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Random Coefficient Models for

Time-Series–Cross-Section Data∗

Nathaniel Beck† Jonathan N. Katz‡

Abstract
This paper considers random coefficient models (RCMs) for time-series–cross-
section data. These models allow for unit to unit variation in the model
parameters. After laying out the various models, we assess several issues
in specifying RCMs. We then consider the finite sample properties of some
standard RCM estimators, and show that the most common one, associated
with Hsiao, has very poor properties. These analyses also show that a some-
what awkward combination of estimators based on Swamy’s work performs
reasonably well; this awkward estimator and a Bayes estimator with an un-
informative prior (due to Smith) seem to perform best. But we also see
that estimators which assume full pooling perform well unless there is a large
degree of unit to unit parameter heterogeneity. We also argue that the vari-
ous data driven methods (whether classical or empirical Bayes or Bayes with
gentle priors) tends to lead to much more heterogeneity than most political
scientists would like. We speculate that fully Bayesian models, with a variety
of informative priors, may be the best way to approach RCMs.

1. RCM’S AND TSCS DATA

We have been examining the estimation of time-series–cross-section (TSCS) models
for a long time. While we initially began by examining the properties of various TSCS
estimators, our recent work has become much more involved with issues of specifying
TSCS models. One critical specification issue is whether to assume that all units are
completely homogeneous, that is, are they governed by the same specification and the
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same set of parameters. Most TSCS analysts seem to assume that the assumption of full
pooling is reasonable (that is, they use such a model and seldom offer a test).

There are, of course, alternatives to the full pooling assumption. Many analysts allow
for unit specific intercepts, that is, fixed effects. But there are relatively few attempts to
go beyond this limited heterogeneity. Obviously we must assume enough homogeneity
to allow for estimation; if every observation is unique, we can do no science. But it is
not necessary to assume that the only alternative to complete uniqueness is complete
pooling (or its close cousin, pooling other than in the unit specific intercepts). At first
glance, the commitment to homogeneity is a bit odd, since a model which imposes less
heterogeneity, the random coefficients model (RCM), has been well known for a quarter
of a century. One cannot even blame software packages for the lack of use of RCMs, since
the RCM is implemented in very common packages in use by political scientists (Stata,
R, LIMDEP). The other normal prerequisite for political science use, a Workshop piece
in the AJPS, has also been fulfilled (Western, 1998). Should TSCS analysts routinely
entertain the RCM? Does it work well for the kinds of data typically seen in political
science? In this paper we continue the investigation of this question.

We begin by noting that the issue of whether to pool or not, or, more accurately,
how much to pool, confronts every researcher. In an important, if uncited1 piece, Bar-
tels (1996) argues that we are always in the position of deciding how much we should
pool some observations with others, and we always have a choice ranging from complete
pooling to assuming that the data have nothing to do with each other. He notes that, in
general, political scientists seem to assume that either data completely pool or that some
data is completely irrelevant, ignoring the in between position. The solution that Bartels
proposes is that one should estimate a model allowing for varying degrees of pooling and
then make a scientific decision after examining the locus of all such estimates. The pro-
cedure involves much judgment, since Bartels works in a purely cross-sectional context;
in that context, the data alone can never determine the appropriate degree of pooling.

The situation is happier for the TSCS analyst, since we can assume complete homo-
geneity within units, and thus limit ourselves to models that imply heterogeneity between
units. It is this world we examine here. Western has described the RCM in a Bayesian
context.2 The citation fate of his paper is no happier than that of Bartels.3 We thus
must ask, if RCMs are so good, why do we not see TSCS analysts using them?

The next section of the paper lays out the notation and some mathematics of the
RCM and various estimators; Section 3 provides some discussion of the RCM approach;
Section 4 provides Monte Carlo evidence on specific estimators. Section 5 looks at one
application and Section 6 concludes.

1The SSCI has 12, with few, if any, being empirical applications.
2Western’s setup is the same as the Bayesian setup first described by Smith (1973). Smith did not

have the computational power in 1953 to produce full Bayesian posteriors, and was limited to estimation
of the mode of that distribution given a vague prior.

3Western has 20 cites. Few, if any, of these have an application of his proposed method.
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2. ESTIMATING RANDOM COEFFICIENT MODELS

We assume standard TSCS data with a continuous dependent variable.4 freely allow
one of the independent variables to be a lagged dependent variable and assume that the
errors are temporally independent. The fully pooled model is thus:

yi,t = xi,tβ + εi,t; i = 1, . . . , N ; t = 1, . . . , T (1)

where β is a K-vector of parameters and εi,t
ind∼ N(0, σ2) (and by assumption is iid). This

model can be estimated by some variant of OLS.

The less pooled model has

yi,t = xi,tβi + εi,t; i = 1, . . . , N ; t = 1, . . . , T (2)

We could allow each unit’s βi to be completely unrelated to every unit’s parameters, and
thus have the fully unpooled model, which would be estimated by unit by unit OLS.
Alternatively, we could estimate the βi by some other method which would allow the
estimates of different units to “borrow strength” from each other.5

We can test H0:Eq 1 against the alternative Eq 2 (completely disparate or unpooled
βi) by a standard F -test using the SSEs from the OLS estimations of both Eq 1 and
2. Typical procedure would then be to go with the pooled model if the F -ratio is small
and with the fully unpooled (unit by unit OLS) model if it is large, with small and large
being judged relative to 95% critical values of the F -distribution.

Note that this procedure yields a “pre-test” estimator, that is, estimate βi by the
pooled OLS estimator if the F -ratio is under a critical value and by the fully unpooled
OLS estimator if the F -ratio is above this critical value. As with any pre-test estimator,
we can improve on matters by finding a “shrinkage” estimator that more smoothly com-
bines the two estimators. These pay some attention to the fully pooled estimator if we
just barely reject pooling and some attention to the unpooled estimator if we marginally
fail to reject the pooled estimator (James and Stein, 1961; Judge and Bock, 1978; Judge,
Griffiths, Hill, Lütkepohl and Lee, 1985; Maddala and Hu, 1996).

Western works in a Bayesian manner, assuming that βi are draws from a normal, so
that

βi ∼ N(β, Γ) (3)

4This is to distinguish TSCS data from panel data. In particular, we have fixed, not sampled, units,
and all asymptotics are in T , not N ; T is large enough to do some time-series analysis on the data. The
distinction between TSCS and panel data is discussed more fully in Beck (2001). Thus nothing said in
this paper bears on the suitability of the RCM for panel data; for such data, the RCM is usually known
as the hierarchical model (Bryk and Raudenbush, 1992) or the multilevel model (Snijders and Bosker,
1999). That these models are useful for panel data tells us little about their usefulness for TSCS data.

5In this notation, it looks like all the parameters must be allowed to vary from unit to unit. It is
of course possible to force some subset of the β to be fully pooled while allowing for heterogeneity in
another subset. This causes no problems and is usually a good thing to do. But for notational simplicity
we ignore this at no cost.
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where Γ is another parameter to be estimated; it indicates the degree the homogeneity of
the unit parameters (Γ = 0 indicates perfect homogeneity).6 To estimate the model he
puts a very gentle prior on the various parameters and hyperparameters (β, Γ and σ2).7

As noted, Western uses Bayesian Markov Chain Monte Carlo methods to estimate
his model. The methods used are Bayesian, His prior, however, is not based on non-
sample information, but rather is a “gentle” prior which is designed to allow the posterior
to reflect the data as much as possible, and hence for the prior as little effect on the
estimation as possible. But once we accept that the prior should have as little impact if
any impact on estimation, it becomes sensible to look at classical methods to estimate
the RCM, and choice between these rests on such non-social science issues as convenience,
computational costs and the like.

