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Abstract

We address the coordination problem of individuals deciding to join an association

that provides a public good and selective benefits to its members, when ability of the

association to fulfill its purposes depends on membership size. In a global game formu-

lation, we show that a unique equilibrium with non-trivial membership exists, and we

perform meaningful comparative statics. A unique equilibrium also obtains when agents

are heterogeneous, and we show that heterogeneity decreases membership size. In a

two-period setting, where seniority of membership entails additional benefits, we provide

conditions for uniqueness of equilibrium, and show that the presence of seniority benefits

increases membership in both periods.

JEL classification numbers: C73, D71.

Key words: Public Goods, Associations, Dynamic Global Games, Heterogeneous Com-

munities



Membership in Citizen Groups ∗

Stefano Barbieri Andrea Mattozzi

1 Introduction

We study the coordination problem of agents deciding to join a group that provides a

public good and incentives excludable to non-members. The literature on private provi-

sion of public goods focuses mainly on the free rider problem that arises from strategic

substitutability of one agent’s contribution with other agents’ contributions.1 In “The

Logic of Collective Action”, Olson [16] suggests that membership in large associations

can be explained, despite the extreme free rider problem, if the group is able to provide

incentives excludable to non-members. These selective incentives can give a direct utility,

like a magazine, or acquire value through social interaction, as in the case of reputation

or peer pressure. In both cases, it is reasonable to assume that incentives display strate-

gic complementarities: the more people join the group, the higher the value of being a

member. This assumption generates a multiplicity of equilibria: nobody joins, everybody

joins, and some intermediate case that is generically unstable. They all are unsuitable

for comparative statics analysis.

Carlsson and Van Damme [2] and Morris and Shin [13] show how the introduction of

noisy signals in games with strategic complementarities can generate a unique equilib-

rium.2 Introducing a similar payoff uncertainty into our membership game, we show that

∗We would like to thank Andrew Postlewaite, Steven Matthews, Stephen Morris, George Mailath,

Antonio Merlo, Julio Davila, Francis Bloch and Celso Brunetti. All usual disclaimers apply.
1One example among many is Mailath and Postlewaite [11].
2“Multiplicity of equilibria arise largely as the unintended consequence of two modelling assumptions

- the fundamentals are assumed to be common knowledge, and economic agents know others’ actions in

equilibrium. Both are questionable.” Morris and Shin [13] .



in the unique equilibrium a positive measure of people joins and we show existence of a

fee that maximizes the expected size of the group. We analyze the effects on membership

decisions of increasing uncertainty about the group’s ability to provide the public good,

and of threats to the status quo provision level of the public good. Our results are consis-

tent with empirical observations on large citizen groups that have attracted considerable

attention in the political science literature.

We explore the effect of heterogeneity among prospective members on the equilibrium

group size. We show existence and uniqueness of equilibrium when agents differ in their

willingness to pay for selective incentives, and we show that, under certain conditions,

increasing heterogeneity while keeping the mean willingness to pay constant decreases

the equilibrium size of the group.

Finally, we analyze a dynamic version of the model. A membership decision is not

once and for all: typically agents are invited to join or renew their memberships every so

often. Moreover, it is reasonable to assume that after periods of learning and adjustment

new opportunities (office positions, familiarity with the internal mechanism) are avail-

able within the group to returning members. This endogenously generates heterogeneity

between “senior” and “junior” members. We provide sufficient conditions for existence

and uniqueness of equilibrium and show that the existence of seniority benefits increases

membership not only in the second period, but also in the first. Seniority benefits directly

increase the value of joining immediately, but they also increase the payoff of waiting and

joining in the future because of strategic complementarities. Hence, showing uniqueness

of equilibrium is an interesting problem also from a theoretical perspective.

The remainder of the paper is organized as follows. Section 2 presents some examples

of successful collective action, describes the typical membership contract and reviews the

literature. The basic structure of the static model, the characterization of the equilibrium

and the comparative statics results are presented in Section 3. Section 4 relaxes the

assumption of homogeneity of agents. Section 5 contains the dynamic setting and section

6 concludes. Most of the proofs are in the Appendix.
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2 Large Citizen Associations

The National Association Study shows that the mean and median membership size of US

associations are, respectively, 27,575 and 750.3 These numbers suggest that, although

not many, very large associations exist. Examples we have in mind are environmentalist

groups like NWF (4 million of members), WWF (1,000,000), Sierra Club (700,000) or

professional groups like AEA (23,000).4 Another example is represented by trade unions.

All these groups provide some benefits for their members in exchange for a fee, and have

been successful in producing a public good.

The political science literature has extensively analyzed the composition of selective

incentives that citizen associations offer. The benefits provided by groups have been

divided into material, solidary and purposive. The typical purposive benefit is the satis-

faction derived from the actual contribution to a cause deemed worthy by the member.

A solidary benefit derives from the opportunity of social interaction among members

provided by the group. Material benefits include publications, discounts, T-shirts, etc.

The existing literature on warm-glow has already analyzed the role of purposive in-

centives in contribution games.5 We focus on a material incentive like a publication for

two reasons. First, a survey in Walker [18] on interests group in America shows that

virtually every group in his sample of 206 citizen associations offers some kind of publi-

cation which is considered one of the most important benefit by members. Second, the

role of solidary benefits seems modest, since, as reported in Putnam [17], 87 percent of

Sierra Club members never attended a single group meeting.

One common criticism to the argument that successful collective action is due only to

private benefits is that a competing firm not burdened by the cost of producing the public

good can offer just the private benefit at a lower price. We believe that in the case of

publications establishing a brand name through success in providing the public good gives

the association some monopoly power over the private good. Moreover the production

technology may display economies of scale. Discounts on postal rates, preferred tax

3As reported in Knoke [10].
4Data from the individual websites of each association as of 2003.
5See Andreoni [1].
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treatments or free interns are other instances in which the provision of a public good

gives a cost advantage in the production of the selective benefits.

