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Trade rules for uncleared markets

Ozgur Kibris Serkan Kucuksenel

Abstract

We analyze markets in which the price of a traded commodity is such that the supply
and the demand are unequal. Under standard assumptions, the agents then have single
peaked preferences on their consumption or production choices. For such markets, we
propose a class of Uniform Trade rules each of which determines the volume of trade as
the median of total demand, total supply, and an exogenous constant. Then these rules
allocate this volume \uniformly" on either side of the market. We evaluate these \trade
rules" on the basis of some standard axioms in the literature. We show that they uniquely
satisfy Pareto optimality, strategy proofness, no-envy, and an informational simplicity
axiom that we introduce. We also analyze the implications of anonymity, renegotiation
proofness, and voluntary trade on this domain.

JEL classi�cation numbers: D5, D6, D7

Key words: market disequilibrium, trade rule, eÆciency, strategy proofness, anonymity,
no-envy, renegotiation proofness, voluntary trade



Trade rules for uncleared markets
�

Ozgur Kibrisy Serkan Kucuksenelz

1 Introduction

We analyze markets in which the price of a traded commodity is �xed at a level where
the supply and the demand are unequal. This phenomenon is observed in many markets,
either because the price adjustment process is slow, such as in the labor market, or
because the prices are controlled from outside the market (e.g. by the state), such as in
health, education, or agricultural markets. These observations are conceptualized in the
idea of market disequilibrium which has been particularly central in Keynesian economics
after Clower (1965) and Leijonhufvud (1968). For more on this, see Benassy (1982).

For markets in inequilibrium, it is important to understand how trade takes place
and how the current practice can be improved upon through the design of \good" rules
that regulate it. In this paper, we propose such \trade rules" and evaluate them on the
basis of some standard properties in the literature.

In our model, a set of producers face demand from a set of consumers (who might
be individuals as well as other producers that use the traded commodity as input). We
assume that the individuals have convex preferences on consumption bundles. They thus
have single-peaked preferences on the boundary of their budget sets, and therefore, on
their consumption of the commodity in question. Similarly, we assume that the producers
have convex production sets. Their pro�ts are thus single-peaked in their output or
input. Due to these observations, our paper is related to earlier studies on single-peaked
preferences.1

�We gratefully acknowledge Ipek Gursel for a very useful observation. We also thank William Thom-
son, Tayfun Sonmez, Utku Unver, Anirban Kar as well as the seminar participants at Sabanci University,
Koc University, ASSET 2004, SED 2004, and the Murat Sertel Memorial Conference on Economic The-
ory for their comments and suggestions on an earlier version of this paper.
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1For a �rm s, the preference relationRs is an ordinal representation of how it compares two production
or input-consumption levels in terms of pro�ts. For �rms with convex production sets, Rs will be single-
peaked under �xed prices.



A trade rule, in our model, takes in the preferences of the buyers and the sellers and
in turn, delivers (i) the volume of trade (i.e. the total trade that will be carried out
between the buyers and the sellers) and (ii) how the volume of trade will be allocated
among the agents on either side of the market. We introduce a class of Uniform Trade
rules each of which, in step (i), determines the volume of trade as the median of total
demand, total supply, and an exogenous constant and in step (ii), allocates this volume
\uniformly" among agents in either side of the market.

There are earlier papers related to either one of the above steps but not both. The
second (allocation) step is related to the literature starting with Sprumont (1991) who
analyzes the problem of allocating a �xed social endowment of a private commodity
among agents with single-peaked preferences. The social endowment in those problems
corresponds in our model to the volume of trade which, in the second step is treated as
�xed, and is allocated as total supply among the buyers and total demand among the
sellers. On Sprumont's domain, an allocation rule called the Uniform Rule turns out
to be central. It can be described as follows: if the sum of the agents' peaks is more
(respectively, less) than the social endowment, each agent receives the minimum (respec-
tively, the maximum) of his peak and a constant amount. The value of this constant is
uniquely determined by the feasibility of the allocation. Sprumont (1991) shows that this
rule uniquely satis�es (i) Pareto optimality, strategy proofness, and anonymity as well as
(ii) Pareto optimality, strategy proofness, and no-envy. The Uniform rule satis�es many
other desirable properties (e.g. see Ching (1992, 1994) and Thomson (1994 a, b)). Thus
it is no surprise that in our model, the aforementioned Uniform Trade rules employ the
Uniform rule to allocate the trade volume among agents on either side of the market.

The �rst (trade-volume determination) step is intuitively (though not formally) re-
lated to Moulin (1980) who analyzes the determination of a one-dimensional policy issue
among agents with single-peaked preferences.2 This relation is particularly apparent
(and formal) when there is a single buyer and a single seller. Then the volume of trade
is exactly like a public good for these two agents. While this is no more true when
there are multiple buyers or seller (who are sharing the trade volume among themselves),
the mechanics of determining the trade volume as a function of the total demand and
total supply still resemble Moulin's (1980) model. This similarity becomes apparent in
our results: parallel to the extended median rules proposed there, strategical considera-
tions lead us to propose the determination of the volume of trade as the median of total
demand, total supply and an exogenous constant.

Let us however note that our model is richer than a simple conjunction of the two
models mentioned above. This is particularly due to the interaction between the determi-
nation of the agents' shares and the determination of the trade volume. For example, the
agents can manipulate their allotments also by manipulating (possibly as a group) the
volume of trade. Also, single-economy requirements like Pareto optimality or \fairness"
become much more demanding as what is to be allocated becomes endogenous. Another

2Consider, for example, the determination of a tax rate, the budget of a project, or the provision of
a public good.
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important di�erence is the existence of two types of agents (buyers and sellers) in our
model. This duality limits the implications of requirements like anonymity or no-envy
and, for example in comparison to Moulin (1980), allows for a much larger class of median
rules some of which discriminates between the buyers and the sellers.

Our model is also related to those of Barbera and Jackson (1995), Thomson (1995),
and Klaus, Peters, and Storcken (1997, 1998). Barbera and Jackson (1995) analyze a
pure exchange economy with an arbitrary number of agents and commodities. Each
agent has a positive endowment of the commodities and a continuous, strictly convex,
and monotonic preference relation on his consumption. The authors look for strategy-
proof rules to facilitate trade in this exchange economy. With this consideration, they
introduce and characterize a class of \�xed-proportion trading rules" where (i) trade can
only occur in one proportion which is selected from an a priori �xed set of proportions
satisfying certain restrictions due to which the set of feasible allocations is restricted to be
a one-dimensional set on which the agents have single-peaked preferences and (ii) given
a proportion for trade, the �nal allocation is chosen by rationing the agents uniformly.
Thomson (1995) and Klaus, Peters, and Storcken (1997, 1998) alternatively analyze a
single-commodity model where they consider the reallocation of an in�nitely divisible
good among agents with single-peaked preferences and individual endowments.3 In their
models, the agents whose endowments are greater than their peaks (the suppliers) supply
to those whose endowments are less then their peaks (the demanders). They show that
a set of basic properties characterize a \Uniform reallocation rule".

