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Self-correcting Information Cascades1

Jacob K. Goeree, Thomas R. Palfrey, Brian W. Rogers, and Richard D. McKelvey2

Abstract

In laboratory experiments, information cascades are ephemeral phenomena, collapsing soon after
they form, and then reforming again. These formation/collapse/reformation cycles occur fre-
quently and repeatedly. Cascades may be reversed (collapse followed by a cascade on a different
state) and more often than not, such a reversal is self-correcting: the cascade switches from the
incorrect to the correct state. Past experimental work focused on relatively short horizons, where
these interesting dynamics are rarely observed. We present experiments with a longer horizon,
and also investigate the effect of signal informativeness. We propose a theoretical model, based
on quantal response equilibrium, where temporary and self-correcting cascades arise as equilib-
rium phenomena. The model also predicts the systematic differences we observe experimentally
in the dynamics, as a function of signal informativeness. We extend the basic model to include
a parameter measuring base rate neglect and find it to be a statistically significant factor in the
dynamics, resulting in somewhat faster rates of social learning.
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“Those who err in mind will know the truth,” Isaiah 29:241

1. Introduction

In an information cascade, a sequence of imperfectly informed decision makers each of whom

observes all previous decisions, quickly reach a point at which they rationally ignore their private

information. Hence, after a few decisions, learning ceases as subsequent decision makers infer

nothing new from observing any of the actions. Information cascades are predicted to occur de-

spite the wealth of information available and despite the common interest of all decision makers.

This result, if robust to variations in the basic model, has obvious and pernicious implications

for economic welfare, and raises problematic issues for various applications of mass information

aggregation, such as stock market bubbles and crashes, bank runs, technology adoption, mass

hysteria, and political campaigns.

In this paper, we reconsider the canonical model of information cascades for which some

laboratory data (from short sequences) exist, see Anderson and Holt (1997) henceforth denoted

by AH.2 There are two equally likely states of nature, two signals, two actions, and T decision

makers. Nature moves first and chooses a state, and then reveals to each decision maker a private

signal about the state. The probability a decision maker receives a correct signal is q > 1/2

in both states of the world. Decision makers choose sequentially, with each decision maker

observing all previous actions (and her private signal). A decision maker receives a payoff of 1

if she chooses the correct action and 0 otherwise. In this environment, learning never progresses

very far in a Nash or Sequential Equilibrium. In fact, regardless of T , the beliefs of all decision

makers before considering their private information (or, equivalently, the beliefs of an external

observer) are confined to a narrow interval centered around the initial prior.

In previous experimental data, however, there are numerous and repeated action choices

that are inconsistent with Nash equilibrium given the realized signals, by nearly all subjects.

1New American Standard Bible (1962).
2Subsequent studies by Anderson (2001), Hung and Plott (2001), Domowitz and Hung (2003), Nöth and

Weber (2003), and others replicate the AH findings and include additional treatments.
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q = 5/9 q = 5/9 q = 6/9 q = 6/9

T = 20 T = 40 T = 20 T = 40

# sequences 116 56 90 60

# sequences with pure cascades 5 0 12 8

# sequences without cascades 0 0 0 0

# sequences with broken cascades 111 56 78 52

Table 1. Percentages of (broken) cascades in our data.

AH observe that in their experiment with q = 2/3 and T = 6, more than 25% of the time

subjects make a choice against the cascade after receiving a contradictory signal. And nearly

5% of subjects who receive a signal consistent with the cascade choose the opposite action. In the

experiments reported below we vary the signal precision, q = 5/9 and q = 6/9, and the number

of decision makers, T = 20 and T = 40. With this many decision makers we should observe

cascades arising in 100% of the sequences according to the theoretical model of Bikhchandani,

Hirschleifer, and Welch (1992). However, with T = 40, for instance, a cascade arises and persists

in only 8 out of 116 sequences (< 7%).

Table 1 indicates a few ways in which the standard theory misses badly. At a minimum,

a reasonable theory should explain two systematic features of the data. First, off-the-Nash-

equilibrium-path actions occur with significant probability. The theory as it stands does not

place adequate restrictions off the equilibrium path. Second, deviations from equilibrium are

systematic, indicating that such behavior is informative! Why? Because going off the equilibrium

path (i.e., choosing an action opposite to the cascade) happens much more frequently if the player

received a signal contradicting the cascade choices, see Table 2. Indeed, when a break occurs,

the observed frequency with which the received signal was contradictory is 84%.3 This should

come as no surprise as a deviation following a confirmatory signal is a worse deviation (e.g., in

terms of expected payoffs, and also intuitively) than a deviation following a contradictory signal.

3When averaged over the four treatments. In the (q = 5
9 , T = 20), (q = 5

9 , T = 40), (q = 6
9 , T = 20), and

(q = 6
9 , T = 40) treatments the numbers are 87%, 78%, 87%, and 82% respectively.
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Table 2. Frequency of confirmatory/contrary signals when cascades are (not) broken.

An alternative approach to the perfect Bayesian equilibrium is to consider models which

admit a random component to behavior. The introduction of a random component ensures that

all paths can be reached with positive probability, so Bayes’ rule places restrictions on future

rational inferences and behavior when a deviation from a cascade occurs. We consider such a

model, quantal response equilibrium (QRE), where deviations from optimal play occur according

to a statistical process and players take these deviations into account when making inferences

and decisions. In a QRE, deviations or mistakes are payoff dependent in the sense that the

likelihood of a mistake is inversely related to its cost.4 We demonstrate that QRE predicts the

temporary and self-correcting nature of cascades and also predicts the systematic differences we

observe experimentally in the dynamics, as a function of signal informativeness.

The remainder of the paper is organized as follows. Section 2 presents the basic model and

theoretical results. Section 3 describes the experimental design. Section 4 contains an analysis of

the data. Section 5 presents an econometric analysis of the basic model and develops extensions

to better explain the data. Section 6 discusses efficiency properties and section 7 concludes.

Appendix A contains proofs and Appendix B contains a program for estimation and estimation

results.

4We only consider monotone quantal response equilibrium, where choice probabilities are monotone in expected
utilities, see McKelvey and Palfrey (1995, 1998).
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2. The Basic Model

There is a finite set T = {1, 2, . . . , T} of agents who sequentially choose between one of two

alternatives, A and B. For each t ∈ T let ct ∈ {A,B} denote agent t’s choice. One of the

alternatives is selected by nature as “correct,” and an agent receives a payoff of 1 only when

she selects this alternative, otherwise she gets 0. The correct alternative (or state of the world),

denoted by ω ∈ {A,B}, is unknown to the agents who have common prior beliefs that ω = A

or ω = B with probability 1
2
. Further, they receive conditionally independent private signals st

regarding the better alternative. If ω = A then st = a with probability q > 1/2 and st = b with

probability 1− q. Likewise, when ω = B, st = b with probability q and st = a with probability

1− q.

We will be concerned with the evolution of agents’ beliefs, and how these beliefs co-evolve

with actions. Agent t observes the actions of all her predecessors, but not their types. Thus a

history Ht for agent t is simply a sequence {c1, . . . , ct−1} of choices by agents 1, · · · , t− 1, with

H1 = ∅. Agents care about the history only to the extent that it is informative about which

alternative is correct. So let pt ≡ P (ω = A|Ht) denote the (common knowledge) posterior belief

that A is correct given the choice history Ht, with p1 ≡ 1
2
, the initial prior. We first determine

agent t’s private posterior beliefs given the public beliefs pt and given her signal st. Applying

Bayes’ rule shows that if st = a, agent t believes that alternative A is correct with probability

πa
t (pt) ≡ P (ω = A|Ht, st = a) =

q pt

q pt + (1− q)(1− pt)
. (2.1)

Likewise,

πb
t (pt) ≡ P (ω = A|Ht, st = b) =

(1− q)pt

(1− q)pt + q(1− pt)
(2.2)

is the probability with which agent t believes that A is correct if her private signal is st = b.

A direct computation verifies that πa
t (pt) > pt > πb

t (pt) for all 0 < pt < 1. In other words, for

any interior public belief an agent believes more strongly that ω = A after observing an a signal

than after observing a b signal.
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2.1. Nash Equilibrium

Following Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992) we first discuss

optimal behavior under the assumption that full rationality is common knowledge. Given that

each agent’s private information is of the same precision, and the initial prior puts equal mass

on both states, indifference occurs with positive probability resulting in a multiplicity of sequen-

tial equilibria.5 This multiplicity is potentially relevant for interpreting data from information

cascade experiments, since the restrictions on action sequences are minimal. Indeed, below we

illustrate how any action sequence is consistent with some sequential equilibrium for some se-

quence of signals. For field data, where signals cannot be directly observed, this means there are

essentially no restrictions imposed by the Nash equilibrium. Furthermore, implications about

behavior off the equilibrium path are quite ambiguous.