We can think also to alternative reasons why the utility of membership may be in-

creasing with the success of the group in providing the public good. For example, if

an environmentalist group is expected to be successful in influencing the laws on car

emissions, a reader would find the point of view expressed in the group newspaper to be

a valuable piece of information when buying a new car. Success in accomplishing some

environmental protection project may well enhance the quality of hiking and animal

watching activities of members.6

We model the selective incentives provided by associations as a particular form of

club good: excludable to non-members, non-rival and with negligible costs of congestion.

This assumption captures a fundamental characteristic of the incentives packages we see

in reality and uncovers the coordination problem agents face, since their payoff of joining

displays strategic complementarities.

Two strands of literature are related to our work. The first deals with impure public

goods, and the second with dynamic global games.

Cornes and Sandler [3, 4, 5] are the first to introduce an impure public good model

in which the purchase of any quantity of an intermediate good makes available, through

a joint production function, fixed proportions of public good and private characteristic.

With sufficiently strong complementarities between the private characteristic and the

public good, individual demand for the intermediate good may be increasing in the

quantity demanded by others, thus alleviating the free rider problem. They do not

address directly the issue of coordination among agents. Morgan [12] applies the impure

public good approach to model public good provision and shows the existence of a unique

equilibrium when the public good is funded through a lottery.

As for dynamic applications of global games, the two closest papers are Dasgupta

[6] and Heidhues and Melissas [8]. Heidhues and Melissas [8] focus on cohort effects,

while Dasgupta [6] focuses on social learning. In both papers, contrary to our paper, the

6See King and Walker [9].
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decision to contribute is once and for all, and the interaction between learning by doing

effect and strategic complementarities is absent.

3 The Model

There is a continuum of homogeneous agents of size 1. They decide independently and

simultaneously whether or not to join a group. Let k > 0 be the cost of membership

and e ∈ [0, 1] be the proportion of agents joining the group. The group’s total revenues

ke are used as an input in a binary production function. This function generates a pure

public good and a non-rival club good that agents enjoy only if they are members. We

use this assumption as a convenient way to model the observation that selective benefits

are often tied to the success in providing the public good.

The production function is:

y(e) =





0 if ke < θ

ȳ if ke > θ
,

where ȳ > 0 and θ is a stochastic threshold.7

The common utility function is:





U (λy (e) , (1− λ) y (e))− k if the agent joins the group

U (0, (1− λ) y(e)) if she does not join the group,

where the exogenous parameter λ ∈ (0, 1) represents the extent by which y(e) can be

excluded and jointly consumed only by members. U (·, ·) is increasing in both arguments

and U (0, 0) = 0. To simplify notation let the difference in the utility of joining and not

joining, in case of success of the group be:

n = U (λȳ, (1− λ) ȳ)− U (0, (1− λ) ȳ)

The net utility from joining is:

Pr {ke ≥ θ} · n− k.

7An example of a similar stochastic binary production function can be found in Nitzan and Romano

[15].
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To rule out the uninteresting case in which joining is dominated we assume that:

n > k.

Consider first the perfect information case. Let θ = θ > 0 be known and such that

ke = θ for some e ∈ [0, 1] , so that it is possible to produce the public good if enough

agents join. The simultaneous move game always has two pure strategy equilibria: one

in which nobody joins and one with everybody joins.

Assume now that the true level of the threshold is a random draw from a prior

distribution that is normal with mean µ and variance σ2, with µ ∈ (0, k). The equilibrium

outcomes are e = {0, 1}, and

e =
Φ−1

(
k
n

)√
σ + µ

k
,

where Φ is the standard cumulative normal distribution.8 This additional outcome derives

from a mixed strategy symmetric equilibrium that is not stable. Note that all previous

equilibria are not responsive to fundamentals, or unstable.

We now introduce asymmetric information. Each agent receives a signal θi of the true

state θ. θ is normally distributed with mean µ and variance σ and

θi = θ +
√

τεi,

where εi ∼ N(0, 1) i.i.d. across agents and τ > 0.9

Define the interim expected net payoff of membership for an agent with signal θi for

given proportion of members e:

π(θi, e) = Pr {ke ≥ θ|θi}n− k.

Note that there exist θ and θ such that if θi < θ, then π(θi, e) > 0 for all e; and if θi > θ,

then π(θi, e) < 0 for all e. This means that there exist regions of the space of signals

where agents have a dominant strategy. Moreover, agent i, conditional on her signal,

puts strictly positive probability on the events θj < θ and θj > θ for each j.

8For e = 1 to be an equilibrium outcome we need k
n ∈

(
Φ

(
−µ√

σ

)
, Φ

(
k−µ√

σ

))
.

9The normality assumption of θ allows us to derive closed form solutions. The uniqueness result of

Theorem 1 would go through also assuming any prior probability distribution that satisfies the conditions

in Morris and Shin [14].
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Theorem 1 There exists τ̄ > 0 such that, for τ ∈ (0, τ̄), there is a unique equilibrium

in which players follow a switching strategy around θn i.e. they join the group if θi < θn

and stay out otherwise.

Proof: see Appendix.

The result stated in Theorem 1 follows Morris and Shin [13, 14]. The proof has two

parts. First we prove that there exist a unique switching strategy equilibrium. Then

we show that a switching strategy is the only that survives iterated deletion of strictly

dominated strategies. θi < θ and θi > θ define upper and lower dominance regions

where each agent has a strictly dominant action. Starting from below (above), we can

iteratively delete a sequence of strictly dominated strategies between the two regions

since the expected payoff function is strictly increasing in the signal and displays strategic

complementarities. When τ is sufficiently small the iterated deletion process converges

to a unique point. In the limit:

lim
τ→0

θn = k

(
1− k

n

)
.

