

heard of one job o¤er since their last unemployment spell, and w = 2 when the agent has heard

about more than one job opportunity since their last unemployment spell.15

Number of agents n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n!1
Et[w

t
i ] 0:10 0:19 0:38 0:73 1:26 1:77 1:97

Prfw = 2g=Prfw = 1g 0 :05 :17 :47 1:4 6:6 1

This table simply indicates how a given agent�s wage prospects improve in a given period as the

number of neighbors is increased. This calculation presumes all other agents are employed at the

high wage level, and that the given agent starts unemployed. One can also easily do steady-state

calculations, and for various network con�gurations, as reported by Calvó-Armengol and Jackson

(2004,2005).

3 Correlation in Parent-Child Human Capital: An Example with
Dyads

Before moving to a full analysis, we start with an example with just two dynasties (n = 2). This

makes the intuition very clear.

The following �gure summarizes the transition probabilities. A darkened node represents an

agent with high human capital, while agents with low human capital are represented by empty

nodes. Arrows represent state transitions with their corresponding probabilities. The probability

with which the state does not change is indicated by the expression near the dyad.

15The higher wage could represent an expected improved match, or improved bargaining power during the wage-

setting negotiation.
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Figure 1: A Two Dynasty Markov Process

So, for instance, the p1 at the top of the diagram is the probability that the state starts with

both dynasties at high human capital and stays there.

The spread p1 � p0 re�ects the sensitivity of human capital decisions to the social network.
If p0 is close to p1, then one agent�s wages and human capital investment decisions are largely

independent of the status of the other agent. If the gap between these probabilities is large, then

the decisions are very sensitive to the state of the other agent.

Let � = (�0; �1; �2) be the steady-state distribution, where �k is the probability that k agents

have high human capital level. Direct calculations show that264 �2

�1

�0

375 = 1

1 + p0 � p1

264 p0p1

2p0(1� p1)
(1� p0)(1� p1)

375 :
We see that both dynasties are invested at the high human capital level with a long-run probability

�2 that increases in both p0 and p1. In contrast, the probability of the joint low investment, �0,

decreases in both p0 and p1. Finally, the probability that dyad members display di¤erent human

capital levels �1 increases in p0 but decreases in p1.

We can easily compute the parent-o¤spring correlation in human capital levels under the steady-

state distribution �, denoted �. It follows that16

� = (p1 � p0)2:

The intergenerational correlation increases with the square of the sensitivity of the human

capital investment decision to the state of the other agent�s status, (p1 � p0)2. Note that the
correlation is related to the di¤erence between p1 and p0. If we simply have high levels of both

p1 and p0, we would have low correlation. The spread between p1 and p0 captures how sensitive

decisions are to the state of the network.
16The joint probability with which two consecutive generation members of the same dynasty have high human

capital level is p1�2+
1
2
p0�1. The expression follows from simple algebra. Note that the intergenerational correlation

in human capital levels involves the joint probability of high human capital for consecutive generations of a same

dynasty. This di¤ers from the correlation across dynasties, which involves the joint probability of high (low) human

capital for contemporaneous generations.
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4 A Threshold Investment Model

We now turn to populations of size n � 2. We start with a speci�c, but interesting, model for human
capital investment decisions. We call this a �threshold�model, since a given agent�s decision on

whether or not to invest in human capital depends on whether or not the number of high capital

neighbors exceeds a given threshold.

We say that there are threshold investment decisions if there exists 1 � �H � �L � 0 and

� 2 f1; : : : ; n � 1g such that pk = �H if k � � and pk = �L is k < � . The di¤erence between the
high and the low success probability is �H � �L.

Holding � �xed, when �H increases and/or �L decreases, individual investment decisions become

more sensitive to the state of the society.

The transition probabilities are depicted below.

-
k

6

pk

�

�H

�L

n� 10

4.1 Human capital correlations under the threshold model

We now show that, holding � �xed, an increase in �H and a decrease in �L that keep the average

investment level p constant lead to an increase in intergenerational correlation.

If (�H ; �L) and (�0H ; �
0
L) are such that �

0
H > �H ; �

0
L < �L and p is the same under (n; � ; �H ; �L)

than under (n; � ; �0H ; �
0
L), we say that (�

0
H ; �

0
L) is a p-preserving spread of (�H ; �L).

Proposition 1 An p-preserving spread increases the (steady state) intergenerational correlation
in human capital investments.17

4.2 Fitting the Threshold Model to Data

Since the threshold investment model is fully described by (n; � ; �H ; �L), it is easily calibrated. In

order to minimize the degrees of freedom in the model, we �t a further simpli�ed version of the

threshold model. We restrict attention to the case where �L = 1� �H and �H � 1=2:
The European Community Household Panel (ECHP) contains information on the level of human

capital of representative households in various European member countries. These data allow us

17This refers to the correlation between parent and child investment states of any given dynasty at any time, when

the initial distribution is the steady state distribution.
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to infer the education transition matrices for combinations of parents and children.18

For this calibration, a human capital of 0 indicates has an individual pursued education to a

point no further than high school graduation and 1 indicates education was pursued beyond high

school.19 Given the threshold model, any (n; � ; �) implies steady state probabilities of the four

possible parent-child education combinations: 00, 01, 10, 11. So given the observed frequency

distribution in the data, we �nd the parameters (n; � ; �) that lead to predictions that closely match

those observed frequencies. Table 1 shows the calibrated values of � for various European countries

and for all parent-o¤spring gender combinations when n = 50. An appendix contains the observed

matrices, together with the estimated ones, the estimated ��s and an estimation error ".20 We also

estimate the model for n = 25 and �nd almost no di¤erences in the �ts (see Tables 2 to 5 in the

appendix).

