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ABSTRACT

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a

standard concept in social choice theory.  However, the concept of strategy-proofness

has serious drawbacks.  First, announcing one's true preference may not be a unique

dominant strategy, and using the wrong dominant strategy may lead to the wrong

outcome.  Second, almost all strategy-proof mechanisms have a continuum of Nash

equilibria, and most of which produce the wrong outcome. Third, experimental

evidence shows that most of the strategy-proof mechanisms do not work well. We

argue that a possible solution to this dilemma is to require double implementation in

Nash equilibrium and in dominant strategies, which we call secure implementation.

We characterize environments where secure implementation is possible, and

compare it with dominant strategy implementation.  An interesting example of

secure implementation is a Groves mechanism when preferences are single-peaked.
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1. Introduction

Strategy-proofness, requiring that truth-telling is a dominant strategy, is a

standard concept in social choice theory. Although it seems natural to assume that an

agent will tell the truth if it is a dominant strategy to do so, there are some

complications.  First, announcing one's true preference may not be a unique dominant

strategy, and using the wrong dominant strategy may lead to the wrong outcome.

Second, many strategy-proof mechanisms have a continuum of Nash equilibria, and

most of which produce the wrong outcome.  Third, experimental evidence shows that

most of the strategy-proof mechanisms do not work well, that is, very few subjects

reveal their true valuations. For example, see Attiyeh, Franciosi, and Isaac (2000) and

Kawagoe and Mori (2001) for pivotal mechanism experiments, and Kagel, Harstad, and

Levin (1987) and Kagel and Levin (1993) for second price auction experiments with

independent private values.

 The first problem can be solved by requiring “full” implementation in

dominant strategies. That is, all dominant strategy equilibria should yield a socially

optimal outcome. In order to cope with the second problem, we provide a new concept

called secure implementation. A social choice function is securely implementable if

there exists a game form or a mechanism that simultaneously implements the social

choice function in dominant strategy equilibria and in Nash equilibria.  Thus, all Nash

equilibria should yield a socially optimal outcome.  We characterize securely

implementable social choice functions: a social choice function is securely

implementable if and only if it satisfies strategy-proofness and a new property called

the rectangular property.  The question of whether secure mechanisms work well in

experiments is investigated in a companion paper (Cason, Saijo, Sjostrom&& && and Yamato

(2003)).

Most strategy-proof mechanisms do not satisfy the rectangular property.  For

example, the pivotal mechanism for public projects and the serial cost sharing
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mechanism for an excludable public good have a continuum of Nash equilibria.

However, all Groves mechanisms with single-peaked preferences do satisfy the

rectangular property.  Since secure implementation is a more demanding concept than

anything previously proposed in the literature, it is not surprising that the rectangular

property is rarely satisfied. We consider secure implementation to be a benchmark: if

secure mechanisms do not work well in experiments, then there is very little hope that

anything will work. But if a secure mechanism works well in experiments while

implementation using less demanding equilibrium concepts fail, then we may be able

to pinpoint the reason for the failure by comparing with the benchmark of secure

implementation.

The first person to study the relationship between dominant strategy

implementation and Nash implementation was Repullo (1985). His main result is that

if some social choice function f is dominant strategy implemented by some indirect

mechanism, but f is not dominant strategy implemented by its associated direct

mechanism, then the indirect mechanism does not Nash implement f. He concluded

that the concept of dominant strategy implementation should be discarded in favor of

Nash or Bayesian Nash implementation, and “the only role of dominant strategies

would be that of ensuring the existence of direct mechanisms that implement the social

choice rules under consideration in Nash or Bayesian Nash strategies” (Repullo (1985),

p. 229). We agree that the existence of “bad” Nash equilibria is problematic. However,

the experimental literature suggests that mechanisms designed for Nash (or Bayesian

Nash) implementation may not necessarily work well. In the absence of a dominant

strategy, a player’s best response depends on the other players’ choices, which may be

hard to predict. This strategic uncertainty may lead to the failure to coordinate on a

Nash (or Bayesian Nash) equilibrium. Thus, neither of the standard concepts –

dominant strategy implementation and Nash implementation – provides a robust

foundation for practical implementation. However, if a mechanism simultaneously
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implements a social choice function in dominant strategies and in Nash equilibria, then

we get the advantages of dominant strategies (strategic uncertainty is not important),

but we avoid the possibility that the players may play “bad” Nash equilibria.  In this

paper, we investigate the consequences of this strong requirement of secure

implementation.

The remainder of the paper is organized as follows. We give notation and

definitions in Section 2. In Section 3 we show that many well-known strategy-proof

mechanisms have continuum Nash equilibria. We characterize secure implementability

in Section 4.  Section 5 is for applications of our characterization result to public good

economies with quasi-linear preferences. In Section 6 we discuss the relationship

between dominant strategy implementation and secure implementation.  Concluding

remarks are in Section 7.