Note that, since the expected size of the group is

S = Φ

(
θn − µ√
σ + τ

)
,

S is maximized at k = n
2
.

3.1 Comparative Statics

“... people create and join organization in response to disturbances in the social environ-

ment,” Hansen [7].

“... when persons face a threat to their livelihood or to rights they already enjoy, they

are more likely to engage in collective action to protect these gains despite the problems

posed by the public goods dilemma,” Walker [19].

Walker [18] also underlines the attempts to frustrate antagonist associations by politi-

cians through different means like challenges to their not-for-profit status or raising postal

rates.
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One possible way of analyzing the effect of disturbances in the social environment

is to increase uncertainty in the ability of the association to provide the public good.

By looking at the effect of the precision of the public component of the signal on θn we

obtain:

Proposition 1 There exists τ̂ > 0 such that, for τ ∈ (0, τ̂), the effect of an increase in

σ increases the equilibrium size of the group if and only if µ > k
(
1− k

n

)
.

Proof. The comparative statics of the size of the group S defined above with respect

to σ is:
dS

dσ
=φ

(
θn − µ√
σ + τ

) dθn

dσ

√
σ + τ + 1

2
√

σ+τ
(µ− θn)

σ + τ
,

where φ (·) is the standard normal density function and

dθn

dσ
=

dθ∗

dσ

(
1 +

√
τ

1

kφ
(
Φ−1

(
θ∗
k

))
)

dθ∗

dσ
=

Φ−1
(

θ∗
k

)
+ 1

2
√

σ(σ+τ)
(2σ + τ) Φ−1

(
k
n

)
√

τ − σ 1

kφ(Φ−1( θ∗
k ))

.

Note that

lim
τ→0

θ∗ = k

(
1− k

n

)

which implies that

lim
τ→0

dθn

dσ
= lim

τ→0

dθ∗

dσ
= 0.

Since

φ

(
θn − µ√
σ + τ

)
> 0,

when τ is small, the sign of dS
dσ

is the same of µ− k
(
1− k

n

)
.

Intuitively, an increase in the variance of θ shifts probability mass away from the

mean. When µ > k
(
1− k

n

)
, people choose not to join if they receive a signal close to

the mean. Therefore increasing the dispersion of the signal increases the probability of

receiving a signal lower than the equilibrium cut-off.

A raise in postal rates can be thought as an additional expense for the group and

has the same effect of a tax on collected membership fees. If the tax is α ∈ (0, 1), the
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equilibrium is defined by the system

θn = θ∗ +
√

τΦ−1

(
θ∗

(1− α) k

)

Φ



√

τ (θ∗ − µ)√
σ (σ + τ)

−
√

σΦ−1
(

θ∗
(1−α)k

)
√

σ + τ


 =

k

n
.

The limit cutoff value is

lim
τ→0

θn = (1− α) k

(
1− k

n

)
,

and with similar calculations as above

lim
τ→0

dθn

dα
= −k

(
1− k

n

)
< 0.

Hence, an increase in postal rate decreases membership.

To analyze the effect of threats to the public good, let x > 0 be the status quo level

of provision of the public good without collective action. In this case:

n = U (λȳ, x + (1− λ) ȳ)− U (0, x + (1− λ) ȳ) .

Note that dn
dx

< 0 if the cross derivative U12 (·, ·) is negative, and the size of the

group increases with a reduction of the status quo level of public good provision. The

assumption of U12 (·, ·) < 0 means that the utility of the selective benefit is decreasing

in the status quo level of public good provision. It does not conflict with the existence

of strategic complementarities, and can be justified if we consider selective benefits like

advocacy or representation before government.

4 Heterogeneous Agents

In this section we explore the consequences of heterogeneity in the population. Let an

exogenously given fraction p of the population have utility function Un (·, ·), and the

remaining (1− p) have utility function U s (·, ·) . Let:





Un (λȳ, (1− λ) ȳ)− Un (0, (1− λ) ȳ) = n

U s (λȳ, (1− λ) ȳ)− U s (0, (1− λ) ȳ) = s

9



and we assume s > n. Our simple form of heterogeneity describes a situation in which

there exists an exogenous proportion of agents who receive more value from the selective

benefit given the same level of public good.10 A sufficient condition on the utility functions

is Un
1 (·, ·) < U s

1 (·, ·). The information structure is the same as in section 3. In addition,

for simplicity, we set σ = 1.

We first prove existence and uniqueness of an equilibrium in switching strategies along

the lines of Theorem 1. This will allow us to explore the effect of increasing heterogeneity

in the population on the equilibrium probability of providing the public good, and hence

on the equilibrium size of the group.

Theorem 2 There exist a τ̄ > 0 such that, for τ ∈ (0, τ̄), there is a unique equilibrium

in which players of type t = {n, s} follow a switching strategy around θt.

The proof, along the lines of Theorem 1, is in the Appendix.

We now investigate the equilibrium effect of increasing heterogeneity among agents.

We increase the net payoff of 1− p agents by ∆, decreasing it for the remaining p agents

by 1−p
p

∆. This spread holds constant the population mean net payoff.

Proposition 2 There exist a τ̄ ′ > 0 such that, for τ ∈ (0, τ̄ ′), increased heterogeneity in

the form of a mean preserving spread in net payoffs decreases the equilibrium size of the

group.