Father Daugh Father Son Mother Daugh Mother Son

Country Cor � � Cor � � Cor � � Cor � �

Austria .123 .95 26 .057 .96 26 �:002 .97 30 .016 .96 29

Belgium .027 .62 27 .174 .68 26 .014 .70 30 .100 .62 26

Denmark .047 .73 35 .071 .77 34 .004 .75 35 .008 .74 21

Finland �:128 .82 33 �:036 .85 32 �:061 .82 34 .014 .78 33

France .119 .61 39 .221 .73 26 .093 .70 35 .176 .63 27

Germany .107 .79 27 .111 .81 27 .067 .86 27 .045 .85 17

Greece .003 .81 28 .070 .86 26 .011 .88 33 .001 .83 27

Ireland .211 .82 26 .189 .84 26 .190 .85 26 .146 .83 26

Italy .131 .94 26 .141 .95 26 .091 .96 26 .130 .95 26

Luxemburg .289 .79 26 .083 .78 27 .145 .80 34 .070 .77 33

The Netherlands .043 .89 31 .082 .87 31 �:021 .93 30 .005 .93 30

Portugal .098 .94 26 .228 .96 26 .095 .96 26 .187 .94 16

Spain .111 .81 26 .122 .84 26 .036 .86 32 .053 .82 32

United Kingdom .045 .52 1 .070 .61 24 .023 .61 27 .095 .58 26

Table 1. ECHP intergenerational correlation in education vs. estimated investment probability

18We are grateful to Simona Comi for providing us with these education transition matrices corresponding to wave

5 (1998) of the ECHP. Comi (2003) contains an exhaustive analysis of European social mobility patterns with the

ECHP database.
19Education beyond high school (tertiary education) is measured by Comi as still being in school at 20 years of

age. It need not indicate that any higher degrees were earned.
20Given a value of n (here, n = 25; 50), our algorithm searches through a grid of admissible values for � and �.

The size of the grid is chosen in increments of .01 for �. The error " is the Euclidean distance between the estimated

and actual four-vectors.
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in the threshold model.21

It is important to stress that the correlations and the implied parameters of the model give us

di¤erent information. For instance, Denmark and the United Kingdom exhibit very similar father-

daughter correlations (.045 and .047). Yet, the estimated values of � (and �) di¤er drastically

between both countries: a low .52 for the U.K. versus a higher .73 for Denmark.22 Although

similar in terms of correlation levels, the threshold model suggests, instead, that the in�uence of

the social setting on education decisions (as measured through �) is much higher in Denmark than

in the U.K. We can similarly analyze many other pairs of countries, such as Austria and France

for father-daughter, Greece and the U.K. for father-son, France and Portugal for mother-daughter,

etc.

Let us say a bit more about this. When seeing the low father-son correlation in Austria one

would be tempted to conclude that this is a mobile society. However, when we see � = :96, we

see a di¤erent picture. First, even with � at 26, this leads to very little overall investment (.919

probability in the data that neither father nor son invested, and .920 from the �t of our model

- see Table 3). Moreover, there is very high sensitivity to social setting, so that people whose

majority of neighbors are not invested are extremely unlikely to invest, and people whose majority

of neighbors are invested are extremely likely to invest. This is something that cannot be seen from

the data, nor the correlation, and is inferable under the structure of the model. The �ts imply that

social circumstances are extremely important in determining individual decisions. In that sense,

�mobility�has very little to do with one�s own traits and everything to do with the social situation.

Again, this contrasts with the data from the UK, where � is much closer to 1/2, where there is

more overall investment, and where there is much less sensitivity to the social situation.

We also see some other interesting broader suggestions that come from the �ts. With only one

exception (in a case where the threshold does not really matter as � is nearly 1/2), the thresholds

are all above n=2. This is consistent with the fact that in each country the average level of overall

investment is less than 1/2. Second, and perhaps more important, most of the ��s are fairly high -

in a range of 3/4 or above. So, even though the intergenerational correlations lie mostly in a range

from 0 to .2, we still see a substantial in�uence of the social situation on individual decisions.

21For each parent-o¤spring gender combination (father/daughter, father/son, mother/daughter, mother/son), the

�rst column, Cor, reports the intergenerational correlation in education levels for the education transition matrices

from wage 5 (1998) of the ECHP. We distinguish two education levels: (i) nor more than high school graduation, and

(ii) past high school education. The second column, �, reports the estimated value for the investment probability in

the threshold investment model when n = 50. The corresponding estimated values for � and the error " are reported

in the appendix, together with estimations for �; � ; " when n = 25. Data and estimations are reported for fourteen

countries.
22The estimated value of � for the U.K. is essentially irrelevant as a � close to 1 /2 implies that the investment

is essentially independent of the state in any case. The comparison of father-son for the two countries leads to a

situation where the � is tied down for the U:K:.
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This calibration exercise, although only illustrative, shows the parsimony of the threshold in-

vestments model and provides some across-country comparisons of the sources of social mobility.

