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Abstract

This paper reports on an experimental investigation of the evolution
of networks and the individual decision making processes that guide it.
Since there is no history of experimental work on network formation,
part of the paper is devoted to the formulation of problems that can
be examined experimentally. The results are that networks, composed of
decentralized decision makers, are capable of overcoming complex coordi-
nation and learning problems and converge to stationary configurations.
While stationarity is frequently observed, such an achievement is not
guaranteed and when it doesn’t occur significant and persistent ineffi-
ciencies can result. The models of equilibration based on the principle of
Nash equilibrium are more reliable than models based on the alternative
principles of efficiency seeking or focalness of the network configuration.
However, individual decision making within networks is not in accordance
with the simple decision rule of Nash best response. Instead we observe
complicated strategies that appear to trade short term profits in order
to signal to, and teach, other agents the strategies required for long term
profit maximization.
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1 Introduction

A central challenge to all public oriented research is the isolation of principles
that govern the self-organizing and evolutionary properties of institutions. For
that reason networks and network formation are natural phenomena to study.
Network structures, both formal and informal, are often the means by which
information, goods, or services flow through the economy and society. Increas-
ingly over recent years, researchers have used network concepts to model and
understand a broad array of important environments. Examples include (but
are not limited to) labor market participation,! industry structure,? the in-
ternal organization of firms,®> and sociological interactions covering such broad
phenomena as social norms, peer pressure and the attainment of status.*
Underlying networks in all manifestations are important public economic
questions of efficiency and distribution. Economic networks as well as networks
that facilitate the information flow of broad social and political activities, often
develop and evolve in a decentralized, self-organizing manner. However, the
complexities of such processes are underscored by the reality that important
networks are also developed within the framework of a regulated monopoly,
suggesting a failure of decentralized decisions, perhaps due to network features
of public goods, multilateral negotiation and coordination, in which decentral-
ized decisions are thought to work inefficiently. Thus, natural questions to pose
focus on the principles that might be at work, guiding the unregulated develop-
ment and evolution of networks. Two key questions are preeminent: (1) What
principles underlie network development and evolution? and (2) How can the
principles be understood in the context of individual decisions and behavior?
Hopefully, the answers will be useful for the design of policies that help facilitate

I This is perhaps the broadest application of networks within economics; see Montgomery
(1991) for a discussion and references. The focus of this literature is on the flow of information
about job opportunities through social and other networks. In a recent application, Calvo-
Armengol and Jackson (2003) show how particular network structures may preclude equality
of opportunity in the labor market across groups.

2An excellent example is Kranton and Minehart (2001).

3See, for example, Keren and Levhari (1983).

4There exists a large and broad literature in sociology addressing these issues (see Wellman
and Berkowitz (1988)). In an economic context many of the issues are dealt with, either
explicitly or implicitly, in the special issue of the Journal of Public Economics (1998, Vol.
4) dealing with status. For example, Neumark and Postlewaite (1998) show that family
networks and relative income play an important role in decisions of married women to reenter
the workforce.



efficient network formation and functioning.

At an abstract level the questions provide a natural arena for the machinery
of game theory, and in recent years a burgeoning literature has arisen (the
seminal contribution is Jackson and Wolinsky (1996); see Jackson (2003) for a
recent survey). The game theoretic literature has provided enormous insight
into networks, most prominently exposing a critical tension in many network
environments between efficiency and individual incentives. The implication of
this insight is that “stable” network configurations (those that persist through
time) may not be efficient.

Questions of efficiency may, however, be moot if network structures do not
evolve towards some predictable stationary states. An influential strand of the
game theoretic literature, pioneered by Bala and Goyal (2000), has explored
network dynamics and provided a remarkable result. In a decentralized network
environment with self-interested and myopic decision makers, Bala and Goyal
(2000) developed a model of how network structures can rapidly evolve in a
predictable manner to stationary configurations. The work serves to not only
confirm the theoretical relevance of networks, but powerfully demonstrate that,
despite overwhelming complexity, the individual decision maker is a tractable
unit of analysis.

