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Abstract

In this paper, we discuss a model with local positive externalities on
a complex random network that allows for wide heterogeneities among
the agents. The situation can be analyzed as a game of incomplete
information where each player’s connectivity is her type. We focus
on three paradigmatic cases in which the overall degree distribution
is Poisson, exponential, and scale-free (given by a power law). For
each of them, we characterize the equilibria and obtain interesting
insights on the interplay between network topology and payoffs. For
example, we reach the somewhat paradoxical conclusion that a broad
degree distribution or/and too low a cost of effort render it difficult,
if not impossible, to sustain an (efficient) high-effort configuration at
equilibrium.
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Strategic analysis in complex networks with
local externalities

Andrea Galeotti Fernando Vega-Redondo

1 Introduction

Local externalities are a phenomenon of great significance in a wide range of
different contexts. They are important, for example, in problems of learning
and search (Bramoulle and Kranton (2004), Galeotti (2004)); crime (Glaeser
et al (1996), Calvó and Zenou (2004)); productivity and growth (Glaeser et
al (1992), Durlauf (1993),Ciccone and Hall (1996)); technological adoption
(Coleman (1988), Valente (1996), Conley and Udry (2000), Rogers (1962));
R&D collaboration (Goyal and Moraga-Gonzalez (2001)). The common ap-
proach to modelling these local effects is to posit that agents interact, rather
than with the population at large, with their neighbors in some relevant
socio-economic network. Often, it is assumed that agents are located along a
fixed network, so that they can clearly identify who are (and will continue to
be) their neighbors. This, in turn, allows agents to shape their behavior on
the basis of what is (or is anticipated to be) the behavior of those neighbors.
As a polar opposite, we have the context where, even though interaction

is “local” (i.e. restricted to a relatively small subset of the population), the
particular pattern of interaction is not known beforehand. A paradigmatic
example is given by the case where agents are randomly matched in pairs and
interaction takes place bilaterally among those matched. Ex ante, agents face
essentially identical matching possibilities, even if they are heterogenous in
some other respects. If interaction is repeated over time, then the implicit
assumption is that a fresh round of rematching occurs at every instance.
This is a scenario considered by much of the theory of evolution and learning
(Weibull (1995), Vega-Redondo (1996), Young (1998), Fudenberg and Levine
(1998)), the literature on bargaining in population environments (Rubinstein-
Wolinsky (1985), Gale(1987)), or the study of how social norms arise in large
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populations (Kandori (1992), Okuno-Fujiwara and Postlewaite (1995)).
We want to argue that, quite frequently in the real world, the situation

is best conceived as intermediate between the former two scenarios. That is,
not only is agent interaction hardly “frozen” to a given set of neighbors but,
on the other hand, it is far from displaying the ex-ante symmetry and lack
of structure displayed by random uniform matching. Patterns of interaction
in the real world are, in other words, both volatile and complex. This, in
turn, should of course have important implications on how local externalities
shape agents’ decisions.
To fix ideas, consider a simple and styled example involving academic

researchers who interact with colleagues in scientific conferences. Let us sup-
pose that researchers are heterogenous, in that some attend many conferences
and others only a few, with the rest of the population found somewhere in
between according to a certain nondegenerate distribution. Further assume
that each conference has the same appeal to every researcher, so that the
probability of meeting a certain type (i.e. a more or less “travelled” col-
league) is solely determined by its respective population frequency and how
many conferences that type attends. Then, the key decision each scientist
has to make is how much effort to devote to research, anticipating what the
others will do on their part, and realizing that the eventual payoffs attained
depend on the positive externalities accruing from interaction.
In our model, agents decide independently on their own level of invest-

ment (or effort) before learning the characteristics (and therefore investment)
of their partners. The optimal (equilibrium) decision so taken by each player
must depend on a number of factors. First, of course, it is shaped by the
precise nature of the externalities (i.e. whether they are positive or nega-
tive, and their magnitude). Second, it has to reflect as well the intensity
of interaction of the player in question (e.g. the number of conferences she
plans to attend, in our former example). Third, it must hinge upon the over-
all distribution of types prevailing in the population, which determines how
agents’ network characteristics mesh with each other and jointly determine
the overall architecture of interaction (i.e. number of partners, partners of
partners, etc. of a typical individual).
Formally, we study the problem in the framework provided by the theory

of complex random networks. This theory has its precursor in the work of
Erdös and Rényi (1959, 1960), who started their fruitful collaboration on this
topic in the late 1950’s. In recent times, this theory has been much extended
to become a powerful tool in the study of large and complex networks (see
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Albert and Barabási (2002), Newman (2003), and Vega-Redondo (2005) for
exhaustive surveys). In essence, a random network is to be conceived as a
stochastic ensemble, i.e. a probability measure (typically uniform) defined on
a given family of possible networks. This family is usually characterized in
terms of certain overall properties (such as a particular degree distribution,
degree correlations, or clustering) that all the networks in it are taken to
satisfy. Then, while all eligible networks satisfy the properties required, the
specific network realized is uncertain. By way of (trivial) illustration, the
traditional mechanism of bilateral random matching can be conceived as a
random network where all eligible networks have each node connected to
one (and only one) other neighbor, every matched pair defining a separate
component of the induced network.
Here, in contrast, we shall be interested in networks with complex topolo-