It also shows that this model can provide information that is not present in the correlations, and

in particular information about the extent to which social situation in�uences individual decisions.

5 The General Case

We now turn to the analysis of the general model of investment decisions characterized by a vector

of investment probabilities p = (p0; : : : ; pn�1).

5.1 A Simple Monotonicity Lemma

We begin with an obvious result that establishes monotonicity of the steady-state distribution

of human capital decisions (in the sense of �rst-order stochastic dominance) with respect to the

investment vector p.

We write p0 � p if p0k � pk, for all k, and p0 > p if p0k > pk, for all k. This could represent an
increase in wages, a decrease in the cost distributions, or some other reason for increased investment

as a function of the state of the network.

Lemma 1 Let � and �0 denote the steady-state distribution associated with p and p0, respectively.
If p0 � p, then �0 �rst-order stochastically dominates �. When p0 > p, the �rst-order stochastic

dominance is strict.

5.2 Correlation in Parent-Child Human Capital

We now explore the relationship between the social sensitivity, as captured through p, and the

intergenerational correlation in human capital decision, in the general model.

Intuitively, increasing the spread in pk�s across k makes the investment decision more sensitive

to the social situation. That is, increasing pk for high k and decreasing it for low k should lead

the decision to invest to be more dependent on the social state. This in turn should increase the

intergenerational correlation.

We capture this notion of increasing the spread in pk�s through the variance in the probability

that a given agent invests. Let V ar(p) denote the variance in investment probabilities. So

V ar(p) =
X
k

��ik p
2
k � (

X
k

��ik pk)
2 (1)

where ��ik is the steady-state probability that k agents other than some agent i are of the high type

(under p).23

23We have ��ik =

n�1X
k=0

n�k
n
�k +

k+1
n
�k+1.
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It turns out that keeping track of the variance in the pk�s alone is not enough to tie down

intergenerational correlation, as it is this variance relative to the overall variation in an agent�s

state that is important. This normalization is necessary since it is only relative variation that

matters in correlation comparisons rather than absolute levels.

The relevant normalizing variation is the variance of any given agent i�s human capital state.

In this simple 0-1 world that variance is simply

V arp(h) = p (1� p) ; (2)

where p be the average steady-state probability that any given agent is of a high type given p.24

We can now provide a complete characterization of the relative orderings of correlations as

dependent on properties of the p�s.

Theorem 1 The intergenerational correlation in human capital investments in any dynasty start-
ing from the steady state is higher under p0 than under p if and only if V ar(p0)

V arp0 (h)
> V ar(p)

V arp(h)
.

An easy corollary of Theorem 1 is the following.

Corollary 1 The intergenerational correlation in human capital investments in any dynasty
starting from the steady state is higher under p0 than under p if V ar(p0) > V ar(p) and p = p0.

This follows from Theorem 1 by noting that if p = p0, then by (2), then V arp0(h) = V arp(h).

The intuition behind the theorem and corollary is that as the correlation of the human capital

investment with the state of the network increases, this leads to increased intergenerational corre-

lation due to the fact that there is likely to be some overlap in the state of the network between

the parent and the child.

So far, we have assumed that the o¤spring social background is the same as that of the parent

when the parent dies. Suppose, instead, that this inheritance is only partial. The child�s social

universe is now mixed. He or she evolves in the same social universe as the parent with probability

q, but belongs to a completely di¤erent social circle with probability 1�q. More precisely, the child
accesses the same network as his or her parent with probability q, and otherwise gets an entirely

new network (with kt�i determined by a fresh draw from the steady state distribution). We model

this process as if with probability q the child�s investment decision is governed by pk, and with

probability (1 � q) it is given by p. The in�uence of the social setting now depends on q, and we
denote by pq the resulting function.

Corollary 2 The steady-state intergenerational correlation in human capital investments in-
creases with q.

24We have p =
n�1X
k=0

��ik pk.
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In this case, it is easy to check that the conditions of Corollary 1 apply.

To the extent that the overlap of the social universe across generations is higher for the two-tails

of the income distribution, this �nding is consistent with the U�shaped intergenerational income
correlation curve as a function of income levels documented by Cooper et al. (1994).25

5.3 Cost E¢ ciency

Beyond issues of equity and equality of opportunity, we should also care about social mobility for

reasons of economic e¢ ciency. We now examine relative mobility and e¢ ciency in terms of overall

investment costs. The idea is to track the distortions in investment that are present in a society.

That is, suppose that one agent invests in human capital with a high cost due to the fact that his or

her social network is in good shape, while another agent does not invest despite a much lower cost

due to the fact that his or her network is in bad shape. This leads to more costly investment than

would be present in a world where the agents were switched. In a perfect world, where we could

exchange these two agents (and perhaps make some transfers) we would have an improvement.