We leave the proof to the Appendix and outline the argument here. The probability

of success required by the indifferent type with benefit n is k
n
. When n decreases this

probability must increase of a factor k
n2 . The probability of success required by the

indifferent agent with benefit s decreases only by k
s2 . Since the probability of success is a

weighted average of the proportion of agents joining, the decrease of type n cutoff more

than compensates the increase in type s cutoff. The overall probability of success will

10An alternative way to introduce heterogeneity is consider a different membership fee. Given our

production function this assumption has an ambiguos effect on the expected payoff of joining since some

agents pay less but the positive externality on others is reduced. If the heterogeneity is in the utility

cost of the fee then the result is unchanged.
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decrease and the equilibrium size of the group will decrease as well. If we allow the group

to charge different fees to different types of agents in order to maximize the probability of

providing the public good, then heterogeneity in the form of a mean preserving spread is

of no consequence. More generally, note that the limiting size of the group, as τ converges

to zero, is an increasing and concave function of the distribution of valuations. Hence,

if two distributions of benefits F and G are such that F second-order stochastically

dominates G, then the equilibrium size of the group under F will be larger. Having the

same mean and smaller variance is not sufficient: indeed, if F and G have the same

mean, F has smaller variance than G, but G second-order stochastically dominates F,

the equilibrium size of the group will be larger under G.11

5 The Dynamic Model

In this section we analyze a two-period extension of the model to study the effect of

seniority benefits. After a period of learning and adjustment new opportunities (office

positions, familiarity with the internal mechanism, etc.) are available within the group.

In the first period agents consider not only the one shot gains from joining but also the

net expected difference in second period utility between joining as new members or in a

“senior” status.

If the signal of the first period contains valuable information about the second period

state, the proportion of agents that joined in the first period is an additional piece of

information upon which drawing inference on the new state. This information contagion

has been investigated in a number of different papers12; here we are more interested in

the “learning by doing” effect, and for simplicity we consider the new state independently

drawn.

In the first period agents are homogeneous: they all get the same payoff from joining

when the group is successful. In the second period a new state γ is drawn, agents receive

a noisy signal of the true state but now those agents that joined in the first period have

11An example is available upon request.
12See for example Dasgupta [6].
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higher utility if they decide to pay the membership fee and maintain their status for an

additional period.

The introduction of seniority benefits increases directly the continuation value of join-

ing in the first period but increases also the payoff of staying out because of strategic

complementarities. In addition monotonicity of payoffs in the signal is not apparent,

hence, showing uniqueness of an equilibrium is an interesting problem also from a the-

oretical perspective. The main result of this section is Proposition 3, which provides

conditions for existence and uniqueness of an equilibrium of the dynamic game.

Let θi = θ +
√

τεi, γi = γ +
√

τηi be the signals in the first and second period

respectively, where

θ ∼ N (µ, 1)

γ ∼ N (µ, 1)

εi ∼ N (0, 1)

ηi ∼ N (0, 1) ,

all independent, and µ ∈ (0, k).

An agent decides in the first period whether to join or not after having seen her signal

and considering the continuation equilibrium of the second period. Different first period

signals will determine the expected proportion of senior agents in the second period given

the realized first period true state and the equilibrium strategy.

Using well-known properties of the normal distribution we have that:

θj|θ ∼ N (θ, τ)

θ|θi ∼ N

(
µτ + θi

1 + τ
,

τ

1 + τ

)

γj|γ ∼ N (γ, τ)

γ|γi ∼ N

(
µτ + γi

1 + τ
,

τ

1 + τ

)
.

We first solve for the equilibrium in the second period for a given proportion 1− p of

agents joining in the first period.
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Denote by n the utility of an agent who joins the group for the first time when the

group is successful. In the second period, senior members get s > n, while new members

still receive n.

Conditional on the true state γ, if 1− p (p) agents follow a switching strategy around

γs (γn), the proportion of agents joining in the second period is:

pΦ

(
γn − γ√

τ

)
+ (1− p) Φ

(
γs − γ√

τ

)
.

The critical value γ∗ below which the group is successful is implicitly defined by:

k

(
pΦ

(
γn − γ∗√

τ

)
+ (1− p) Φ

(
γs − γ∗√

τ

))
= γ∗.

Conditional on γi, the expected payoff of type 1− p and p agents is respectively:

Pr (γ ≤ γ∗|γi) · s− k = Φ

(
γ∗ − γi + τ (γ∗ − µ)√

τ (1 + τ)

)
s− k

Pr (γ ≤ γ∗|γi) · n− k = Φ

(
γ∗ − γi + τ (γ∗ − µ)√

τ (1 + τ)

)
n− k.

When γi = γs (γn), 1 − p (p) agents should be indifferent between joining or not. In

equilibrium the following system has to be satisfied:




pΦ
(

γn−γ∗√
τ

)
+ (1− p) Φ

(
γs−γ∗√

τ

)
= γ∗

k

Φ

(
γ∗−γs+τ(γ∗−µ)√

τ(1+τ)

)
= k

s

Φ

(
γ∗−γn+τ(γ∗−µ)√

τ(1+τ)

)
= k

n
.

(1)

We know from Section 4 that this system, for any p ∈ (0, 1), admits a unique solution

(γs, γn, γ∗) for τ small, with γs > γn.

Let Φx|y be the cumulative normal distribution of x given y with corresponding density

φx|y and define





gn (γi, p) = Φγ|γi

{
k

[
(1− p) Φγj |γ (γs) + pΦγj |γ (γn)

]}
n− k

gs (γi, p) = Φγ|γi

{
k

[
(1− p) Φγj |γ (γs) + pΦγj |γ (γn)

]}
s− k

(2)

to be the expected gains from joining in the second period for new (n) and senior (s)

members that receive signal γi. These expressions are function of the second period

13



signals, given proportion p of agents who did not join in the first period and second

period equilibrium cutoffs (γn, γs).

If everybody follows a switching strategy around θn in the first period, the proportion

of agents that joins is (1− p) = Φθj |θ (θn), and we can redefine

gn (γi, p) = gn (γi, θ, θn)

gs (γi, p) = gs (γi, θ, θn) .