As an example to see that any action sequence is consistent with equilibrium, suppose the

following sequence of actions is observed in the first four periods of an information cascade game:

{A,A, A, B}. What (outsider) posterior beliefs are consistent with these actions if we assume

they are generated by equilibrium behavior? There are three restrictions derived from equilib-

rium behavior that drive possible beliefs. The first is that player 1 must have observed signal

a. Next the second and third players must have been using strategies that are uninformative

(follow player 1 regardless of signal, which is a weak best response), otherwise choosing action

B could not have been optimal for player 4. Third, since the intervening A choices by players

2 and 3 were uninformative, player 4 must have observed a b signal. Notice that extending this

argument implies that, for an outsider who cannot observe the private information of the players,

any sequence of actions is consistent with some equilibrium for some realization of signals. For-

tunately, with experimental data, the outside observer (i.e., the experimenter) has the luxury of

observing both signals and actions, and hence can place some restrictions on the data, although

these restrictions are limited.6

5This multiplicity is non-generic and occurs because of the symmetric information structure (uniform prior,
symmetric signal technology).

6The above argument also holds for Perfect Bayesian Equilibrium and Sequential Equilibrium since these
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The multiplicity of equilibria disappears when indifferent players follow their signal with

non-zero probability, no matter how small. In this case, the “pure cascade” Nash equilibrium

identified by Bikhchandani, Hirshleifer and Welch (1992) is the only equilibrium.7

The pure cascade Nash equilibrium works as follows.8 The first agent chooses A if s1 = a,

and chooses B if s1 = b, so that her choice perfectly reveals her signal. If the second agent’s

signal agrees with the first agent’s choice, the second agent chooses the same alternative, which

is strictly optimal. On the other hand, if the second agent’s signal disagrees with the first agent’s

choice, the second agent is indifferent, as she effectively has a sample of one a and one b. Rather

than making a specific assumption, suppose she follows her signal with some probability β ≥ 1
2
.

The third agent faces two possible situations: (i) the choices of the first two agents coincide,

or (ii) the first two choices differ. In case (i), it is strictly optimal for the third agent to make

the same choice as her predecessors, even if her signal is contrary. Thus her choice imparts no

information to her successors, resulting in the onset of a cascade. The fourth agent is then in

the same situation as the third, and so also makes the same choice, a process which continues

indefinitely. In case (ii), however, the choices of the first two agents reveal that they have

received one a signal and one b signal, leaving the third agent in effectively the same position as

the first. Her prior (before considering her private information) is 1
2
, so that her signal completely

determines her choice. The fourth agent would then be in the same situation as the second agent

described above, et cetera.

One quantity of interest is the probability that “correct” and “incorrect” cascades have

formed after a particular number of choices. After the first two choices, the probabilities of a

correct cascade, no cascade, and an incorrect cascade are

q(1− β(1− q)) , 2βq(1− q) , (1− q)(1− βq) ,

refinements do not rule out indifferent players always following the cascade.
7In fact, the trembling-hand perfect equilibrium selects a unique equilibrium in which indifferent players follow

their signal with probability 1.
8As we will see, most data are not consistent with this “pure cascade” Nash equilibrium. In fact, most

sequences of choices observed in the laboratory are not consistent with any Nash equilibrium.
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respectively. More generally, after 2t choices, these probabilities are

q(1− β(1− q))
(1− (2βq(1− q))t

1− 2βq(1− q)

)
, (2βq(1− q))t , (1− q)(1− βq)(

1− (2βq(1− q))t

1− 2βq(1− q)

)
.

Taking limits as t approaches infinity yields the long run probabilities of the three regimes.

First note that the probability of not being in a cascade vanishes as t grows. The probability

of eventually reaching a correct cascade is q(1−β(1−q))
1−2βq(1−q)

, and the complementary probability of

eventually reaching an incorrect cascade is (1−q)(1−βq)
1−2βq(1−q)

.9 Once a cascade has formed, all choices

occur independently of private information, and hence public beliefs remain unchanged. The

points at which public beliefs settle are the posteriors that obtain after two consecutive choices

for the same alternative, beginning with uninformative priors.

2.2. Quantal Response Equilibrium

We now describe the logit quantal response equilibrium (QRE) of the model described above.

In the logit QRE, each individual t privately observes a payoff disturbance for each choice,

denoted εA
t and εB

t . The payoff-relevant information for agent t is summarized by the difference

εt ≡ εA
t − εB

t . Denote agent t’s type by θt = (st, εt). The logit specification assumes that the

εt are independent and obey a logistic distribution with parameter λ.10 The disturbance, εt,

can be interpreted is several different ways. For example, it could represent a stochastic part

of decision making due to bounded rationality, or it could be an individual-specific preference

shock that occurs for other reasons. Irrespective of the interpretation of the noise, the resulting

logit choice model implies that the stronger the belief that A is correct, the more likely action

A is chosen. The logit QRE model assumes that the distribution of the payoff disturbances is

common knowledge.11 The logit QRE is calculated as the sequential equilibrium of the resulting

game of incomplete information, where each player observes only her own type θ = (s, ε).

9Thus as q increases from 1
2 to 1, the probability of eventually reaching a good cascade grows from 1

2 to 1.
10This arises, when εA

t and εB
t are i.i.d. extreme-value distributed.

11In general, the distributions of payoff disturbances in a logit QRE need not be the same for every decision
maker, but these distributional differences would be assumed to be common knowledge.
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It is straightforward to characterize the optimal decision of agent t given her type θt and the

history Ht (which determines public beliefs pt). The expected payoff of choosing A is πst
t (pt)+εt,

and that of selecting alternative B is 1− πst
t (pt). Thus given agent t’s signal, the probability of

choosing A is given by12

P (ct = A|Ht, st) = P (εt > 1− 2πst
t (pt))) =

1

1 + exp(λ(1− 2πst
t (pt)))

, (2.3)

and B is chosen with complementary probability P (ct = B|Ht, st) = 1−P (ct = A|Ht, st). When

λ →∞ choices are fully rational in the sense that they do not depend on the private realizations

εt and are determined solely by beliefs about the correct alternative. It is easy to show that the

logit QRE converges to the pure cascade Nash equilibrium (with β = 1
2
) in this limit. On the

other hand, as λ approaches 0 choices are independent of beliefs and become purely random.13

The dynamics of posterior beliefs depend on λ. To derive the evolution of the public belief

that A is correct, note that given pt there are exactly two values that pt+1 = P (ω = A|Ht, ct)

can take depending on whether ct is A or B. These are denoted p+
t and p−t respectively. The

computation of the posterior probabilities p+
t and p−t given pt is carried out by agents who do

not know the true state, and so cannot condition their beliefs on that event. In contrast, the

transition probabilities of going from pt to p+
t or p−t (i.e., of a choice for A or B) depend on the

objective probabilities of a and b signals as dictated by the true state. Thus when computing

these transition probabilities, it is necessary to condition on the true state. Conditional on

ω = A, the transition probabilities are:

T ω = A
t = P (ct = A|Ht, ω = A)

= P (ct = A|Ht, st = a)P (st = a|ω = A) + P (ct = A|Ht, st = b)P (st = b|ω = A)

=
q

1 + exp(λ(1− 2πa
t (pt)))

+
1− q

1 + exp(λ(1− 2πb
t (pt)))

,

12Note that indifference occurs with probability zero under the logit specification, and hence plays no role.
13For any λ ∈ (0,∞), an agent chooses equi-probably when indifferent. Thus the logit QRE naturally selects

exactly one of the continuum of Nash equilibria as λ diverges to infinity.

8



with the probability of a B choice given by 1 − PA
t . Similarly, conditional on ω = B, the

probability agent t chooses A is

T ω = B
t =

1− q

1 + exp(λ(1− 2πa
t (pt)))

+
q

1 + exp(λ(1− 2πb
t (pt)))

.

Using Bayes’ rule, we now obtain the two values that pt+1 may take as

p+
t ≡ P (ω = A|Ht, ct = A) =

ptT
ω = A

t

ptT ω = A
t + (1− pt)T ω = B

t

, (2.4)

and

p−t ≡ P (ω = A|Ht, ct = B) =
pt(1− T ω = A

t )

pt(1− T ω = A
t ) + (1− pt)(1− T ω = B

t )
. (2.5)

These expressions can be used to derive the following properties of the belief dynamics (see

Appendix A for proofs), where without loss of generality we assume the true state is ω = A.

Proposition 1. In the logit QRE:

(i) Beliefs are interior: pt ∈ (0, 1) for all t ∈ T .

(ii) Actions are informative: p−t < pt < p+
t for all t ∈ T .

(iii) Beliefs about the true state rise on average: E(pt+1|pt, ω = A) > pt for all t, t + 1 ∈ T .

(iv) Beliefs converge to the truth: conditional on ω = A, limt→∞ pt = 1 almost surely.