The classical estimators of the RCM model, that is, either a full maximum likelihood
(ML)8 or a GLS estimate,9 all are different ways of combining estimates of the individ-
ual βi, and are all, more or less similar to empirical Bayes methods. Unlike the fully
Bayesian method, empirical Bayes methods allow the data to “choose” a prior, that is,
the heterogeneity in the βi is estimated from the data (that is, the heterogeneity in the
estimated β̂i), and from then on Bayesian formulae are used. These estimators can all
be seen as variants of “shrinkage” estimators, where the individually estimated β̂i are
“shrunk” towards some overall estimate of the mean β. In empirical Bayes methods, the
amount of shrinkage is a function of the diversity of the individually estimated βi. Since
the estimators do vary, and we wish to compare their performance in our Monte Carlo
experiments, we briefly lay out our notation and the various estimators now.

6This is the standard setup. Some assume that the βi are not draws from a K-variate normal, but
rather K independent draws from univariate normals. This specialization seems sensible, since it cuts
the number of variance-covariance parameters to be estimated from approximately K2

2 to K. We return
to this issue below.

7There are a few features of Western’s approach that are of interest but are orthogonal to our
interest. In particular, he sensibly assumes that the βi are functions of unit covariates, so that he has
βi = β + ziα + νi rather than the form we use which does not have the ziα term. Note that this term
just adds (deterministic) interactive terms to the model, which are the elements of zi multiplied by xi,t.
While Western’s move here is sensible, it is completely orthogonal to the issues discussed here, and so
use the simpler form for the random coefficients. For this and various other reasons, when we do our
own empirical work we do not begin with Western’s model or results.

8This is due to Pinheiro and Bates (2000), though the Smith (1973) iterated Bayesian estimator with
an uninformative prior is also ML.

9Econometricians learn of these models from Swamy (1971) though many know this work through
Hsiao (1986). When we discuss specific GLS implementations, we discuss the most common method,
which Swamy proposed and Hsiao argued for. We call this “Hsiao.” It is this method that is implemented
in standard packages such as Stata or LIMDEP. Note that the same model and estimation technique
was developed by the statisticians Hildreth and Houck (1968) prior to the work of Swamy. Thus Stata
names its GLS RCM estimator for Hildreth and Houck. But the implementation is identical to the GLS
implementation we call Hsiao.

4



Basic Model and notation

Formally the model we are considering is:

yi,t = xi,tβi + εi,t

βi ∼ N(β,Γ)

E[βi − β|xi,t] = 0

E[εi,t|xi,t] = 0

E(εi,tεj,t) =

{
σ2

i if i = j

0 if i 6= j
.

(4)

When we consider ML estimates we will further assume:

εi,t
ind∼ N(0, σ2

i ).

Note that we could allow the errors to have a more complicated error structure, but this
would cloud the central issues.

In deriving some results it will be useful to define

νi = βi − β.

Clearly νi ∼ N(0,Γ). We can re-write the model for the yi,t’s by substituting as:

yi,t = xi,tβ + (εi,t + xi,tνi)

yi,t = xi,tβ + wi,t.
(5)

with wi,t as our new composite error term. The first part of wi,t is the standard stochastic
part of a regression model. The second term is the error associated with how far a
particular unit’s βi is from the overall mean β.

It will also be convenient to stack the observations by unit instead of considering
individual observations. Define

yi =


yi,1

yi,2

.

.

.
yi,T

 xi =


xi,1

xi,2

.

.

.
xi,T

 εi =


εi,1

εi,2

.

.

.
εi,T

 wi =


wi,1

wi,2

.

.

.
wi,T

 .

If it were the case that wi were suitably well behaved, and, in particular, that
E[wi|xi] = 0, then we could estimate Eq 5 by OLS, which would give us a consis-
tent, although possibly inefficient estimate of β. In fact, we have already made enough
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assumptions to ensure this. To see this note:

E[wi|xi] = E[εi + xivi|xi]

= E[εi|xi] + E[xivi|xi]

= 0 + xiE[vi|xi]

= 0.

The last step is true because we have assumed in the basic setup that βi are mean
independent of the xi,t. Therefore, there cannot be a systematic relationship between
the unit’s average xi,t and βi. This assumption would fail if units with high values of
some regressors also had larger βi. Consider, for example, a comparative model of annual
government spending as a function of revenue among other things. It might be the case
that governments that are better at raising funds are also more likely to have higher
spending — i.e., have a large βi.

We thus have our first candidate RCM model: pooled OLS. With pooled OLS we
estimate Eq 5 by standard OLS. Our estimate of the individual βi’s would just be this
overall estimate, β̂. Thus, we are borrowing a lot of strength across units. This model is
perhaps the most common in the literature. In general, because the estimate in pooled
OLS on N × T observations, it will have small sampling variance. As we will see in the
simulations below, this small sampling variance makes the pooled OLS estimator perform
better than one might expect, even when the assumption of pooling does not hold.

We should note, however, our OLS estimates would not be efficient for the overall
mean because it is not using the full structure of our model. This can be seen by
examining the covariance matrix of the pooled OLS estimate defined by Eq 5:

E[wiw
′
i] = E[(εi + xivi)(εi + xivi)

′]

= σ2
i IT + xiΓx′

i

= Πi.

So for the full sample (stacking observations) the covariance matrix of OLS estimate of
is

Ω =


Π1 0 0 . . . 0
0 Π2 0 . . . 0

...
0 0 0 . . . ΠN

 (6)

= I ⊗Πi (7)

where ⊗ is the Kronecker product. If we knew Γ, as well as σ2
i , we would know Πi and

therefore Ω. Estimation would be relatively straightforward generalized least squares
(GLS). We will explore this more below.

At the other extreme from complete pooling would be to run OLS on each unit. We
will refer to this estimate at unit by unit OLS and denote the estimate from the i’th unit
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by bi. Clearly, this estimate borrows the least strength from other units, and will be
consistent even if there is some correlation structure between βi and xi. Asymptotically
(as T →∞) this would be the preferred estimator because we can recover βi regardless of
the relationship between units (which is only indirectly of interest in practice). However,
in finite samples, this estimator may have very large sampling variance.

The remaining estimators we will consider can be thought of as various shrinkage
estimators that estimate the βi as a weighted average between the pooled (although
the GLS and Bayesian estimators use slightly different choice of the pooled estimate,
normally to gain some efficiency) and the unit by unit estimates. They essentially differ
in how they determine this weight and, therefore, how much they shrink the unit by unit
estimate back towards the overall mean.

Stein-Rule

The classical shrinkage estimators are due to Stein.10 The complete justification for
such estimators is beyond the scope of this paper. As was previously mentioned, they
were designed to be smooth versions of pre-test estimators (which have very complicated
sampling distributions) based on the F test for parameter homogeneity. Accordingly, the
weighting between the pooled and unpooled estimators is a function of this test statistic.
Formally the Stein-rule estimator for unit level parameters is

β̂i =
c

F
β̂ + (1− c

F
)bi

where β̂ and bi are defined above, F is the statistic for testing the null hypothesis of
equality of the βi and c is a constant. Judge and Bock (1978:190–195) suggest that the
optimal value for this constant is:

c =
(N − 1)k − 2

NT −Nk + 2
(8)

where k is the number of regressors.

Unfortunately, for our purposes, this estimator simply does not shrink the unpooled
estimators very much for typical TSCS data. This is because, that while we may worry
about estimating regressions with a single independent variable and 30 observations, from
a statistical perspective such a regression can be well estimated. The Stein formula takes
the unit by unit OLS estimates of the bi as being reasonably accurate for the typical T s
of TSCS data, and so simply does not shrink them very much. Table 2 shows, for typical
TSCS situations, shrinkage (in percent) as a function of K, N , T and the variability of

the β̂i. To simplify matters, the table shows shrinkage associated with various upper tail
percentiles of the F -distribution used to test the null hypothesis of full pooling.

10See Judge and Bock (1978) for an excellent review.
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captionHow much does the Stein estimator Shrink (for typical TSCS data)?