A rough measure that keeps track of this distortion is the total expenditure on human capital

investment of a society. That is, let us consider two societies described by p and p0. To keep a level

playing �eld, let us compare societies with the same mean investment rate so that p = p0. We can

then compare the average costs of investment in steady state.

To do this, let us derive an expression for the expected costs of investment in steady state. We

do this under the supposition that any given agent�s costs of investment are uniformly distributed

on [0; C]. Recall, that the model is one where the bene�ts depend on the state of the system (k�i)

and then the costs are simply individual-speci�c. In particular, recall that pk = F (w(1; k)). That

is, the probability that i invests when k neighbors are invested is the probability that i�s cost of

investment is below w(1; k), which is i�s expected bene�t from investing. Given that costs are

uniformly distributed on [0; C], pk = w(1; k)=C. Conditional on investing when k�i = k we then

can conclude that the expected costs are w(1; k)=2. Thus, these are Cpk=2. Then, the average cost

per capita of investing in high human capital can be written as

Cost(p) =

n�1X
k=0

��ik pk
p

C

2
pk:

Here, ��ik pk=p is the conditional probability that there were k other agents with high human capital

at the time that i invested, conditional on i investing. We can then conclude the following.

25See Wright Mills (1945) for a seminal analysis of the social endogamy of the business elite in the U.S. and Wilson

(1987) and Jencks and Mayer (1990) for an analysis of the social and economic consequences of living in the inner

city in the U.S. Santamaría-García (2003) provides a model predicting a more extensive use of social contacts for job

search among less-educated workers, consistent with empirical �ndings in many European countries and reported in

the paper.
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Theorem 2 If V ar(p0) > V ar(p) and p0 = p, then Cost(p0) > Cost(p).

For two processes p and p0 that have the same overall percentage of investment p, the more

sensitive one has a higher overall cost associated with it. It is thus less e¢ cient in terms of the

costs of investment for the same average level of investment.

6 Discussion

We have provided a parsimonious model that shows how individual decisions depend on the so-

cial state of a system, and how this leads to intergenerational correlation in decisions. Increased

sensitivity of an individual�s decision to the social state corresponds to increased intergenerational

correlation. We also analyzed a special case of the model: the threshold investment model, which

is a handy example and one for which the long-run steady-state distribution is easily characterized.

When n gets large, the steady-state distribution in the threshold model approximates a Poisson

process. The steady-state distribution (under the restriction that �L = 1� �H) is

�k =

8><>: �0
�
n
k

� �
�L
1��L

�k
, for k < �

�0

h
�L(1��H)
�H(1��L)

i� �
n
k

� �
�H
1��H

�k
, for k � �

;

where �0 normalizes the sum to one. When n gets large, we obtain two Poisson distributions to

the right and to the left of � , and appropriately renormalized.

In closing let us re-emphasize that our model encompasses other processes beyond the human

capital investment and mobility application that we have analyzed. Consider, for instance, the

following set up. Each period, a randomly selected newborn takes an 0-1 decision. With small

probability ", this decision is independent of the environment and decided by a coin toss. With

complementary probability 1�", the investment is context dependent. In that situation the newborn
chooses 1 only if the �rst agent met has chosen 1, where the newborn is equally likely to meet any

other agent in the society. The resulting probability of choosing 1 conditional on k other people in

the society having chosen 1 is:

pk =
1

2
"+ (1� ") k

n� 1 :

This model is analyzed in Kirman (1993), in the context of ant behavior, as a proxy for some

sorts of investment behavior. He shows that the continuous population limit of the steady-state

distribution for this process is a Beta distribution.

We can apply Theorem 1 (and corollaries) to this process to draw some conclusions. For instance,

they relate the value of " to the intergenerational correlation levels in decisions. Decreasing "

amounts to a p-preserving spread, and the correlation increases. Coupling this with Theorem 2, we

can deduce overall cost e¤ects of changing the likelihood of an independent decision (here, e¢ ciency

increases with "). Our results thus provide a step towards measuring the e¢ ciency e¤ects of time

series persistence.
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Appendix
The following lemma is useful.

Lemma 2 For all 0 � k � n� 1, �k+1 = ak�k, where

ak =
n� k
k + 1

�
pk

1� pk

�
,

and thus �k = ajaj+1 � � � ak�1�j for all k > j.

Proof of Lemma 2: Consider a state where exactly k agents are of high type. At steady-state,
the in�ow to and the out�ow from this state exactly balance each other. This is written as

�0p0 = �1
1

n
(1� p0), for k = 0

�k�1
n� (k � 1)

n
pk�1 + �k+1

k + 1

n
(1� pk) = �k

k

n
(1� pk�1) + �k

n� k
n

pk, for 1 � k � n� 1

�n�1
1

n
pn�1 = �n(1� pn�1), for k = n;
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and the result follows.

Proof of Lemma 1: By Lemma 2, whenever i > j we can write

�i=�j = ajaj+1 � � � ai�1:

Noting that p0k � pk implies a0k � ak (with corresponding strict inequalities), it follows that

�0i=�
0
j � �i=�j

for all i > j, with strict inequality for some pairs when p0 6= p. Given that
Pn
k=0 �

0
k = 1 =

Pn
k=0 �k,

the result follows directly.