The relation between these models and ours is quite similar to the one between pure
exchange and production economies. In the pure exchange models, whether an agent is
a supplier or a demander of the commodity in question depends on the relation between
his preferences and his endowment. For example, by changing his preferences, a supplier
can turn into a demander of the commodity in question and vice versa. In our production
model, however, producers and consumers are exogenously distinct entities. This di�er-
ence has signi�cant implications on the analysis to be carried out. For example, fairness
properties such as anonymity or no-envy compare all agents in the pure exchange version
of the model whereas, in the production version, they can only compare agents on the
same side of the market.4 Also, in our model, there are no exogenously set individual
endowments. Only after the shares are determined, the production decisions are made.5

These di�erences re
ect to the results obtained in the two models as well. In the pure
exchange model, basic properties imply that the short side of the market always clears
whereas this is not the case in our model.6 We thus interpret the exchange and pro-

3Thomson (1995) also allows an \open economy" extension where a transfer from the outside world
(aside from the individual endowments) is to be allocated.

4Indeed, to consider envy between a producer and a consumer, one would need an environment where
each consumer has access to a production technology and maybe even less realistically, each �rm can
turn itself into a consumer.

5Note that this is more than simply setting the endowments in Klaus et al to zero since in that case
all agents in their model would become demanders of the commodity.

6The short side of a market is where the aggregate volume of desired transaction is smallest. It is
thus the demand side if there is excess supply and the supply side if there is excess demand. The other
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duction models (and their �ndings) as complements of each other in the aforementioned
sense.

We look for trade rules that satisfy a set of standard properties such as Pareto opti-
mality, (coalitional) strategy proofness, and no-envy. We also introduce a new property
speci�c to this domain: separability in total trade requires the volume of trade only to
depend on the total demand and supply but not on their individual components. For
example, increasing agent i's demand and decreasing agent j 0s demand so as to keep
total demand unchanged should have no e�ect on the volume of trade. Note that this
change can still e�ect the shares of these two agents as well as others.

We observe that the above properties are logically independent and in Theorem 1, we
show that they are uniquely satis�ed by a class of Uniform Trade rules. As noted above,
these rules do not necessarily clear the short side of the market. Such practice might seem
unrealistic at �rst glance. However, real life examples to it are in fact more common than
one would initially expect, especially in markets with strong welfare implications for the
society. In health or education sectors for example, it is not uncommon to observe excess
demand due to price regulations and an overutilization of services (such as over�lled
schools or hospitals). Similarly, there are many countries (such as that of the authors)
where in response to an excess supply of labor, governments tend to over-employ in the
public sector. Even in the private sector, since most labor contracts include restrictions
on when and how the contract can be terminated, �rms regularly experience periods in
which they overemploy. Finally let us note that, especially when several interconnected
markets are concerned, clearing the short side in every one of these markets might be
problematic. Benassy (1982, pages 11-12) presents the example of a �rm that buys from
an input market in excess demand and sells to an output market in excess demand. If the
short side clears in the input market, the �rm cannot produce at its pro�t maximizing
level even though it faces excess demand. Thus in this example, application of the short
side rule in the input market has eÆciency implications on the output market.

We later analyze the implications of a stronger separability property. In Proposition
2, we show that any Pareto optimal and strategy proof trade rule that satis�es strong
separability in total trade has to determine the volume of trade by an extended median rule
that is constant across di�erent societies. Adding no-envy (in allocations) and anonymity
(in determination of the trade volume) restricts the admissible class of rules to Uniform
Trade rules (i) that are constant across societies and (ii) that do not discriminate between
buyers and sellers.

We observe that among Uniform Trade rules, renegotiation proof ones are those that
clear exactly one side of the market in economies where there are less agents on the short
side of the market than there is on the long side. Interestingly enough, renegotiation
proofness has no implications for societies with an equal number of buyers and sellers.

We also observe that only the Uniform Trade rule that clears the short side of the

side is called the long side.
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market satis�es a voluntary trade requirement that gives each agent the right to choose
zero trade for himself (the term is introduced by Benassy (1982), Chapter 6). For this, we
show in Proposition 3 that any Pareto optimal and strategy proof trade rule that satis�es
voluntary trade has to clear the short side of the market. Note that, in examples such
as health services for infants or compulsory education for children, consumers (i.e. the
parents) do not have the right to choose zero consumption. For such markets therefore,
voluntary trade is not a desirable property. On the other hand, with the exception of
certain epidemics, adults have voluntary trade power in determining their consumption
of health services.

The paper is organized as follows. In Section 2, we introduce the model and in Section
3, we introduce and discuss Uniform trade rules. Section 4 contains the main results. We
conclude in Section 5.

2 The Model

There is a universal set B of potential buyers and a universal set S of potential sellers.
Let jBj = jSj : There is a perfectly divisible commodity that each seller produces and
each buyer consumes. Let R+ be the consumption/production space for each agent. Each
i 2 B [ S is endowed with a continuous preference relation Ri over R+ . Let Pi denote
the strict preference relation associated with Ri. The preference relation Ri is single-
peaked if there is p(Ri) 2 R+ , called the peak of Ri, such that for all xi, yi in R+ ,
xi < yi � p(Ri) or xi > yi � p(Ri) implies yiPixi. Let R denote the set of all continuous
and single-peaked preference relations on R+ .

Given a �nite set B � B of buyers and a �nite set S � S of sellers, let N = B [ S

be a society. Let N = B [ S be the set of all societies. A preference pro�le RN for a
society N is a list (Ri)i2N such that for each i 2 N , Ri 2 R. Let RN denote the set of
all pro�les for the society N . Given RN 2 RN , let p(RN ) = (p(Ri))i2N . Given N 0 � N

and RN 2 RN , let RN 0 = (Ri)i2N 0 denote the restriction of RN to N 0. A market for
society B [ S is a pro�le of preferences for buyers and seller (RB; RS) 2 RB[S . Let

M =
[

(B[S)2N

RB[S

be the set of all markets.

A (feasible) trade for (RB; RS) 2 M is a vector z 2 R
B[S
+ such that

P
B zi =

P
S zi.

For each buyer (seller) i, zi denotes how much he buys (sells). Let Z(B [ S) denote the
set of all trades for (RB; RS). A trade z 2 Z(B [ S) is Pareto optimal with respect
to (RB; RS) if there is no z

0 2 Z(B [ S) such that for all i 2 B [ S, z0iRizi and for some
j 2 B[S, z0iPizi. In our framework, Pareto optimal trades posses the following property.

Lemma 1 For each (RB; RS) 2 M, the trade z 2 Z(B [ S) is Pareto optimal with
respect to (RB; RS) if and only if for K 2 fB; Sg,

P
K p(Rk) �

P
NnK p(Rk) implies
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(i) p(Rk) � zk for each k 2 K; (ii) zj � p(Rj) for each j 2 N n K, and thus (iii)P
K p(Rk) �

P
K zk �

P
NnK p(Rk).