Shrinkage (in percent)
Level on test of pooling

K T .20 .10 .05 .01 .001

N=15

2 20 8 7 6 5 4
30 5 4 4 3 3
40 4 3 3 3 2
50 3 3 2 2 2
100 1 1 1 1 1

6 20 33 31 29 26 23
30 20 18 17 16 14
40 14 13 12 10 10
50 11 10 10 9 8
100 5 5 5 4 4

10 20 79 73 69 62 54
30 41 38 36 33 30
40 27 26 25 22 20
50 21 19 19 17 16
100 9 9 8 8 7

N=30

2 20 9 8 8 7 6
30 6 5 5 4 4
40 4 43 4 3 3
50 3 3 3 2 2
100 2 2 1 1 1

6 20 37 34 33 31 28
30 22 21 20 18 17
40 15 15 14 13 12
50 12 11 11 10 9
100 8 7 5 5 4

10 20 86 82 79 73 66
30 44 32 41 38 35
40 30 28 27 26 24
50 22 21 21 19 18
100 10 10 9 9 8

First, we note that for T ’s and N ’s common in BTSCS data that c ≈ K
T−K

, and
so depends little on N . Since 15 is a common number of units in political economy
models, we only discuss that case. If there are only two random coefficients (say on the
constant and one substantive variable), either because we have an unusually parsimonious
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specification or because we assume the coefficients on other variables are not random,
we see that the shrinkage estimators shrink the individual β̂i very little, if at all. Note
that common practice would be to impose pooling if the appropriate F -statistic is below
the critical 5% level; thus if the F were exactly at the 5% critical value, most researchers
would shrink by 100% whereas the shrinkage estimator shrinks under 10%. And since
shrinkage declines with heterogeneity, in the cases where analysts would reject pooling,
the shrinkage estimator shrinks by a truly negligible factor.

The situation is similar for 6 random coefficients, though with a smallish T = 20, and
F -statistic large enough to reject full pooling, we would shrink by a factor of about one
fourth. On the other hand, when most researchers would pool, the Stein rule estimator
shrinks by somewhere between one tenth and one third, depending on T . Thus, unless we
have an unusually large number of independent variables, it does not appear as though the
Stein rule estimator will not be useful for typical TSCS data and models. This is borne out
in our Monte Carlo experiments in Section 4 Thus, whatever their attractiveness in other
situations, Stein rule estimators do not appear helpful for standard TSCS estimation.

Generalized Least Squares

Alternative shrinkage estimators can be considered in the generalized least squares
framework. Recall that the estimate of the overall mean from the pooled OLS is inefficient
because it does not use all of the information in the structure of the model. A GLS
estimate of β is:

[X′Ω−1X]−1XΩ−1y

where X = [x1,x2, . . . ,xN ]′ and y = [y1,y2, . . . ,yN ]′. In general, we will not know Γ
but will have to estimate it. We will turn to how to estimate it shortly, but for now
assume we have some consistent estimate of Γ, say Γ̂. We can then construct the feasible
generalized least square estimate (FGLS) as follows:

β̃ = [X′Ω̂−1X]−1XΩ̂−1y (9)

where

Ω̂ = IN ⊗ Π̂i

= IN ⊗ (σ̂2
i IT + xiΓ̂x′

i).

There is an alternative formulation of β̃ as a weighted function of the unit by unit
OLS estimates (bi) which gives us a bit more insight into the GLS estimators. Clearly bi

is consistent for βi (and β) by the same assumptions and argument we used to show that
OLS, using the observations from all units, is consistent for the estimate of the overall
mean β. Given standard results we can show:

Var(bi) = (x′
ixi)

−1x′
iΠi(xi(x

′
ixi)

−1

= Vi + Γ,

9



where
Vi = σ2

i (x
′
ixi)

−1.

Then the GLS estimator given in ( 9) can be written as:

β̃ =
N∑

i=1

Wibi (10)

where

Wi =

{
N∑

i=1

[Γ + Vi]
−1

}−1

[Γ + Vi]
−1

The GLS estimate, then, is a weighted average of the unit by unit OLS estimates. The
weights are such that units that have smaller variance of their estimates, perhaps because
they have a larger T or just fit better, are given more weight.

It will also be useful to have an explicit formula for the variance of β̃. Given Eq 10
and the fact that the bi are independent, the variance is straight forward to derive.

Var(β̃) =
N∑

i=1

Wi Var(bi)W
′
i

=
N∑

i=1

Wi[Vi + Γ]W′
i.

(11)

We can now turn to the estimations of the parameters of interest, βi. The best linear
unbiased predictor of βi that comes from the GLS framework is:

β̂i = [Γ−1 + V̂−1]−1[Γ−1β̃ + V̂−1bi]

= Aiβ̃ + [Ik − Ai]bi

(12)

where Ai = [Γ−1 + V̂−1
i ]−1Γ. That is, the estimate is a weighted average between the

pooled and unit by units. The weights are given by the relative precision of our two
estimates.

We can justify β̂i is two ways. From the classical perspective, it minimizes mean
squared error given the setup in Eq 4. It is in that sense it is “best”. However, it can
also be justified for the Bayesian perspective. If we were interested in estimating the βi

and we had a prior of the form, βi ∼ N(β,Γ), this would be our posterior mode estimate.
Further, if we are going to estimate β and Γ from observed data (as we will below), we
could call this an empirical Bayesian estimate. Depending on how we estimate Γ, we will
get different RCM estimators. We now turn to these.

10



It will be useful to define Var(β̂i) in order to do statistical testing. In general, since

β̂i is estimated by a linear combination we can use standard results to show:

Var(β̂i) = Ai Var(β̃)A′
i + [Ik − Ai] Var(bi)[Ik − Ai]

′+

[Ik − Ai] Cov(β̃,bi)A
′
i + Ai Cov(β̃,bi)[Ik − Ai]

′.
(13)

This can be simplified by noting that Cov(β̃,bi) = Wi Var(bi). This his true because
the bi’s are independent; the only term in the sum that makes up β̃ that has positive
covariance with a particular bi is Wibi.

The obstacle for GLS is that we do not know either Γ or Vi, hence we can not use
Eq 10 to estimate the overall mean parameter or Eq 12 to estimate βi. However, as is
often true with GLS models we can use a two-step (FGLS) procedure. We first consider
an estimator originally suggested by Swamy (1971) to estimate Γ and Vi. In the first
step we use some consistent, but inefficient, estimator to estimate β and the βi’s. We
then use these preliminary estimates to estimate the variance parameters. In this case,
we run OLS unit by unit to estimate bi. We then estimate V̂i by its usual estimate:

V̂i = s2
i (x

′
ixi)

−1

s2
i =

e′iei

T − k
,

where ei are the standard OLS residuals and k is the number of regressors.

The question is how to estimate Γ? If we could directly observe β1, . . . , βN , we could
use the N draws to construct an estimate of the covariance matrix in the usual fashion:

Γ̃ =
1

N − 1

(
N∑

i=1

βiβ
′
i −Nββ′

)
where β̄i is the mean of the N observed βi. We note that any such estimate of Γ will
improve as N get large. Formally Γ̃ will converge in probability to Γ using standard
assumptions. While this is important to panel analysts, who can allow for asymptotics
in N , it is of cold comfort to TSCS analysts who must work with fixed, and typically not
very large, Ns. This issue is muted a bit if we take an empirical Bayesian perspective.
The point of the empirical Bayes approach is not to estimate Γ, per se, but to use it in
forming of a prior to improve our estimates of βi. Clearly there is information in the
data about Γ even when N is fixed.

Again the problem is we do not observe βi; we have, instead, only a noisy estimates,
bi. So while we might consider just substituting bi for βi in the definition of Γ̃, this would
lead us to over estimate the amount of variation in βi since much of the variation in the
bis is caused not by “real” parameter variability but purely by sampling error. In finite
samples we would expect the bi’s to differ. We can correct for this sampling variability
by noting that the Varbi = Vi + β̂. Swamy suggested that a plausible estimator of Γ is

Γ̂ =
1

N − 1

(
N∑

i=1

bib
′
i −Nbb

′
)
− 1

N

N∑
i=1

V̂i, (14)
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where b is the mean of the bi’s. Thus the Swamy estimator plugs in the estimate for Γ
into the formula for β̂i.