gies, where the random network is solely characterized by a given degree
distribution. Specifically, we shall focus on three cases that have become
paradigmatic in the literature: Poisson, power-law (or scale-free), and ge-
ometric networks — i.e. random networks whose degree distribution is as
respectively specified.1 All networks consistent with a fixed such distribu-
tion is assumed formed with equal probability. In this context, we study a
game (which can be regarded as one of incomplete information) where ev-
ery player has to choose her costly effort, under the beliefs induced by the
random network on the type of partner she may encounter. Of course, a
key feature of the problem is the nature of payoffs accruing from interaction.
Here, as a first step, we focus on the classical Cobb-Douglas formulation of
positive externalities, the gross payoff to a player being the product of all
efforts displayed by herself and her neighbors. Costs, on the other hand, are
taken to be quadratic in the effort level.
In this context, we are able to fully characterize symmetric equilibria for

each of the three scenarios considered: Poisson, scale-free, and geometric
random networks. Table 1 summarizes the main results of the paper. We
find a rich interplay between payoffs and network topology that determines
the extent to which players can sustain high effort levels in equilibrium. For
example, one general, and somewhat paradoxical, insight that transpires, in
different forms, from all the three cases considered can be succinctly described
as follows. If the network connectivity is too broadly distributed and/or ef-
fort is not costly enough, the “snowball forces” bearing on the optimal effort

1As explained below (cf. Section 4), they correspond to three benchmark scenarios.
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of highly connected individuals makes the overall situation “explosive” and,
in some cases, inconsistent with equilibrium. But even if an equilibrium can
be constructed under these circumstances, this equilibrium is only the grossly
inefficient one were an individual exerts a lower effort the more intense her
exposure to the externalities! That is, under those circumstances, we find
that the higher the degree of the node, the lower the effort. Overall, this
points to the fact that low cost or/and a wide range of possible connectiv-
ity may be counterproductive, in that it curtails the ability to support, at
equilibrium, high levels of effort.
The rest of the paper is organized as follows. First, in Section 2, we

present a general framework to study local externalities in random networks.
This framework is then specialized in Section 3 to the case where externalities
are positive and of a multiplicative (Cobb-Douglas) type. The formal analysis
is undertaken in Section 4, divided into three scenarios: Poisson, scale-free,
and geometric networks. Section 5 concludes. To facilitate the discussion,
the detailed proof of the results is relegated to the Appendix.

2 General framework

There is an infinite population of agents, N , who meet randomly. Specifically,
each agent i ∈ N meets a number of other agents, as determined by her degree
κi.We assume that the degree distribution is fixed, as given by a probability
density

p = {pκ}∞κ=0 (1)

where each pκ denotes the fraction of individuals who have κ neighbors.
Using expression (1), we can define the corresponding probability density

for the degree distribution of a neighboring node (i.e. one that is chosen as
the neighbor of some randomly selected node). This distribution

p̃ = {p̃κ}∞κ=1. (2)

is of the form
p̃κ =

pκκP∞
x0=0 px0x

0 . (3)

since the frequency with which a node is encountered is proportional to the
product κpκ. For example, in terms of our example of travelling researchers,
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the probability of meeting a colleague who attends κ conferences is propor-
tional to the frequency of those of this type, pκ, multiplied by the number of
occasions/conferences, κ, in which they can be met.
Players interact with each other as determined by the prevailing social

network. This network is chosen equiprobably from all networks that display
the given degree distribution p. Ex ante, therefore, we are in the presence of
a random network characterized by that degree distribution. Each player i
knows her own degree κi but ignores the degree of other players she will meet.
The overall degree distribution, however, is assumed common knowledge.
Prior to interaction, each individual i has to choose an effort (or invest-

ment) level ei ∈ R+. In general, of course, this choice can be tailored to her
degree κi (which she knows) but cannot depend on the identity, characteris-
tics, or behavior (i.e. index, degree, or effort level) of each of her future κi
partners. Given the profile of effort levels [ei, (ej)j∈Ni ] chosen by player i and
each of the κi agents in her neighborhood Ni, the payoffs earned by player i
are given by:

πi[ei, (ej)j∈Ni ] = f [ei, (ej)j∈Ni ]− c(ei), (4)

where, assuming ex-ante symmetry across players,

f : R+ ×
" ∞[
m=0

Rm
+

#
→ R+

stands for the (symmetric)2 gross payoff function of each player, depending
on her own effort and that of her m neighbors, and

c : R+ → R+

is the cost function for individual effort.
Prior to interaction, consider any given agent with degree κ who has

to choose an effort level before knowing her future partners’ characteristics.
We posit that every such agent chooses an effort level e so as to maximize
the expected value of (4) induced by the probability density (2) and some
predicted degree-contingent (symmetric) strategy