2.  Notation and Definitions

Let A be an arbitrary set of alternatives, and let I = {1, 2, ..., n} be the set of

agents, with generic element i.  We assume that n ≥ 2 .  Each agent i is characterized by

a preference relation defined over A.  We assume that agent i's preference relations

admit a numerical representation ui : A → ℜ.  For each i, let Ui  be the class of utility

functions admissible for agent i.  Let u = ( u1 , ..., un ) ∈ U ≡ × ∈i I Ui .   

A social choice function (SCF) is a function f : U → A that associates with every u

∈ U a unique alternative f (u) in A.

A mechanism (or game form) is a function g: S  → A that assigns to every s ∈ S a

unique element of A, where S = × ∈i I Si , Si  is the strategy space of agent i.  The list s ∈ S

will be written as ( si , s i− ), where s i−  = ( s1 , ..., si−1 , si+1 , ..., sn ) ∈ S i−  ≡ × ≠j i S j .

Given s ∈ S and ′si  ∈ Si , ( ′si , s i− ) is the list ( s1 , ..., si−1 , ′si , si+1 , ..., sn ) obtained by

replacing the i-th component of s by ′si .  Let g(Si , s i− ) be the attainable set of agent i at

s i− , i.e., the set of outcomes that agent i can induce when the other agents select s i− .
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For i ∈ I, ui  ∈ Ui , and a ∈ A, let L(a, ui ) ≡ {b ∈ A | u a u bi i( ) ( )≥ } be the weak

lower contour set for agent i with ui  at a.  Given a mechanism g: S → A, the strategy

profile s ∈ S is a Nash equilibrium of g at u ∈ U if for all i ∈ I, g(Si , s i− ) ⊆  L(g(s), ui ).

Let N ug ( )  be the set of Nash equilibria of g at u.  Also, let NA
g (u) be the set of Nash

equilibrium outcomes of g at u, i.e., NA
g (u) ≡ {a ∈ A | there exists s ∈ S such that s ∈

N ug ( )  and g(s) = a}.  The mechanism g implements the SCF f in Nash equilibria if for all u

∈ U, f (u) = NA
g (u).  f is Nash implementable if there exists a mechanism which

implements f in Nash equilibria.

Let a mechanism g: S  → A be given.  The strategy s Si i∈  is a dominant strategy

for agent i ∈ I of g at u Ui i∈  if for all $s Si i− −∈ , g(Si , $s i− ) ⊆  L(g( si , $s i− ), ui ).  Let

DS ui
g

i( )  be the set of dominant strategies for i of g at ui .  The strategy profile s S∈  is a

dominant strategy equilibrium of g at u ∈ U if for all i ∈ I, s DS ui i
g

i∈ ( ) .  Let DS ug ( )  be the

set of dominant strategy equilibria of g at u.  Also, let DSA
g (u) be the set of dominant

strategy equilibrium outcomes of g at u, i.e., DSA
g (u) ≡ {a ∈ A | there exists s ∈ S such

that s ∈ DS ug ( )  and g(s) = a}.  The mechanism g implements the SCF f in dominant

strategy equilibria if for all u ∈ U, f (u) = DSA
g (u).  f is dominant strategy implementable if

there exists a mechanism which implements f in dominant strategy equilibria.

The SCF f is strategy-proof if for all i I∈ , for all u u Ui i i,~ ∈ , for all ~u Ui i− −∈ ,

u f u u u f u ui i i i i i( ( ,~ )) ( (~ ,~ ))− −≥ .  The following result is well-known:

Proposition 1 (The Revelation Principle for Dominant Strategy Implementation. Gibbard

(1973)).  If the SCF f is dominant strategy implementable, then f is strategy-proof.

The converse of Proposition 1 is not true: some strategy-proof  SCF’s cannot be

dominant strategy implemented (e.g., Dasgupta, Hammond, and Maskin (1979)).



5

3. The Trouble with Strategy-Proof Mechanisms

In this section, we consider several strategy-proof mechanisms which have been

extensively studied in the literature: the pivotal mechanism for a non-excludable public

good, the serial cost sharing mechanism for an excludable public good, the second

price auction for an indivisible good, the Condorcet winner voting scheme (a median

voter scheme) with single-peaked preferences, and the uniform allocation rule (a fixed-

price trading rule) with single-peaked preferences. We will show that each of these

strategy-proof mechanisms may have a continuum of Nash equilibria. Moreover, there

may exist “bad” Nash equilibria outcomes that are Pareto-inferior to the dominant

strategy equilibrium outcome. This might explain why many strategy-proof

mechanisms do not work well in experiments and they are not used in real economic

situations.

(1) The pivotal mechanism (Clarke (1971)).