After some algebra, the net expected utility of membership conditional on θi when every-

body else follows a switching strategy around θn is:

π (θi, θn) = Φθ|θi

[
kΦθj |θ (θn)

]
n− k+

+
∫ +∞
−∞

(∫ γs

−∞ gs (γi, θ, θn) dΦγi
(γi)−

∫ γn

−∞ gn (γi, θ, θn) dΦγi
(γi)

)
dΦθ|θi

(θ) .
(3)

To show that a cutoff strategy can be an equilibrium and to use iterated deletion to prove

uniqueness of an equilibrium we need π (θi, θn) to be monotone in θi.

First note that

Φθ|θi

[
kΦθj |θ (θn)

]
n− k

is decreasing in θi. To show that π (θi, θn) is decreasing in θi we prove in the Appendix

that:

Claim 1 For τ small enough
∫ +∞

−∞

(∫ γs

−∞
gs (γi, θ, θn) dΦγi

(γi)−
∫ γn

−∞
gn (γi, θ, θn) dΦγi

(γi)

)
dΦθ|θi

(θ)

is decreasing in θi.

A higher signal in the first period reduces the expected probability of providing the

good, hence it reduces membership in the first period. In the second period there will

be less senior members, who have the greatest incentive to join, and the probability of

providing the public good will drop also in the second period. This reduces the payoff of

membership for both senior and new members. We show in the appendix that for small

τ , the effect on senior members dominates the one on junior members.

We can similarly show that π (θi, θn) is increasing in θn. Now we are ready to state

the main result of this section.
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Proposition 3 There exist a τ̃ > 0 and b > 0 such that, for τ ∈ (0, τ̃) and (s− n) <

min {b, k}, there is a unique equilibrium in which players follow a switching strategy

around θn in the first period, and, in the second period, around γs if they joined in the

first period, and around γn otherwise.

From the previous discussion, we have shown that, for any strategy in the first period,

there exists a unique continuation equilibrium in the second period if τ ∈ (0, τ̃) . This

equilibrium is a switching strategy around γs (p) for players that joined in the first period,

and around γn (p) for players that did not. We have also shown that a switching strategy

in the first period can be an equilibrium. What is left to check is the existence of

dominance regions that allow us to start the iterated deletion process, and existence and

uniqueness of θ∗ that solves:

π (θ∗, θ∗) = 0.

We start the argument with existence and uniqueness of a switching strategy equi-

librium. We can rewrite the last equation in two steps. Conditional on the true state θ,

if everybody follows a switching strategy around θn, the proportion of agents joining in

the first period is:

Φθj |θ (θn) = Φ

(
θn − θ√

τ

)
.

The critical value θ∗ below which the group is successful is implicitly defined by:

kΦ

(
θn − θ∗√

τ

)
= θ∗.

An agent should be indifferent between joining or not in the first period when she

receives a signal θi = θn. Using the definitions of gs (γi, θ, θn) and gn (γi, θ, θn) we obtain:





θn = θ∗ +
√

τΦ−1
(

θ∗
k

)

Φ

(√
τ(θ∗−µ)√

1+τ
− Φ−1( θ∗

k )√
1+τ

)
= k

n+Q(θ∗) ,
(4)

where Q (θ∗) is

∫ +∞

−∞




∫ γs

−∞ gs

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

))
dΦγi

(γi)−
+

∫ γn

−∞ gn

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

))
dΦγi

(γi)


 dΦθ|θi=θ∗+

√
τΦ−1( θ∗

k ) (θ) . (5)
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From (4) it is clear that given θ∗, there exists a uniquely determined θn (θ∗), and from

the discussion above, there exist unique γ∗ (θ∗) , γs (θ∗) , γn (θ∗) . Showing existence and

uniqueness of a switching strategy equilibrium is equivalent to showing that

Φ

(√
τ (θ∗ − µ)√

1 + τ
− Φ−1

(
θ∗
k

)
√

1 + τ

)
=

k

n + Q (θ∗)
(6)

has a unique solution. In the Appendix we prove that this is the case if the difference

between s and n is not too large, when τ is sufficiently small.

To establish existence of dominance regions, note that for very low first period signals

joining is always a strictly dominant strategy. If the signal is sufficiently high, meaning

that there is very small probability of getting the good, even if everybody else joins, stay

out is dominant if the payoff difference between seniors and new members is not too

high: s − n < k. Since π (θi, θn) is decreasing in the first argument and increasing in

the second, the same reasoning in Theorem 1 establishes that the equilibrium in cutoff

strategy that we found is the unique equilibrium of this game.

A direct inspection of (6) shows that, since Q (θ∗) > 0 and the LHS is decreasing in

θ∗ when τ is small, seniority benefits increase membership also in the first period.

6 Conclusion

Our model analyzes a membership game in which agents decide to join a group that

provides a public good and selective incentives. When selective benefits are excludable,

non-rival, and tied to the provision of public good a unique equilibrium exists. Our equi-

librium analysis yields comparative statics predictions that are consistent with the main

findings of the political science literature on large citizen associations. In the heteroge-

neous agent case we show in what sense heterogeneity can be detrimental when perfect

screening is not feasible. We further analyze a dynamic version of the model, where

heterogeneity emerges endogenously. This is one of the few examples to our knowledge

of a dynamic version of global games with payoff complementarities between different

periods. A unique equilibrium that exhibits persistence in membership exists, given re-

strictions on admissible continuation payoffs. This suggests that a multiple period version

16



of the model will require even more stringent conditions and eventually might leave open

the possibility of non uniquely determined equilibrium beliefs, leading back to multiple

equilibria.
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Appendix

Proof of Theorem 1.

Let Φx|y be the cumulative normal distribution of x given y with corresponding density

φx|y. Using well-known properties of the normal distribution we have that:

θj|θ ∼ N (θ, τ)

θ|θi ∼ N

(
µτ + σθi

σ + τ
,

τσ

σ + τ

)
.