Proof : Let (RB; RS) 2 M be such that
P

K p(Rk) �
P

NnK p(Rk):

Assume that z 2 Z(B [ S) is Pareto optimal. First note that if there is i 2 K such
that zi < p(Ri) and there is j 2 N nK such that zj < p(Rj), then there is " > 0 such
that z0 2 Z(B[S) de�ned as for all k 62 fi; jg, z0k = zk; z

0
i = zi+"; and z0j = zj+" Pareto

dominates z. Similarly, if there is i 2 K such that zi > p(Ri) and there is j 2 N n K
such that zj > p(Rj), we obtain a similar contradiction.

Now note that if
P

K zk <
P

K p(Rk) �
P

NnK p(Rk), then there is i 2 K such that

zi < p(Ri) and there is j 2 N n K such that zj < p(Rj). Similarly, if
P

K p(Rk) �P
NnK p(Rk) <

P
K zk, then there is i 2 K such that zi > p(Ri) and there is j 2 N nK

such that zj > p(Rj). Thus
P

K p(Rk) �
P

K zk �
P

NnK p(Rk).

Finally, if there is i; j 2 K such that zi < p(Ri) and zj > p(Rj), there is " > 0 such
that z0i = zi + ", z0j = zj � ", and for all k 2 K n fi; jg, z0k = zk is a Pareto improvement
over z. This and

P
K p(Rk) �

P
K zk implies that for each i; j 2 K, zi � p(Ri) and

zj � p(Rj). A similar argument proves that for each i; j 2 N n K, zi � p(Ri) and
zj � p(Rj).

For the converse, assume p(Rk) � zk for each k 2 K and zl � p(Rl) for each l 2 N nK.
Let z0 2 Z(B [ S) be such that for some i 2 K, z0iPizi. Then z0i < zi. This implies that
either there is j 2 K such that z0j > zj � p(Rj) or there is l 2 N n K such that
z0l < zl � p(Rl). Thus z

0 does not Pareto dominate z. A similar argument follows if there
is i 2 N nK such that z0iPizi. Thus z is Pareto optimal.

A trade rule F : M!
S

N2N Z(N) associates each market (RB; RS) with a trade
z 2 Z(B[S). Let 
F (:) =

P
i2B Fi(:) be the associated rule that determines the volume

of trade. In what follows, we introduce properties that are related to the four main titles
in axiomatic analysis: eÆciency, nonmanipulability, fairness, and stability.

We start with eÆciency. A trade rule F is Pareto optimal if for each (RB; RS) 2 M,
the trade F (RB; RS) is Pareto optimal with respect to (RB; RS).

We present two properties on nonmanipulability. A trade rule F is strategy proof
if for each N 2 N ; RN 2 RN , i 2 N , and R0

i 2 R, Fi(Ri; RNni)RiFi(R
0
i; RNni):

That is, regardless of the others' preferences, an agent is best-o� with the trade as-
sociated with her true preferences. Strategy proof rules do not give the agents in-
centive for individual manipulation. They however are not immune to manipulation
by groups. For this, a stronger property is necessary: a trade rule F is coalitional
strategy proof if for each N 2 N , RN 2 RN , M � N , and R0

M 2 RM , if there
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is i 2 M such that Fi(R
0
M ; RNnM)PiFi(RM ; RNnM ) then, there is j 2 N 0 such that

Fj(RM ; RNnM)PjFj(R
0
M ; RNnM ).7

Our �rst fairness property is after Foley (1967). Since in our model the agents on
di�erent sides of the market are exogenously di�erentiated, our version of the property
only compares agents on the same side of the market. A trade rule F is envy free
(equivalently, satis�es no-envy) if for each (RB; RS) 2 M; K 2 fB; Sg, and i; j 2 K,
Fi(RB; RS)RiFj(RB; RS).

Note that no-envy does not have any implications on the determination of the volume
of trade. The next two fairness properties deal with this issue. A bijection � : N ! N
which satis�es �(i) 2 B (�(i) 2 S) if and only if i 2 B (i 2 S) is called an in-group-
permutation. Let � be the set of all in-group-permutations and let R�

�(i) = Ri for each
� 2 � and i 2 N . A trade rule F satis�es in-group anonymity in total trade if
for each (RB; RS) 2 M and each � 2 �, 
F (RB; RS) = 
F (R

�
�(B); R

�
�(S)). That is the

volume of trade should not depend on the identity of the agents in a group. A bijection
� : N ! N which satis�es �(i) 2 B (�(i) 2 S) if and only if i 2 S (i 2 B) is called
a between-group-permutation. Let � be the set of all between-group-permutations and
let R�

�(i) = Ri for each � 2 � and i 2 N . A trade rule F satis�es between-group

anonymity in total trade if for each (RB; RS) 2 M and each � 2 �, 
F (RB; RS) =

F (R

�

�(S); R
�

�(B)). This property requires that the volume of trade should not depend
on the identity of the groups. A trade rule F satis�es anonymity in total trade if it
satis�es both of these anonymity properties.

If the universal sets of buyers and sellers are allowed to be of in�nite size, between-
group anonymity in total trade implies in-group anonymity in total trade. The simple
proof, for any given � 2 �, constructs a pair �, �0 2 � such that � = �0 Æ �. Thus, a
buyer bi 2 B who is mapped by � to another buyer �(bi) can alternatively be mapped �rst
to a seller �(bi) 2 S and then this seller can be mapped to the buyer �(bi) = �0(�(bi)).
With �nite universal sets, however, the two properties are independent. To see this, let
jBj = jSj = n. Let � 2 � be such that for each bi 2 B, �(bi) = bi and for each si 2 S,
�(si) = si+1 (with �(sn) = s1). Suppose there are �; �

0 2 � such that �0 Æ � = �. Then
�0(�(bi)) = bi implies � = �0 and �0(�(si)) = si+1 implies � 6= �0, a contradiction.

Our fourth title is stability. We introduce two properties related to it. The �rst
property is for markets where a buyer-seller pair can renegotiate a deal among themselves.
A trade rule F is renegotiation proof if for each (RB; RS) 2 M there is no i 2 S and
j 2 B such that for some r 2 R+ ; rPiFi(RB; RS) and rPjFj(RB; RS): This is a weak
no-blocking property.8 Our �nal stability property is for markets where each agent is
entitled to leaving the market, that is, buying or selling zero units. A trade rule F

satis�es voluntary trade if for each (RB; RS) 2 M and i 2 B [ S, Fi(RB; RS)Ri0.

7Note that ours is the stronger formulation of the property. A weaker version considers only coalitional
manipulations that make all agents in the coalition strictly better-o�.