Consider a two-agent economy with a binary non-excludable public good and

quasi-linear preferences. Two agents 1 and 2 are facing a decision whether they should

produce the public good or not. Agent i's true net value of the public good is vi  if it is

produced, and her true net value is 0 otherwise ( i = 1 2, ). In the pivotal mechanism,

each agent i reports his net value ~vi  and the outcome is determined as follows:

Rule 1: if ~ ~ ,v v1 2 0+ ≥  then the public good is produced, and if not, then it is not

produced; and

Rule 2: each agent i must pay the pivotal tax ti

t
v v v v v v

vi
j j

j
=

+ > > + =R
S|
T|

             if (i) or (ii) and

     otherwise

0 0 0 01 2 1 2
~ (~ ~ ) ~ ~ ~

~

where j i≠ .

First, let ( , ) ( , )v v1 2 5 4= −  be the true net value vector. Figure 1-(a) shows that the

set of Nash equilibria is approximately a half of the two dimensional area.  Notice that



6

the public good should be produced because the sum of the net values of the public

good is positive.  The upper-right part of the set of Nash equilibria is good since

constructing the public good is recommended.  However, the lower-left part of the set

of Nash equilibria is bad since producing the public good is not recommended.

Second, let ( , ) ( , )v v1 2 5 5=  be the true net value vector.  In this case, both agents

want to construct the public good.  However, Figure 1-(b) shows the area of bad Nash

equilibria is still large.

----------------------------------
Figure 1 is around here.

----------------------------------

We will generalize the above negative result with a binary public good and two

agents to the case with any arbitrary finite numbers of public projects and agents.

(2) The serial cost sharing mechanism (Moulin (1994))

Consider a two-agent economy with a binary excludable public good and

quasi-linear preferences.  The cost of producing the public good is fixed and it is c.  Let

(~ ,~ )v v1 2  be a reported gross value vector, and let ci  be the cost that agent i must pay

for.  Then the serial cost sharing mechanism is defined by the following four rules

assuming that ~ ~v v1 2 0≥ ≥ :

Rule 1:  if ~ ~v v c1 2+ < , then the public good is not built;

Rule 2:  if ~ ~ , ~ , ~ /v v c v c v c1 2 1 2 2+ ≥ < <  and , then it is not built;

Rule 3:  if ~ ~ , ~ , ~ /v v c v v c1 2 1 2 2+ ≥ ≥  , then both agents enjoy the public good, and

c c c1 2 2= = / ; and

Rule 4:  if ~ ~ , ~ , ~ /v v c v c v c1 2 1 2 2+ ≥ ≥ <  , then only agent 1 enjoys the public good, and

c c1 = .
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Let ( , ) ( , )v v1 2 5 4=   be the true gross value vector and c = 6  be the cost. Figure 2

shows that the set of Nash equilibria is quite large and the set of bad Nash equilibria

cannot be ignored.

----------------------------------
Figure 2 is around here.

----------------------------------

 (3) The second price auction (Vickrey (1961)).

Consider a two-agent model with an indivisible good.  Two agents 1 and 2 are

facing a decision who receives the indivisible good.  Agent i's true value of the good is

vi ≥ 0  if she receives it, and her true value is 0 otherwise ( i = 1 2, ).  Let (~ ,~ )v v1 2  be a

reported value vector.  The second price auction consists of two rules:

Rule 1: if ~ ~v vi j> , then agent i receives the good and pays ~v j  ( i j i j, , ;= ≠1 2 ); and

Rule 2: if ~ ~v v1 2= , then agent 1 receives the good and pays ~v2 .

Let ( , ) ( , )v v1 2 7 5=  be the true value vector.  Figure 3 shows that the set of Nash

equilibria is quite large.  Notice that agent 1 should receive the good because her value

is greater than agent 2's.  The lower-right part of the set of Nash equilibria is good since

agent 1 receives the good.  However, the upper-left part of the set of Nash equilibria is

bad since agent 2 receives the good.

----------------------------------
Figure 3 is around here.

----------------------------------

 (4) The Condorcet winner voting scheme (a median voter scheme) with single-peaked

preferences.

Consider a voting model with three agents and three alternatives, N = { , , }1 2 3

and A a a a= { , , }1 2 3 .  Each agent i‘s preferences are single-peaked and the most

preferred alternative (peak) according to her true preferences is ai :
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u a u a u a1 1 1 2 1 3( ) ( ) ( )> > , u a u a2 2 2 1( ) ( )> , u a u a2 2 2 3( ) ( )> , and u a u a u a3 3 3 2 3 1( ) ( ) ( )> > .

In the Condorcet winner voting scheme, each agent i reports her most preferred

alternative (peak) ~ { , , }a a a ai ∈ 1 2 3 , and the outcome is determined as follows:

Rule 1: if at least two agents report the same alternative, then it is chosen; and

Rule 2: otherwise, a2 is chosen.