ê = {ê (κ0)}∞κ0=0
2Naturally, the function f must be symmetric, in the sense of being independent to

any permutation in its arguments.
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that specifies how every other individual, depending on her degree κ0, is
anticipated to choose her effort level. We denote by ψκ(e, ê) the expected
payoff function embodying the aforementioned considerations for an agent of
degree κ.
To provide a precise specification of ψκ(e, ê), we need to introduce some

additional notation. First, for any degree κ = 0, 1, 2, ... of any given player,
let

Sκ =

(
r = (r1, r2, ...) ∈ (N ∪ {0})∞ :

∞X
l=1

rl = κ

)
with the following interpretation. Each sequence r = (r1, r2, ...) specifies, for
each l = 1, 2, ..., the number of neighbors with degree l. Naturally, only those

sequences for which
∞X
l=1

rl = κ are valid. Now, if each of the κ neighbors

of the player in question are randomly chosen from the overall population,
any given one of them has degree κ0 with probability p̃κ0 given by (3) since,
as explained before, the suitable degree distribution in this case is that of
a neighboring node. Therefore, the distribution induced on Sk follows a
multinomial distribution, with probability

Pκ (r1, r2, ...) =
κ!

r1!r2!...
(p̃1)

r1 × (p̃2)r2 × ... (5)

In terms of these probabilities, the expected-payoff function ψκ(e, ê) can
be formally defined as follows:

ψκ(e, ê) =
∞X

r∈Sκ
Pκ (r) f [e; ê (1) , ..., ê (1)| {z }

r1 times

, ê (2) , ..., ê (2)| {z }
r2 times

, ...]− c(e) (6)

Then, as customary, we say that a profile e∗ = {e∗ (κ)}∞κ=0 is a (symmet-
ric) Nash equilibrium if it satisfies:3

e∗(κ) ∈ argmax
e∈R+

ψκ(e, e
∗) (κ = 0, 1, 2, ...). (7)

Note that this equilibrium can also be regarded as a Bayes-Nash equilibrium
of a (Bayesian) incomplete-information game where the type space of every
agent coincides with the set of possible degrees.

3For simplicity, we speak of e∗ as an “equilibrium,” although it is only the identical
strategy played by every player in a symmetric equilibrium.
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3 Strategic Complementarities

In this paper we restrict attention to the case in which individuals’ efforts
are strategic complements. More specifically, we posit that the gross payoff
of a player is the product of her own efforts and the efforts exerted by each
of her neighbors. On the other hand, we suppose that the agent’s investment
cost is quadratic, the magnitude of these costs being parametrized by some
α > 0. Combining both components (gross payoffs and costs), and relying on
(5), the expected net payoffs for an agent with κ neighbors can be written
as follows:

ψκ(e, ê) =
∞X

r∈Sκ

(
κ!

r1!r2!...
e

" ∞Y
κ0=1

[p̃κ0 · e (κ0)]rκ0
#)
− α

2
e2. (8)

The functions ψκ(e, ê) are obviously differentiable with respect to e. Thus,
the conditions (7) that define a symmetric Nash equilibrium e∗ = {e∗ (κ)}∞κ=0
can be formulated as follows:

∂ψκ

∂e
(e, e∗)

¯̄̄̄
e=e∗(κ)

= 0 (κ = 0, 1, 2, ...), (9)

which, using (8), yield:

αe∗ (0) = 1 (10)

αe∗ (1) =
∞X

κ0=1

p̃κ0e
∗ (κ0) (11)

αe∗ (κ) =

Ã ∞X
κ0=1

p̃κ0e
∗ (κ0)

!κ

(κ = 2, 3, ...). (12)

We first observe that the equilibrium effort level for κ = 0 (i.e. an isolated
player) is simply e∗ (0) = 1/α. On the other hand, by introducing (11) in
(12), we find that for κ ≥ 2 (a player having at least two neighbors), the
optimal effort level can be written in terms of e∗ (1) as follows:

e∗ (κ) =
1

α
[αe∗ (1)]κ , (κ = 2, 3, ...), (13)

while the value of e∗ (1) can then be solved from the equation

1

α

∞X
κ0=1

p̃κ0 [αe
∗ (1)]κ

0−1 = 1. (14)
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4 Analysis

In general, of course, Nash equilibria depend on the degree distribution of
the network. It is clear, however, that, regardless of this distribution, there
always exists a symmetric Nash equilibrium where players with zero degree
invest 1/α while players with positive degree do not exert any effort at all.
Our main concern, therefore, is to explore whether other non-trivial equilibria
exist where connected players exert positive effort and there is an interesting
dependence on network characteristics.
We shall address this issue in three different scenarios that can be con-

ceived as benchmark cases in the network literature (cf. Vega-Redondo
(2005)). The first one is the original setup studied by Erdös and Rényi
(1959, 1960), where the degree distribution is assumed Poisson. This is gen-
erated by a mechanism where connectivity is set at random (every possible
link is formed with a fixed independent probability) and the framework is
stationary (the set of nodes is large but given). The second scenario posits a
degree distribution that is scale-free (i.e. it is given by a power law). This has
been shown by Barabási and Albert (1999) to arise in a growing environment
where new links are again set at random, but with a (linear) bias in favor
of those nodes that are more highly connected. Finally, the third scenario,
where the degree distribution is geometric, embodies random connectivity as
well but in a growing setup where the set of nodes increase unboundedly over
time.
For each of these three cases, we first characterize the non-trivial equilibria

where connected players do invest. Then, we analyze how the profile of
equilibrium efforts and the induced utilities depend on the key underlying
parameters — specifically, the moments of the distribution and the cost of
investment.