Proof of Theorem 1: Let us consider any dynasty i. Consider any point in time (having started
at time 0 from the steady state distribution) where a given newborn in role i is faced with the

choice to invest. Let X be the number of other agents who have value 1 at that point in time. We

know that

Pr[X = k] =
n� k
n

�k +
k + 1

n
�k+1: (3)

Let Z be i�s parent�s value and Y be i�s value. We can write the covariance of the parent and

child�s values as

Cov = Pr[Z = Y = 1]� Pr[Z = 1]Pr[Y = 1]:

We write this as

Cov =

 
n�1X
k=0

Pr[Z = 1jX = k] Pr[X = kjY = 1]Pr[Y = 1]
!
� Pr[Z = 1]Pr[Y = 1]:

By de�nition, Pr[Y = 1] = p > 0. It then follows that

Cov = p

 
n�1X
k=0

Pr[Z = 1jX = k] Pr[X = kjY = 1]
!
� pPr[Z = 1]

or

Cov = p
n�1X
k=0

Pr[Z = 1jX = k] (Pr[X = kjY = 1]� Pr[X = k]) : (4)

Note that Pr[Z = 1; X = k] (the probability that the parent is high human capital and there

are k others of high human capital) is equal to �k+1(k + 1)=n. Note also that

Pr[X = kjY = 1] = Pr[Y = 1jX = k]
Pr[X = k]

Pr[Y = 1]
= pk

Pr[X = k]

p
:

Then, using (3), we rewrite (4) as

Cov = p
n�1X
k=0

�k+1
k+1
n

�k
n�k
n + �k+1

k+1
n

�
Pr[X = k]

pk
p
� Pr[X = k]

�
: (5)
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Using the fact that �k+1 = ak�k established in Lemma 2, (4) as

Cov = p

n�1X
k=0

ak
k+1
n

n�k
n + ak

k+1
n

�
Pr[X = k]

pk
p
� Pr[X = k]

�
;

which, using the expression for ak in Lemma 2 gives:

Cov =
n�1X
k=0

pk Pr[X = k] (pk � p) : (6)

This implies that

Corr =

n�1X
k=0

pk
p
Pr[X = k]

�
pk � p
1� p

�
: (7)

We rewrite this as

Corr =

Pn�1
k=0 pk�

�i
k (pk � p)

p(1� p) :

Thus,

Corr =
V ar(p)

V arp(h)
;

and the Theorem follows directly.

Proof of Proposition 1: From the proof of Theorem 1, we can write

p(1� p)Corr =
n�1X
k=0

Pr[X = k]pk (pk � p) :

Given the threshold model, we can rewrite this as

p(1� p)Corr = �L (�L � p)
��1X
k=0

Pr[X = k] + �H (�H � p)
n�1X
k=�

Pr[X = k]: (8)

Note that

p = �L

��1X
k=0

Pr[X = k] + �H

n�1X
k=�

Pr[X = k]: (9)

Then, using (9) we rewrite (8) as

p(1� p)Corr = �2L
��1X
k=0

Pr[X = k] + �2H

n�1X
k=�

Pr[X = k]� p2 (10)

Consider a di¤erential change (d�H ; d�L) in (�H ; �L) such that d�H > 0, d�L < 0, and (�H + d�H ; �L + d�L)

is a p-preserving spread of (�H ; �L), that is, dp = 0. In what follows, we use the following notation:

��� =

�X
k=�

Pr[X = k], for � � �:
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Taking a di¤erential of (10) under the constraint dp = 0 gives

p (1� p) dCorr = 2�L���10 d�L + 2�H�
n�1
� d�H + �

2
Ld�

��1
0 + �2Hd�

n�1
� : (11)

Using (9), the condition dp = 0 becomes

���10 d�L + �
n�1
� d�H + �Ld�

��1
0 + �Hd�

n�1
� = 0: (12)

Multiplying (12) by �H + �L and substracting it from (11) gives

p (1� p) dCorr = (�H � �L)
�
�n�1� d�H � ���10 d�L

�
� �L�H

�
d���10 + d�n�1�

�
: (13)

Note that ���10 + �n�1� = 1 (this is a sum of probabilities), and thus d���10 + d�n�1� = 0. We thus

conclude that

p (1� p) dCorr = (�H � �L)
�
�n�1� d�H � ���10 d�L

�
> 0, when �H > �L.

Proof of Theorem 2: We write

Cost(p) =
C

2p

n�1X
k=0

��ik pkpk; (14)

which, by (7) we rewrite as

Cost(p) =
C

2
((1� p)Corr + p) :

The result then follows from Theorem 1 and the fact that p0 = p.
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Table 2. Father/Daughter.