8We will later note that requiring a stronger version of the property that allows any coalition to form
does not a�ect our results. Allowing some agents in a blocking-coalition to remain indi�erent, on the
other hand, has strong implications.
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Lastly, we introduce the following informational simplicity property. It requires the
volume of trade only to depend on the total demand and supply but not on their in-
dividual components. A trade rule F satis�es separability (in total trade) if for
each (B [ S) 2 N and (RB; RS); (R

0
B; R

0
S) 2 RB[S;

P
i2B p(Ri) =

P
i2B p(R

0
i) andP

i2S p(Ri) =
P

i2S p(R
0
i) implies 
F (RB; RS) = 
F (R

0
B; R

0
S). Note that this prop-

erty is not logically related to anonymity in total trade since it does not make the de-
termination of trade volume independent of the agents' identities. It merely relates
two problems with the same set of agents. A stronger separability property would
totally disregard the agents' identities: a trade rule F satis�es strong separabil-
ity (in total trade) if for each (B [ S); (B0 [ S 0) 2 N , (RB; RS) 2 RB[S , and
(R0

B0 ; R0
S0) 2 RB0[S0

,
P

i2B p(Ri) =
P

i2B0 p(R0
i) and

P
i2S p(Ri) =

P
i2S0 p(R0

i) implies

F (RB; RS) = 
F (R

0
B0 ; R0

S0). Note that since the sets B and B0 (as well as S and S 0)
are allowed to be of di�erent cardinality, this property is stronger than a conjunction of
separability and in-group anonymity in total trade.

3 Uniform Trade Rules

Let � : N ! R+ [ f1g and � : N ! R+ [ f1g be two functions such that for each
B [ S 2 N , B = ; or S = ; implies �(B [ S) = �(B [ S) = 0. The Uniform Trade
rule with respect to � and �, UT��, is then de�ned as follows. We �rst determine
the volume of trade: given (B [ S) 2 N and (RB; RS) 2 RB[S, let


UT��(RB; RS) =

8<
:

medianf�(B [ S);
P

B p(Ri);
P

S p(Ri)g if
P

B p(Ri) �
P

S p(Ri)g;

medianf�(B [ S);
P

B p(Ri);
P

S p(Ri)g if
P

B p(Ri) �
P

S p(Ri)g:

That is, a median rule with the exogenous reference-point �(B [ S) is used when the
buyers are the short side of the market. If, on the other hand, the sellers are the short
side, then the reference point �(B [ S) is used to calculate the median.

Next, we allocate the volume of trade among the agents: for K 2 fB; Sg, let

UT
��
K (RB; RS) =

8<
:

(minf�; p(Ri)g)i2K if
P

K p(Ri) � 
UT��(RB; RS);

(maxf�; p(Ri)g)i2K if
P

K p(Ri) � 
UT��(RB; RS):
(1)

where � 2 R+ satis�es
X
K

minf�; p(Ri)g = 
UT��(RB; RS) if
X
K

p(Ri) � 
UT��(RB; RS)

and X
K

maxf�; p(Ri)g = 
UT��(RB; RS) if
X
K

p(Ri) < 
UT��(RB; RS):

The class of Uniform Trade rules is very rich. It contains rules that for example
always favor the buyers (� = 0 and � = 1), rules that always favor the short side of
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the market (� = � = 0), or rules that guarantee a �xed volume of trade unless both
sides of the market wish to deviate from it (� = � = c 2 R+), as well as rules that mix
between these and many other arbitration methods based on the identities of the agents
and who constitutes the short side of the market. The following proposition analyzes the
properties that Uniform Trade rules satisfy.

Proposition 2 All Uniform Trade rules satisfy Pareto optimality, coalitional strategy
proofness, no-envy, and separability in total trade.

Proof : Separability in total trade follows from the median de�nition of 
UT�� . To show
that UT �� satis�es Pareto optimality, note that by the median de�nition of 
UT�� , we
have X

K

p(Ri) � 
UT��(RB; RS) �
X
NnK

p(Ri)

for K 2 fB; Sg. Thus there is �; � 2 R+ such that

X
K

maxf�; p(Ri)g = 
UT��(RB; RS) =
X
NnK

minf�; p(Ri)g:

Thus for each i 2 K, UT ��
i (RB; RS) � p(Ri) and for each i 2 N nK, UT ��

i (RB; RS) �
p(Ri). This, by Lemma 1 implies the desired conclusion.

To show that UT �� satis�es no envy, let RB[S 2 M and i 2 K 2 fB; Sg. No
envy trivially holds if UT ��

i (RN ) = p(Ri): Alternatively UT
��
i (RN) < p(Ri) implies

UT
��
j (RN ) � UT

��
i (RN) for each j 2 K. SimilarlyUT ��

i (RN ) > p(Ri) impliesUT ��
j (RN ) �

UT
��
i (RN ) for each j 2 K. Therefore, UT ��

i (RN)RiUT
��
j (RN) for each j 2 K.

To show that UT �� satis�es coalitional strategy proofness, take an arbitrary market
RN = (RB; RS) 2 M: Let z = UT ��(RN), ! = 
UT�� (RN), M � N , and R0

M 2 RM .
Let R0

N =
�
R0
M ; RNnM

�
, z0 = UT ��(R0

N) and !0 = 
UT��(R
0
N ). Suppose there is i 2 M

such that z0iPizi: This implies zi 6= p(Ri): Without loss of generality, let i 2 S. Then,P
S p(Rk) 6= !. Without loss of generality, let

P
S p(Rk) > !. Then, by the de�nition of

UT ��, there is � 2 R+ such that zi = � = minf�; p(Ri)g < z0i.

Case 1: !0 � ! and
P

S p(R
0
k) � !0

By the de�nition of UT ��; there is �0 2 R+ such that z0i = minf�0; p(R0
i)g � �0: This

implies �0 > �: Since

X
S

z0k = !0 � ! =
X
S

zk

there is j 2 S such that z0j < zj which implies zjPjz
0
j: Moreover, j 2 M: To see this

suppose j 62M: Then, R0
j = Rj: This implies z0j = minf�0; p(Rj)g � minf�; p(Rj)g = zj;

a contradiction.
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Case 2: !0 � ! and
P

S p(R
0
k) < !0

Then there is � 2 R+ such that z0i = maxf�; p(R0
i)g > zi = minf�; p(Ri)g. Since

!0 � !, there is j 2 S such that z0j < zj which implies zjPjz
0
j:We claim that j 2M: To see

this suppose j 62M: Then, z0j = maxf�; p(Rj)g � p(Rj) and zj = minf�; p(Rj)g � p(Rj):
This implies z0j � zj; a contradiction.

Case 3: !0 > !

Then,
P

B p(R
0
k) � !0: To see this, suppose

P
B p(R

0
k) < !0. But �(B [ S) � ! < !0

then contradicts
!0 = medianf�(B [ S);

X
B

p(R0
k);
X
S

p(R0
k)g:

By the de�nition of UT ��; there are �; �0 2 R+ such that zk = maxf�; p(Rk)g and
z0k = minf�0; p(R0

k)g for each k 2 B: Since ! =
P

B zk < !0 =
P

B z
0
k; there is j 2 B such

that zj < z0j: Then p(Rj) � zj < z0j which implies zjPjz
0
j: We claim that j 2M: Suppose

this is not the case. Then Rj = R0
j: So, zj = maxf�; p(Rj)g < z0j = minf�0; p(Rj)g; a

contradiction.

All Uniform Trade rules satisfy a core-like property which requires that no coalition
of agents can make all its members better-o� by reallocating the shares (assigned by
a trade rule) of its members among themselves. On the other hand, properties such
as anonymity in total trade, strong separability, renegotiation proofness, and voluntary
trade are not satis�ed by all Uniform Trade rules. In the next section, this is discussed
in further detail.