4.1 Poisson degree distributions

Let the network degree be Poisson distributed. Thus, the probability that a
randomly selected agent has degree κ = 0, ... is:

p (κ) = exp(−z)z
κ

κ!
(15)

where z is the average network degree. Then, recall that the probability
a neighboring agent (i.e. an agent who is the neighbor of some randomly
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selected node) has degree κ is:

p̃ (κ) =
p (κ)κP∞
κ0=0 p

0
κ0κ

0 = exp(−z)
zκ−1

(κ− 1)! (16)

The next result provides a full characterization of non-trivial equilibria.
Let us define α (z) = 1/ exp (z) .

Theorem 1 Let the degree distribution be given by (15). There exists at
most a unique non-trivial equilibrium e∗ = {e∗ (κ)}∞κ=0. This equilibrium
exists if and only if α > α (z) and takes the following form:

e∗ (κ) =
1

α

µ
lnα+ z

z

¶κ

, (κ = 0, 1, ...).

The previous result establishes the existence of a unique non-trivial equi-
librium when costs are sufficient high, i.e. if α > α (z) . It is easy to see that
α (z) decreases in z and that α (z) ≤ 1 for any z ≥ 1. Thus, the existence
region for the non-trivial equilibrium widens as the average degree of the
network increases.
Having characterized the conditions under which a non-trivial equilibrium

exists, our next concern is to understand how efforts and payoffs change
with connectivity. As an immediate consequence of Theorem 1, we have the
following result.

Corollary 1 Let the degree distribution be given by (15) and assume α >
α (z) so that a non-trivial equilibrium e∗ = {e∗ (κ)}∞κ=0 exists. Then, equilib-
rium efforts e∗ (κ) and expected payoffs ψκ(e

∗ (κ) , e∗) satisfy:

• if α < 1, both are decreasing in the degree κ;

• if α = 1, both are constant in the degree κ;
• if α > 1, both are increasing in the degree κ.

Figure 1 illustrates the dependence of equilibrium effort level on κ estab-
lished by Corollary 1. When cost are high enough (α > 1), the equilibrium
profile has the seemingly natural property that the individual whose exter-
nalities are stronger (i.e. has more neighbors) finds it worthwhile to invest a
higher level of effort. This contrasts with the situation when the costs are low
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(α < 1). In this case, there is no equilibrium where the effort levels increase
with κ. Intuitively, the reason for this somewhat paradoxical state of affairs
can be explained as follows. If effort is too cheap, an increasing equilibrium
profile would have the expected payoff per link grow so fast that it would
generate a snow-ball effect incompatible with equilibrium.

α=1.4

α=1

α=0.6

Network degree

e*(k)

α=1.4

α=1

α=0.6

Network degree

e*(k)

Figure 1. Equilibrium effort profile in a Poisson network.

Three different values of α are considered: α= 0.6, 1, 1.4 for an average degree z= 5.

To clarify the previous statement, the following heuristic reasoning may
be helpful. First, note that the equilibrium conditions (11)-(12) imply that
the key factor shaping the equilibrium profile is the expected marginal gross
payoff of a single link:

' ≡
∞X

κ0=1

p̃κ0e
∗ (κ0) , (17)

so that the equilibrium conditions can be rewritten in terms of ' as follows:

e∗ (κ) = 'κ/α (κ = 1, 2, ...). (18)

Clearly, only if ' > 1 can the equilibrium effort grow with κ. Thus let
assume this is the case and suppose that, given any such ', agents start
from the putative equilibrium given by (18) and reconsider their choices. If,
in particular, an agent with just one link were to compute afresh her marginal
gross payoff '̂, she would arrive at the expression

'̂ =
1

α

∞X
κ0=1

p̃κ0'
κ0 =

1

α
exp(−z)

∞X
κ0=1

zκ
0−1

(κ0 − 1)!'
κ0 =

'

α
exp(−z)

∞X
κ0=0

(z')κ
0

κ0!