data estimation threshold model

AU 0 1

0 .903 .033

1 .054 .008

n = 25 0 1

0 .902 .048

1 .048 .003
�=:95;�=14;"=:017

n = 50 0 1

0 .900 .048

1 .048 .005
�=96;�=26;"=:017

BE 0 1

0 .357 .295

1 .181 .167

n = 25 0 1

0 .257 .237

1 .237 .168
�=:63;�=14;"=:080

n = 50 0 1

0 .356 .237

1 .237 .170
�=:62;�=27;"=080

DK 0 1

0 .534 .061

1 .350 .054

n = 25 0 1

0 .533 .197

1 .197 .073
�=:73;�=21;"=:205

n = 50 0 1

0 .533 .197

1 .197 .073
�=:73;�=35;"=:205

FI 0 1

0 .672 .053

1 .274 .002

n = 25 0 1

0 .664 .151

1 .151 .034
�=:82;�=20;"=:161

n = 50 0 1

0 .664 .151

1 .151 .034
�=:82;�=33;"=:161

FR 0 1

0 .366 .416

1 .071 .148

n = 25 0 1

0 .368 .239

1 .239 .155
�=:61;�=16;"=:244

n = 50 0 1

0 .366 .239

1 .239 .156
�=61;�=39;"=:244

GE 0 1

0 .624 .063

1 .261 .052

n = 25 0 1

0 .622 .163

1 .163 .052
�=:80;�=14;"=:140

n = 50 0 1

0 .621 .166

1 .166 .047
�=:79;�=27;"=:141

GR 0 1

0 .646 .192

1 .124 .038

n = 25 0 1

0 .648 .157

1 .157 .038
�=:81;�=15;"=:048

n = 50 0 1

0 .648 .157

1 .157 .038
�=:81;�=28;"=:048

The �rst column reports the education transition matrices for father/daughter from wage 5 (1998) of

the ECHP, from Comi. 0 stands for nor more than high school graduation; 1 stands for past high school

education. Data is reported for seven countries: AU=Austria, BE=Belgium, DK=Denmark, FI=Finland,

FR=France, GE=Germany, GR=Greece. Columns 2 and 3 report the estimated values for the education

transition matrices for n = 25; 50. The corresponding parameters �; � for the estimated threshold investment

model are reported below the matrices. The error " is equal to the Euclidean distance between the estimated

and the actual distributions.
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Table 2 (Father/Daughter) (Contd.)

data estimation threshold model

IR 0 1

0 .645 .220

1 .063 .072

n = 25 0 1

0 .648 .154

1 .154 .044
�=:81;�=14;"=:116

n = 50 0 1

0 .643 .148

1 .148 .062
�=:82;�=26;"=:112

IT 0 1

0 .876 .056

1 .055 .013

n = 25 0 1

0 .874 .061

1 .061 .005
�=:94;�=14;":012

n = 50 0 1

0 .880 .056

1 .056 .007
�=94;�=26;"=:007

LX 0 1

0 .580 .268

1 .045 .107

n = 25 0 1

0 .577 .141

1 .141 .141
�=:83;�=13;"=:163

n = 50 0 1

0 .576 .169

1 .169 .086
�=:79;�=26;"=:160

NL 0 1

0 .791 .015

1 .188 .007

n = 25 0 1

0 .792 .098

1 .098 .012
�=:89;�=18;"=:122

n = 50 0 1

0 .792 .098

1 .098 .012
�=:89;�=31;"=:122

PO 0 1

0 .865 .081

1 .043 .011

n = 25 0 1

0 .865 .065

1 .065 .005
�=:93;�=14;"=:028

n = 50 0 1

0 .870 .061

1 .061 .008
�=:94;�=26;"=:028

SP 0 1

0 .623 .216

1 .098 .063

n = 25 0 1

0 .622 .163

1 .163 .052
�=:80;�=14;"=:085

n = 50 0 1

0 .624 .154

1 .154 .068
�=:81;�=26;"=:084

UK 0 1

0 .246 .223

1 .254 .278

n = 25 0 1

0 .230 .250

1 .250 .270
�=:52;�=25;"=:032

n = 50 0 1

0 .230 .250

1 .250 .270
�=:52;�=1;"=:032

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy,

LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.
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Table 3 (Father/Son)

data estimation threshold model

AU 0 1

0 .919 .018

1 .060 .003

n = 25 0 1

0 .922 .038

1 .038 .002
�=:96;�=14;"=:030

n = 50 0 1

0 .920 .038

1 .038 .003
�=:96;�=26;"=:030

BE 0 1

0 .405 .227

1 .170 .198

n = 25 0 1

0 .407 .200

1 .200 .194
�=:73;�=13;"=:040

n = 50 0 1

0 .397 .218

1 .218 .167
�=:68;�=26;"=:058

DK 0 1

0 .587 .027

1 .356 .030

n = 25 0 1

0 .585 .180

1 .180 .055
�=:77;�=21;"=:234

n = 50 0 1

0 .585 .180

1 .180 .055
�=:77;�=34;"=:234

FI 0 1

0 .724 .032

1 .237 .006

n = 25 0 1

0 .723 .128

1 .128 .023
�=:85;�=19;"=:146

n = 50 0 1

0 .723 .128

1 .128 .023
�=:85;�=32;"=:146

FR 0 1

0 .481 .332

1 .058 .129

n = 25 0 1

0 .477 .207

1 .207 .108
�=:71;�=14;"=:196

n = 50 0 1

0 .478 .197

1 .197 .128
�=:73;�=26;"=:194

GE 0 1

0 .653 .053

1 .251 .043

n = 25 0 1

0 .657 .151

1 .151 .041
�=:82;�=14;"=:140

n = 50 0 1

0 .654 .154

1 .154 .038
�=:81;�=27;"=:140

GR 0 1

0 .726 .131

1 .111 .033

n = 25 0 1

0 .728 .124

1 .124 .024
�=:86;�=14;"=:017

n = 50 0 1

0 .721 .120

1 .120 .038
�=:86;�=26;"=:016

The �rst column reports the education transition matrices for father/son from wage 5 (1998) of the

ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium,

DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.
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Table 3 (Father/Son) (Contd.)

data estimation threshold model

IR 0 1

0 .686 .196

1 .062 .056

n = 25 0 1

0 .692 .138

1 .138 .032
�=:84;�=14;"=:099

n = 50 0 1

0 .682 .134

1 .134 .049
�=:84;�=26;"=:96

IT 0 1

0 .886 .047

1 .055 .012

n = 25 0 1

0 .893 .052

1 .052 .003
�=:95;�=14;"=:013

n = 50 0 1

0 .890 .052

1 .052 .006
�=:95;�=26;"=:009

LX 0 1

0 .601 .266

1 .077 .056

n = 25 0 1

0 .605 .169

1 .169 .057
�=:79;�=14;"=:134

n = 50 0 1

0 .605 .172

1 .172 .052
�=:78;�=27;"=:134

NL 0 1

0 .757 .011

1 .222 .010

n = 25 0 1

0 .757 .113

1 .113 .017
�=:87;�=18;"=:149

n = 50 0 1

0 .757 .113

1 .113 .017
�=:87;�=31;"=:149

PO 0 1

0 .919 .038

1 .031 .012

n = 25 0 1

0 .922 .038

1 .038 .002
�=:96;�=14;"=:013

n = 50 0 1

0 .920 .038

1 .038 .003
�=:96;�=26;"=:012

SP 0 1

0 .683 .156

1 .109 .051

n = 25 0 1

0 .683 .141

1 .141 .035
�=:83;�=14;"=:039

n = 50 0 1

0 .682 .134

1 .134 .049
�=:84;�=26;"=:034

UK 0 1

0 .226 .237

1 .224 .312

n = 25 0 1

0 .217 .235

1 .235 .314
�=:65;�=12;"=:014

n = 50 0 1

0 .210 .241

1 .241 .309
�=:61;�=24;"=:023

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy,

LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.
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Table 4 (Mother/Daughter)

data estimation threshold model

AU 0 1

0 .992 .037

1 .039 .001

n = 25 0 1

0 .992 .038

1 .038 .002
�=:96;�=17;"=:001

n = 50 0 1

0 .992 .038

1 .038 .002
�=:96;�=30;"=:001

BE 0 1

0 .374 .314

1 .165 .147

n = 25 0 1

0 .374 .238

1 .238 .151
�=:62;�=16;"=:106

n = 50 0 1

0 .374 .238

1 .238 .151
�=:62;�=30;"=:106

DK 0 1

0 .538 .068

1 .350 .045

n = 25 0 1

0 .540 .195

1 .195 .070
�=:74;�=20;"=:202

n = 50 0 1

0 .540 .195

1 .195 .070
�=:74;�=35;"=:202

FI 0 1

0 .606 .043

1 .338 .013

n = 25 0 1

0 .600 .175

1 .175 .050
�=:78;�=21;"=:213

n = 50 0 1

0 .600 .175

1 .175 .050
�=:78;�=34;"=:213

FR 0 1

0 .381 .455

1 .055 .110

n = 25 0 1

0 .391 .235

1 .235 .141
�=:63;�=17;"=:287

n = 50 0 1

0 .390 .234

1 .234 .141
�=:63;�=35;"=:287

GE 0 1

0 .714 .079

1 .176 .031

n = 25 0 1

0 .710 .131

1 .131 .028
�=:85;�=14;"=:069

n = 50 0 1

0 .713 .131

1 .131 .025
�=:85;�=27;"=:069

GR 0 1

0 .693 .202

1 .080 .025

n = 25 0 1

0 .689 .141

1 .141 .029
�=:83;�=20;"=:087

n = 50 0 1

0 .689 .141

1 .141 .029
�=:83;�=33;"=:087

The �rst column reports the education transition matrices for mother/daughter from wage 5 (1998) of

the ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium,

DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.
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Table 4 (Mother/Daughter) (Contd.)