Conditional on the true state θ, if everybody follows a switching strategy around θn, the

proportion of agents joining is:

Φθj |θ (θn) = Φ

(
θn − θ√

τ

)
.

The critical value θ∗ below which the group is successful is implicitly defined by:

kΦ

(
θn − θ∗√

τ

)
= θ∗.

Note that for any θn, there exists a unique θ∗that solves the above equation, and θ∗ ∈
(0, k). Conditional on θi, the expected payoff of an agent is:

Pr (θ ≤ θ∗|θi) n− k = Φ

(
σ (θ∗ − θi) + τ (θ∗ − µ)√

τσ (σ + τ)

)
n− k.

When θi = θn the agent should be indifferent between joining or not. Therefore we obtain

a system of two equation in two unknowns:





Φ
(

θn−θ∗√
τ

)
= θ∗

k

Φ

(
σ(θ∗−θn)+τ(θ∗−µ)√

τσ(σ+τ)

)
= k

n
,

that is equivalent to: 



θn = θ∗ +
√

τΦ−1
(

θ∗
k

)

Φ

(√
τ(θ∗−µ)√
σ(σ+τ)

−
√

σΦ−1( θ∗
k )√

σ+τ

)
= k

n
.

Let

W (θ∗) ≡
√

τ (θ∗ − µ)√
σ (σ + τ)

−
√

σΦ−1
(

θ∗
k

)
√

σ + τ
− Φ−1

(
k

n

)
,
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and note that:

lim
θ∗→0

W (θ∗) = ∞

lim
θ∗→k

W (θ∗) = −∞

dW

dθ∗
=

1√
σ + τ

(√
τ√
σ
−

√
σ

kφ
(
Φ−1

(
θ∗
k

))
)

<

<
1√

σ + τ

(√
τ√
σ
−
√

2πσ

k

)
.

Since the last expression is negative when:

√
τ <

σ
√

2π

k
,

the solution is unique for small τ .

In the limit:

lim
τ→0

θn = lim
τ→0

θ∗ = k

(
1− k

n

)
.

The last step of the argument is to show that the above equilibrium in switching

strategies is indeed the only one surviving iterated deletion of strictly dominated strate-

gies. This part of the proof follows closely the argument in Morris and Shin [13]. Define:

π (θi, θn) = Φθ|θi
[kΦθj |θ(θn)]n− k

π (θi, θn) is the expected utility of membership conditional on θi when everybody else

follows a switching strategy around θn. If θi < θ join is a strictly dominant action so

after the first stage of iterated deletion θ1
n ≥ θ. Now θn2 is defined as the solution to:

π
(
θ2

n, θ
1
n

)
= 0.

Note that by strategic complementarities joining below θ2
n strictly dominates any other

strategy that prescribes joining below θ1
n. By further iteration we can construct a se-

quence
{
θk

n

}k=+∞
k=1

that is increasing since π (·, ·) is decreasing in its first argument and

increasing in the second. The smallest solution θ∗ to π (θ, θ) = 0 is the limit of the

sequence. The same argument can be done starting from θ to get a decreasing sequence

with limit θ
∗

that is the largest solution to π (θ, θ) = 0. But since we proved above that

there is a unique solution θ∗ to π (θ, θ) = 0 then θ∗ = θ
∗

= θ∗.
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Proof of Theorem 2.

Let θ∗ be the critical value below which the group is successful and θn, θs be the

cutoffs. In equilibrium the following system has to be satisfied:




pΦ
(

θn−θ∗√
τ

)
+ (1− p) Φ

(
θs−θ∗√

τ

)
= θ∗

k

Φ

(
θ∗−θn+τ(θ∗−µ)√

τ(1+τ)

)
= k

n

Φ

(
θ∗−θs+τ(θ∗−µ)√

τ(1+τ)

)
= k

s
,

which is equivalent to:




pΦ
(√

τ (θ∗ − µ)−√1 + τΦ−1
(

k
n

))
+

+ (1− p) Φ
(√

τ (θ∗ − µ)−√1 + τΦ−1
(

k
s

))
= θ∗

k

(θn−θ∗)√
τ

=
√

τ (θ∗ − µ)−√1 + τΦ−1
(

k
n

)
(θs−θ∗)√

τ
=
√

τ (θ∗ − µ)−√1 + τΦ−1
(

k
s

)
.

Let

T (θ∗) ≡ pΦ

(√
τ (θ∗ − µ)−√1 + τΦ−1

(
k

n

))
+

+ (1− p) Φ

(√
τ (θ∗ − µ)−√1 + τΦ−1

(
k

s

))
− θ∗

k
,

and note that:

lim
θ∗→0

T (θ∗) > 0

lim
θ∗→k

T (θ∗) < 0

dT

dθ∗
≤

√
τ

2π
− 1

k
.

Since the last expression is negative when

√
τ <

√
2π

k
,

the solution is unique for small τ .

To show the uniqueness of equilibrium define:

πn (θi, θn, θs) = Φθ|θi

{
k

[
pΦθj |θ(θn) + (1− p) Φθj |θ(θs)

]}
n− k

πs (θi, θn, θs) = Φθ|θi

{
k

[
pΦθj |θ(θn) + (1− p) Φθj |θ(θs)

]}
s− k
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as the expected utility of membership conditional on θi when everybody else follows a

switching strategy around θn and θs.

Note that there exist θ̄n, and θ̄s such that:





πn (θi, θn, θs) ≤ Φθ|θi
(k) n− k < 0 if θi > θ̄n

πs (θi, θn, θs) ≤ Φθ|θi
(k) s− k < 0 if θi > θ̄s.

This means that if θi > θ̄n stay out is a strictly dominant action for n types and,

after the first stage of iterated deletion, θ1
n ≤ θ̄n. Similarly we obtain θ1

s ≤ θ̄s. Now θ2
n,

θ2
s are defined as the solution to:

πn

(
θ2

n, θ
1
n, θ1

s

)
= 0

πs

(
θ2

s, θ
1
n, θ1

s

)
= 0.