2.3. Testable Restrictions on the Data

We formalize different kinds of cascade-like behavior.14 A pure A (B) cascade is said to form

at time t ≤ T if after period t − 1 the number of A (B) choices exceed the number of B (A)

14One might argue that we should use the term “herd” instead of cascade, since cascade refers to belief
dynamics, while “herds” refer to choice dynamics. In the context of quantal response equilibrium, this distinction
is artificial, since neither herds nor cascades ever arise in a logit equilibrium.
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choices by 2 for the first time, and all choices from t to T are A (B) choices. Thus, for example,

if T = 6 and the sequence of choices is {A,B, A, A,A, A}, then we say a pure A cascade forms

at t = 5. In periods 5 and 6, we say the decision makers are in a pure A cascade. Note that any

pure cascade beginning at time t, will have length T − t + 1.

A temporary A (B) cascade or A (B) craze15 is said to form at time t ≤ T if after period

t− 1 (but not after period t− 2) the number of theoretically informative A (B) choices16 exceed

the number of theoretically informative B (A) choices by 2 and some decision maker τ , with

t ≤ τ ≤ T , makes a contrary choice.17 The number of periods decision makers follow the craze,

τ − t, defines the length of a craze. Note that in the sequence of decisions {A,A, B} we say that

an A craze of length zero occurs at t = 3.

Temporary cascades are particularly interesting because subsequent play of the game is off

the equilibrium path. Moreover, if the sequence is long enough it is possible for a new cascade to

form after a temporary cascade has broken. Following AH, we define a simple counting procedure

to classify sequences of decisions and determine whether a new cascade has formed. This ad hoc

counting rule roughly corresponds to Bayesian updating when the probability that indifferent

subjects follow their signals, β, equals the probability that subjects who break cascades hold

contrary signals.18 Under the counting rule, every A decision when not in a cascade increases the

count by 1 and every B decision when not in a cascade decreases the count by 1. Recall that we

enter the first cascade of a sequence when the count reaches 2 or −2. Then the decisions during

the cascade do not change the count, until there is an action that goes against the cascade,

which decreases the count to 1 if it was an A cascade or increases the count to −1 if it was a

B cascade. The count continues to change in this way, until the count reaches either 2 or −2

again, and then we are in a new cascade, which we call a secondary cascade.

15According to the Oxford English Dictionary (1980), a craze is defined as a “great but often short-lived
enthusiasm for something.”

16Choices made during a (temporary) cascade are called theoretically uninformative.
17These definitions extend in a natural way to more complex environments.
18These conditions are closely approximated in our data, where we find 85% of indifferent subjects go with

their signals and 84% of cascade breakers received contrary signals.
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We distinguish three different kinds of secondary cascades. One possibility is that actions

cascade on the same state as the previous cascade: a repeat cascade. The other possibility is

that the actions cascade on a different state: a reverse cascade. If a cascade reverses from the

incorrect state to the correct state, it is called a self-correcting cascade.

The logit equilibrium implies several properties of the length and frequency of different kinds

of cascades, and how this depends on our two main treatment parameters, q and T .19

Properties. In the logit QRE:

(P1) The probability that a pure cascade breaks is increasing in T and decreasing in q.

(P2) For any q the probability of a pure cascade goes to 0 as T gets large.

(P3) The number of cascades is increasing in T and decreasing in q.

(P4) The length of cascades is increasing in T and q.

(P5) Incorrect cascades are shorter than correct cascades.

(P6) Incorrect cascades reverse (self correction) more frequently than correct cascades reverse,

for any T ≥ 6.20

(P7) Correct cascades repeat more frequently than incorrect cascades, for any T ≥ 4.21

(P8) Later cascades are more likely to be correct than earlier ones.

(P9) The ex ante (i.e., before player t has drawn a private signal) probability of a correct

decision is increasing in both t and q. An interim version of this statement is true, but

19These properties are stated informally here: they have been verified by extensive simulations and in some
cases can be proved formally.

20Six periods are required for a reverse cascade, at least two periods to start the first cascade, and then at least
four periods to reverse itself. For example, {A,A, B, B, B, B} is the shortest possible sequence for a reverse from
an A cascade to a B cascade. If T < 6 then there is not enough time for a reverse cascade to occur, illustrating
the necessity of conducting experiments with sufficiently long sequences.

21Repeat cascades require at least 4 periods. For example, {A, A,B, A} is the shortest possible sequence for a
repeated A cascade.
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only conditional on receiving an incorrect signal.22

(P10) More informative signals lead to faster learning. That is, the rate of increase in the ex

ante probability of a correct decision as t increases is increasing in q. An interim version

of this statement is true, but only conditional on receiving an incorrect signal.

(P11) The probability of a correct decision is higher for a correct than for an incorrect signal.

While the last three properties are also true for the initial few decisions in the Nash equilibrium

model, the effects go away quickly with longer sequences.23

3. Experimental Design

In order to assess the quality of these models in the cascade setting, and to gain insights

into how the basic model might be improved, we conducted a set of experiments implementing

the situation described above under controlled laboratory conditions. These experiments were

conducted at the Social Sciences Experimental Laboratory (SSEL) at Caltech and the California

Social Sciences Experimental Laboratory (CASSEL) at UCLA between September 2002 and

May 2003. The subjects included students from these two institutions who had not previously

participated in a cascade experiment.24

We employ a 2× 2 design, where we consider two values of both the signal quality q and the

number of individuals T . Specifically, q takes values 5/9 and 6/9, and T takes values 20 and

40. The number of games in each session is denoted M . Table 3 summarizes the experimental

sessions.

22It is not true conditional on receiving a correct signal. To see this, note that the interim probability of a
correct decision at time t = 1 with a correct signal is 1 as it is optimal to follow one’s signal. In later periods, it
is less than 1, because of the probability of a cascade on the wrong state.

23An exception is the second part of property 8. In the perfect Nash equilibrium, the probability of a correct
decision is approximately equal to the probability of ending up in a correct cascade, which quickly approaches
q2/(q2 + (1− q)2) and rises with q.

24There was one subject who had previously participated in a related pilot experiment.
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Session T q M Subject Pool

03/14/03A 20 5/9 30 Caltech

09/26/02B 20 5/9 30 Caltech

09/19/02A 20 5/9 26 Caltech

04/03/03AB 20 5/9 30 UCLA

04/14/03A 20 6/9 30 UCLA

04/14/03C 20 6/9 30 UCLA

04/14/03E 20 6/9 30 UCLA

05/05/03D 40 5/9 17 UCLA

05/05/03F 40 5/9 19 UCLA

05/05/03G 40 5/9 20 UCLA

04/16/03B 40 6/9 20 UCLA

04/21/03C 40 6/9 20 UCLA

04/21/03E 40 6/9 20 UCLA

Table 3. Experimental sessions.

In each session, a randomly chosen subject was selected to be the “monitor” and the remaining

subjects were randomly assigned to computer terminals in the laboratory. All interaction among

subjects took place through the computers; no other communication was permitted. Instructions

were given with a voiced-over Powerpoint presentation in order to minimize variations across

sessions.25 After logging in, the subjects were taken slowly through a practice trial (for which

they were not paid) in order to illustrate how the software worked, and to give them a chance

to become familiar with the process before the paid portion of the experiment started.

Before each trial, the computer screen displayed two urns. For the q = 5/9 treatment, one urn

contained 5 blue balls and 4 red balls and the other contained 4 blue balls and 5 red balls. For the

q = 6/9 treatment, one urn contained 6 blue balls and 3 red balls and the other contained 3 blue

balls and 6 red balls. The monitor was responsible for rolling a die at the beginning of each game

to randomly choose one of the urns with equal probabilities. This process, and the instructions

to the monitor (but not the outcome of the roll) was done publicly. At this point, the subjects

25See http://www.hss.caltech.edu/̃ rogers/exp/index6.html for the instructions.
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saw only one urn on the computer screen, with all nine balls colored gray, so that they could not

tell which urn had been selected. Each subject then independently selected one ball from the

urn on their screen to have its color revealed. Then, in a random sequence, subjects sequentially

guessed an urn. During this process, each guess was displayed on all subjects’ screens in real

time as it was made, so each subject knew the exact sequence of guesses of all previous subjects.

After all subjects had made a choice, the correct urn was revealed and subjects recorded their

payoffs accordingly. Subjects were paid $1.00 for each correct choice and $0.10 for each incorrect

choice. Subjects were required to record all this information on a record sheet, as it appeared

on their screen. Due to time constraints, the number of matches (sequences of T decisions) was

M = 30 in each T = 20 session and M = 20 in each T = 40 session.26 After the final game,

payoffs from all games were summed and added to a show-up payment, and subjects were then

paid privately in cash before leaving the laboratory.

4. Results I: Cascades and Off-the-Equilibrium-Path Behavior

In this section, we provide some descriptive aggregate summary information about the extent

of cascade formation, off-the-equilibrium-path behavior, and the number and lengths of cascades

of different kinds. We also compare these aggregate features across our four treatments, and

compare them to the shorter (6-period) cascade experiment reported in AH.