Behind the mathematical elegance of the models, however, particular be-
havioral principles and solution concepts underlie all game theoretic analyses,
both static and dynamic. Moreover, these principles, while intuitively plau-
sible, have often proved inadequate at describing behavior at the individual
level in other environments (most notably with public goods).” Therefore, at
an applied level the key questions of individual behavior within networks and
aggregate dynamics remain open.

Unfortunately, given the complexity, breadth and decentralized nature of
naturally occurring networks, extracting evidence from field data on the reli-
ability of the principles is inherently problematic. Consequently, we turn to
laboratory experiments. To avoid the difficulties of field data we consider simple
environments and small group interactions while carefully controlling individual
incentives and the sequencing of network evolution.

Our primary results are as follows. Networks do spontaneously emerge and
are capable of converging to configurations that remain stationary from round to

®As Ledyard (1995, p. 172) was left to conclude in a review of public goods experiments,
“if these experiments are viewed solely as tests of game theory, that theory has failed.” As will
become clear, this failure is particularly relevant as networks share several common features
with public goods.



round. While convergence to stationary networks does not always occur, when
it does occur the network is of a predictable form. Significantly, the dynamics of
network formation does not reliably exhibit monotonically increasing efficiency.
Approximately speaking, at certain critical points in network dynamics the
coordination, bargaining and free rider aspects of individual decision making
become aligned and stationarity is achieved. At these points it appears that all
decision makers become aware of which network is best for them, and are aware
that other agents are aware of this, and so on ad infinitum. In non-convergent
networks this coordination of beliefs appears to fail and significant inefficiency
results.

We discover the principle behind convergence and network dynamics to be
Nash-like (although not necessarily strict Nash), as opposed to efficiency or
focalness. These findings allow us to answer a fundamental question: game
theory and its concepts of equilibria are appropriate to be applied to the network
problem (and thus the models of Jackson and Wolinsky, and others are not idle
mathematical speculations).

At the outset it is important to emphasize that the experiments reported
here are “exploratory.” No previous network experiments exist on which to
build. The number of variables is staggering and there is no obviously best
configuration with which to start. The elementary state of the theory together
with the number of variables suggest that a “measurement” approach to ex-
periments will not work. It makes little sense to measure the effects of some
single, particular variable when neither the theory nor the importance of the
variables are well established. So, as is the case with exploratory methodology,
part of the problem addressed in the study involves questions about where to
start and in what directions one might push. The overall development of the
paper is designed to explain the considerations that were made in the approach
so the study can be used as a benchmark for others who feel that alternative
directions might be more productive.

The paper is developed as follows. Section 2 presents a brief introduction
to the formal concept of networks. It also contains a summary of the variables
that have been used in the literature and the theoretical models of networks to
be used in the experiments. Section 3 presents the overall experimental design
and the features of both Series 1 and 2 of experiments. Section 4 presents the
results for both series of experiments and section 5 concludes the paper.



2 Experimental Setting and Network Models

As mentioned in the introduction, the experimental design resides in the do-
main of “exploratory” methodology. The approach is dictated by both the lack
of previous experiments together with the abundance of variables and a corre-
sponding incompleteness of theory. The approach is to explore proposed general
principles that the literature suggests might govern network development and
evolution.

Naturally occurring networks take place in a variety of institutional and
informational environments. However, many have the property of repeated
interactions among a set of agents (and not as one-shot interactions). As such,
our experiments involved repeated decisions by a fixed set of agents. This
structure gives rise to three basic questions: (1) do networks converge to steady
state outcomes and, if so, what are the properties of the state? (2) What
principles drive the evolution of networks? (3) How is the process influenced
by the institutional environment? In the remainder of this section candidate
models are outlined as potential answers to the first two questions. Answers
to the third question remain open but answers to the first two are suggestive.