As Figure 4 illustrates, there exist five Nash equilibria other than the dominant

strategy equilibrium of the true peak reporting. Now suppose that utilities are

transferable and symmetric: u a u a u a1 1 2 2 3 3( ) ( ) ( )= = , u a u a u a u a1 2 2 1 2 3 3 2( ) ( ) ( ) ( )= = = ,

and u a u a1 3 3 1( ) ( )= . Then only the outcome a2  is efficient because the sum of utilities

is maximized.  The three Nash equilibria are good in the sense that the efficient

outcome a2  is chosen.  However, there are the two “bad” Nash equilibria in which the

other inefficient outcomes are chosen.

----------------------------------
Figure 4 is around here.

----------------------------------

A similar problem arises when the set of alternatives is an interval (Moulin

(1980)).1  In fact, it is easy to check that the set of the Nash equilibrium outcomes is

equal to the whole set of alternatives,2 and all Nash equilibrium outcomes other than

one dominant strategy equilibrium outcome (the median peak) are bad with

transferable and symmetric utilities.

                                                     
1 Strategy-proof voting schemes have been studied with more general structures of the set of alternatives,
including an interval as a special case.  For example, see Border and Jordan (1983), Barberà, Massó, and
Serizawa (1998), and Schummer and Vohra (2001).
2 For any point a in the interval, there exists a Nash equilibrium whose outcome is a: each agent reports a.
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(5) The uniform rule with single-peaked preferences (a fixed price trading rule)

(Sprumont (1991)).3

There are two agents, 1 and 2, who must share one unit of some divisible good.

Each agent i ‘s preference relations are single-peaked.  Let the peak of the preference

relation ~ui  be p ui(~ ) [ , ]∈ 0 1 . In the uniform rule, each agent i reports ~ui  and the

allocation ( (~), (~))f u f u1 2  is determined as follows:

Rule 1: f u p u ui i(~) min{ (~ ), (~)}= λ  if p u p u(~ ) (~ )1 2 1+ ≥ , and

Rule 2: f u p u ui i(~) max{ (~ ), (~)}= µ  if p u p u(~ ) (~ )1 2 1+ ≤  ( , )i = 1 2 ,

where λ(~)u  solves the equation min{ (~ ), (~)} min{ (~ ), (~)}p u u p u u1 2 1λ λ+ =  and µ(~)u  solves

the equation max{ (~ ), (~)} max{ (~ ), (~)}p u u p u u1 2 1µ µ+ = .

Let p p ui i= ( )  be the peak of the true preference relation ui . Suppose that

p p2 10 5< <. . Figure 5 (a)-(c) illustrate the set of Nash equilibria of this rule in terms of

peaks of reported preferences, ~ (~ )p p ui i= . Suppose p p1 2 1+ =  (see Figure 5-(a)).  Then

the Nash equilibria in the lower-right part are good, since the efficient allocation

( , )p p1 2  is assigned.  However, there are many bad Nash equilibria in the upper-left

part in which inefficient allocations are assigned.4 Similar things hold for the case with

p p1 2 1+ <  (Figure 5-(b)) as well as for the case with p p1 2 1+ >  (Figure 5-(c)). On the

other hand, if (a) p1 0 5> .  and p2 0 5> . , or (b) p1 0 5< .  and p2 0 5< . , then there exist

Nash equilibria other than the truth-telling dominant strategy equilibrium, but all

Nash equilibria are good (see Figures 5-(a) and (b)).

-------------------------------------------
Figure 5 and 6 are around here.
-------------------------------------------

                                                     
3 The uniform rule can be regarded as fixed price trading due to Barberà and Jackson (1995) with two
agents, two private goods, and a fixed price ratio.
4 For example, the equilibrium allocations are (~ ,~ )p p1 2  if 0 5 1 1. ~≤ <p p and p p2 2 0 5< ≤~ . ; and ( . , . )0 5 0 5 if
either (i) ~ .p1 0 5= and 0 5 12. ~≤ ≤p or (ii) 0 0 51≤ ≤~ .p and ~ .p2 0 5= .  These are Pareto inferior to ( , )p p1 2 .
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4.  Secure Implementation: A Characterization and a Revelation Principle

In the previous section, we saw that many strategy-proof mechanisms may

have “bad” Nash equilibria.  In order to overcome this difficulty, we introduce the

following new concept of implementation.

Definition 1. The mechanism g securely implements the SCF f if for all u ∈ U, f (u) =

DSA
g (u) = NA

g (u).5  The SCF f is securely implementable if there exists a mechanism

which securely implements f.

Secure implementation requires that for every possible preference profile, the f-

optimal outcome equals the set of dominant strategy equilibrium outcomes as well as

with the set of Nash equilibrium outcomes.

Next we characterize the class of securely implementable SCF's.  We use two

conditions. The first condition is strategy-proofness. As Proposition 1 indicates,

strategy-proofness is necessary for dominant strategy implementation, and so it is also

necessary for secure implementation. However, an additional condition is also

necessary for secure implementation. To see why intuitively, suppose that the direct

revelation mechanism g = f securely implements the SCF f.  See Figure 7 in which n = 2

and ( , )u u1 2  is the true preference profile.