There is, however, a problem with this estimator: in finite samples Γ̂ (defined by
Eq 14) need not be positive definite, a necessary requirement for it to be a well defined

covariance matrix. Γ̂ may not be positive definite because we are subtracting off the
mean V̂i, which can be large in finite samples. Recall that V̂i is the estimated sampling
variability of the OLS estimate for unit i. If, for example, T is small, as it may be
in practice, we would expect V̂i to be large and to dwarf the effect of the parameter
heterogeneity estimated by the first term.

The question is how to insure that our estimate of Γ is positive definite? Hsiao’s
(1986, 131–4) suggestion, building on Swamy, is to drop the second term in the estimate
of Γ, which seems to be the accepted practice.11 Thus we get the Hsiao estimator by
plugging this estimate of Γ into Eq 12. The rationale for this is asymptotic. The first
term of Eq 14 is of O(1) whereas the second term is O( 1

NT
). In words the first term does

not vanish as either N or T gets large since it is the estimate of the “true” parameter
variability. The second term is sampling variability, so as T get large our estimate bi

converge to their true values βi, so the second term in Eq 14 vanishes asymptotically in
T . Note that this fix is not correct in finite samples as it will tend to overestimate Γ.
The interesting question is how badly does this affect the estimate of Γ and does this
cause any problems in the estimates of βi? Since these are problems in finite samples we
will have to assess the claims using Monte Carlo simulations in Section 4.

As alluded to above, we might be concerned that Hsiao estimate of Γ will be too
large. If we look at the formula for β̂i, the larger is Γ̂, the less we shrink. We might want
to err the other way since high sampling variability is hardly evidence of heterogeneity
in the βi.. So another possible estimator which we will refer to as BKK (for Beck-Katz
kludge) is

Γ̂ = max

[
0,

1

N − 1

(
N∑

i=1

bib
′
i −Nbb

′
)
− 1

N

N∑
i=1

V̂i,

]
.

That is, we use the Swamy estimator that corrects for sampling when it is positive
definite; if not we set Γ̂ to zero (which means we are using the fully pooled OLS estimate
of βi). This will have a complicated sampling distribution, but may work well in practice
since it errs towards greater pooling. We will explore the finite sample properties of this
estimator in Section 4.

Bayesian and Maximum Likelihood Estimation

An alternative approach to two step FGLS estimate is a direct maximization of the
likelihood. This can form the basis of either classical (i.e., maximum likelihood) or

11This is how the RCM estimator is coded in both Stata and LIMDEP.
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Bayesian analysis. The log likelihood defined by our RCM model can be written as:

L(βi, σi, β,Γ) = K − T

2

N∑
i=1

ln(σ2
i )−

1

2

N∑
i=1

1

σ2
i

(yi − xiβi)
′(yi − xiβi)

− N

2
ln |Γ| − 1

2

N∑
i=1

(βi − β)′Γ−1(βi − β) (15)

where K is some constant. In practice, however, this will be very difficult to directly
maximize.

From a Bayesian prospective, the likelihood is combined with priors to generate pos-
terior distributions of the parameters. In this RCM model (also called a hierarchical
model in the Bayesian literature), the priors are specified only for β, Γ, and σ2

i ; these
then imply priors for the unit level parameters. In order to calculate the full posterior
distribution in this model in general one would have to use numerical methods.12 If we
only wish to estimate the mode of this distribution (which is all ML does), then Smith
(1973) gives a set of equations that define the mode of the posterior when the prior on
Γ−1 is a conjugate Wishart with independent conjugate inverse χ2 distributions as the
priors for the σ2

i . The resulting equations are:

β̃i =

(
1

σ2
i

x′
ixi = Γ−1

)−1(
1

σ2
i

x′
ixibi + Γ−1β̃

)
(16)

β̃ =
1

N

N∑
i=1

β̃i (17)

σ̂2 =
1

T + vi + 2
[viλi + (yi − xiβi)

′(yi − xiβi)] (18)

Γ̃ =
1

N − k − 2 + δ

[
R +

N∑
i=1

(βi − β)′Γ−1(βi − β)

]
(19)

where k is the number of regressors and R, vi, and λi are parameters that correspond to
the prior. To get uninformative priors, we can set vi = 0, λi = 0, and choose R to be a
diagonal matrix with small values, say 0.001. These equations can be solved iteratively
with initial starting values from the unit by unit runs. The iterations continue until the
parameter values converge.

The nice feature of Smith’s estimator is that with uninformative priors the posterior is
proportional to the likelihood. Hence, we can indirectly maximize the likelihood by using
Smith’s modal equations with uninformative priors. We will refer to these estimates as
Smith/Ml estimates. In practice, the estimate of Γ should be better then that of the two
stage estimator because by construction it is positive definite and uses all of the available

12The current way to do this is via Markov Chain Monte Carlo, as in Western (1998).
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information.13 Before examining the finite sample properties of the various estimators,
we discuss a variety of issues that are relevant to the use of all the RCM estimators by
political scientists.

3. ARE RCM ESTIMATORS A REASONABLE APPROACH?

Our basic query is, if RCMs are so good, why aren’t they used. One answer is that
if we are only interested in estimating the mean β, not the βi, then pooled OLS, as
we saw in Section 2, provides a consistent, although not fully efficient, estimate of the
hyperparameter, β. And of course the standard errors of the fully pooled OLS estimates
will be wrong, since they fail to account for unit to unit parameter heterogeneity. But it
well may be the case that the complexities of RCM estimation are not worth the bother
if we only care about the mean β. But comparative political scientists should care about
the βi, not just the mean β. For the rest of this paper, we assume that interest is in the
βi. Estimates based on the fully pooled model should be seen as one alternative way of
estimating βi.

While the various classical and empirical Bayes RCM estimators differ both in exact
specification and implementation, they are all similar in that they allow the data to
assess the heterogeneity in the parameters, and then use that empirical assessment of
heterogeneity to modify the unit by unit estimates. We refer to this class of estimators
as “shrinkage” estimators, since they shrink the unit by unit OLS estimates back to some
mean. We can also put fully Bayesian estimators with a “gentle” prior into this class,
since researchers using this approach (e.g. Western) are also attempting to let the data
“speak” as much as possible, with the prior, while necessary for using Bayesian methods,
having as small an impact as possible.14 All these approaches differ from those of the
“traditional” Bayesian who is actually willing to impose an informative prior on the data.

The latter is closest to Bartels’ fractional pooling. His approach is to try all different
priors (on the degree of fractional pooling), and present the locus of all results, either
allowing the reader to choose or finding that there are some results that are almost
invariant to choice of prior (or at least of choice of reasonable prior). In the TSCS case,

13We were not able to include the Pinheiro and Bates (2000) ML and restricted maximum likelihood
(REML) estimators because it was hard to see from their documentation exactly what they did. There is,
however, no reason to believe that the Pinheiro and Bates ML estimator is very different from the Smith
estimator. The REML estimator is used because many believe that ML underestimates variances. But,
as we have seen, political scientists should prefer model that underestimate variance, since overestimates
of variance leads to less shrinkage. But at this point this is conjectural, though the Monte Carlo evidence
in Section 4 supports this conjecture. If the Pinheiro and Bates and Smith estimators perform similarly,
researchers might prefer the convenience of using the Pinheiro and Bates estimator implemented in the
R package “nmle.”

14While analysts in this tradition usually simply assume a prior that is close to flat, it is unclear
whether the choice of prior influences final parameter estimates. Thus, in principal, these analysts ought
to present a series of nearly flat priors so that the reader is sure that the choice of prior has essentially
no impact.
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the analyst could impose a variety of priors reflecting belief in the homogeneity of the
units, and then either report results that seem consistent with most “reasonable” priors
or report the full range of results with different priors and allow the reader to choose. As
Bartels argued, whatever we do here is more defensible than standard practice, which is
to force the reader to see a model which assumes either full pooling or no pooling at all.
In the TSCS world, almost all results reported in print reflect the author’s very strong
prior of perfect pooling, a prior so strong that it is perfectly reflected in the reported
posterior estimates. Since this paper deals with the non-Bayesian approaches, we do not
pursue this idea here, though it does seem sensible.