=
1

αz
exp (−z) exp (z') = 1

αz
exp (z(' − 1))

10



Note that, under the maintained assumption that' > 1, we have that '̂ > '
if α < 1. Thus, in this case, if the agent in question were to continue with
her putative effort level e∗ (1) = '/α, she would be facing a marginal benefit
'̂ higher than the marginal cost, αe∗ (1) . This should induce her to exert an
effort higher than e∗ (1) . Analogous considerations, of course, could be made
by agents with any degree κ. Again, they would be led to increasing their
effort levels over what is prescribed by (18). In turn, this would increase
the marginal gross payoff of a single link over the level specified in (17),
still leading to a further subsequent increase and generating an unbounded
process of revisions inconsistent with equilibrium. If α < 1, such snow-ball
effect can only be checked if ' < 1 (i.e. if the effort profile is decreasing), as
stated in Corollary 1. Of course, it could be that it is not possible at all to
check it if α is very small. This is indeed what underlies the lower bound on
α contemplated in Theorem 1 for the existence of a non-trivial equilibrium.
Nowwe turn to analyzing how the equilibrium effort profile varies with the

average degree of the network and the magnitude of costs. This is addressed
in turn by the following two additional corollaries of Theorem 1.

Corollary 2 Let the degree distribution be given by (15) and assume α >
a (z). Consider the non-trivial equilibrium e∗ = {e∗ (κ)}∞κ=0 established in
Theorem (1). Then, for any given κ ≥ 1, we have:

• if α < 1, then e∗ (κ) is increasing in the average degree z;

• if α = 1, then e∗ (κ) is constant in the average degree z;

• if α > 1, then e∗ (κ) is decreasing in the average degree z.

Corollary 3 Let the degree distribution be given by (15) and assume α >
a (z). Consider the non-trivial equilibrium e∗ = {e∗ (κ)}∞κ=0 established in
Theorem (1). Then,

• if κ > lnα+ z, then e∗ (κ) is increasing in α;

• if κ < lnα+ z, then e∗ (κ) is decreasing in α;

The above corollaries point to interesting dependencies of the effort levels
on the parameters of the model. Corollary 2 establishes that changes in the
average degree have a qualitatively different effect on equilibrium effort levels
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depending on the value of α (i.e. on whether it is lower or higher than the
threshold value of one). In essence, what it indicates is that individual efforts
uniformly adjust upward or downward so as to offset the effect on externalities
of any changes in average connectivity. Specifically, if α < 1, a rise in z
strengthens the negative externality imposed on players by their neighbors
and, consequently, the effort levels rise to mitigate the effect. Instead, when
α > 1, an increase in z strengthens the positive externality enjoyed by agents
and, correspondingly, the effort levels uniformly fall at equilibrium in order
to restrain that effect. These conclusions are illustrated in Figure 2 for some
representative cases.

Average Degree, z

e*(k=4)
α=0.6

α=1

α=1.4

Average Degree, z

e*(k=4)
α=0.6

α=1

α=1.4

Figure 2. Equilibrium effort of a player with degree 4 in a Poisson network.

Three different values of α are considered, α= 0.6, 1, 1.4

Corollary 3, on the other hand, focuses on the effect of changes in costs, as
parametrized by α.Here, quite interestingly, the effect is no longer uniform for
all agents. Naturally, if α changes, say rises, the effort profile cannot remain
unchanged. One might have expected that the effect on efforts were uniform,
as it was for z. Interestingly, we find that it is heterogenous, inducing always
an upward adjustment on those agents who generate a higher externality
(i.e. have a higher degree) and a downward adjustment for the rest. The
boundary of separation between the two groups is marked by the average
degree z, but depends on α as well. In particular, it is higher or lower than
z depending on whether α is above or below 1. The situation is illustrated
in Figure 3 for a number of different cases.
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α=0.3

z=5

α=0.5

z=5

α=1.3

α=1.5

e*(k)e*(k)

Network degreeNetwork degree

α=0.3

z=5

α=0.5

z=5

α=1.3

α=1.5

e*(k)e*(k)

Network degreeNetwork degree

Figure 3. Equilibrium effort profile in a Poisson network.

Four different values of α are considered, α = 0.3, 0.5, 1.3, 1.5, for an average degree
z = 5.

4.2 Scale-free degree distributions

Next we consider a case that, in a sense, can be conceived as polar to the
previous one. The degree distribution is now assumed to be scale-free, in the
sense of being governed by a power law of the form:

pκ =

(
0 if κ = 0
κ−γ
R(γ) if κ = 1, ...,∞

(19)

where γ ≥ 2 is a parameter that determines the decay of the distribution
and R (γ) ≡P∞

κ=1 κ
−γ is the Riemann zeta function. The average degree is

simply given by

z(γ) =
R (γ − 1)
R (γ) ,

that diverges when γ ↓ 2 and converges to 1 when γ →∞.
In contrast with the Poisson distribution, a distribution given by (19)

lacks a characteristic scale, i.e. for any r ∈ N we have that the ratio
prκ
pκ
= r−γ > 0

is the same at “all scales,” i.e. for all κ. Intuitively, this represents a dis-
tribution with “fat tails,” where the decay in probability for higher degrees
is only relatively slow (in particular, “infinitely slower” than the exponential
decay displayed by Poisson networks).
Let us denote α(γ) = 1/R (γ − 1) . Then we can establish the following

result.
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Theorem 2 Let the degree distribution be given by (19). There exists at
most a unique non-trivial equilibrium e∗ = {e∗ (κ)}∞κ=0. This equilibrium
exists if and only if α ∈ (α (γ) , 1] and γ > 2. Furthermore if α ∈ (α (γ) , 1)
the equilibrium effort levels as well as the equilibrium expected payoffs are
decreasing in the degree, while they are constant if α = 1.