Suppose that

(4.1) u f u u u f u u1 1 2 1 1 2( ( ,~ )) ( (~ ,~ ))= ,

that is, agent 1 is indifferent between reporting the true preference u1  and reporting

another preference ~u1  when agent 2’s report is ~u2 .  Since reporting u1  is a dominant

strategy by strategy-proofness, it follows from (1) that

                                                     
5 Secure implementation is identical with double implementation in dominant strategy equilibria and Nash
equilibria.  It was Maskin (1979) who first introduced the concept of double implementation. See also
Yamato (1993).  Note that secure implementation can be regarded as multiple (more than double)
implementation in dominant strategy equilibria, Nash equilibria, and all refinements of Nash equilibria
whose sets are larger than the set of dominant strategy equilibria.
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u f u u u f u u u f u u1 1 2 1 1 2 1 1 2( (~ ,~ )) ( ( ,~ )) ( ( ,~ ))= ≥ ′  for all ′ ∈u U1 1 , that is, reporting ~u1  is one

of agent 1’s best responses when agent 2 reports ~u2 .

Next suppose that

(4.2) u f u u u f u u2 1 2 2 1 2( (~ , )) ( (~ ,~ ))= .

By using an argument similar to the above, it is easy to see that

u f u u u f u u2 1 2 2 1 2( (~ ,~ )) ( (~ , ))≥ ′  for all ′ ∈u U2 1 , that is, reporting ~u2  is one of agent 2’s

best responses when agent 1 reports ~u1 .  Therefore, f u u(~ ,~ )1 2  is the Nash equilibrium

outcome.  Moreover, f u u( , )1 2  is the dominant strategy outcome, and by secure

implementability, the dominant strategy outcome coincides with the Nash equilibrium

outcome.  Accordingly we conclude that f u u( , )1 2 = f u u(~ ,~ )1 2  if (4.1) and (4.2) holds.

----------------------------------
Figure 7 is around here.

----------------------------------

A formal definition of this condition, called the rectangular property, is given as

follows:

Definition 3.  The SCF f satisfies the rectangular property if for all u u U,~∈ , if

u f u u u f u ui i i i i i( (~ ,~ )) ( ( ,~ ))− −=  for all i I∈ , then f ( ~u ) = f (u).

A formal proof of the claim that the rectangular property is necessary for sure

implementation is given as follows:

Lemma 1.  If the SCF f is securely implementable, then f satisfies the rectangular property.

Proof of Lemma 1: Let g: S  → A be a mechanism which securely implements f.  Take any

u u U,~∈ .  Suppose that

(4.3) u f u u u f u ui i i i i i( (~ ,~ )) ( ( ,~ ))− −=  for all i I∈ .
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Choose a dominant strategy profile at ~u , s u(~)= ( s u s un n1 1(~ ),... , (~ ) )∈DS ug (~) .  By

dominant implementability,

(4.4) g( s u s un n1 1(~ ),... , (~ ) ) = f u(~) .

Let i I∈  be given.  Choose a dominant strategy for i at ui , s ui i( ) ∈DS ui
g

i( ) .

Then  ( s u s ui i i i( ), (~ )− − )∈ −DS u ug
i i( ,~ ) , where s u s ui i j j j i− − ≠=(~ ) ( (~ )) .  By dominant

implementability,

(4.5) g( s u s ui i i i( ), (~ )− − ) = f ( u ui i,~− ).

By (4.3), (4.4), and (4.5),

(4.6) ui (g( s u s ui i i i( ), (~ )− − )) = ui (g( s u s un n1 1(~ ),... , (~ ) )).

Further, since s ui i( ) ∈DS ui
g

i( ) ,

(4.7) g(Si , s ui i− −(~ ) ) ⊆  L(g( s u s ui i i i( ), (~ )− − ), ui ).

By (4.6) and (4.7), g(Si , s ui i− −(~ ) ) ⊆  L(g( s u s ui i i i(~ ), (~ )− − ), ui ).  Since this holds for any

i I∈ ,  ( s u s un n1 1(~ ),... , (~ ) )∈N ug ( ) .  By Nash implementability and (4.4), f u( ) =

g( s u s un n1 1(~ ),... , (~ ) ) = f u(~) .  Q.E.D.

The mechanism g is called the direct revelation mechanism associated with the SCF f

if S Ui i=  for all i I∈  and g(u) = f (u) for all u U∈ . Strategy-proofness and the

rectangular property are not only necessary, but also sufficient for secure

implementability by the direct revelation mechanism.

Lemma 2.  If the SCF f satisfies strategy-proofness and the rectangular property, then the

direct revelation mechanism associated with f securely implements f.

Proof of Lemma 2:  First we prove that for all u U∈ , f(u)∈DS uA
g ( ) .  Take any u U∈ .  Let

s ui i=  for each i I∈ .  By strategy-proofness, s∈DS ug ( )  and g s f u( ) ( )= .