4.1. Infrequency of Pure Cascades and Frequency of Crazes

In AH’s experiment with only T = 6 decision makers, all cascades were necessarily very

short making it difficult to sort out pure cascades from crazes. In contrast, our experiments

investigated sequences of T = 20 and T = 40 decision makers, allowing for the first time an

opportunity to observe long cascades and the length distribution of crazes. As Table 4 shows

26A few sessions contained fewer sequences due to technical problems.
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Our Data AH Data HP Data

q = 5/9 q = 6/9 q = 6/9 q = 6/9 q = 5/9 q = 6/9 q = 5/9 q = 6/9

N = 20 N = 40 N = 20 N = 40 N = 6 N = 10

M= 116 M = 56 M = 90 M = 60 M = 45 M = 89

First 6 36 36 50 53 64 70 98 99 29 45

First 10 15 14 31 42 62 100 100 11 29

First 20 4 2 13 32 100 100 1 15

First 40 0 13 100 100 0 7

Nash QRE - BRF

Table 4. Percentages of pure cascades by treatment.

very clearly, pure cascades essentially do not happen in the longer trials. The cascades that

persisted in the AH experiments simply appear to be pure cascades, a likely artifact of the short

horizon. Our numbers are comparable to those of AH when we consider only the first six decision

makers in our sequences. These numbers are given in the row marked ”First 6” in Table 4. In

contrast, we observe pure cascades in only 17 our of 206 sequences with T = 20 decision makers,

and only 8 of 116 sequences with T = 40 decision makers.

The final columns of Table 4 give the predicted frequency of pure cascades according to

the Nash equilibrium (and the QRE-BRF model, which we will discuss later). In general, the

equilibrium probability of a pure cascade with T decision makers is 1 − (2βq(1 − q))T/2, with

β = 0.85 the fraction of indifferent subjects who follow their signals. The data contradicts this

in three ways. First, the data exhibit far fewer pure cascades than theory predicts. Second,

according to theory, the frequency of pure cascades increases with T but it goes the other way

in the data. Third, the frequency of pure cascades in the data is steeply increasing in q, while

the Nash equilibrium predicts almost no effect. In our data, pure cascades occurred nearly five

times as often in the q = 6/9 treatment than when q = 5/9 (20/150 compared to 5/172).27

In contrast to pure cascades, crazes are quite common in all treatments. Table 5 shows the

frequency of temporary cascades in our data. The rows and columns mirror Table 4, but the

27Further evidence indicates this continues to increase with q. In a single additional session with q = 3/4 and
T = 20, we observed pure cascades in 28/30 sequences.
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Our Data AH Data HP Data

q = 5/9 q = 6/9 q = 6/9 q = 6/9 q = 5/9 q = 6/9 q = 5/9 q = 6/9

N = 20 N = 40 N = 20 N = 40 N = 6 N = 10

M= 116 M = 56 M = 90 M = 60 M = 45 M = 89

First 6 58 55 42 38 27 24 0 0 62 49

First 10 84 84 69 55 38 0 0 88 70

First 20 96 98 87 68 0 0 99 86

First 40 100 87 0 0 100 93

Nash QRE - BRF

Table 5. Percentages of temporary cascades by treatment.

entries now indicate the proportion of sequences in a given treatment that exhibit at least one

temporary cascade that falls apart. Clearly, for large T , essentially all cascades we observe are

temporary. Even with the short horizon of the AH experiment, crazes occur 27% of the time.

4.2. Number and Lengths of Crazes

For larger T , we generally observe multiple crazes along a single sequence. On average, there

are three or more crazes per sequence in all treatments, see Table 6. Furthermore, the number

of crazes rises with the sequence length, T , and falls with the signal precision, q, in the sense

of first-degree stochastic dominance, see the top panel of Figure 1. This figure also shows the

Nash prediction of exactly 1 cascade per sequence, independent of q and T , and the predictions

of the QRE-BRF model discussed below.

The average length of crazes also varies by treatment. Recall that in the Nash model, cascades

can only begin after an even number of choices. Moreover, for t even, the probability a cascade

forms after t+2 choices conditional on one not having yet formed after t choices is 1−2βq(1−q),

with β = 0.85 see section 2.1. Finally, in the Nash model, once a cascade forms it persists through

period T . The predicted length distributions of crazes can be calculated easily, see Table 6 and

the bottom panel of Figure 1. The Nash predictions are virtually independent of q and contrast
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q = 5/9 q = 6/9

N = 20 N = 40 N = 20 N = 40

M = 116 M = 56 M = 90 M = 60

Our Data 3.47 7.54 2.99 3.73

average number cascades QRE - BRF 3.85 7.31 2.81 4.19

Nash 1.00 1.00 1.00 1.00

Our Data 2.43 2.00 3.27 7.83

average length cascades QRE - BRF 1.59 2.04 3.79 6.50

Nash 17.32 37.25 17.43 37.44

Table 6. Number and lengths of cascades by treatment.

sharply with the observed (average) lengths. In contrast, the QRE-BRF model does reasonably

well and captures the comparative static effects predicted by the different treatments.

4.3. Off-the-Equilibrium-Path Behavior

The previous subsections show that the vast majority (92%) of cascades are temporary and

short in duration, and nearly all (90%) sequences of length T = 20 and T = 40 exhibit multiple

cascades. One immediate conclusion is that there are many choices off the (Nash) equilibrium

path. Table 2 in the Introduction characterizes a subset of these choices for the different treat-

ments as a function of the signals of the deviating decision maker. The table shows the behavior

of what we call cascade breakers, since these are all terminal decisions of a temporary cascade.

In the continuation play following such actions, choices can rationally depend on private sig-

nals again if subsequent players believe with sufficiently high probability28 that cascade breakers

received contrary signals. Under these beliefs, a subject who observes a deviation from the cas-

cade and also receives a contrary signal would rationally follow the previous subject’s deviation,

28The critical probability-level depends on the behavior of indifferent agents. In the data, indifferent agents
follow their signal with probability 0.85 and cascade breakers received contrary signals with probability 0.84.
These numbers imply that immediately after a break, subjects with signals contrary to the recent cascade are
(close to) indifferent and it is rational for them to follow their signals. Those with signals confirming the recent
cascade should rationally follow their signals as well and re-start the cascade. In our data, 75% of the choices
following a cascade break are in line with the signals received.
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Figure 1: The left panels depict the observed distributions of the number of cascades
(top) and of cascade lengths (bottom), color coded by treatment: dark (light) gray
lines correspond to q = 5/9 (q = 6/9) and they are solid (broken) for T = 40
(T = 20). The right panels show predictions of the Nash and QRE-BRF models.
In the top right panel, the solid line that jumps to 100% at 1 corresponds to Nash
predictions and the other lines the QRE-BRF predictions. In the bottom right panel,
the lines that jump to 100% at T − 2 correspond to Nash predictions and the others
to QRE-BRF predictions.
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T=20 T=40

Decision \ Signal Confirming Contrary Decision \ Signal Confirming Contrary

q=5/9 Confirming 42.8% 20.9% Confirming 45.4% 20.3%

Contrary 3.3% 33.0% Contrary 8.4% 25.9%

# obs = 306 # obs = 379

Decision \ Signal Confirming Contrary Decision \ Signal Confirming Contrary

q=6/9 Confirming 48.4% 14.7% Confirming 58.2% 26.7%

Contrary 6.3% 30.5% Contrary 2.4% 12.7%

# obs = 190 # obs = 165

Table 7. Percentages of choices confirming/contradicting the recent cascade after a break.

whereas she would follow the cascade if she receives a signal consistent with the cascade (as

should future subjects, regardless of their signal). This observation allows us to classify the

behavior of the person following the deviator, since we observe the signal they draw.29 For ex-

ample, in the sequence {A,A,B, B}, player 3 is a deviator, and player 4 is on some equilibrium

path of the continuation game if and only if he observed a b signal. A player who observes a

signal consistent with the recent cascade must follow the cascade, a prediction that is borne out

by our data: only 10% of these players are secondary deviators who follow the recent break.

More generally, choices directly after a break are in line with the received signals more than 75%

of the time, indicating that play can be on the equilibrium path of the continuation game after

a break occurs. Table 7 gives a complete breakdown of the choices directly following a cascade

break, by treatment.

The two key conclusions of the analysis above is that play off the equilibrium path occurs

frequently, and that play off the equilibrium path is informative. The second of these observations

has been made in AH, but the first observation, indicating that the standard cascade theory is

completely contradicted by the data, was underplayed in AH, as this could easily be missed in

short sequences. While it would in principle be impossible to design an experiment to observe

29Of course subjects in the experiment cannot observe the signal of the deviator and the follower, and so cannot
rule anything out.
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Table 8. Frequency of repeated and reversed cascades by treatment.

an infinite sequence of identical choices, it is quite simple to ask whether the data does or does

not contradict the predictions of cascade models.

4.4. Repeated and Reversed Cascades: Self Correction

In past information aggregation experiments, with short sequences of few decision makers,

there are many fewer observations off the equilibrium path. Since this off-path behavior is

central to the dynamic properties of QRE (where such behavior is actually not off-path) and

to the resulting convergence of beliefs, our design, with much longer sequences, should allow

us to better observe the kinds of complex dynamics predicted by the theory, particularly the

phenomenon of self correction.