Thus, if the degree distribution is scale-free, we find that the existence
of a non-trivial equilibrium requires that costs be low (α < 1). And, if an
equilibrium does exist (which requires that costs not be too low either — α >
α (γ)), then it has the “paradoxical features” found in the Poisson case for the
analogous situation. Namely, the equilibrium induces an effort profile that is
decreasing in the degree, so that those agents subject to stronger externalities
exert lower effort. Along the lines explained for Poisson distributions, this
can be intuitively understood as the only way of preventing the unfolding of
snow-ball effects that are obviously incompatible with equilibrium. When the
degree distribution has a fat upper tail, such considerations are preeminent
and lead to a situation where the only possible equilibrium controls those
effects by prescribing a decreasing effort profile.4

4.3 Geometric degree distributions

Finally, we consider the case of geometric distributions, which can be inter-
preted as sharing some features with each of the previous two. It is again
described by a one-parameter family with probabilities

pκ = (1− γ) γκ (κ = 0, 1, ...) (20)

where γ ∈ (0, 1). The average network degree is z (γ) = γ/ (1− γ) , which is
increasing in γ.
This distribution shares with Poisson networks the fact that it has a finite

characteristic scale. That is, for any r ∈ N (r ≥ 2), we have:
prκ
pκ
→ 0

4The dependence of the equilibrium efforts on the parameters is much less clearcut than
in the Poisson case. For example, the effect of small changes in α is qualitatively different
for low and high values of it. If we focus, specifically, on e∗(1), the effect of increasing α
can be shown to be always positive when α is small (i.e. close to 1/R(γ− 1)) but depends
on γ when α is close to 1. In this latter case, it is negative if γ is close to its lower bound
of 2 but it is positive if γ is large.
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as κ→∞, which means that large scales have no more than an infinitesimal
weight. In this sense, therefore, we may say that the distributions do not
exhibit fat tails, as scale-free distributions do. But, on the other hand, it
shares with scale-free distributions that the probability decay is infinitely
slower than for the Poisson case. Based on this mixed comparison with
Poisson and scale-free distributions, one might expect that the equilibrium
in the present case should display a “mixture” of the properties found in
each of the two previous scenarios. A partial confirmation of this idea is
established by the following result.
Let us denote α (γ) = (1− γ)2 . Then we can show:

Theorem 3 Let the degree distribution be given by (20). There are two
non-trivial equilibria. First, for any α > 0 and γ, there exists a high-effort

equilibrium which takes the following form: eH (κ) = ακ−1
³
α+
√
α(1−γ)
γα2

´κ
, κ =

0, 1, .... Second, for any α > α (γ) , there also exists a low-effort equilibrium

which takes the following form: eL (κ) = ακ−1
³
α−√α(1−γ)

γα2

´κ
, κ = 0, 1, ....

The previous theorem tells us that, provided that α is sufficiently high,
there exists two non-trivial equilibria: one with uniformly higher efforts than
the other. Instead, when α is low, the high-effort equilibrium is the only
non-trivial equilibrium. In the region where the two equilibria coexist (when
α > α (γ)), they can display substantially different features, as stated by the
following straightforward Corollary.

Corollary 4 The high-effort equilibrium induces efforts and payoffs that are
increasing in the degree. Whenever the low-effort equilibrium exists, the same
applies to its induced effort profile if α > 1; otherwise, the induced efforts
and payoffs are decreasing in the degree. In every case (i.e. for all rele-
vant α and all γ), the high-effort equilibrium Pareto-dominates the low-effort
equilibrium.

The above Corollary shows, as in the case of Poisson networks, that the
existence of an equilibrium with a decreasing effort profile depends on the
cost parameter α being less than one. In the present case, however, there
always exists an equilibrium with an increasing effort profile, even if α is
arbitrarily small. The multiplicity of equilibria arising in this case leads to
an equilibrium selection problem, akin to that common in coordination prob-
lems. It is interesting to observe that this coordination aspect of the problem
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(an inherent consequence of the strategic complementarities involved) mate-
rializes in quite different ways depending on the characteristics of the social
network. Note that for Poisson and scale-free networks, the coordination
dilemma only involves a trivial and a unique non-trivial equilibrium. In
contrast, the present case opens up a new possibility, namely, an additional
non-trivial equilibrium that is also possible for wide parameter range.5