4 Results

The following two lemmas are extensions of standard results by Ching (1994) on Spru-
mont's (1991) domain. They prove to be useful for our purposes too.

Lemma 3 Let the trade rule F satisfy Pareto optimality and strategy proofness. Then
for each N 2 N , i 2 N; and (Ri; R�i); (R

0
i; R�i) 2 RN , if p(Ri) � p(R0

i), then
Fi(Ri; R�i) � Fi(R

0
i; R�i).

Proof : Suppose Fi(R
0
i; R�i) < Fi(Ri; R�i). Then there are three possible cases. If

Fi(R
0
i; R�i) < Fi(Ri; R�i) � p(Ri) � p(R0

i)

then with preferences R0
i, agent i has an incentive to declare Ri. If p(Ri) � p(R0

i) �
Fi(Ri; R�i), then letK 2 fB; Sg be such that i 2 K and note that p(R0

i)+
P

Knfig p(Rk) �

10




F (RNnK ; RK) �
P

NnK p(Rk). Thus by Pareto optimality, p(R0
i) � Fi(R

0
i; R�i) and we

have
p(Ri) � p(R0

i) � Fi(R
0
i; R�i) < Fi(Ri; R�i)

and then with preferences Ri, agent i has an incentive to declare R0
i. Finally if p(Ri) �

Fi(Ri; R�i) � p(R0
i), then with preferences R0

i, agent i has an incentive to declare Ri.
Since in all cases, strategy proofness is violated, the supposition is false.

It follows from Lemma 2 that if (Ri; R�i); (R
0
i; R�i) 2 RN is such that p(Ri) = p(R0

i),
then Fi(Ri; R�i) = Fi(R

0
i; R�i).

Lemma 4 Let the trade rule F satisfy Pareto optimality and strategy proofness. Let
N 2 N , i 2 N; and (Ri; R�i); (R

0
i; R�i) 2 RN . If p(Ri) < Fi(Ri; R�i) and p(R0

i) �
Fi(Ri; R�i), then Fi(R

0
i; R�i) = Fi(Ri; R�i). Similarly if p(Ri) > Fi(Ri; R�i) and p(R

0
i) �

Fi(Ri; R�i), then Fi(R
0
i; R�i) = Fi(Ri; R�i).

Proof : To prove the �rst statement, suppose p(Ri) < Fi(Ri; R�i); p(R
0
i) � Fi(Ri; R�i),

and Fi(R
0
i; R�i) 6= Fi(Ri; R�i). There are two possible cases. If p(Ri) � p(R0

i) then by
Lemma 2, Fi(Ri; R�i) < Fi(R

0
i; R�i) and with preferences R0

i, agent i has an incentive to
declare Ri. Alternatively if p(R0

i) < p(Ri) then by Lemma 2, Fi(R
0
i; R�i) < Fi(Ri; R�i).

Let R00
i 2 R be such that p(R00

i ) = p(Ri) and 0P
00
i Fi(Ri; R�i). By Lemma 2, Fi(R

00
i ; R�i) =

Fi(Ri; R�i). Thus Fi(R
0
i; R�i) < Fi(R

00
i ; R�i) and with preferences R00

i , agent i has an
incentive to declare R0

i. Since in all cases, strategy proofness is violated, the supposition
is false. The proof of the second statement is similar.

Our main result characterizes Uniform Trade rules.

Theorem 5 A trade rule F satis�es Pareto optimality, strategy proofness, no-envy, and
separability in total trade if and only if it is a Uniform Trade rule.

Proof : We already showed that the Uniform Trade rules satisfy these properties. Con-
versely, let F be a trade rule satisfying all properties. Let N = B [ S 2 N .

Step 1. For each K 2 fB; Sg, (RNnK ; RK), (RNnK ; R
0
K) 2 RB[S , 
F (RNnK ; RK) <P

K p(Rk) and 
F (RNnK ; RK) <
P

K p(R0
k) implies 
F (RNnK ; R

0
K) = 
F (RNnK ; RK).

Similarly, for each K 2 fB; Sg, (RNnK ; RK), (RNnK ; R
0
K) 2 RB[S , 
F (RNnK ; RK) >P

K p(Rk) and 
F (RNnK ; RK) >
P

K p(R0
k) implies 
F (RNnK ; R

0
K) = 
F (RNnK; RK).

To prove the �rst statement, let K 2 fB; Sg, (RNnK ; RK), (RNnK ; R
0
K) 2 R

B[S ,

F (RNnK ; RK) <

P
K p(Rk) and 
F (RNnK; RK) <

P
K p(R0

k).

LetR� 2 R be such that p(R�) =
P
K p(Rk)

jKj . By separability in total trade, 
F (RNnK; R
�
K) =


F (RNnK ; RK). By Pareto optimality and no-envy, for each k 2 K, Fk(RNnK ; R
�
K) =


F (RNnK ;RK)

jKj . Note that

F (RNnK ;RK)

jKj < p(R�).
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Now let R�� 2 R be such that p(R��) =
P
K p(R0

k)

jKj and p(R�)P ��
F (RNnK ;RK)

jKj . Since


F (RNnK ; RK) <
P

K p(R0
k), we have


F (RNnK ;RK)

jKj < p(R��).

Let K = f1; :::; ng. Now for each i 2 K, we claim

FK(RNnK; R
�
fi;:::;ng; R

��
f1;:::;i�1g) = FK(RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig):

9

To prove, note that FK(RNnK ; R
�
K) = (


F (RNnK ;RK)

jKj
)k2K and for i � 2, assume that the

statement holds up to agent i. Thus for each k 2 K,

Fk(RNnK ; R
�
fi;:::;ng; R

��
f1;:::;i�1g) =


F (RNnK ; RK)

jKj
< minfp(R�); p(R��)g:

Then by Lemma 3, Fi(RNnK; R
�
fi+1;:::;ng; R

��
f1;:::;ig) =


F (RNnK ;RK)

jKj . Let j 2 K nfig. If Rj =

R��, then10 by no-envy Fj(RNnK ; R
�
fi+1;:::;ng; R

��
f1;:::;ig) = Fi(RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig) =


F (RNnK ;RK)

jKj
. Alternatively assumeRj = R�. If Fj(RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig) <


F (RNnK ;RK)

jKj
,

then j envies i and if

F (RNnK ;RK)

jKj
< Fj(RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig), since by Pareto opti-

mality, Fj(RNnK ; R
�
fi+1;:::;ng; R

��
f1;:::;ig)� p(R�), we have Fj(RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig)P

��
F (RNnK ;RK)

jKj
,

that is, i envies j. Thus

Fj(RNnK ; R
�
fi+1;:::;ng; R

��
f1;:::;ig) =


F (RNnK ; RK)

jKj
:

By this claim we have, for each i 2 K,


F (RNnK ; R
�
fi;:::;ng; R

��
f1;:::;i�1g) = 
F (RNnK ; R

�
fi+1;:::;ng; R

��
f1;:::;ig):

This implies 
F (RNnK ; R
��
K ) = 
F (RNnK ; RK). Finally note that

P
K p(R0

k) = jKj p(R��).
This, by separability in total trade, implies that 
F (RNnK ; R

0
K) = 
F (RNnK ; RK).

The proof of the second statement of this step is similar.