By further iteration we end up with a two dimensional sequence
{
θk

n, θk
s

}
that is decreas-

ing since πn (·, ·, ·) and πs (·, ·, ·) are decreasing in their first argument and increasing in

the second and the third. The largest solution
{

θn, θs

}
to the system

πn (θn, θn, θs) = 0

πs (θs, θn, θs) = 0

is the limit of the sequence. The same argument can be done starting from above to

get a decreasing sequence with limit
{

θ
n
, θ

s

}
that is the smallest solution to the above

system. But since we proved that there is a unique solution to the system we are done.

Proof of Proposition 2.

The expected size of the group is:

S = pΦ

(
θn − µ√

1 + τ

)
+ (1− p) Φ

(
θs − µ√
1 + τ

)
.

Taking derivatives we get:

∆S =
1√

1 + τ

(
pφ

(
θn − µ√

1 + τ

)
∆θn + (1− p) φ

(
θs − µ√
1 + τ

)
∆θs

)
.
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Applying the implicit function theorem we obtain expressions for ∆θn and ∆θs. When

τ goes to 0 we get:

lim
τ→0

∆θs = lim
τ→0

∆θn = −
(

k

ns

)2

(1− p)
(
s2 − n2

)
< 0

lim
τ→0

θs = lim
τ→0

θn = lim
τ→0

θ∗ = k

(
1− k

ns
(ps + (1− p) n)

)
.

Hence,

lim
τ→0

∆S = −
(

k

ns

)2

(1− p)
(
s2 − n2

)
φ

(
k

(
1− k

ns
(ps + (1− p) n)

)
− µ

)
,

and when s = n, limτ→0 ∆S = 0, otherwise limτ→0 ∆S < 0.

Proof of Claim 1.

We want to show that

∫ +∞

−∞

(∫ γs

−∞
gs (γi, θ, θn) dΦγi

(γi)−
∫ γn

−∞
gn (γi, θ, θn) dΦγi

(γi)

)
dΦθ|θi

(θ)

is decreasing in θi.

From the exogenous heterogeneity case we know that:

gn (γn, θ, θn) = gs (γs, θ, θn) = 0. (7)

gn (γi, θ, θn) = Φγ|γi

{
k

[
Φθj |θ (θn) Φγj |γ (γs) +

(
1− Φθj |θ (θn)

)
Φγj |γ (γn)

]}
n− k

gs (γi, θ, θn) = Φγ|γi

{
k

[
Φθj |θ (θn) Φγj |γ (γs) +

(
1− Φθj |θ (θn)

)
Φγj |γ (γn)

]}
s− k

Note also that:

gs (γi, θ, θn) = gn (γi, θ, θn)
s

n
+ k

s− n

n
for γi ≤ γn,

and, using results derived above:

dγs

dp
=

dγn

dp
=

1√
τ

(
Φ

(
γs−γ∗√

τ

)
− Φ

(
γn−γ∗√

τ

))

1
(1+τ)

(
pφ

(
γn−γ∗√

τ

)
+ (1− p) φ

(
γs−γ∗√

τ

)
− 1

k
1√
τ

) < 0, (8)
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since γs > γn, and the denominator is negative for small τ . This implies also that:




d
dθ

gn (γi, θ, θn) < 0

d
dθ

gs (γi, θ, θn) < 0.
(9)

An increase in θ, increases the proportion p = 1 − Φθj |θ (θn) of non-joiners in the first

period. Keeping γs and γn fixed, this reduces gn and gs, since γs > γn. Moreover, gn

and gs are monotonically increasing in γs and γn.

Combining the previous results we obtain:

d

dθi





∫ +∞
−∞

∫ γs

−∞ gs (γi, θ, θn) dΦγi
(γi) dΦθ|θi

(θ) +

− ∫ +∞
−∞

∫ γn

−∞ gn (γi, θ, θn) dΦγi
(γi) dΦθ|θi

(θ)



 =

=

∫ +∞

−∞

[∫ γn

−∞
[gn (γi, θ, θn) + k]

s− n

n
dΦγi

(γi) +

∫ γs

γn

gs (γi, θ, θn) dΦγi
(γi)

]
dφθ|θi

(θ)

dθi

dθ =

=

∫ +∞

−∞
J (θ) H (θ) dθ,

where

J (θ) =

∫ γn

−∞
[gn (γi, θ, θn) + k]

s− n

n
dΦγi

(γi) +

∫ γs

γn

gs (γi, θ, θn) dΦγi
(γi)

H (θ) =

dφ

(
θ−θi+τ(θ−µ)√

τ(1+τ)

)

dθi

=
θ − θi + τ (θ − µ)

τ (1 + τ)
φ

(
θ − θi + τ (θ − µ)√

τ (1 + τ)

)
.

Note that J (θ) is decreasing in θ, which can be shown using (8) and (9), and that H (θ)

is quasi-monotone in θ and ∫ +∞

−∞
H (θ) dθ = 0.

Hence:
∫ +∞

−∞
H (θ) J (θ) dθ =

∫ +∞

−∞
H (θ)

[
J (θ)− J

(
τµ + θi

1 + τ

)]
dθ =

=





∫ τµ+θi
1+τ

−∞ H (θ)
[
J (θ)− J

(
τµ+θi

1+τ

)]
dθ+

∫ +∞
τµ+θi
1+τ

H (θ)
[
J (θ)− J

(
τµ+θi

1+τ

)]
dθ



 < 0,

which implies that
∫ +∞

−∞

(∫ γs

−∞
gs (γi, θ, θn) dΦγi

(γi)−
∫ γn

−∞
gn (γi, θ, θn) dΦγi

(γi)

)
dΦθ|θi

(θ)
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is decreasing in θi.