5 Summary and conclusions

In this paper, we analyze the role of local externalities in shaping the behav-
ior of agents who interact in a complex and volatile network. The model is
found to display a rich and subtle interplay between the network topology
and strategic individuals’ behavior. Specifically, we show that, somewhat
surprisingly, low costs of investment or/and a wide distribution in the con-
nectivity of agents may render it impossible to sustain, at equilibrium, high
levels of effort. Table 1 provides a schematic description of our results for
each of the three paradigmatic scenarios considered: Poisson, scale-free, and
geometric random networks.
Our approach to the study of strategic interaction in network setups at-

tempts to make some progress concerning two important limitations of ex-
isting network literature.
First, it does not shun contexts where the underlying social network dis-

plays significant interagent heterogeneity and substantial topological com-
plexity. These two features — a mark of many interesting social networks
in the real world — are accommodated by modelling the system as a large
stochastic system that, despite its intrinsic complexity, displays given over-
all statistical regularities. The analysis may then rely on the versatile tools
afforded by the modern theory of complex systems.
Second, players’ behavior is made to reflect the presumed environmental

complexity by positing that they have only imprecise information on their
individual circumstances (i.e. the type of their neighbors), although they

5By way of comparative statics, sharp results can be obtained for the high-effort equi-
librium on the dependence of the underlying parameters. Specifically, it can be shown that
eH(κ) is always decreasing (for any degree κ) in both γ and α. For the low-effort equilib-
rium, however, matters are less clear-cut. For example, it is easy to see that, for every κ,
the effort level eL(κ) is increasing in γ (respectively, decreasing) if α > 1 (respectively, if
α < 1).
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all share the same global information (accurate but “anonymous”) on the
whole network. Interestingly, these natural informational constraints allows
us to reduce the huge multiplicity of equilibria that are so prevalent in net-
work models, allowing instead for definite theoretical predictions and clearcut
comparative-statics analysis.
The present paper just represents a first step into a new terrain (that could

be labelled “strategic complex-network analysis”) and of course should be
extended and enriched in a number of important directions. For example, a
key feature in understanding how network effects shape equilibrium behavior
is the nature of the payoffs accruing from interaction. In this paper we have
focused on the classical case of strategic complementarity embodied by a
Cobb-Douglas formulation. In work in progress by Galeotti, Goyal and Vega-
Redondo (2005) we turn attention to a class of aggregative functions (i.e.
the dependence on what others do is through the sum of their actions) and
analyze the case in which individuals’ efforts are strategic substitutes as well
as strategic complements. One of our main concerns there is to understand
how, for general degree distributions, changes in players’ knowledge about
the underlying random network affects equilibrium behavior.

e(0)>e(1)>e(2)….

e(0)=e(1)=e(2)….

e(0)<e(1)<e(1)….

e(0)>e(1)>e(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eL(0) >eL(1)>eL(2)….

eL(0)=eL(1)=eL(2)….

eL(0)<eL(1)<eL(2)….

Existence Equilibrium Effort

Poisson

Scale free

Geometric

1/exp(z)<α<1

α =1

α >1

α >1

1/R(γ-1)<α<1

and

γ >2

(1- γ) ^2<α<1

α =1

0<α< (1- γ) ^2

Degree Distribution

e(0)>e(1)>e(2)….

e(0)=e(1)=e(2)….

e(0)<e(1)<e(1)….

e(0)>e(1)>e(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eH(0)<eH(1)<eH(2)….

eL(0) >eL(1)>eL(2)….

eL(0)=eL(1)=eL(2)….

eL(0)<eL(1)<eL(2)….

Existence Equilibrium Effort

Poisson

Scale free

Geometric

1/exp(z)<α<1

α =1

α >1

α >1

1/R(γ-1)<α<1

and

γ >2

(1- γ) ^2<α<1

α =1

0<α< (1- γ) ^2

Degree Distribution

Table 1. Summary of the main results
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Appendix

Proof of Theorem 1:. We can rewrite (14) as follow:

1

α2e∗ (1)

∞X
κ0=1

p̃κ0(αe
∗ (1))κ

0
=

1

α2e∗ (1)
G1(αe

∗ (1)) = 1, (21)

where G1(·) is the generating function of the degree distribution of a neigh-
boring node. Note that

G1(x) =
xG0

0(x)

G0
0(1)

and G0(x) =
P∞

κ0=0 pκ0x
κ0 is the generating function of the original degree

distribution. Then:

G1(αe
∗ (1)) =

αe∗ (1)G0
0(αe

∗ (1))
z

.

Since in the case of a Poisson distribution we have:

G0
0(x) = z exp(z(x− 1))

we can write expression (21) as follows:

1

α
exp(z(αe∗ (1)− 1)) = exp(zαe∗ (1))

α exp(z)
= 1,

and solving for e∗ (1) we obtain:

e∗ (1) =
lnα+ z

αz

Therefore:

e∗ (κ) =
1

α

µ
lnα+ z

z

¶κ

, κ = 0, 1, ... (22)

We now must require that for any possible degree κ, e∗ (κ) > 0. This holds
if, and only if, lnα+z > 0, which is satisfied if and only if α > α (z) . Finally
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note that the same condition assures that the expected utility of each player
is positive. Indeed, for any i with degree κ, we have that:

ψκ(e, e
∗) = e∗ (κ)

Ã ∞X
κ0=1

p̃κ0e
∗ (κ0)

!κ

− α
e∗ (κ)2

2

and using the equilibrium conditions it follows that:

ψκ(e, e
∗) =

α

2
e∗ (κ)2 > 0. (23)

This completes the proof of the Theorem.