Step 2. For each (RNnK; RK), (RNnK ; R
0
K) 2 RB[S , 
F (RNnK ; RK) �

P
K p(Rk)

and
P

NnK p(Rk) �
P

K p(R0
k) � 
F (RNnK ; RK) implies 
F (RNnK ; R

0
K) =

P
K p(R0

k).

Similarly, for each (RNnK ; RK), (RNnK ; R
0
K) 2 R

B[S, 
F (RNnK ; RK) �
P

K p(Rk) andP
NnK p(Rk) �

P
K p(R0

k) � 
F (RNnK ; RK) implies 
F (RNnK ; R
0
K) =

P
K p(R0

k).

To prove the �rst statement, let (RNnK ; RK), (RNnK ; R
0
K) 2 R

B[S , 
F (RNnK ; RK) �P
K p(Rk) and

P
NnK p(Rk) �

P
K p(R0

k) � 
F (RNnK ; RK). Note that by Pareto op-

timality 
F (RNnK ; R
0
K) �

P
K p(R0

k). Suppose 
F (RNnK ; R
0
K) <

P
K p(R0

k). Then by
Step 1, 
F (RNnK ; R

0
K) = 
F (RNnK ; RK), a contradiction.

9With an abuse of notation, for i = 1, let f1; :::; i� 1g = ; and for i = n, let fi+ 1; :::; ng = ;.
10Note that we use Rj to denote the "generic" preference relation of agent j. On the other hand, R��

denotes a particular preference relation de�ned above.
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The proof of the second statement of this step is similar.

Step 3. Determining the functions � and �.

For c 2 R+ , let R
c 2 R be such that p(Rc) = c and let Rc

N 0 = (Rc)i2N 0. Now for
d 2 R+ , consider (R

0
B; R

d
S) 2 R

B[S and

1. if there is d� 2 R+ such that d� jSj > 
F (R
0
B; R

d�

S ), let �(B [ S) = 
F (R
0
B; R

d�

S ),

2. if for each d 2 R+ , d jSj = 
F (R
0
B; R

d
S); let �(B [ S) =1.

Similarly obtain �(B [ S) by using the pro�les (Rc�

B ; R
0
S) 2 R

B[S for c� 2 R+ . If no
such c� exists, set �(B [ S) =1.

Step 4. If (RB; RS) 2 RB[S satis�es
P

B p(Rk) �
P

S p(Rk), then


F (RB; RS) = medianf�(B [ S);
X
B

p(Rk);
X
S

p(Rk)g:

If
P

B p(Rk) =
P

S p(Rk), the statement trivially holds. So let
P

B p(Rk) <
P

S p(Rk).

First assume there is d� 2 R+ such that d� jSj > 
F (R
0
B; R

d�

S ). Then by Step 3,
�(B [ S) = 
F (R

0
B; R

d�

S ).

There are three possible cases.

Case 1.
P

B p(Rk) < �(B [ S) <
P

S p(Rk).

Then since 0 jBj < �(B [ S) = 
F (R
0
B; R

d�

S ) < d� jSj, applying Step 1 twice, we get

F (R

0
B; R

d�

S ) = 
F (RB; R
d�

S ) = 
F (RB; RS).

Case 2. �(B [ S) �
P

B p(Rk) <
P

S p(Rk).

Then since 0 jBj � �(B [ S) = 
F (R
0
B; R

d�

S ) < d� jSj, applying Step 1 to S, we get

F (R

0
B; R

d�

S ) = 
F (R
0
B; RS) and applying Step 2 to B, we get 
F (RB; RS) =

P
B p(Rk).

Case 3.
P

B p(Rk) <
P

S p(Rk) � �(B [ S).

Then since 0 jBj < �(B [ S) = 
F (R
0
B; R

d�

S ) < d� jSj, applying Step 1 to B, we get

F (R

0
B; R

d�

S ) = 
F (RB; R
d�

S ) and applying Step 2 to S, we get 
F (RB; RS) =
P

S p(Rk).

Next assume that for each d 2 R+ , d jSj = 
F (R
0
B; R

d
S): Then by Step 3, �(B [ S) =

1. Let d > 0 be such that d jSj =
P

S p(Rk). Then 
F (R
0
B; R

d
S) =

P
S p(Rk) > 0. Thus

by Step 1, 
F (RB; R
d
S) =

P
S p(Rk). Finally by Step 2 
F (RB; RS) =

P
S p(Rk).

Since in all cases 
F (RB; RS) = medianf�(B [ S);
P

B p(Rk);
P

S p(Rk)g, the proof
is complete.
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Step 5. If (RB; RS) 2 RB[S satis�es
P

B p(Rk) �
P

S p(Rk), then


F (RB; RS) = medianf�(B [ S);
X
B

p(Rk);
X
S

p(Rk)g:

The proof is similar to that of Step 4.

Step 6. F = UT ��

Suppose FK(RN ) 6= UT
��
K (RN ) for some RN 2 R

N and K 2 fB; Sg. By steps 4 and
5, 
F (RN ) = 
UT��(RN ) and by our supposition,

P
K p(Rk) 6= 
F (RN).

First assume that
P

K p(Rk) > 
F (RN). Since FK(RN ) 6= UT
��
K (RN), there is i 2 K

such that
Fi(RN ) < UT

��
i (RN ) � p(Ri):

Let R0
i 2 R be such that p(R0

i) = p(Ri) and for each x > Fi(RB; RS), xP
0
iFi(RB; RS): By

Lemma 2,
Fi(R

0
i; R�i) < UT

��
i (R0

i; R�i) � p(R0
i):

Now since
P

K Fk(RN) =
P

K UT
��
k (RN), there is j 2 K such that UT ��

j (R0
i; R�i) <

Fj(R
0
i; R�i). Thus UT

��
j (R0

i; R�i) < p(Rj) and by de�nition of UT ��, UT ��
i (R0

i; R�i) �

UT
��
j (R0

i; R�i). Then Fi(R
0
i; R�i) < Fj(R

0
i; R�i) and with preferences R0

i, agent i envies
agent j, a contradiction.

The proof of the second case where
P

K p(Rk) < 
F (RN) is similar.

Note that the properties of Theorem 1 are logically independent. First, the simple rule
which always chooses zero trade satis�es all properties but Pareto optimality. Second,
the rule which always clears the short side of the market and rations the long side
proportionally (that is, each agent gets a constant proportion of his peak) satis�es all
properties but strategy proofness. Third, the rule which always clears the short side of
the market and rations the long side by a priority order (according to which agents are
served sequentially until the volume of trade is exhausted) satis�es all properties but
no-envy. Finally, the following is an example of a rule that satis�es all properties but
separability in total trade.11 Let N = f1; 2; 3g and K = f1; 2g. Let


F (R1; R2; R3) = median fp(R3); 2p(R1); 2p(R2)g :

That is, given a market where agents 1 and 2 are on one side and Agent 3 is on the
other side, the volume of trade is determined as a median of the three quantities above.
Then let F determine the shares of agents 1 and 2 similar to the Uniform trade rules
(see Equation 1). Finally, let F coincide with an arbitrary Uniform Trade rule for every
(B [ S) 2 N with jB [ Sj 6= 3.