Table 8 shows the average number of repeated and reversed cascades per sequence, by treat-

ment. Theoretical expectations according to the Nash and QRE-BRF models are also given.

The latter model predicts the observed number of reversed and repeated cascades remarkably

well, while the Nash equilibrium erroneously predicts these types of cascades do not exist.

Table 9 shows how frequently correct and incorrect crazes repeat or reverse themselves.30

Averaging over the four treatments shows that when a correct cascade breaks, it reverses to an

30The percentages listed are based on the total number of correct (or incorrect) crazes minus the number of
final correct (or incorrect) crazes, since the latter cannot repeat or reverse themselves because of the finite time
horizon.
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T = 20 T = 40

From\To Correct Incorrect From\To Correct Incorrect

q = 5/9 Correct 92.7% 7.3% Correct 93.6% 6.4%

Incorrect 22.7% 77.3% Incorrect 11.0% 89.0%

# obs = # obs =

From\To Correct Incorrect From\To Correct Incorrect

q = 6/9 Correct 91.4% 8.6% Correct 98.7% 1.3%

Incorrect 30.5% 69.5% Incorrect 20.0% 80.0%

# obs = # obs =

Table 9. Transitions between correct and incorrect cascades in our data.

incorrect one in less than 6% of all cases. In contrast, an incorrect cascade that breaks leads to

a self-corrected cascade in more than 21% of all cases. Table 9 also lists the initial, final, and

total number of correct and incorrect crazes by treatment. Notice that the fraction of correct

crazes is always higher among the final cascades than among the initial cascades, confirming the

predictions of Proposition 1.

4.5. Summary of Results

Here we summarize our findings by relating them to the properties of the logit QRE discussed

in section 2.3.

• Properties P1 and P2: The occurrence of pure cascades decreases with T and increases

with q. The effect of T is obvious from comparing the different rows in Table 4. Both for

q = 5/9 and q = 6/9, the percentages of pure cascades fall quickly with each successive

row. Comparing columns 1 and 3 and columns 2 and 4 in Table 4 shows the effect of signal

informativeness.

• Property P3: The number of cascades increases with T and decreases with q. See Table 6
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and Figure 1. Longer sequences have more cascades because they allow for more cycles of

formation and collapse. This in contrast to the Nash equilibrium, where repeat cascades

cannot arise and there is a single cascade per sequence in all treatments. These effects

are barely noticeable in short sequences: AH’s experiment averaged slightly more than 1

cascade per sequence.

• Property P4: Cascades lengths increase with T for q = 6/9 and increase with q.31 These

comparative static effects are clear from Table 6 and Figure 1. Again, these differences are

barely noticeable in past experiments because the sequences were so short. Note that the

effect of T is not borne out by the q = 5/9 data, where the distributions of cascade lengths

are very similar for the T = 20 and T = 40 treatments.32

• Property P5: Correct crazes last longer on average. The observed average lengths of

(correct, incorrect) crazes in the different treatments are: (2.55, 2.24) for q = 5/9 and

T = 20, (2.08, 1.91) for q = 5/9 and T = 40, (3.42, 2.85) for q = 6/9 and T = 20, and

(8.31, 5.50) for q = 6/9 and T = 40. So, this is found in every treatment.

• Properties P6 and P7: Reverse cascades are usually corrected cascades. See Table 9. Across

the four treatments, the probability that a reversed cascade is a self-corrected cascade is

63% (even though there are many more correct than incorrect crazes to reverse from). It

is this feature of the dynamics that produces the asymptotic full information aggregation

result of Proposition 1.

• Property P8: Later cascades are correct more frequently than earlier ones. See Table 9,

which lists the number of (in)correct cascades among initial and final cascades.

31The first result is due to two different effects that lead to censoring. First, and most obvious, if T is short
then some cascades that would have lasted longer are interrupted at T . Second, the probability of collapse is
decreasing in the duration of the cascade. That is, the probability of a collapse in period t + s, given the cascade
started in period t is decreasing in s. This second effect is predicted by QRE but not by Nash. These two effects
combined result in a fat tail of the length distribution and in a mass of cascades at T − 2.

32This may be due to subject pool effects, since the (q = 5/9, T = 20) treatment was the only one that used
mostly Caltech students.
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5. Results II: Estimation

We start by describing the estimation procedure for the basic logit QRE model. The only

parameter being estimated is the slope of the logit response curve, which in the context of these

games can be interpreted as a proxy for rationality, experience, and task performance skill. In

subsequent subsections, we jointly estimate logit and other parameters, using standard maximum

likelihood estimation. For comparability, we choose to normalize payoffs in all experiments to

equal 1 if a subject guesses the state correctly and 0 otherwise.

Since subjects’ choice behavior will depend on λ, the public belief follows a stochastic process

that depends on λ. The evolution of the public belief can be solved recursively (see equations

(2.4) and (2.5)), so implicitly we can write pt(c1, · · · , ct−1|λ). Given {λ, st, (c1, · · · , ct−1)}, the

probability of observing player t choose A is:

P (ct = A|λ, st, c1, · · · , ct−1) =
1

1 + exp(λ(1− 2πst
t (pt(c1, · · · , ct−1|λ))))

,

and P (ct = B|λ, st, c1, · · · , ct−1) = 1−P (ct = A|λ, st, c1, · · · , ct−1). Therefore, the likelihood of a

particular sequence of choices, c = (c1, · · · , cT ), given the sequence of signals is simply:

l(c|λ) =
T∏

t=1

P (ct|λ, st, c1, · · · , ct−1).

Finally, assuming independence across sequences, the likelihood of observing a set of M sequences

{c1, · · · , cM} is just:

L(c1, · · · , cM |λ) =
M∏

m=1

l(cm|λ).

The estimation results for the logit QRE model are given in Table B1 of Appendix B, which

also contains a detailed estimation program written in GAUSS. The λ estimates for the four

treatments are quite stable and the pooled estimate is close to that estimated from the AH data.

Notice that the estimated value of λ for the (q = 5/9, T = 20) treatment is somewhat greater
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than the other three treatments. We attribute this to subject pool effects, since that treatment

was the only one that used mostly Caltech students.

5.1. Alternative Models: the Base Rate Fallacy

In their seminal article, Kahneman and Tversky (1973) present experimental evidence show-

ing that individuals’ behavior is often at odds with Bayesian updating. A particularly prevalent

judgement bias is the Base Rate Fallacy (BRF), or as Camerer (1995, pp. 597-601) more ac-

curately calls it, “base rate neglect”. In the context of our social learning model, the base rate

fallacy amounts to the assumption that agents weight their own signal more than they should

relative to the public prior. We formalize this idea as a non-Bayesian updating process in which

a private signal is counted as α signals, where α ∈ (0,∞).33 Rational agents correspond to

α = 1, while agents have progressively more severe base-rate fallacies as α increases above 1.34

We assume that decision makers do not overweight the actions of others, but treat them

without bias, so the public belief process unfolds as in the Nash equilibrium. The updating rules

in (2.1) and (2.2) now become

πa
t (pt|α) =

qα pt

qα pt + (1− q)α(1− pt)
. (5.1)

and

πb
t (pt|α) =

(1− q)α pt

(1− q)α pt + qα(1− pt)
(5.2)

respectively.35

Before we report estimation results, let us provide some intuition for why this alternative

model may better describe some features of the data. First, when α = 1, QRE predicts that

33This could also be interpreted as a parametric model of “overconfidence” bias in the sense of Griffin and
Tversky (1992). See also Kariv (2003) and Nöth and Weber (2002).

34Values of α < 1 correspond to under-weighting the signal, or “conservatism” bias, as discussed in Edwards
(1968) and Camerer (1995, pp. 601-2). Although this latter kind of bias has less support in the experimental
literature, it is sufficiently plausible that we choose not to assume it away.

35From these equations, it is easy to see that for α > 1 the learning process is faster as agents’ choices depend
more on their own signals, in the sense that the expected change in posterior is greater.
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indifferent agents randomize uniformly, while the data show that 85% of the indifferent subjects

follow their signals. This prediction is in line with α > 1. Furthermore, when α > 1, cascades

take longer to start. For example, after two A choices the third decision maker need not choose

A if she sufficiently overweighs her b signal. The base rate fallacy therefore provides one possible

explanation for the prevalence of length zero crazes in our data set (see Figure 1).

The estimation results for the QRE-BRF model are reported in the second panel of Table B1.

For all treatments, the BRF parameter, α, is significantly greater than 1. To test for significance

we can simply compare the loglikelihood of the QRE-BRF model to that of the constrained

model (with α = 1) in the top panel. Obviously, the BRF parameter is highly significant.36

Furthermore, the constrained model yields a significantly (at the 0.01 level) higher estimate of

λ for all treatments.

5.2. Alternative Models: Non-Rational Expectations

It is possible that players update incorrectly because they do not have rational expectations.