The various RCM estimators take the OLS estimates of the βi, β̂i, and shrink them
back to the overall mean of these estimates, with each estimator varying in the degree
of shrinkage. Does such a procedure make sense. The key assumption here is exchange-
ability, that is all of the unit parameters are taken as draws from some distribution, and
it is irrelevant how the units are labeled. While this may make sense in some cases, it
may, in general, be less useful for TSCS data than for, say, panel analysis. In the latter
case, we know almost nothing about the units whereas in the former we generally know
a lot about them.

We have pursued elsewhere (Beck, 2001) the notion that almost all (perhaps all but
one) of the units are similar with one being rather different than the others. We there
suggested cross-validation (leaving out one unit at a time) to assess where one or more
units looked different from the majority of units. There we suggested the extreme position
of ignoring those different units, that is, in Bartels terms, giving them zero weight in a
fractional pooling scheme. But if one or more unit is really different, and we can justify
that theoretically as well as statistically, then it may well be better to drop that unit
from the analysis than to assume exchangeability. In the cited article, it appeared that
Japan was different from the other OECD nations in a standard political economy; theory
might also lead us to believe this. In any event, such an approach is different from the
RCM approach; both can be used with TSCS data.

We can combine the ideas that lie behind the exchangeability of the RCM and the
sharp distinctions inherent in the cross-validation approach by using some ideas inherent
in spatial econometrics (Anselin, 1988). The RCM assumes that all unit parameters
are just independent draws from some distribution while the cross-validation approach
assumes that some units are just completely different from the majority of other units.
But spatial analysis tells us that units are most likely to be similar to other units that
are “near” to them. In spatial analysis, “near” usually means geographically near, but
there is no reason why we could not use “near” in an economic sense. In this approach,
each β̂i would shrink not to b̄ but rather to a weighted average of the β̂i,

∑
i wiβ̂i where

the weights are prespecified and not estimated. If we take the weights as (rescaled) trade

between country i and j, we would then shrink β̂i towards
∑

j wijβ̂j. We have neither
implemented nor examined this approach, but it surely seems promising in the TSCS
comparative political economy context.
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Returning to the standard RCM shrinkage estimator, we note that analyst can make
a number of decisions which might improve matters. The standard RCM setup allows for
all coefficients to be random. But we might either believe that some parameters do not
vary by unit, or we might test and find such invariance, or, because a variable is used as
a control, we might not care about whether its parameter varies by unit. The RCM has
a lot of flexibility, and we know that, in general, too much flexibility can be problematic,
since the data can be used to fit some idiosyncratic in-sample properties of the data.
Thus it would seem to make sense to limit the number of random coefficients as much as
possible, fixing any where we are not interested in examining unit to unit variations in
the estimates. Thus, for example, it might be reasonable to fix the coefficient on a lagged
dependent variable, and the various economic controls, in a standard political economy
model (see, for example Alvarez, Garrett and Lange, 1991; Franzese, 2002; Garrett, 1998;
Iversen, 1999).

It should also be noted that the standard classical RCM estimators assume that the
βi are draws from a K-variate normal, which means that both K means and K(K−1)

2

covariances must be estimated.15 In empirical work, we have found that for large K (say
5 or more) that it is impossible to get reasonable estimates of the full 5 × 5 covariance
matrix whereas one can get reasonable estimates of the 5 separate sets of parameters
for the univariate normals. In this paper we only examine models with a single random
independent variable, so we provide no numerical results on this issue.

At this point we turn our inquiry to how the various estimators of RCM’s perform for
typical TSCS situations. Almost all published work in this area has involved asymptotics.
Given that we are working with TSCS data, the justification of hierarchical methods
with asymptotics in N is irrelevant to us. But the analysis of RCM methods looking
at asymptotic properties as T → ∞ is equally useless; with an infinite amount of data
per unit, the unit-by-unit OLS estimates are of course perfect and there is no need to
pool (or to inquire whether the data might pool, since with infinite observations we know
each coefficient perfectly and so unless they are identical, we will reject pooling). Thus
we need to look at Monte Carlo evidence on the performance of various RCM estimators
given the Ns and T s we observe in actual TSCS data sets.

4. MONTE CARLO EVIDENCE

Since the properties of the various RCM estimators are only of interest in finite
samples, we ran a series of Monte Carlo experiments varying model parameters over
what we consider to be reasonable ranges for typical TSCS data. The first question we
wish to answer is do the various implementations of RCM defined above shrink the unit
estimates enough to provide superior estimates to the two natural alternatives: unit by

15To get practical, both the LIMDEP and Stata implementations of the RCM only allow for the βi to
be multivariate normal. The more flexible R setup of Bates allows the user to specify that each of the
components of βi are draws from independent univariate normals.
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unit OLS and completely pooled OLS? The second question, given the large number of
potential candidates, is whether there is any consistent ordering among the estimators
to guide an applied researcher interested in using the RCM model. Note that all our
simulations were done under the best case for the various RCM estimators, in that the
data were generated exactly according to the RCM model.

These experiments presented here are similar in design to our earlier experiments
(Beck and Katz, 1995, 1996), and so we quickly go over the setup. We will consider the
case of only one regressor with a random coefficient and no constant term. The latter
corresponds to unit centering of all the data, and simplifies the presentation greatly.
Having a model with only one random coefficient must be the best case for any RCM
estimator; there are no issues of estimating covariances of two random coefficients, and
no issues of whether an estimator can discern randomness in one coefficient from that in
another. Thus we would expect RCMs in the real world to never perform better than
they do in these simulations.

The simulations consist of 1000 replications. Before the start of the replications we

drew the N × T regressors from xi,t
ind∼ N(0, σ2

x). By drawing the xi,t only once we are
able to simulate the case of fixed regressors, a standard assumption used in practice.
We could, of course, allow for more complicated structure to the regressors, but this
would just cloud the issue. Note that for all the experiments we set σ2

x = 0.01, this
value was chosen so that given our β = 5 and variance on the error terms, σ2

ε = 1, the
average t-statistic on the unit by unit OLS estimates would be approximately 2 when
T = 20. Then on each replication of the simulation we drew the N unit parameters from

βi
ind∼ N(β, γ). (Note that because we have only one random coefficient, Γ is scalar, and so

we denote it as γ.) For all of the experiments presented here β was fixed at a value 5. We

then generated the yi,t = βixi,t + εi,t where εi,t
ind∼ N(0, σ2

ε). This is the simplest possible
RCM model for TSCS data Again we could have included some sort of more complicated
covariance structure to the errors, perhaps adding contemporaneous correlation across
the units or unit level heteroskedasticity, but this would only make things worse for the
RCM estimators.

The only remaining issue is to specify the baseline to judge the various candidate
estimators. We will use the standard criterion, Mean-Squared Error (MSE). Formally
the MSE of a generic estimator θ̂ of some parameter θ is defined by

MSE[θ̂|θ] = E[(θ̂ − θ)2]

= Var[θ̂] + (Bias[θ̂|θ])2
(20)

In context of our simulations, if we let θ̂(j) be an estimate on replication j of the simulation
we can calculate

MSE =
1

1000

1000∑
j=1

(θ̂(j) − θ)2.
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We report the square root of MSE, RMSE, so that it is on the same scale as the
parameter. We compare the RMSEs of 6 estimators of βi: pooled OLS, unit by unit OLS,
the Hsiao estimator, our kludge (BKK) which sets the estimate of γ to zero whenever
the OLS sampling variance is higher than the total error variance, the Smith iterated
Bayesian estimator with an uninformative prior and the Stein rule shrinkage estimator.
We were not able to include the Pinheiro and Bates maximum likelihood and restricted
maximum likelihood estimators in the contest because of complexities in their code,
but since the Smith estimator is essentially maximum likelihood, we would expect the
Pinheiro and Bates ML estimator to perform similarly to the Smith estimator; we can
also get insight into their REML estimator, which they believe produces a more accurate
estimate of γ by making it larger. As we shall see, the problem is an overestimate of γ,
not an underestimate.
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Figure 1: Comparison of Root Mean Square Error for RCM estimators of βi as T varies
from 5 to 50. For all runs of the experiment N = 20, β = 5,

√
γ = 1.8, σ2

ε = 1,
and σ2

x = 0.01.