2.1 Network Environments

A network is a set of connections that join distinct nodes together. We study
networks in which each node is a separate decision making agent. Each agent
unilaterally chooses the links they form between themselves and other agents.
At each node exists a “piece” of information (this can be interpreted alterna-
tively as a good or service, social pressure, norms of behavior etc.) that has
the capacity to flow through the network. All information that exists at the
node to which a connection is being made is passed to the node that initiated
the connection. The benefit is received by each node through which the infor-
mation passes, including the node of origin (the benefit can be received only
once). The value of information to an agent is independent of the number of
links that it passes through before reaching an agent, and so we say information
flow is without “decay.” Links are reliable (i.e., never fail) and are assumed to

6There are several other literatures that proceed under the banner of “networks” that
differ significantly and will not be considered here. These include the literature on airline
networks (see Hendricks, Piccione, and Tan (1999)) and network externalities.



be one-way and are paid for by the connecting agent, who receives the benefit.”
Each agent is free to connect to any other agent, or combination of agents, that
he chooses. The timing and knowledge on which agent decisions can be based
are discussed later in this and the succeeding section.

An example of a network with six agents is depicted in Figure 1. Our ex-
periments all involved six agents, a size reflecting a trade-off between capturing
network complexity while maintaining manageability.

** Figure 1 about here.

In the network of Figure 1 each agent chose to implement only one link. The di-
rection of the arrow points to the agent who constructed the link and receives the
information flow. In this particular network each agent receives every available
piece of information because the sequence of links traces continuously through
every node in the network.

Agents within the network receive continuously updated information about
the structure of the network in which they are operating. Thus, from a model-
ing perspective a natural beginning would be a model in which the structure of
the network is common knowledge. Of course, the physical realities of present-
ing such information to subjects must be acknowledged. Exactly how that can
be done and how the information must be organized will be discussed in the
experimental procedures section. Nevertheless, we proceed on the assumption
that each agent has full information about the size and composition of the net-
work, as well as the links selected by other agents. There is no communication
of any kind between the agents other than through their link choice.

2.2 Network Structures and Models of Network Forma-
tion

In this section three broad principles of network formation are introduced:
Nash equilibrium, efficiency and focalness. These principles provide predic-
tions about network configurations that may prove stationary as well as the

"Bala and Goyal (2000a) explore the implications if links are not reliable. An alternative
specification may assume links are two-way (and so information flows both ways). Two-way
links adds the issue of who will pay for the link as it benefits both connected agents. Bala and
Goyal (2000) assume the instigator of the link pays, which adds a further coordination problem
among agents (each will wait for the other to connect). To avoid this further complication
we assume links are one-way.



“directions” network evolutions might take. In this sense the principles can
serve as both models of stationary configurations as well as individual action
and movements of configurations.

2.2.1 Principles

Nash equilibrium is standard from the theory of games. A configuration
is a Nash equilibrium if given what other agents are doing, no individual can
improve personal gains by some unilateral change of action. We will consider
both strict and weak definitions of Nash equilibrium. It is important to note
that we employ the static definition of Nash equilibrium (i.e., the equilibrium of
a one-shot game) although the environments we consider are dynamic. Strategic
incentives within dynamic networks are little understood and a characterization
of equilibrium is not available.®

Efficiency refers to the proportion of gains received by all agents relative
to all potential gains, without regard to the individuals that receive the gains.
If gains are the maximum possible then the system is at 100% efficiency. Such
a calculation reflects both the distribution of information around the network
and the cost of the formation of the network.

Focalness, is not usually considered in formal models since in the world
of abstract reasoning there is not typically a commonly held sense of position.
In contrast, subjects in the experiments share a geographical space that may
provide a coordinating device for the agents, as originally discussed by Schelling
(1960).  The application of focalness for purposes of this paper reflect the
positions that subjects might have been placed in the room, the positions in
which data were put on the chalkboard or the positions in which individuals
appeared in network representations on screens.

2.2.2 Parameters and Predictions

The three principles described above, for different parameter values, may lead
to identical or divergent predictions. Table 1 describes four sets of network
parameters in which the predictions of these principles converge and diverge.
The Nash equilibrium, efficient, and focal networks for these different parameter
values are described in Table 2. These parameter values (and their divergent

8 Although, given the multitude of one-shot Nash equilibria that often exist, a folk theorem
result most likely holds.



predictions) will be exploited in our experimental design to establish a conver-
gence result and then to distinguish between the predictions.