The QRE model implicitly assumes that λ is common knowledge. In particular, if players

believed other players’ λ were lower than it truly was, this could lead to a phenomenon that

would be qualitatively similar to base rate neglect. Accordingly, we consider a model that allows

for separate belief and action precision parameters, as proposed by Weizsäcker (2003). These

different parameters are labelled λa (action lambda) and λb (belief lambda). That is, players

choice probabilities follow the logit choice function with parameter λa but they believe that other

players’ choice probabilities follow a logit choice function with parameter λb. We call this the

non-rational expectations model, or QRNE model.

The estimation results for the QRNE model are also given in Table B1 in Appendix B. While

the two-parameter model performs significantly better than the QRE model, the increase in

likelihood is not overwhelming. This is especially true when the model is combined with the

36For the pooled data the difference in loglikelihoods is nearly 200. A simple t-test also rejects the hypothesis
that α = 1, with a t-statistic of 14.6. Tests conducted for the AH data also reject the constrained model, with a
slightly lower estimate of α.
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base rate fallacy. In this case, the action and belief λ are virtually identical when estimated from

the pooled data, and the increase in likelihood barely significant. A similar conclusion holds for

the AH data, indicating the assumption of rational expectations is (approximately) valid.

5.3. Alternative Models: Cognitive Heterogeneity

As a final model, suppose there exists heterogeneity in the cognitive sophistication across

players. For example, some players may behave completely randomly, while other players opti-

mize against such behavior. Following Camerer, Chong, and Ho (2003), we extend this to allow

for multiple levels of sophistication.37 Specifically, level 0 players are random, level 1 believe

all the other players are level 0, level 2 players believe all others are a mixture of level 0 and

level 1, and so forth. The proportion of level k players is given by a Poisson distribution with

parameter τ . Players are assumed to have truncated rational expectations, i.e. level k players

believe all other players are a mixture of levels less than k with the mixture distribution given

by the Poisson distribution, truncated at k. This is called the cognitive hierarchy (CH) model,

see Camerer, Chong, and Ho (2003).

The presence of level 0 players will lead higher-level players to implicitly discount the infor-

mation contained in the choices of their predecessors. This way the CH model can pick up some

of the same features of the data as QRE. Furthermore, like QRE, the CH model is “complete”

in the sense that it is consistent with any sequence of choices and signals. Hence we can obtain

estimates of the τ parameter, without using QRE, see Table B1 in Appendix B.

The CH model is also estimated together with QRE to allow for comparison with QRE. All

three models are then re-estimated including the BRF parameter, also for purposes of model

comparison. Note that the estimates for the combined QRE-BRF-CH model are stable across

data sets and generally result in the highest likelihood. All three are significant factors, based

37Stahl and Wilson (1995) explored a related model with levels of sophistication to study behavior in experi-
mental games, but that model was different from the one considered here. See Camerer, Chong, and Ho (2003)
for a discussion of the differences between the two models.
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Model λ α τ λ A λ B l o g L
QRE 6 . 1 2 ( 0 . 1 4 ) � 3 6 5 0

QRE-BRF 4 . 2 3 ( 0 . 1 1 ) 2 . 4 6 ( 0 . 1 0 ) � 3 4 6 6
QNRE 6 . 3 2 ( 0 . 1 4 ) 4 . 4 8 ( 0 . 2 8 ) � 3 6 3 6

QNRE-BRF 2 . 5 9 ( 0 . 1 2 ) 4 . 0 9 ( 0 . 1 2 ) 4 . 9 2 ( 0 . 3 3 ) � 3 4 6 2
CH 1 . 9 1 ( 0 . 0 2 ) � 3 6 4 8

QRE-CH 1 3 . 1 2 ( 0 . 7 5 ) 2 . 5 4 ( 0 . 0 8 ) � 3 4 8 6
QRE-CH-BRF 7 . 6 9 ( 0 . 5 0 ) 1 . 8 1 ( 0 . 0 8 ) 2 . 9 0 ( 0 . 1 0 ) � 3 4 1 1

Table 10. Comparison of model estimates with our pooled data.

on likelihood ratio tests, and leaving out any one of these factors changes the magnitudes of the

other estimates.38

5.4. Summary of Estimation Results

Table 10 presents the pooled estimates for all models. The estimation confirms our intuition

that these models are alternative good explanations. However, the models are really quite

different conceptually, and the BRF model is clearly a significant factor even if other behavioral

factors are also present. The QRE-BRF model is simple and intuitively appealing, which is

why we used it for simulation and comparisons with data (see Tables 4-8 and Figures 1-4). The

QRE-CH-BRF model results in a slightly higher likelihood, but the model is conceptually harder

and the effects on the descriptive statistics reported in the previous section are negligible.

38The only unusual finding is that the estimate for τ is larger in magnitude than has been typically found in
other settings. Camerer, Chong, and Ho (2003) report estimates in the range of 1.5 to 2.5, while our estimate
in the combined model is 2.9 (with a standard error of 0.10). This appears to be due to an interaction between
τ , λ, and α. The estimate of τ in the pure CH model is 1.9, and its estimate in the CH-QRE model (without
BRF) is 2.5. Combining QRE and CH also leads to substantially larger estimates of λ. The reason for this is
that both are rationality parameters that substitute for each other. The 0 types in the CH model absorb a lot of
the randomness in the QRE model. In other words, the random behavior that can only be explained by 0 types
in the CH model, is also explained by quantal response randomness. Hence we find relatively low values of either
parameter if the models are estimated separately, but both increase significantly when the models are combined.
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6. Results III: Efficiency

We consider both informational efficiency and allocative efficiency. Regarding informational

efficiency the relevant questions are: How well is the information from private signals aggregated?

How close to 1 is the public belief about to the correct alternative? How does this vary with

our treatment variables, q and T? In contrast, allocative efficiency concerns a different set of

questions: How frequently are actions correct? How does this change over time? And how does

this change as a function of signal informativeness?

6.1. Informational Efficiency

As shown in the theoretical section of the paper, in a QRE the public belief about the correct

alternative converges to 1 with probability 1 as T approaches infinity. This process converges

more slowly for the q = 5/9 treatments than for the q = 6/9 treatments. Of course, in any finite

sequence, information cannot possibly reveal the correct alternative, because of noise in the

signal generation process. Moreover, this noise in signal generation is compounded by strategic

considerations that affect the social learning process.

We have three hypotheses about informational efficiency:

H1. For each q, the public belief about the correct alternative is closer to 1 in the final period

of the T = 40 treatments than in the T = 20 treatments.

H2. For each t, the public belief about the correct alternative is closer to 1 in the q = 6/9

treatments than in the q = 5/9 treatments.

H3. For all treatments, the average public belief about the correct alternative rises with t.

Since we do not observe beliefs directly, we use the theoretical QRE-BRF model together

with the observed choice data to obtain estimated public belief paths.39 This is done for each

39Domowitz and Hung (2003) recently reported a social learning experiment using a belief elicitation procedure.
We did not elicit beliefs for several reasons. For example, it introduces incentive problems, as noted by the authors.
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Figure 2: Estimated beliefs using the QRE-BRF model for all
sequences in one of the (q = 5/9, T = 20) sessions.

sequence. Using the pooled estimates λ = 4.23 and α = 2.46, each sequence of action choices

implies a unique public belief. This is illustrated in Figure 2, which shows the belief paths for

all sequences in one of the q = 6/9 and T = 20 sessions. Here the horizontal axis represents the

sequence of decisions, and the vertical axis the belief about the correct alternative. Each upward

tick in the belief paths corresponds to a correct choice and each downward tick to an incorrect

choice. Theoretically, for long enough sequences, the belief paths for almost all sequences should

converge to 1.

The simplest way to test Hypotheses 1-3 is to average the public belief about the correct

alternative across all sequences for a given treatment. This produces the four curves in the

left panel of Figure 3. The middle and right panels depict simulated average beliefs using the

QRE-BRF model and Nash model respectively. The curves are obviously consistent with the

theoretical hypotheses. The right most panel shows that the difference between the two q = 6/9

treatments is caused by the particular signals drawn in these treatments.

The comparison between the different q treatments is admittedly a weak test since the paths

are constructed using the theoretical model. That is, even if the sequences of signals and decisions

were exactly the same for all sequences in q = 6/9 and q = 5/9 session, the q = 6/9 curves

necessarily would lie strictly above the q = 5/9 curves. That said, the ordering also reflects a
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Figure 3: Estimated public beliefs about the true state by treatment (coded as in Figure 1).
In the left panel, estimated beliefs are based on observed signals and decisions. The middle
panel is based on the average of 100 QRE-BRF simulations of decisions, always using the
same sequence of signals as in the experiment. The right panel shows estimated beliefs
implied by Nash decisions based on the sequence of signals employed in the experiment.

salient difference between our q = 5/9 and q = 6/9 data, namely that cascades fall apart more

quickly, and are more often incorrect in the q = 5/9 data than in the q = 6/9 data (see Tables

5-8 of the previous section).