Next we prove that for all u U∈ , N uA
g ( )  = f (u).  Let u U∈  be given.  Take any   

s u N ug= ∈~ ( ) .  We show that g s f u( ) ( )= , i.e., f u f u(~) ( )= .  Since ~ ( )u N ug∈ ,
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(4.8) ui (f (~ ,~ )u ui i− ) ≥ ui (f ( $ ,~ )u ui i− ) for all i I∈  and all $u Ui i∈ .

Further, since u DS ui i
g

i∈ ( )  by strategy-proofness,

(4.9)  ui (f ( ,~ )u ui i− ) ≥ ui (f ( $ ,~ )u ui i− ) for all i I∈  and all $u Ui i∈ .

By (4.8) and (4.9), ui (f (~ ,~ )u ui i− ) = ui (f ( ,~ )u ui i− ) for all i I∈ .  By the rectangular

property, f u f u(~) ( )= . Q.E.D.

By Proposition 1, Lemmata 1 and 2, we have the following characterization of

securely implementable SCF’s.

Theorem 1.  An SCF is securely implementable if and only if it satisfies strategy-proofness and

the rectangular property.

It is easy to check that the five strategy-proof mechanisms examined in Section

3, the pivotal mechanism, the serial cost sharing mechanism, the second price auction,

the Condorcet voting scheme, and the uniform rule fail to satisfy the rectangular

property, so that they have a continuum of Nash equilibria as illustrated in Figures 1-6.

In the early literature on implementation, it was pointed out that even if an SCF

f is implementable in dominant strategies, it may not be implemented by its associated

direct revelation mechanism: it may be necessary to use more complicated “indirect”

mechanisms (Dasgupta, Hammond, and Maskin (1979), Repullo (1985)). However,

Repullo (1985) showed that if the direct revelation mechanism associated with the SCF

f does not implement f in dominant strategies, then f is not Nash implementable by any

mechanism. Hence, it cannot be securely implemented. Conversely, suppose the SCF f

is securely implemented by some mechanism. Then by Proposition 1 and lemma 1, f

satisfies strategy-proofness and the rectangular property. Hence, by lemma 2, f is

securely implemented by its associated direct revelation mechanism. Thus, we have a

revelation principle for secure implementation:



14

Theorem 2. An SCF is securely implementable if and only if it is securely implemented by its

associated direct revelation mechanism.

The implication of this revelation principle is that we can limit our attention to

the set of direct mechanisms. Direct mechanisms are somewhat natural and easy to

explain to experimental subjects, which may add to their appeal.

5.  Applications to Public Good Economies with Quasi-Linear Preferences: the Class

of Groves-Clarke Mechanisms

In this section, we apply our characterization result, Theorem 1, to public good

economies with quasi-linear preferences.  We find that none of strategy-proof and

efficient SCF’s is securely implementable if public goods are discrete.  On the other

hand, strategy-proof and efficient SCF’s are securely implementable by Grove-Clarke

mechanisms with single-peaked preferences.

Let the set of alternatives be

A y t t y Y t in i= ∈ ∈ℜ ∀{( , ,... , ) , , }1 ,

where Y ⊆ℜ is a production possibility set, y Y∈  is an output level of a public good,

and ti  is a transfer of a private good to agent i.  For simplicity, we assume that there is

no cost involved in producing y.  Each agent has selfish and quasi-linear preferences:

u y t t u y t v y ti n i i i i( , ,... , ) ( , ) ( )1 = = + ,   i I∈ .

The class of valuation functions admissible for agent i is denoted by Vi .  Let V ≡

× ∈i I Vi .

Consider an SCF f satisfying the efficiency condition on the public good

provision:

 (5.1) y v v v v yf
n

y Y
ii I( , ,... , ) arg max ( )1 2 ∈

∈ ∈∑  for all v V∈ ,

where y vf ( )  denotes the level of the public good recommended by the SCF f  for the
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profile v.

The following result is well-known:

Proposition 2 (Clarke (1971), Groves (1973), Green and Laffont (1979)). An SCF f satisfying

(5.1) is dominant strategy implementable if and only if f satisfies

 (5.2)  t v v v v y v v v h v v v vi
f

n j
f

n i i i nj i( , ,... , ) ( ( , ,... , )) ( ,.. , , ... , )1 2 1 2 1 1 1= + − +≠∑  ∀ ∈v V ,∀i ,

where t vi
f ( ) represents the transfer to agent i recommended by the SCF f  for the utility profile v

and hi  is some arbitrary function which does not depend on vi .

A direct revelation mechanism satisfying (5.1) and (5.2) is called a Groves-Clarke

mechanism.  Proposition 2 says that we can focus on the class of Groves-Clarke

mechanisms for implementation of an efficient SCF in dominant strategy equilibria.

We now check whether or not secure implementation of an efficient SCF is

possible on two different environments.