Next we analyze the implications of in-group and between-group anonymity in total
trade on Uniform Trade rules.

11This rule is in fact coalitional strategy proof.
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Corollary 6 Let F be a trade rule that satis�es Pareto optimality, strategy proofness,
no-envy, and separability in total trade. Then
(i) F satis�es in-group anonymity in total trade if and only if it is a Uniform Trade
rule UT �� where for each (B [ S), (B0 [ S 0) 2 N such that jBj = jB0j and jSj = jS 0j,
�(B [ S) = �(B0 [ S 0) and �(B [ S) = �(B0 [ S 0);
(ii) F satis�es between-group anonymity in total trade if and only if it is a Uniform
Trade rule UT �� where for each (B[S), (B0[S 0) 2 N such that jBj = jS 0j and jSj = jB0j,
�(B [ S) = �(B0 [ S 0) and �(B [ S) = �(B0 [ S 0).

Proof : By Theorem 1, F is a Uniform Trade rule UT ��. The proof of the �rst statement
is trivial and omitted. For the second statement, �rst assume that UT �� is between-
group anonymous in total trade. Let (B [ S), (B0 [ S 0) 2 N be such that jBj = jS 0j
and jSj = jB0j : Let (RB; RS) 2 RB[S and (R0

B0 ; R0
S0) 2 RB0[S0

be such that RB =
R0
S0, RS = R0

B0 , and
P

B p(Rk) < �(B [ S) <
P

S p(Rk). Then 
UT��(RB; RS) =
�(B [ S) and 
UT��(R

0
B0 ; R0

S0) = �(B0 [ S 0). By between-group anonymity in total trade

UT��(RB; RS) = 
UT��(R

0
B0 ; R0

S0). Thus �(B [ S) = �(B0 [ S 0). One similarly obtains
�(B [ S) = �(B0 [ S 0).

Now assume that UT �� satis�es the given property. Let (RB; RS) 2 R
B[S and � 2 �.

Without loss of generality assume
P

B p(Rk) �
P

S p(Rk). Then,


UT��(RB; RS) = medianf�(B [ S);
X
B

p(Rk);
X
S

p(Rk)g:

By the given property �(B [ S) = �(�(S) [ �(B)). Also,
P

B p(Rk) =
P

�(B) p(R
�
k) andP

S p(Rk) =
P

�(S) p(R
�
k). Thus

P
�(B) p(R

�
k) �

P
�(S) p(R

�
k) and


UT��(R
�

�(S); R
�

�(B)) = medianf�(�(S) [ �(B));
X
�(S)

p(R�
k);
X
�(B)

p(R�
k)g

= 
UT��(RB; RS):

That is, in-group anonymity in total trade essentially makes � and � only dependent
on the number of buyers and sellers whereas between-group anonymity in total trade
requires the treatment of buyers in a k�buyer, l�seller problem to be the same as the
treatment of sellers in an l�buyer, k�seller problem.

Next we analyze the implications of strong separability in total trade.

Proposition 7 If a trade rule F satis�es Pareto optimality, strategy proofness, and
strong separability in total trade, then there is c�; c� 2 R+ [ f1g such that for each
(RB; RS) 2 M


F (RB; RS) =

8<
:

medianfc�;
P

B p(Ri);
P

S p(Ri)g if
P

B p(Ri) �
P

S p(Ri)g;

medianfc�;
P

B p(Ri);
P

S p(Ri)g if
P

B p(Ri) �
P

S p(Ri)g:
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Proof : For x 2 R+ , let R
x 2 R be such that p(Rx) = x. Fix b 2 B and s 2 S.

If there is x� 2 R+ such that 
F (R
0
b ; R

x�

s ) < x�, let c� = 
F (R
0
b ; R

x�

s ). Otherwise, let

c� =1. Similarly if there is y� 2 R+ such that 
F (R
y�

b ; R
0
s) < y�, let c� = 
F (R

y�

b ; R
0
s);

otherwise, let c� =1.

Step 1. For each (Rb; Rs) 2 R
fb;sg, if p(Rb) � p(Rs), then 
F (Rb; Rs) = medianfc�; p(Rb); p(Rs)g

and if p(Rs) � p(Rb), then 
F (Rb; Rs) = medianfc�; p(Rb); p(Rs)g.

Let (Rb; Rs) 2 R
fb;sg and assume that p(Rb) � p(Rs) (the proof for the alternative

case is similar). Note that 
F (Rb; Rs) = Fb(Rb; Rs) = Fs(Rb; Rs).

Claim 1: If p(Rb) < c� < p(Rs), then 
F (Rb; Rs) = c� = medianfc�; p(Rb); p(Rs)g.

Too see this note that p(R0
b) < c� = Fb(R

0
b ; R

x�

s ) = Fs(R
0
b ; R

x�

s ) < p(Rx�

s ). Thus by
Lemma 3, c� = Fb(R

0
b ; R

x�

s ) = Fb(Rb; R
x�

s ) and Fs(Rb; R
x�

s ) = Fs(Rb; Rs) = c�. This
implies 
F (Rb; Rs) = c�.

Claim 2: If c� � p(Rb) � p(Rs), then 
F (Rb; Rs) = p(Rb) = medianfc�; p(Rb); p(Rs)g.

If p(Rb) = p(Rs), the statement trivially holds. So let p(Rb) < p(Rs). Note that
by Lemma 3, 
F (R

0
b ; R

x�

s ) = 
F (R
0
b ; Rs) = c�. Suppose 
F (Rb; Rs) > p(Rb). Note that


F (Rb; Rs) = Fb(Rb; Rs). Let R
0
b 2 R be such that p(R0

b) = p(Rb) and c�P
0
bFb(Rb; Rs). By

Lemma 2, Fb(R
0
b; Rs) = Fb(Rb; Rs). Thus c� = F (R0

b ; Rs)P
0
bFb(R

0
b; Rs) violates strategy

proofness. This implies 
F (Rb; Rs) = p(Rb).

Claim 3: If p(Rb) � p(Rs) � c�, then 
F (Rb; Rs) = p(Rs) = medianfc�; p(Rb); p(Rs)g.

The proof Claim 3 is similar to that of Claim 2.

Step 2. For each B [ S 2 N and (RB; RS) 2 RN , if
P

B p(Rk) �
P

S p(Rk), then

F (Rb; Rs) = medianfc�;

P
B p(Rk);

P
S p(Rk)g and if p(Rs) � p(Rb), then


F (Rb; Rs) = medianfc�;
X
B

p(Rk);
X
B

p(Rk)g:

Assume that
P

B p(Rk) �
P

S p(Rk) (the proof for the alternative case is similar).
Let R�

b ; R
�
s 2 R be such that p(R�

b) =
P

B p(Rk) and p(R�
s) =

P
S p(Rk). By strong

separability in total trade, 
F (RB; RS) = 
F (R
�
b ; R

�
s) and by Step 1, 
F (R

�
b ; R

�
s) =

medianfc�; p(R�
b); p(R

�
s)g. Combining the two statements gives the desired conclusion.