However, that the curves are increasing in t is not an artifact of the construction, but simply

reflects the fact that there are more good cascades and fewer bad cascades toward the end of

a session than toward the beginning. To summarize, we find strong support for hypotheses H1

and H3 and somewhat weaker support for hypothesis H2.

6.2. Allocative Efficiency

Allocative efficiency is quite a different story from informational efficiency, for at least two

reasons. First, in contrast to beliefs, allocative efficiency is directly measured (by the proportion

of correct decisions), since both the state and the action of each individual is observed in the

data. Second, full allocative efficiency will not be theoretically achieved in a quantal response

equilibrium, even for arbitrarily large T .40 After beliefs have converged to the true state, deci-

40If λ increased without bound as T increased, then full allocative efficiency may be possible, but here we are
only considering QRE models with constant precision.
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sions keep fluctuating because of the stochastic nature of QRE, resulting in efficiency losses.41

At one extreme, when λ is close to 0, choice behavior is random and decisions are correct 50%

the time, regardless of history, signal, or q. We take this as a plausible lower bound for allocative

efficiency.42

The hypotheses we have regarding allocative efficiency are based on Properties 9-11 of the

logit QRE listed in section 2.3. First, average allocative efficiency will increase over time because

expected beliefs converge monotonically to the true state. Also, allocative efficiency should be

positively affected by signal informativeness, in three ways. There is the direct effect that more

good signals are received with a higher q, but there are two indirect effects as well: with more

informative signals, social learning is faster because actions are more informative, and conditional

on being in a cascade, the cascade is more likely to be correct.43 Because of these two indirect

effects, there should be a difference in allocative efficiency in the different q treatments controlling

for the signals subjects receive. Summarizing:

H4. The probability of a correct choice is increasing in t.44

H5. The probability of a correct choice is higher for a correct than for an incorrect signal.

H6. Controlling for signal correctness, the probability of a correct choice is increasing in q.

H7. The rate of increase of the probability of a correct choice as t increases is increasing in q.

Figure 4 shows the time-dependence of decision accuracy. Each row corresponds to a treat-

ment while the columns (from left to right) represent Nash predictions, data, and logit simu-

41The base rate neglect, at least as we have modelled it, is another source of inefficiency. Again, this contrasts
with informational efficiency, where base rate neglect speeds up the learning process.

42This is the lower bound in an aggregate analysis that looks at average efficiency over many sequences. The
theoretical lower bound for any particular sequence is even lower, since it is possible for every action in a sequence
to be incorrect. In fact this happens in two of our sequences, where a pure cascade on the wrong state starts at
the very beginning.

43A third minor effect going in the same direction is that with a higher q the posterior beliefs are, on average,
further from 1

2 , so the expected payoff difference between a correct and incorrect action is generally increasing
in q.

44As pointed out in the theory section, this is true ex ante and conditional on receiving an incorrect signal,
but not conditional on receiving a correct signal.
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lations respectively. In each graph, the thick solid black line shows decision accuracy (i.e. the

fraction of correct choices) for all signals, the dashed red line for correct signals, and the thin

blue line for incorrect signals.

In the Nash equilibrium, decision accuracy becomes independent of signals very quickly,

reflecting the formation of pure cascades. The decision accuracy for (in)correct signals (rises) falls

for a few rounds and then levels off. As a result, the unconditional decision accuracy increases

for only a short amount of time as nearly all cascades are formed in the first 6 periods and

never break. This contrasts sharply with the dynamics in the actual data, and in the QRE-BRF

simulations, where unconditional decision accuracy continues to rise as the sequence of decision

makers passes through cycles of temporary cascades that break and re-form. Furthermore, there

is a strong signal dependence that persists throughout the experiment. The decision accuracy for

incorrect signals is always less than for correct signals in both the actual data and the QRE-BRF

simulations, in contrast to the Nash model. For incorrect signals, there is a clear and strong

upward trend in decision accuracy, indicating that information continues to be aggregated. There

is only a very small, early, downward trend for decision makers with correct signals, due to the

possibility of being in a wrong cascade. This levels off or even reverses sign later, because later

cascades are more likely to be correct ones due to the phenomenon of self-correction. The net

effect is almost neutral, as reflected by the flat dashed lines in the middle and right panels of

Figure 4.

For a more formal test of hypotheses H4-H7, we conduct a Probit regression with six inde-

pendent explanatory variables: t, q, q ∗ t, signal, signal ∗ t, match. Signal is dummy variable

that takes on the value of 1 if the signal is correct. The variable q ∗ t is an interaction of signal

informativeness and time period,45 which, according to hypothesis H4, should be positive. The

variable signal ∗ t is an interaction between time and signal correctness. From hypothesis H1, the

effect of t on decision accuracy should be positive only for incorrect signals, with a possible small

negative effect for correct signals. Match is a variable that is included to control for possible

45Here q ∗ t equals 0 if q = 5/9 and q ∗ t equals t if q = 6/9.
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Figure 4: Decision accuracy along the sequence of decision makers by treatment: (q = 6/9,
T = 20) top row, (q = 6/9, T = 40) second row, (q = 5/9, T = 20) third row, and
(q = 5/9, T = 40) bottom row. In each graph, the thick solid black line shows the fraction of
correct choices for all signals, the dashed red line for correct signals, and the thin blue line
for incorrect signals. The lines show moving averages: a point at time t represents average
decision accuracy between t − 2 and t + 2 for 3 ≤ t ≤ T − 2. The left column gives Nash
predictions, the middle column data, and the right column QRE-BRF simulations, all based
on the actual signals used in the experiment.
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Constant -1.57 (0.30) -2.58 (0.33) -3.27 (0.32)

q 1.26 (0.51) 2.52 (0.55) 4.51 (0.53)

t 0.021 (0.0025) 0.033 (0.0026) 0.019 (0.0025)

q * t 0.017 (0.0029) 0.016 (0.0031) 0.012 (0.0031)

signal * t -0.037 (0.0029) -0.049 (0.0031) -0.027 (0.0030)

signal 1.76 (0.055) 2.23 (0.059) 1.71 (0.057)

match 0.0047 (0.0021) 0.0077 (0.0022) -0.0015 (0.0006)

# obs 8760 8760 8760

logL -4620 -4021 -4178

Dependent Variable 

Correct Choice
Data Simulation 1 Simulation 2

Table 11. Probit estimation of the effects of q and t on efficiency.

experience effects. Notice that we do not include T in the regression, because the theory does

not predict any effect except through the variable t.

The second column of Table 11 shows the estimated coefficients with standard errors in

parentheses. All coefficients have the expected sign and are highly significant. These results

deserve closer inspection for at least two reasons. First, the regression is not based on any kind

of structural model of decision making. Second, there are obvious dependencies in the data, and

un-modelled sources of error, including quantal response errors and variation in signal sequences.

To check the robustness of our findings and to check it against the theoretical model, we

generated two simulated data sets based on the QRE-BRF model, using the pooled estimates

λ = 4.23 and α = 2.46. The first of these simulations uses the same signal sequences as in

the laboratory experiment but decisions are generated by the QRE-BRF model. The second

simulation uses a completely new draw of signal sequences. The Probit estimations based on the

simulated data sets are reported in columns 3 and 4 of Table 11. While there are some small

differences in magnitude, all coefficients of theoretical interest are significant with the correct

sign.46 Note that the log-likelihoods for the simulated data are higher than for the real data.

46The only notable difference is the experience variable, which is not significant in the simulation using a
new batch of signal sequences, suggesting that its significance was spurious, due to more favorable order of
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This is likely caused by the fact that the simulations assume homogeneous agents, while we

would expect some heterogeneity to be present in the laboratory data.

To conclude it is interesting to ask whether or not decision accuracy is improved by the

stochastic choice and the base-rate neglect inherent in the QRE-BRF model. Information is

aggregated better under this model than under Nash (see Proposition 1), but subjects are making

decision errors. From Figure 4 we can see that the latter effect dominates early on while the

positive effects of information aggregation dominate in later periods. In the long run as T grows

large, beliefs in the QRE-BRF model converge to the true state so that private beliefs and public

coincide, independent of signals. Furthermore, this conclusion holds irrespective of the level of

base rate neglect (α) or the degree of signal informativeness (q). Using the pooled estimate of

λ = 4.23 we can thus compute the asymptotic decision accuracy: 0.99, i.e. almost full allocative

efficiency is achieved in this limit.

7. Conclusion

This paper reports the results of an information cascade experiment with two novel features:

longer sequences of decisions and systematic variation of signal informativeness. According to

standard game theory, neither of these treatments should be interesting, and neither should

produce significantly different results. We find, however, that both of these treatment effects are

strong and significant, with important implications for social learning, information aggregation,

and allocative efficiency.