The key issue in estimating the RCM model is separating the sampling from system-
atic error. Accordingly, this gets easier as the sampling error get smaller. To see this,
consider the case where we knew the βi’s for sure. We could then estimate γ by calculat-
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ing its sample variance. We should expect to see all the RMSEs for all of the candidate
estimators monotonically decrease as sampling error declines. Our first experiment was
designed to see this effect.

There are several ways to decrease the sampling variation. We choose perhaps the
simplest method: increase T .16 For all of the runs of the experiment, we fixed N = 20,
β = 5,

√
γ = 1.8, σ2

ε = 1, and σ2
x = 0.01 and varied T over the range {5, 10, 20, 30, 40, 50}.

Note that in this setup there is a fair amount of parameter heterogeneity. We should
expect to see βi’s vary from a low of about 1.4 to a high of about 8.6. If we put this
in terms of an F -test of the null that the coefficients do not vary by unit, the average
F -statistic over the 1000 runs with T = 20 was 1.65. This, which given our degrees
of freedom, is approximately the 95% critical value for the F -distribution. Thus these
simulations are, for a typical T = 20, on average, ones where researchers deciding whether
to use pooled OLS or unpooled OLS would find themselves either just barely rejecting
or just barely not rejecting, the null hypothesis of pooling. Since the F -statistic was not
experimentally manipulated over the 1000 replications, the test statistic differed over the
replications, even when T = 20. More importantly, the F -statistic is lower for smaller
values of T and higher for larger values. Thus the portions of the Figure 1 where T < 20
consists largely of replications where researchers using a pre-test strategy would decide
to pool; when T > 20, researchers would reject the null hypothesis of pooling.17

The results are presented in Figure 1, which graphs the RMSEs for our six proposed
estimators over the six treatments. As expected RMSE declines for all of the estimators
as T increases. Unit by unit OLS (and the Stein rule shrinkage estimator, which closely
approximates unit by unit OLS) perform poorly for smaller T s, and only catches the
pooled estimators when T > 32. Note that researchers using a pre-test strategy would
stop pooling when T > 20; if they switch to unit by unit OLS at T = 20, our simulations
indicate that they will have chosen an inferior strategy. We have not directly investigated
the properties of a pre-test estimator (combining pooled and unit by unit OLS), but these
simulations indicate that researchers should pool beyond the point where the critical 95%
value of the F -statistic indicates that pooling should be rejected.

While the fully pooled OLS estimator is never really strongly outperformed by any of
the RCM estimators in our study, it is only better than those estimators when T < 10.
At that point, both the Smith Bayesian estimator with uninformative prior and our own
BKK kludge do better than pooled. OLS. Both these estimators outperform Hsiao; the
latter does catch up to the two other RCM estimators (for T > 30, but it never surpasses

16In our simple case Var[βi] = σ2
ε

Tσ2
x
. Hence we could lower sampling variance also by decreasing σ2

ε or
increasing σ2

x. However, since we don’t worry about the distribution of our regressors or errors much in
practice we choose to look at sample size.

17Since all the F -statistics have 19 degrees of freedom in the numerator (N = 20), and 100 or more
degrees of freedom in the denominator, the 95% critical values of F range from 1.7 to 1.6. In the
experiments, the average F -statistic is 1.2 when T = 5, 1.3 when T = 10, 1.65 when T = 20, 1.9 when
T = 30, 2.3 when T = 40 and 2.6 when T = 50. Thus researchers using a pre-test strategy would clearly
used the pooled OLS estimator until T > 20 and clearly reject pooling if T > 20.
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them.18

To better see what is happening, we can look at how the various estimators estimate γ.
Since neither Stein rule nor the OLS estimators produce an estimate of γ, we only compare
the three RCM estimators. This comparison is done under the identical conditions to the
experiments which generated Figure 1. Figure 2 shows how the three RCM estimators
perform in their estimate of γ.
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Figure 2: Comparison of Root Mean Square Error for RCM estimators of γ as T varies
from 5 to 50. For all runs of the experiment N = 20, β = 5,

√
γ = 1.8, σ2

ε = 1,
and σ2

x = 0.01.

As in Figure 1, BKK and Smith perform similarly. They both improve rapidly as T
increases to 10, and then improve very slowly as T continues to grow. Both estimators
outperform Hsiao, with the poor performance of Hsiao being greatest, not surprisingly,

18If T is large enough, then OLS sampling variance is small enough so that neglecting it, as the Hsiao
estimator does, is no longer terrible. But as T gets large, the BKK kludge never has to set the γ estimate
to zero to avoid a negative variance. Thus, for large T , Hsiao and BKK converge. For the conditions of
this experiment, convergence occurs at about T = 30. Thus for T > 30, any of the three RCM estimators
appear to be acceptable.
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for smaller T s. But Hsiao continues to do worse at estimating γ even as T grows to 50,
though, as expected, the gap between Hsiao and the other two estimators decreases.

To get a better idea of why the various RCM estimators perform so poorly, we present
a density plot of the estimates of γ in Figure 3. These are for the case where T = 20,
γ = 1 and other parameters as in the first set of experiments. We choose γ = 1 here
to obtain a fairly homogeneous set of units, which is a hard case for the RCM. As can
be seen almost all of the estimators produce a series of estimates of γ which have modes
larger then the true value of 1. This can be seen most clearly for the Hsiao estimate
that has no density at the true value; all of the mass is above it. Remember that Hsiao
errs by assuming the sample variation of the OLS estimates to be zero; this is done to
make the estimate of Γ positive definite (or in our case of a scalar γ, positive). If we
simply leave the sample variance of the OLS estimates in the estimate of γ, we have
another plausible estimator, suggested by Swamy. But we see that about half the time
this yields a negative estimate for γ, which makes no sense (γ is a variance). Our BKK
performs a bit better. The mode is below 1 and by construction has all its mass is above
zero, but there are still a sizable number of runs with very large estimates. Lastly, the
Smith iterative estimator — which in this case is the ML estimate — looks the best.
The mode is almost on the true value, as expected for a ML estimator, but we still see
there is a lot of mass above 1. The distribution is skewed right. On these runs, which
overestimate γ, we are under-shrinking and getting poor performance in all of the various
RCM estimators.

The surprising result from the first experiment was how well the pooled OLS per-
formed, at least for T < 30, but with non-negligible coefficient variability. A natural
question to ask is how large must the variation in βi get before pooled OLS fails because
it is over shrinking the data. To explore this we ran another set of simulations similar to
the first, but now we have fixed T = 20 and we let

√
γ vary from 0 to 5.19 The results

can seen in Figure 4. As in our first experiment, an F -test of the null hypothesis that
the pooled model is correct would be rejected when

√
γ > 1.8. RMSEs for the various

estimators (for βi) are in Figure 4; RMSEs for estimates of γ are in Figure 5.

As before, Stein rule and unit by unit OLS are very similar. While the Stein rule
shrinkage estimator slightly outperforms unit by unit OLS for all values of γ, the ad-
vantage of the Stein rule over unit by unit OLS is negligible, and disappears almost
completely as γ gets larger. Pooled OLS outperforms unit by unit OLS until

√
γ > 2.3.

As before, this is well beyond the point where pre-test oriented researchers would reject
pooled OLS. Pooled OLS outperforms both Hsiao and Smith until

√
γ = 1.8, which is

exactly where the null hypothesis of pooling would just barely be rejected. As
√

γ grows
beyond 1.8, the disadvantage of pooled OLS as compared to any of the RCM estimators
grows. But as

√
γ grows from just under 2 to 5, the advantage of the RCM estimators

over unit by unit OLS declines.