Proof of Corollary 1:. In view of (22), note that e∗(κ) is increasing in κ
if, and only if,

lnα+ z

z
> 1

or
lnα > 1,

which yields the desired conclusion and proves the Corollary.

Proof Corollary 2. Note that:

∂e∗ (κ)
∂z

= −κ
α
(1 +

lnα

z
)κ−1

lnα

z2

As long as α > α (z) , the sign of ∂e∗ (κ) /∂z is opposite to that of lnα. This
proves the Corollary.

Proof Corollary 3. Note that

∂e∗ (κ)
∂α

=

µ
lnα+ z

αz

¶κ
ακ−2

(lnα+ z)
(κ− lnα− z)

Since the first two terms are positive, the sign of ∂e∗ (κ) /∂α depends on the
sign of (κ− lnα− z) . This proves the Corollary.

Proof Theorem 2. Consider the equilibrium condition

1

α2e∗ (1)
G1(αe

∗ (1)) = 1
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We can rewrite it as
G1(x) = αx

where x = αe∗ (1) . Note that:

G1(x) =
xG0

0(x)

G0
0(1)

=
1

R (γ − 1)
∞X
k=1

κ1−γxκ

and therefore the following holds:

G1(0) = 0 and G1(1) = 1

We now show that G1 (x) is increasing and convex in x ∈ [0, 1] , while it is
undefined for any x > 1. Note that

dG1 (x)

dx
=

1

R (γ − 1)
∞X
k=1

κ1−γκxκ−1

The functionR (γ − 1) is well define and positive for any γ > 2. Furthermore,
limγ→2R (γ − 1) = ∞ and limγ→∞R (γ − 1) = 1. Therefore for any γ > 2,
G1 (x) is increasing in x. To show convexity note that:

d2G1 (x)

dx2
=

1

R (γ − 1)
∞X
k=1

κ1−γκ (κ− 1)xκ−2 > 0 for any x > 0

and that:
d2G1 (x)

dx2

¯̄̄̄
x=0

=
22−γ

R (γ − 1) > 0

These facts imply that there exists a unique solution x∗ = αe∗ (1) ≤ 1 if,
and only if, α ∈ ( 1

R(γ−1) , 1] and γ > 2. In particular x∗ < 1 if α < 1, and
x∗ = 1 if α = 1. Note that this range is never empty and it becomes wider
as γ is close to 2. Finally, since αe∗ (1) < 1, it is clear that the equilibrium
effort levels are decreasing in the players’ degree. This also implies that, at
equilibrium, expected payoffs are decreasing in the degree of a player, which
completes the proof of the Theorem.

Proof Theorem 3. As before, we start by rewriting (14) as follows:

1

α2e∗ (1)
G1(αe

∗ (1)) = 1
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Since

G1(αe
∗ (1)) =

αe∗ (1)G0
0 (αe

∗ (1))
G0
0 (1)

=
αe∗ (1) (1− γ)2

(1− αe∗ (1) γ)2
,

it follows that e∗ (1) must satisfy:

(1− γ)2

α (1− γαe∗ (1))2
= 1

Solving this equilibrium condition we obtain the following solutions:

e∗ (1) =

(
α+
√
α(1−γ)
γα2

α−√α(1−γ)
γα2

Therefore, there are two solutions of the system (10)-(12), which are:

eH (κ) = ακ−1
µ
α+
√
α (1− γ)

γα2

¶κ

, κ = 0, 1, 2, ... (24)

and

eL (κ) = ακ−1
µ
α−√α (1− γ)

γα2

¶κ

, κ = 0, 1, 2, ... (25)

We now must require that for any possible degree κ, eH (κ) , eL (κ) ≥ 0. It is
easy to see that eH (κ) always satisfies this condition. Consider now eL (κ).
In this case we have must have that α−√α (1− γ) > 0, which is satisfied if
and only if α > (1− γ)2 . Furthermore, by investigation of expression (23),
it follows that in both equilibria players’ payoffs are non negative. This
completes the proof.

Proof Corollary 4. By rewriting (24) as

eH (κ) =
1

α

µ
α+
√
α (1− γ)

γα

¶κ

, κ = 0, 1, 2, ...,

we can readily see that eH (κ) is increasing in the degree since

α+
√
α (1− γ)

γα
>
1

γ
> 1

for all parameter values. Instead, from (25), it follows that eL (κ) is increasing
when

α−√α (1− γ)

γα
> 1,
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or √
α (1− γ) > α(1− γ),

which requires that α > 1. Instead, if α < 1, the effort levels eL (κ) are
decreasing with κ.
We finally show that the high intensity equilibrium Pareto dominates the

low intensity equilibrium. This follows because eH (0) = eL (0) and eH (κ) >
eL (κ) for any κ = 1, ...,∞ and the fact that the expected equilibrium payoffs
to a player is increasing in his own effort.
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