The following remark trivially follows from Proposition 2 and Theorem 1.
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Remark 1 A trade rule F satis�es Pareto optimality, strategy proofness, no-envy, and
strong separability in total trade if and only if it is a Uniform Trade rule UT �� where
there is c�; c� 2 R+[f1g such that for all (B[S) 2 N , �(B[S) = c� and �(B[S) = c�.

Strongly separable Uniform Trade rules treat the buyers (respectively, the sellers)
the same way in every problem. Note that thus strong separability not only implies
separability but also in-group anonymity in total trade. Strongly separable rules that
satisfy between-group anonymity in total trade treat all problems the same way and make
no di�erence between buyers and sellers. This observation trivially follows from Corollary
1 and Proposition 2.

Remark 2 A trade rule F satis�es Pareto optimality, strategy proofness, no-envy, strong
separability in total trade, and between-group anonymity in total trade if and only if it is
a Uniform Trade rule UT �� such that for some c 2 R+ [ f1g, �(B [S) = �(B [S) = c

for all (B [ S) 2 N .

Next, we analyze the implications of renegotiation proofness.

Corollary 8 A trade rule F satis�es Pareto optimality, strategy proofness, no-envy,
separability in total trade, and renegotiation proofness if and only if it is a Uniform
Trade rule UT �� where for each (B [ S) 2 N ; jBj < jSj implies �(B [ S) 2 f0;1g and
jSj < jBj implies �(B [ S) 2 f0;1g.

Proof : By Theorem 1, F is a Uniform Trade rule UT ��. For the only if part suppose
there is (B [ S) 2 N such that jBj < jSj and �(B [ S) 2 (0;1). Let Rc 2 R be such

that p(Rc) = c 2 (�(B[S)jSj ;
�(B[S)

jBj ). Let (RB; RS) 2 RB[S be such that for each i 2 B [S,
Ri = Rc. Then,


UT��(RB; RS) = medianf�(B [ S); c jBj ; c jSjg = �(B [ S):

By no-envy, for each i 2 B, UT ��
i (RB; RS) =

�(B[S)
jBj and for each j 2 S, UTm

j (RB; RS) =
�(B[S)

jSj : This implies, there is i 2 B and j 2 S such that cPiUT
��
i (RB; RS) and cPjUT

��
j (RB; RS)

and therefore that UT �� is not renegotiation proof. Thus, �(B[S) = 0 or �(B[S) =1:

A similar argument applies for the case jSj < jBj and �(B [ S).

The if part is as follows. If (B[S) 2 N is such that �(B[S); �(B[S) 2 f0;1g, then
for each (RB; RS) 2 RB[S , there is K 2 fB; Sg such that 
UT��(RB; RS) =

P
i2K p(Ri)

and thus, UT ��
i (RB; RS) = p(Ri) for each i 2 K: In this case, no member of K is

better-o� by joining a blocking pair and therefore, renegotiation is not possible.

Next let (B [ S) 2 N be such that jBj � jSj and �(B [S) 2 (0;1). Let (RB; RS) 2
RB[S be such that

P
i2B p(Ri) < �(B [ S) <

P
i2S p(Ri) (otherwise, one group gets its

peak and has no incentive to renegotiate). Then, 
UT��(RB; RS) = �(B [ S) and for
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each i 2 B, UT ��
i (RB; RS) = maxf�; p(Ri)g where � 2 R+ satis�es

P
B maxf�; p(Rk)g =

�(B [ S). Similarly for each j 2 S, UT ��
j (RB; RS) = minf�; p(Rj)g where � 2 R+

satis�es
P

S minf�; p(Rk)g = �(B [ S). This implies � � �(B[S)
jSj , � � �(B[S)

jBj and thus,

� � �: Now suppose there is a blocking pair (i; j) 2 B � S: Since neither i nor j can get
his peak,

p(Ri) < UT
��
i (RB; RS) = � � � = UT

��
j (RB; RS) < p(Rj):

For both agents to be strictly better o� at some r 2 R+ , we must have r < UT
��
i (RB; RS)

and r > UT
��
j (RB; RS): This implies r < UT

��
i (RB; RS) � UT

��
j (RB; RS) < r; a contra-

diction. Thus UT �� is renegotiation proof.

It is interesting to observe that renegotiation proofness has no implications on prob-
lems with an equal number of buyers and sellers while its implications on the remaining
problems are quite strong. Let us also note that a stronger version of renegotiation
proofness which allows blocking pairs where one agent is indi�erent (while, of course the
other is strictly better-o�) is violated by all Uniform Trade rules. On the other hand,
strenghtening renegotiation proofness by allowing larger (than two-agent) coalitions to
form has no e�ect on the conclusion of Corollary 2.12

We next analyze the implications of voluntary trade.

Proposition 9 If a trade rule F satis�es Pareto optimality, strategy proofness, and vol-
untary trade, then for each (RB; RS) 2 M, 
F (RB; RS) = minf

P
B p(Rk);

P
S p(Rk)g.

Proof : Let (RB; RS) 2 M and without loss of generality assume that
P

B p(Rk) �P
S p(Rk). By Pareto optimality,

P
B p(Rk) � 
F (RB; RS) �

P
S p(Rk). SupposeP

B p(Rk) < 
F (RB; RS). Then there is i 2 B such that p(Ri) < Fi(RB; RS). Let
R0
i 2 R be such that p(R0

i) = p(Ri) and 0P 0
iFi(RB; RS). By Lemma 2, Fi(RBni; R

0
i; RS) =

Fi(RB; RS) and thus 0P 0
iFi(RBni; R

0
i; RS), violating voluntary trade.

The following remark follows trivially from Proposition 3 and Theorem 1.

Remark 3 A trade rule F satis�es Pareto optimality, strategy proofness, no-envy, and
voluntary trade if and only if it is a Uniform Trade rule UT ��such that �(B [ S) =
�(B [ S) = 0 for all (B [ S) 2 N .

12Formally, all renegotiation proof Uniform trade rules satisfy the following property: a trade rule F

is strong renegotiation proof if for each (RB ; RS) 2 M there is no S0 � S, B0 � B; and z 2 Z(B0; S0)
such that ziPiFi(RB ; RS) for each i 2 B0 [ S0.
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5 Conclusions

In this section, we list some open questions. First, our model is motivated by a production
economy. We pick a market there that is in inequilibrium, isolate it from other related
markets, and then produce a trade vector for it. In doing this, our considerations are
at the micro level. That is, our properties focus on a trade rule's performance at that
particular market and not on its implications on say, related markets or on the overall
competitiveness of the a�ected �rms. In short, we do not analyze the implications of a
trade rule on the overall economy. Such an analysis seems to be an important follow-up to
our work. Second, in this paper we do not consider population changes. Implications of
properties such as consistency or population monotonicity (and in fact, good formulations
of these ideas on this domain) remains an open question. Third, we analyze rules that are
separable in total trade. We believe separability to be an intuitively desirable property
and we obtain a very large class of rules that satisfy it. Nevertheless, there might be
other interesting rules that violate this property.
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