1) Finite Public Projects

Suppose that Y is a finite set, called a set of public project choices, and 0∈Y ,

where 0 means that no public project is produced and y Y∈ such that y ≠ 0  means that

some public project is produced.  Let the class of valuation functions admissible for

agent i be V v Y v v y y Yi i i i= →ℜ = ∈ℜ ∀ ∈{ : ( ) , ( ) , }0 0  for i I∈ .

Lemma 3.  Let Y be a finite set of public project choices with 0∈Y , and

V v Y v v y y Yi i i i= →ℜ = ∈ℜ ∀ ∈{ : ( ) , ( ) , }0 0  for each i I∈ .  Then any SCF satisfying (5.1) and

(5.2) fails to satisfy the rectangular property.

Proof of Lemma 3: Take some b Y∈ with b ≠ 0 . Take a valuation profile v V∈ such that

 max ( ) ( )
{ }y Y

ii I ii Iv y v b
∈ − ∈ ∈∑ ∑= <

0
0  and max ( ) ( )

{ }y Y
jj i jj iv y v b

∈ − ≠ ≠∑ ∑= <
0

0  ∀ ∈i I .
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Given such a profile v V∈ , construct another profile ~v V∈  such that

 max ~ ( ) ~ ( ) ( ) /
{ }y Y

i i jj iv y v b v b n
∈ − ≠= = ∑

0
 ∀ ∈i I .

Since max ( ) ( )
{ }y Y

ii I ii Iv y v
∈ − ∈ ∈∑ ∑< =

0
0 0 ,

(5.3) y vf ( ) = 0 and

t vi
f ( )  = v y v h vj

f
i ij i ( ( )) ( )+ −≠∑  = h vi i( )−  for all i I∈ .

Also notice that

max [~ ( ) ( )]
{ }y Y

i jj iv y v y
∈ − ≠+∑

0
 ≤  max ~ ( ) max ( )

{ } { }y Y
i

y Y
jj iv y v y

∈ − ∈ − ≠+ ∑
0 0

                                                           = v b njj i ( ) /≠∑  + v bjj i ( )≠∑

                                                           < 0.

Hence,

(5.4) y v vf
i i(~ , )− = 0 and

t v vi
f

i i(~ , )−  =  v y v vj
f

i ij i ( (~ , ))−≠∑  + h vi i( )−  = h vi i( )−  for all i I∈  .

By (5.3) and (5.4),

~ ( ( )) ( )v y v t vi
f

i
f+  = ~ ( (~ , ))v y v vi

f
i i−  + t v vi

f
i i(~ , )−  for all i I∈ .

However, since max ~ ( ) ~ ( )
{ }y Y

ii I ii Iv y v b
∈ − ∈ ∈∑ ∑=

0
= ≠∑ v bjj i ( ) , y vf (~) = b ≠ y vf ( ) .  Q.E.D.

Theorem 1, Proposition 2, and Lemma 3 together imply the following

impossibility result:

Theorem 3.  Let Y be a finite set of public project choices with 0∈Y , and

V v Y v v y y Yi i i i= →ℜ = ∈ℜ ∀ ∈{ : ( ) , ( ) , }0 0  for each i I∈ .  If an efficient SCF satisfying (5.1)

is dominant strategy implementable, then it is not securely implementable.

In other words, for any mechanism implementing an efficient SCF in dominant

strategy equilibria, the set of Nash equilibrium outcomes is strictly larger than that of
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dominant strategy equilibrium outcomes if the number of public project choices is

finite.

2) Continuum Public Projects with Single-Peaked Preferences

Suppose that Y = ℜ and for all i I∈ ,

V v v y y r ri i i i i= ℜ→ℜ = − − ∈ℜ{ : ( ) ( ) , }2 ,

where ri  is agent i's most preferred level of the public good.  We can represent these

single-peaked preferences by the ri  instead of the vi .  The optimal output level of the

public good satisfying (5.1) is given by

y r r rf
n( , ,... , )1 2 = 1

n
rii I∈∑ .

We will prove that any SCF f meeting (5.1) and (5.2) satisfies the rectangular

property.  Take two profiles r r n,~∈ℜ .  Suppose that

~ ( ( ))v y ri
f  + t ri

f ( )  =  ~ ( (~, ))v y r ri
f

i i−  + t r ri
f

i i(~ , )−  for all i I∈ .

We can rewrite these equations as

( ~)A ri− 2  + ( )A rjj i −≠∑ 2  = ( ~)A B ri i+ − 2  + ( )A B ri jj i + −≠∑ 2  for all i I∈ ,

where A r nn= =∑ ll /1  and B r r ni i i= −(~ ) /  for all i I∈ .  By using the above equations, it

is not hard to see that r ri i= ~  for all i I∈ .  Therefore, y r y r rf f
i i( ) (~, )= −  and

t r t r ri
f

i
f

i i( ) (~ , )= −  for all i I∈ .  Accordingly, the rectangular property is satisfied.

This result together with Theorem 1 and Proposition 2 imply the following

corollary.