19The x-axis of the graph, and our discussion, is in terms of
√

γ, that is, standard deviations rather
than variances.
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Figure 3: Density plots of the RCM estimators of γ for the case of N = 20, T = 20
β = 5, γ = 1, σ2

ε = 1, and σ2
x = 0.01.

Our kludge, BKK, performs almost as well as pooled OLS when
√

γ < 1.8, and as
well or slightly better than the other RCM estimators when

√
γ > 1.8.20 At least for this

set of experiments, BKK dominates the other two RCM estimators, with any of the RCM
estimators dominating unit by unit OLS estimator. Unpooled OLS is only saved from
domination by very homogeneous data, where

√
γ < 1.3. But even here, the advantage

of unpooled OLS over BKK is not great. While it appears that one could do well via a

20Again, as γ grows, the OLS sampling variance declines relative to γ, so the Hsiao estimator improves
with γ.
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Figure 4: Comparison of Root Mean Square Error for RCM estimators of βi as
√

γ varies
from 0 to 5. For all runs of the experiment N = 20, T = 20, β = 5, σ2

ε = 1,
and σ2

x = 0.01.

pretest of the null of pooling and then choosing either pooled OLS or any of the RCM
estimators based on whether or not the null is rejected, one can do just about as well
with BKK. Note that since both the pre-test estimator and BKK do not have smooth
likelihoods, the exact properties of either estimator are hard to derive. The similarity
of a pre-test strategy and BKK should not be very surprising, since BKK is a pre-test
estimator, but one where the pre-test is hidden a bit.

Turning now to the estimation of γ, the results in Figure 5 are similar to those in
Figure 2. For large enough γ the three RCM estimators will perform similarly; but for√

γ < 5, the Hsiao estimator provides a much worse estimator of γ than do either of
the other two RCM estimators. As previously, the performance of Smith and BKK in
estimating γ is very similar.

This section has only presented two sets of experiments, and clearly many more need
to be done before we can draw firm conclusions about which estimators should be used.
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Figure 5: Comparison of Root Mean Square Error for RCM estimators of γ as
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γ varies
from 0 to 5. For all runs of the experiment N = 20, T = 20, β = 5, σ2
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What is clear is that pooled OLS is often a good choice, even where statistical tests
reject the null of pooling. It is also clear that the Stein rule shrinkage estimator we
have implemented does not shrink the unit by unit OLS estimates enough. Given our
experiments, BKK and Smith seem to perform well over a range of circumstances, and
both seem to perform similarly over that range. Whether this is borne out in other
experiments remains to be seen.21 If it is, then researchers will have to choose between
the computational simplicity of BKK, but with its difficult statistical properties, versus
the more computationally difficult Bayesian estimator of Smith, but one whose Bayesian
heritage makes is statistical properties well understood. We would not want to make this
difficult choice without further Monte Carlo experimentation. But at this point, these
two estimators, or a pretest estimator using pooled OLS if we fail to reject pooling, appear

21We should also stress that the experiments were performed under assumptions that make the best
case for RCMs. We do not know, for example, how RCMs would perform if we allowed for more than
one random coefficient, or if we allowed those to covary, or even how random coefficients coexist with
random effects.
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to be the relevant competitors. While we have not examined the maximum likelihood
methods of Pinheiro and Bates, the analysis presented in Section 2 leads us to believe
that the full maximum likelihood estimator will perform similarly to Smith’s Bayesian
estimator. If this is the case, we might choose the Pinheiro and Bates method since it
is already nicely implemented in R; alternatively we might prefer the Bayesian approach
because of its good heritage (and our ability to examine sensitivity of results as we change
priors, a subject we return to in the conclusion).

5. EMPIRICAL APPLICATION

To get some feeling for how RCMs work with real data, we look at the Garrett (1998)
model of the political economy determinants of economic performance and policy, and
specifically his model for the growth of GDP that we have analyzed elsewhere.22 Garrett
is interested in whether the interaction of labor centralization and left control of the
government predicts economic growth (so that fastest growth is observed in nations with
both left governments (LEFT) and centralized labor bargaining (LABOR). In addition to
these three variables (the interaction and its two linear components), he includes three
economic controls, lagged growth, oil dependence and overall economic growth in the
OECD (trade weighted). Garrett also includes country fixed effects and four variables
indicating different interesting time periods. The model is estimated using annual data
on 14 OECD countries from 1966–90, so N = 14, T = 25.

Estimates of the Garrett model, without fixed effects are in Table 1. Fixed effects are
omitted because it is hard, as noted above, to discern in this model whether unit to unit
variation is due to variations in intercepts or coefficients. The model is estimated with
straight OLS assuming full pooling.23 The economic variables have the expected sign,
and the hypothesis that nations with left governments and centralized bargaining grow
faster is upheld.

We can examine whether the coefficients on LEFTxLABOR vary by country by mov-
ing to an unpooled model where we add the interaction of LEFTxLABOR and 13 country
dummies (omitting the US) to the specification. An F -test on whether these 13 addi-
tional interactions are needed in the specification (that is, on the null hypothesis of full
pooling) yields an F -statistic 4.50 with 13 and 326 degrees of freedom. Since the P -value
of this statistic is zero to four decimal places, we can easily reject the null hypothesis

22This model is analyzed in a variety of ways in Beck (2001). To get ahead of ourselves, but to be fair,
in that paper, as here, we found that Japan looked different from the rest of the countries modeled, using
either cross-validation or simple fixed or random effects. Here we also find that Japan is different in a
coefficient of interest. While this example serves our needs for this paper, the appropriate substantive
conclusion is probably that one should model Japan separately, rather than use an RCM. But the RCM
analysis presented here is relevant to some points we make in this paper.

23We not use PCSEs since we not now know how to incorporate PCSEs into the RCM framework.
This is an illustration of Stimson’s law, that one can solve only one interesting methodological problem
in any given analysis.
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Table 1: Garrett model of economic growth in 14 OECD nations, 1966–1990

OLS

Variable β̂ SE
GDPL .25 .05
OIL −3.68 4.36
DEMAND .37 .10
LABOR −.65 .28
LEFT −.95 .35
LEFTxLABOR .26 .11
PER6673 1.29 .58
PER7479 −.05 .59
PER8084 −.62 .61
PER8690 −.17 .59
CONSTANT 3.68 .89

of full pooling. The OLS estimates of the βi for the LEFTxLABOR interaction coeffi-
cients are in Table 2; these are obtained by adding to the basic Garrett specification all
14 interactions of LEFTxLABOR with the country dummies while dropping the linear
LEFTxLABOR term.

None of the coefficients, other than for Japan, are statistically significant. Clearly the
coefficient for Japan is larger than that of the other countries, and the other countries
appear to have relatively homogeneous coefficients. Note that the non-Japan coefficients
are not generally smaller than the coefficient in the fully pooled model; rather the stan-
dard errors in the unpooled model are large (because of multicollinearity) and hence it
is hard to say much about these coefficients. Thus the unpooled analysis tells us that
the Japanese coefficient on LEFTxLABOR is considerably larger than any of the other
country’s coefficient on that variable, and little else.