data estimation threshold model

IR 0 1

0 .663 .235

1 .046 .056

n = 25 0 1

0 .666 .148

1 .148 .039
�=:82;�=14;"=:135

n = 50 0 1

0 .662 .141

1 .141 .055
�=:83;�=26;"=:134

IT 0 1

0 .891 .061

1 .040 .008

n = 25 0 1

0 .893 .052

1 .052 .003
�=:95;�=14;"=:016

n = 50 0 1

0 .890 .052

1 .052 .006
�=:95;�=26;"=:015

LX 0 1

0 .596 .330

1 .028 .046

n = 25 0 1

0 .593 .177

1 .177 .053
�=:77;�=20;"=:214

n = 25 0 1

0 .593 .177

1 .177 .053
�=:77;�=34;"=:214

NL 0 1

0 .856 .021

1 .126 .002

n = 25 0 1

0 .856 .069

1 .069 .006
�=:93;�=18;"=:072

n = 25 0 1

0 .856 .069

1 .069 .006
�=:93;�=30;"=:072

PO 0 1

0 .866 .082

1 .041 .011

n = 25 0 1

0 .865 .065

1 .065 .005
�=:93;�=14;"=:030

n = 50 0 1

0 .870 .061

1 .061 .008
�=:94;�=26;"=:030

SP 0 1

0 .666 .254

1 .056 .028

n = 25 0 1

0 .664 .151

1 .151 .034
�=:82;�=19;"=:140

n = 25 0 1

0 .664 .151

1 .151 .034
�=:82;�=32;"=:140

UK 0 1

0 .302 .302

1 .189 .208

n = 25 0 1

0 .301 .248

1 .248 .203
�=:55;�=17;"=:080

n = 50 0 1

0 .302 .247

1 .247 .205
�=:58;�=27;"=:080

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy,

LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.
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Table 5 (Mother/Son)

data estimation threshold model

AU 0 1

0 .944 .019

1 .036 .001

n = 25 0 1

0 .940 .029

1 .029 .001
�=:97;�=19;"=:013

n = 50 0 1

0 .940 .029

1 .029 .001
�=:97;�=29;"=:013

BE 0 1

0 .427 .282

1 .143 .147

n = 25 0 1

0 .422 .222

1 .222 .135
�=:68;�=14;"=:100

n = 50 0 1

0 .428 .210

1 .210 .152
�=:70;�=26;"=:099

DK 0 1

0 .560 .035

1 .379 .026

n = 25 0 1

0 .563 .188

1 .188 .063
�=:75;�=21;"=:248

n = 50 0 1

0 .563 .188

1 .188 .063
�=:75;�=21;"=:248

FI 0 1

0 .677 .024

1 .287 .012

n = 25 0 1

0 .672 .148

1 .148 .032
�=:82;�=19;"=:188

n = 50 0 1

0 .672 .148

1 .148 .032
�=:82;�=33;"=:188

FR 0 1

0 .474 .356

1 .057 .112

n = 25 0 1

0 .477 .207

1 .207 .108
�=:71;�=14;"=:212

n = 50 0 1

0 .469 .212

1 .212 .107
�=:70;�=27;"=:212

GE 0 1

0 .732 .073

1 .171 .024

n = 25 0 1

0 .731 .124

1 .124 .021
�=:86;�=15;"=:070

n = 50 0 1

0 .730 .124

1 .124 .022
�=:86;�=17;"=:070

GR 0 1

0 .771 .151

1 .065 .013

n = 25 0 1

0 .772 .106

1 .106 .016
�=:88;�=14;"=:061

n = 50 0 1

0 .774 .106

1 .106 .015
�=:88;�=27;"=:061

The �rst column reports the education transition matrices for mother/son from wage 5 (1998) of the

ECHP, from Comi. Data and estimations are reported for seven countries: AU=Austria, BE=Belgium,

DK=Denmark, FI=Finland, FR=France, GE=Germany, GR=Greece.
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Table 5 (Mother/Son) (Contd.)

data estimation threshold model

IR 0 1

0 .697 .214

1 .049 .041

n = 25 0 1

0 .701 .134

1 .134 .030
�=:84;�=14;"=:117

n = 50 0 1

0 .692 .131

1 .131 .046
�=:85;�=26;"=:117

IT 0 1

0 .906 .051

1 .034 .009

n = 25 0 1

0 .912 .043

1 .043 .002
�=:96;�=14;"=:015

n = 50 0 1

0 .910 .043

1 .043 .004
�=:096;�=26;"=:013

LX 0 1

0 .642 .292

1 .036 .029

n = 25 0 1

0 .640 .160

1 .160 .040
�=:80;�=20;"=:181

n = 25 0 1

0 .640 .160

1 .160 .040
�=:80;�=33;"=:181

NL 0 1

0 .858 .019

1 .120 .003

n = 25 0 1

0 .856 .069

1 .069 .006
�=:93;�=17;"=:072

n = 25 0 1

0 .856 .069

1 .069 .006
�=:93;�=30;"=:072

PO 0 1

0 .912 .038

1 .039 .011

n = 25 0 1

0 .912 .043

1 .043 .002
�=:96;�=14;"=:011

n = 25 0 1

0 .912 .043

1 .043 .004
�=:96;�=16;"=:010

SP 0 1

0 .734 .188

1 .056 .022

n = 25 0 1

0 .737 .120

1 .120 .023
�=:86;�=14;"=:094

n = 50 0 1

0 .731 .124

1 .124 .021
�=:86;�=32;"=:094

UK 0 1

0 .305 .328

1 .142 .226

n = 25 0 1

0 .306 .237

1 .237 .219
�=:64;�=13;"=:133

n = 50 0 1

0 .304 .242

1 .242 .213
�=:61;�=26;"=:134

ECHP data and estimations are reported for the following seven countries: IR=Ireland, IT=Italy,

LX=Luxemburg, NL=The Netherlands, PO=Portugal, SP=Spain, UK=The United Kingdom.
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