The longer sequences have several effects. First, they have fewer permanent cascades, more

temporary cascades, more repeated cascades, more reversed cascades, and more self-corrected

cascades. In contrast, standard theory predicts that longer sequences will have more permanent

cascades, and that temporary, repeated, reversed, and self-corrected cascades never occur. The

signals in later matches. (Indeed, there is no reason that experience should have had a significant effect in the
first simulation.) In any case, the magnitude of the experience effects, to the extent they may possibly not be
spurious, is negligible.
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observed dynamics are highly dependent on signal informativeness, again in contrast to Nash

predictions. Relatively uninformative signals lead to less stable dynamics, in the sense that

cascades are much shorter, more frequent, and reverse more often. These subtle but important

features of the dynamics are impossible to detect in the short sequences employed in previous

experiments (Anderson and Holt, 1997).

To explain the observed features of the dynamics and the dependence on signal informa-

tiveness, we consider the logit quantal response equilibrium (QRE). In addition, we apply QRE

as a structural model to estimate base rate neglect and to test for heterogeneity in levels of

rationality. We find both to be significant factors in observed behavior. In particular, subjects

tend to overweight their signals, or, alternatively, underweight the public prior generated by past

publicly-observed choices (base rate neglect).

Our experimental results confirm a basic property of the QRE with profound implications

in this context: deviations happen and their likelihood is inversely related to their cost. This

property implies that cascade breakers more often than not hold contrary signals, and, hence,

that deviations from cascades are highly informative. Learning continues in a QRE even after

a cascade forms or breaks, and temporary, repeated, reversed, and self-correcting cascades arise

as equilibrium phenomena. While standard cascade theory predicts that learning ceases after a

few initial decisions, our data show that information is continuously being aggregated, providing

evidence for the QRE prediction that ultimately the truth will prevail.
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A. Appendix: Proof of Proposition 1

Proofs of (i) and (ii): The proof of (i) is by induction. Recall that p1 = 1
2
, so we only need

to show that 0 < pt < 1 implies 0 < p−t < pt < p+
t < 1. Equation (2.4) can be expanded as

p+
t =

qpt(1− Fλ(1− 2πa
t )) + (1− q)pt(1− Fλ(1− 2πb

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

with 1 > πa
t > πb

t > 0 defined in (2.1) and (2.2), and Fλ(x) = 1/(1 + exp(−λx)) the logistic

distribution with parameter λ and support (−∞,∞). Since 1
2

< q < 1 and 0 < pt < 1 by

assumption, the denominator exceeds the numerator: p+
t < 1. A direct computation shows

p+
t − pt =

pt(1− pt)(2q − 1)(Fλ(1− 2πb
t )− Fλ(1− 2πa

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

which is strictly positive because πa
t > πb

t . The proof that 0 < p−t < pt is similar. Q.E.D.

Proofs of (iii) and (iv): Let `t = (1− pt)/pt denote the likelihood ratio that A is correct. For

all t ∈ T we have

E(`t+1 |ω = A, `t) = `t,

i.e. the likelihood ratio constitutes a martingale, a basic property of Bayesian updating. Note

that pt is a strictly convex transformation of the likelihood ratio (pt = (`t + 1)−1), so

E(pt+1 |ω = A, pt) = E((`t+1 + 1)−1 |ω = A, `t) > (E(`t+1 + 1 |ω = A, `t))
−1 = pt,

by Jensen’s inequality and the fact that `+
t 6= `−t , see (ii). We sketch the proof of (iv), see

Goeree, Palfrey, and Rogers (2003) for details. First, limit points of the stochastic belief process

{pt}t=1,2,··· have to be invariant under the belief updating process. But (ii) implies that pt+1 6= pt

when pt 6= {0, 1}, so the only invariant points are 0 and 1. Next, the Martingale Convergence

Theorem implies that `t converges almost surely to a limit random variable `∞ with finite

expectation. Hence, `∞ < ∞ with probability one, which implies that p∞ > 0 with probability

one and pt thus converges to 1 almost surely. Q.E.D.
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B. Appendix: Estimation Program and Results

Below we assume the experimental data are stored in an MT ×2 matrix called ”data”; every

T rows correspond to a single sequence, or run, with a total of M runs, the first column contains

subjects’ signals and the second column subjects’ choices. The coding is as follows: A choices

and a signals are labelled by a 1 and B choices and b signals by a 0. The outcome of the proce-

dure is the log-likelihood for a single treatment (i.e. with a fixed precision, q, and fixed length,

T ) although it is easy to adapt the procedure to deal with pooled data.47

PROC loglikelihood(λ);
LOCAL logL,signal,choice,m,t,p,πa,πb,P(A|a),P(A|b),P(B|a),P(B|b),p+,p−;

logL=0; m=1;
DO WHILE m<=M;
p=1/2; t=1;
DO WHILE t<=T;

πa=qp/(qp+(1-q)(1-p));
πb=(1-q)p/((1-q)p+q(1-p));
P(A|a)=1/(1+exp(λ(1-2πa))); P(B|a)=1-P(A|a);
P(A|b)=1/(1+exp(λ(1-2πb))); P(B|b)=1-P(A|b);
p+=(pqP(A|a)+p(1-q)P(A|b))/((pq+(1-p)(1-q))P(A|a)+(p(1-q)+(1-p)q)P(A|b));
p−=(pqP(B|a)+p(1-q)P(B|b))/((pq+(1-p)(1-q))P(B|a)+(p(1-q)+(1-p)q)P(B|b));
signal=data[(m-1)T+t,1]; choice=data[(m-1)T+t,2];
IF signal==1 AND choice==1; p=p+; logL=logL+ln(P(A|a)); ENDIF;
IF signal==0 AND choice==1; p=p+; logL=logL+ln(P(A|b)); ENDIF;
IF signal==1 AND choice==0; p=p−; logL=logL+ln(P(B|a)); ENDIF;
IF signal==0 AND choice==0; p=p−; logL=logL+ln(P(B|b)); ENDIF;
t=t+1;

ENDO;
m=m+1;

ENDO;
RETP(logL);

ENDP;

47The procedure is simple because information cascade experiments concern individual decision-making envi-
ronments, not games, so there is no need to solve fixed-point equations to compute the QRE.
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Our Data AH Data

p = 5/9 p = 6/9 p = 6/9

T = 20 T = 40 T = 20 T = 40 T = 6

# obs 2320 2240 1800 2400 8760 270

QRE

λ 11.36 (0.42) 7.19 (0.32) 4.38 (0.18) 4.69 (0.19) 6.12 (0.14) 6.62 (0.72)

logL -981.0 -1181.4 -682.0 -634.0 -3650.3 -79.0

QRE-BRF

α 2.33 (0.18) 2.97 (0.36) 2.01 (0.16) 1.67 (0.16) 2.46 (0.10) 1.51 (0.19)

λ 7.07 (0.45) 3.68 (0.32) 3.47 (0.16) 4.09 (0.18) 4.23 (0.11) 5.90 (0.76)

logL -930.7 -1147.6 -653.0 -622.5 -3466.0 -74.5

QRNE

λA 14.45 (0.62) 9.82 (0.49) 5.16 (0.23) 4.74 (0.18) 6.32 (0.14) 7.93 (0.92)

λB 4.07 (0.37) 1.86 (0.18) 1.86 (0.18) 3.45 (0.33) 4.48 (0.28) 3.78 (0.66)

logL -947.7 -1156.3 -660.8 -627.9 -3636.6 -74.7

QRNE-BRF

α 3.24 (0.34) 2.64 (0.41) 1.82 (0.24) 1.54 (0.16) 2.59 (0.12) 1.75 (0.23)

λA 5.43 (0.44) 4.06 (0.51) 3.65 (0.27) 4.19 (0.20) 4.09 (0.12) 5.35 (0.83)

λB 12.56 (1.87) 3.25 (0.47) 2.93 (0.52) 3.40 (0.34) 4.92 (0.33) 15.68 (10.58)

logL -925.6 -1147.1 -652.5 -620.5 -3462.8 -73.3

CH

τ 1.67 (0.06) 1.24 (0.04) 1.96 (0.04) 2.82 (0.03) 1.91 (0.02) 2.20 (0.22)

logL -964.0 -1180.4 -694.3 -656.6 -3648.1 -77.1

QRE-CH

τ 2.00 (0.11) 1.67 (0.14) 2.52 (0.20) 3.63 (0.23) 2.54 (0.08) 2.44 (0.25)

λ 26.45 (3.31) 16.99 (2.33) 7.07 (0.86) 6.23 (0.51) 13.12 (0.75) 28.34 (14.16)

logL -940.7 -1162.1 -672.3 -632.2 -3486.3 -74.3

QRE-CH-BRF

α 1.91 (0.16) 2.67 (0.27) 1.90 (0.16) 1.50 (0.15) 1.81 (0.08) 1.36 (0.32)

τ 2.56 (0.23) 3.23 (0.73) 3.70 (0.73) 3.80 (0.28) 2.90 (0.10) 3.54 (2.28)

λ 12.77 (1.80) 4.50 (0.73) 3.97 (0.47) 5.21 (0.45) 7.69 (0.50) 7.47 (3.96)

logL -911.9 -1144.3 -652.0 -616.1 -3411.3 -73.9

Pooled

Table B1. Parameter estimates for the different models with standard errors in parentheses.
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