Proof of existence and uniqueness of a solution to

Φ

(√
τ (θ∗ − µ)√

1 + τ
− Φ−1

(
θ∗
k

)
√

1 + τ

)
=

k

n + Q (θ∗)
(6)

Recalling the definition of Q (θ∗) in (5), we know that Q (θ∗) ∈ [0, s − n]. In (6), if

θ∗ → 0, the LHS converges to 1, while the RHS is smaller than k
n

< 1. When θ∗ → k,

the LHS converges to 0, while the RHS is larger than k
s

> 0. Since LHS and RHS

are continuous functions of θ∗, a solution exists. To show uniqueness, the additional

complication with respect to the proof of Theorem 1 is to show the behavior of dQ(θ∗)
dθ∗

when τ is small. Using (5),

dQ (θ∗)
dθ∗

=



∫ +∞
−∞

∫ γs

−∞ gs

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

))
dΦγi

(γi) dφθ|θi=θ∗+
√

τΦ−1( θ∗
k ) (θ) +

+
∫ +∞
−∞

∫ γs

−∞
d(gs(γi,θ,θ∗+

√
τΦ−1( θ∗

k )))
dθ∗ dΦγi

(γi) dΦθ|θi=θ∗+
√

τΦ−1( θ∗
k ) (θ) +

− ∫ +∞
−∞

∫ γn

−∞
d(gn(γi,θ,θ∗+

√
τΦ−1( θ∗

k )))
dθ∗ dΦγi

(γi) dΦθ|θi=θ∗+
√

τΦ−1( θ∗
k ) (θ) +

− ∫ +∞
−∞

∫ γn

−∞ gn

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

))
dΦγi

(γi) dφθ|θi=θ∗+
√

τΦ−1( θ∗
k ) (θ) .




We denote

~θ
∗
n = lim

τ→0
θ∗n

~θ
∗

= lim
τ→0

θ∗

~γ∗ = lim
τ→0

γ∗,

and when τ → 0, we have

gn (γi, θ, θn) → Φγ|γi

{
kΦγj |γ (~γ∗)

}
n− k

gs (γi, θ, θn) → Φγ|γi

{
kΦγj |γ (~γ∗)

}
s− k

p = 1− Φθj |θ
(
~θ
∗
n

)
,
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Using the definition of gs and gn, calculating their derivative with respect to θ∗ and taking

limits we obtain:

lim
τ→0

d
(
gs

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

)))

dθ∗
= φγ|γi

(
kΦγj |γ (~γ∗)

)
φγj |γ (~γ∗)

k3 (s− n)

n
φθj |θ

(
~θ
∗)

> 0

lim
τ→0

d
(
gn

(
γi, θ, θ

∗ +
√

τΦ−1
(

θ∗
k

)))

dθ∗
= φγ|γi

(
kΦγj |γ (~γ∗)

)
φγj |γ (~γ∗)

k3 (s− n)

s
φθj |θ

(
~θ
∗)

> 0

lim
τ→0

dγs

dp
= lim

τ→0

dγn

dp
= lim

τ→0

dγ∗

dp
= −k

(
k
s− n

ns

)
< 0,

and dQ(θ∗)
dθ∗ converges to

(s− n)
∫ +∞
−∞

∫ ~γ∗

−∞ Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi) dφθ|θi=~θn
(θ) +

+k3(s−n)2

ns

∫ +∞
−∞

∫ ~γ∗

−∞ φγ|γi

(
kΦγj |γ (~γ∗)

)
φγj |γ (~γ∗) φθj |θ

(
~θ
∗)

dΦγi
(γi) dΦθ|θi=~θn

(θ) > 0,

(10)

when τ is going to zero. Note that the first integral in (10) is positive and smaller than

s−n√
2π

. Indeed,

(s− n)

∫ +∞

−∞

[∫ ~γ∗

−∞
Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi)

]
dφθ|θi=~θn

(θ) =

− (s− n)

∫ +∞

−∞

[∫ ~γ∗

−∞
Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi)

]
xφ (x) dx,

where

x =
(θ − θ∗) + τ (θ − µ)−√τΦ−1

(
θ∗
k

)
√

τ (1 + τ)
.

Since ∫ ~γ∗

−∞
Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi)

is positive, smaller than 1, and decreasing in x, and since∫ +∞

−∞
xφ (x) dx = 0

then

(s− n)

∫ +∞

−∞

[∫ ~γ∗

−∞
Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi)

]
dφθ|θi=~θn

(θ) > 0.

Moreover, note that

(s− n)

∫ +∞

−∞

[∫ ~γ∗

−∞
Φγ|γi

{
kΦγj |γ (~γ∗)

}
dΦγi

(γi)

]
dφθ|θi=~θn

(θ) <

< (s− n)

∫ +∞

0

xφ (x) dx =
s− n√

2π
.
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We can bound the second integral in (10) as follows:

k3 (s− n)2

ns

∫ +∞

−∞

∫ γ∗

−∞
φγ|γi

{
kΦγj |γ (γ∗)

}
φγj |γ (γ∗) dΦγi

(γi) dΦθ|θi=~θn
(θ)

<
k3 (s− n)2

ns

1

2π
.

Since the derivative of the LHS of (6) converges to − 1
k

when τ → 0, a sufficient condition

for uniqueness is
1

k
> lim

τ→0

(
k

(n + Q (θ∗))2

dQ (θ∗)
dθ∗

)
. (11)

Note that

lim
τ→0

dQ (θ∗)
dθ∗

≤ s− n√
2π

(
k3 (s− n)

ns

1√
2π

+ 1

)
, (12)

and that the RHS of (12) is an increasing function of s− n, in the relevant range where

s − n > 0. Hence there exists a b > 0 such that, if (s− n) < b, (11) is satisfied. This

shows existence and uniqueness of a solution to π (θ∗, θ∗) = 0.
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