Corollary 1. Suppose that Y = ℜ and for all i I∈ ,V v v y y r ri i i i i= ℜ→ℜ = − − ∈ℜ{ : ( ) ( ) , }2 .

Then any SCF satisfying (5.1) and (5.2) is securely implementable.

6. Dominant Strategy Implementation versus Secure Implementation

By applying the revelation principle for secure implementation, Theorem 2, we

can clarify the difference between dominant strategy implementability and secure
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implementability. The literature contains examples of social choice functions that are

dominant strategy implemented by some mechanism g, but not dominant strategy

implemented by the associated direct revelation mechanism (e.g., Repullo (1985)). By

Theorem 2, each of these examples in the literature gives an example of an SCF that can

be dominant strategy implemented, but cannot be securely implemented. This

illustrates the significant difference between the set of dominant strategy

implementable social choice functions and the set of securely implementable social

choice functions. In fact, Theorem 2 implies that the set of securely implementable

SCF’s is a subset of the set of SCF’s that are dominant strategy implementable by their

associated direct revelation mechanisms. This latter set is, of course, a strict subset of the

set of dominant strategy implementable SCF’s, which in turn is a strict subset of the set

of strategy proof SCF’s. To better understand the difference between the set of securely

implementable SCF’s and the set of SCF’s that are dominant strategy implementable by

their associated direct revelation mechanisms, we introduce the following definition.

Definition 4. The SCF f satisfies preference sensitivity if for all u u U, ′ ∈  and all i I∈ , if

f u u f u ui i i i( , ) ( , )− −≠ ′ , then there is some ′′−u i  such that u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ > ′ ′′− − .

Preference sensitivity together with strategy-proofness are necessary and

sufficient for dominant strategy implementability by the direct revelation mechanism:

Theorem 4. An SCF is dominant strategy implemented by its associated direct revelation

mechanism if and only if it satisfies strategy-proofness and preference sensitivity.

Proof of Theorem 4. Suppose the SCF f satisfies strategy-proofness and preference

sensitivity. Consider the associated direct revelation mechanism. Suppose agent i’s true

preference is ui . By strategy proofness, it is dominant to announce the truth ui .
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Suppose announcing a different preference ′ui  is another dominant strategy. If

f u u f u ui i i i( , ) ( , )− −≠ ′  for some u i− , then by preference sensitivity there is ′′−u i  such that

u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ > ′ ′′− − . Therefore, announcing ′ui  is in fact dominated by

announcing ui , which is a contradiction. Hence, f u u f u ui i i i( , ) ( , )− −= ′  for all u i−  after

all, so agent i’s lie (i.e. to say ′ui ) cannot ever affect the outcome. Hence, f is dominant

strategy implemented.

Suppose the SCF f is dominant strategy implemented by its associated direct

revelation mechanism. By Proposition 1, f  is strategy-proof. It remains to show f

satisfies preference sensitivity. Take any u u U, ′ ∈  and i I∈ . Suppose f u ui i( , )− ≠

f u ui i( , )′ − . Then announcing ′ui  is dominated by announcing ui  when agent i’s true

preference is ui , so that there is ′′−u i  such that u f u u u f u ui i i i i i( ( , )) ( ( , ))′′ > ′ ′′− − .        Q.E.D.

Corollary 2. If an SCF fails to satisfy preference sensitivity, then it is not securely

implementable by any mechanism.

Notice that preference sensitivity does not imply that each player will have a

unique dominant strategy in the revelation mechanism. Repullo (1985) gave an

example of a dominant strategy implementable SCF that is not implemented by its

associated revelation mechanism, and hence violates preference sensitivity by Theorem

4. It is easy to check that all five SCF’s discussed in Section 3 do satisfy preference

sensitivity. Since all five violate the rectangular property, the difference between the

two conditions is highly significant.

7. Concluding Remarks

Many researchers believe that if truth telling is a dominant strategy, then every

agent will adopt it.  However, we believe this issue should be decided by experiments.

In Cason, Saijo, Sjostrom&& && and Yamato (2003), we conducted experiments on two
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strategy-proof mechanisms: the pivotal mechanism with a binary public project that

has a continuum of Nash equilibria, and a Groves mechanism with single-peaked

preferences that has a unique Nash equilibrium.  We found a clear difference on the

choice of dominant strategies between the two: the frequency of dominant strategy

equilibria chosen by subjects was 50% in the pivotal mechanism experiment, while it

was 81% in the Groves mechanism experiment.6 We are currently conducting further

experiments.

                                                     
6 In both experiments, we used payoff tables only.  No details of the rules of mechanisms were given to
subjects.  In other words, we avoided possible complexity resulting from non-understanding of the rules
of mechanisms by subjects.
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Figure 1: Equilibria of the Pivotal Mechanism
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Figure 2: Equilibria of the Serial Cost Sharing Mechanism
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Figure 5: Equilibria of the Uniform Rule (1)
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Figure 6: Equilibria of the Uniform Rule (2)
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