The random coefficients model, which assumes that βi = β + γi, where γi is indepen-
dent of all the model variables seems like it might solve the multicollinearity problem. An
RCM, with only the coefficient on LEFTxLABOR being random, was estimated using
the Pinheiro and Bates REML routines in R.24

The RCM estimate for the mean LEFTxLABOR coefficient is .26 with a standard
error of .11. This estimate is almost identical to the corresponding OLS estimate. The
estimated standard deviation of the random coefficients around this mean is .24 (with a
confidence interval of .11 to .51). A test of whether we can reject the null hypothesis of the
pooled model against the alternative of the RCM (which has one additional parameter)
allows us to reject the null that all coefficients are fixed with a likelihood ratio statistic

24Results were similar, but not identical with full maximum likelihood, with statistics varying by about
10% between the two methods. We used REML here because this is what most applied researchers use.
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Table 2: Comparison of estimated unpooled and random coefficient of LEFTxLABOR
by country, Garrett model of economic growth in 14 OECD nations, 1966–1990

Unpooled RCMa

Country β̂i SE β̂i

US .52 .43 .00
Canada .40 .34 −.01
UK .13 .28 −.19
Netherlands .07 .30 −.23
Belgium .17 .24 −.14
France .32 .51 −.06
Germany .32 .22 −.01
Austria .28 .17 .00
Italy .37 .23 .05
Finland .36 .21 .04
Sweden .24 .18 −.05
Norway .29 .21 −.01
Denmark .23 .20 −.07
Japan 1.65 .38 .69

aDeviations from β̂ = .26, SE= .11
SE of random effects is .24

of 6.23; with one degree of freedom, this yields a P -value of just over .01.

The right column of Table 2 contains estimates of the deviations of the country
coefficients from the overall mean β; since these deviations are assumed to be draws
from the same normal with zero mean and standard deviation .24, they can be evaluated
by common normal methods. As in the unpooled model, all the country coefficients
appear homogeneous except that of Japan, which is considerably higher than the other
country coefficients. The difference between the Japanese coefficient and the others is
both statistically and substantively significant.

What can we say based on this one example?25 Either analysis tells us that Japanese
coefficient is much larger than the others, with the RCM “shrunk” coefficient being a
somewhat smaller than the unshrunk unpooled OLS coefficient. The RCM has the ad-
vantage of being able to examine coefficient variation across countries while still allowing
for estimation of the overall mean effect. This is a nice advantage. But the advantage
here is not great; either approach tells us that one country’s coefficient is out of line

25This example is far from ideal, since Japan does not fit the overall model in many ways. We have
searched for other examples, but have found no especially compelling examples where RCMs produce
stunning results. We would be happy to hear of examples where RCMs are useful, or to receive TSCS
data sets where analysts think they might be useful.
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with the others. Thus, consistent with what we have previously said, the RCM does not
appear to provide any magic bullets for this analysis.

6. CONCLUSION

There is little doubt, as Western noted, that the RCM should appeal to comparativists
who are not so naive as to assume that all countries are identical but who are sufficiently
committed to statistical analysis that they cannot assume that all observations are sui
generis. The RCM appears to offer the analyst a flexible middle position. And it appears
as though we can allow the data to tell us just how heterogeneous the units are.

As noted, Bruce Western’s analysis appears to be the only political science application
of RCMs to TSCS data (that we know of), and that one appears to be largely for didactic
purposes. So we must ask why RCMs have seen so little usage, and should they be used
more? We stress that we only deal here with TSCS data and make no claims about
either panel data or the fractional pooling approach recommended by Bartels (or about
Bayesian approaches in general).

Our Monte Carlo analysis indicates that the assumption of pooling leads to reasonably
good estimates, not just of the overall model parameters, but also of the individual unit
parameters. When there is a lot of unit to unit parameter heterogeneity the pooled
model does become inferior. But it takes a non-trivial amount of heterogeneity before this
happens. Taking advantage of the law of large numbers and the central limit theorem is a
good thing, and the pooled model surely does that. Obviously with enough information,
the unit by unit estimates become good, but it takes an atypical amount of information
before that becomes the case.

The Monte Carlo analyses reported also indicate that the standard GLS RCM esti-
mator due to Hsiao, the one implemented in some common packages used by political
scientists, perform poorly. Since most political scientists use standard packages, there is
every reason to believe that those who have tried RCMs using, say, Stata or LIMDEP
have given up because the RCM estimators in those packages perform so poorly. Our sim-
ulations indicate the a maximum likelihood (i.e., Bayesian estimator with uninformative
priors) or a kludge of our own, seems to perform well.

Finally, even if comparativists are not so naive as to assume complete homogeneity,
those who do statistical analysis usually believe that the units under analysis are probably
not too heterogeneous (whatever that means). And they clearly understand the benefits
in both interpretation and reporting of pooled models over their not fully pooled brethren.
Thus, for example, the gains from using a fully pooled model would, to our minds, justify
a pre-test estimator where we first test the null of homogeneity and then estimate a fully
pooled model unless that null hypothesis is rejected. Our simulations indicate that if
this strategy is used that researchers ought to use pooled models beyond the point where
the standard F-test for pooling rejects the null of complete pooling. At present we do
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not have a recommendation for when researchers should reject pooling. Our simulations
do indicate that a pretest strategy with subsequent use of either the fully pooled or
completely unpooled model is not much worse than the sophisticated RCM models. The
simpler strategy also allows researchers to use well known methods, and methods that
combine well with other complicated methods; those who commit to even a good RCM
program, such as that of Bates which is implemented in R, are foreclosed from many
options. Thus, in particular, the RCM would make it impossible for researchers to
compute PCSEs; it would also make it impossible for them to use spatial methods.
Either are easy in the OLS context.

A solution to this problem may be that we have to allow ourselves more judgment.
If we as political scientists really believe that the units are relatively homogeneous, we
can impose that in our priors. But if move from being either empirical Bayesians or
Bayesians with very gentle priors, we of course run the risk of others doubting our work
because they disagree with our priors. The solution here, as suggested by Bartels, is
that we provide a variety of results, allowing our priors to vary. It may be that the
Bayesian estimates vary a lot with choice of prior, in which case we have to worry about
which prior we believe. But it may be the case that over a wide range of priors, which
many analysts would accept, we would find roughly similar conclusions. This is surely an
avenue worth exploring. Truly Bayesian RCMs may require more judgment than either
classical or data driven Bayesian methods allow for, but perhaps this is not bad. That
conjecture must be for another paper.

29



REFERENCES

Alvarez, R. Michael, Geoffrey Garrett and Peter Lange. 1991. “Government Partisanship,
Labor Organization, and Macroeconomic Performance.” American Political Science
Review 85:539–56.

Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. Boston: Kluwer Aca-
demic.

Bartels, Larry M. 1996. “Pooling Disparate Observations.” American Journal of Political
Science 40:905–42.

Beck, N. 2001. “Time-Series–Cross-Section Data.” Statistica Neerlandica 55:110–32.

Beck, Nathaniel and Jonathan N. Katz. 1995. “What To Do (and Not To Do) with
Time-Series Cross-Section Data.” American Political Science Review 89:634–47.

Beck, Nathaniel and Jonathan N. Katz. 1996. “Nuisance vs. Substance: Specifying and
Estimating Time-Series–Cross-Section Models.” Political Analysis 6:1–36.

Bryk, A. S. and S. W. Raudenbush. 1992. Hierarchical Linear Models, Applications and
Data Analysis Methods. Thousand Oaks: Sage.

Franzese, R. J. 2002. The Political Economy of Macroeconomic Policy in Developed
Democracies. New York: Cambridge University Press.

Garrett, Geoffrey. 1998. Partisan Politics in the Global Economy. New York: Cambridge
University Press.

Hildreth, C. and C. Houck. 1968. “Some Estimates for a Linear Model with Random
Coefficients.” Journal of the American Statistical Association 63:584–95.

Hsiao, Cheng. 1986. Analysis of Panel Data. New York: Cambridge University Press.

Iversen, Torben. 1999. Contested Economic Institutions: The Politics of Macroeconomics
and Wage Bargaining in Advanced Democracies. New York: Cambridge University
Press.

James, W. and C. Stein. 1961. Estimation with Quadratic Loss. In Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability. Vol. I pp. 361–
79.

Judge, G. and M. Bock. 1978. The Statistical Implications of Pre-Test and Stein Rule
Estimators in Econometrics. New York: North-Holland.

Judge, George, W. E. Griffiths, R. Carter Hill, Helmut Lütkepohl and Tsoung-Chao Lee.
1985. The Theory and Practice of Econometrics. Second ed. New York: Wiley.

30



Maddala, G. S. and Wanhong Hu. 1996. “The Pooling Problem.” In The Econometrics
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