** Tables 1 and 2 about here.

Parameter sets 1 and 2 involve symmetric costs and benefits and lead to
identical predictions. These parameters fit the model of Bala and Goyal (2000)
who showed that the “wheel network” is uniquely efficient and strict Nash. As
the name suggests, a wheel network requires each agent to connect only one link
from another agent such that these links form one long chain. Although, this
chain need not appear as a wheel when depicted graphically. Examples of wheel
networks are given in Figure 2 below and Figure 1 earlier. This architecture’
is efficient as all agents receive maximum value for the cost of only one link.
While the two configurations in Figures 1 and 2 are equivalent with respect to
efficiency and Nash equilibrium, focalness draws a distinction between them.
Agents in our experiments are seated as depicted in the figures and are assigned
consecutive numbers as indicated. Therefore, we assume that the wheel in
Figure 2 is focal (the counter-clockwise wheel), whereas the wheel in Figure 1
is not.

** Figure 2 about here.

It is important to note that even though the wheel network is the unique
strict Nash equilibrium, there exists many weak Nash equilibria. Figure 3 pro-
vides an example with eight links.

** Figure 3 about here.

Parameter sets 1 and 2 were used in our experiments to give convergence
“its best shot” and establish the capability for network equilibration. With
equilibration established (at a focal wheel), we sought to distinguish between
the three potential guiding principles. Parameter sets 3 and 4, which are out-
side the domain analyzed by Bala and Goyal (2000), distinguish between the
principles by relaxing the symmetry and anonymity of link costs.!’ Parameter
set 3 imposes higher costs on links made between neighboring nodes.!! The

9Two networks have the same architecture, as defined by Bala and Goyal (2000, p. 1182),
if one network can be obtained from the other by permuting the strategies of agents in the
other network.

10Bala and Goyal (2000) do not asuume linearity of payoffs (as assumed in parameter sets
1 and 2) but they do impose symmetry and anonymity.

'Neighbors are defined as geographically adjacent agents. For example, the neighbors of
agent 6 are 5 and 1.



asymmetry immediately implies that the focal wheels, which rely exclusively
on neighborly links, are no longer efficient. In this environment the efficient
configurations are wheels in which there are no neighborly links. An example
of such a wheel is given in Figure 4. Note that the network of Figure 1 is not
efficient despite being a non-focal wheel as there are some neighborly links in
this configuration.

** Figure 4 about here.

Parameter set 4 alters the predictions further and, to a degree, allows the
predictions of the efficient and Nash equilibrating principles to be separated.
The asymmetric cost structure implies that it is cheaper for agent 1 to connect
a certain link than it is for any other agent. This incentive is so strong that the
wheel architecture is no longer efficient, and instead a star network centered
on agent 1 is the uniquely efficient network, as well as being strict Nash.!?
Significantly, the wheel network is still a strict Nash equilibrium. The star
network is depicted in Figure 5.

** Figure 5 about here.

2.3 Models of Individual Behavior and Network Dynam-
ics
Since network links reflect individual decisions, such decisions are compelling

areas to explore for predicting the existence and behavior of all networks. There
are many theories of individual decisions, which become increasingly complex

12The proofs of these claims are quite simple. To see that the star is a strict Nash equilib-
rium consider firstly agents 2-6. All of these agents are receiving all pieces of information at
the cost of a single link from the cheapest source. Thus, they are playing a strictly optimal
strategy. Now consider agent 1. He is receiving all pieces of information but at the expense
of five links (recall he must pay the adjustment fee). However, if he dropped a link then he
would lose a piece of information. Thus, he is also strictly optimizing and the star is a strict
Nash equilibrium.

To see that this configuration is uniquely efficient suppose that there are links that do not
include agent 1. Say agent 4 is connected from 5. This link costs $.20. Consider an alternative
network in which this link is omitted and replaced by a link from 5 to 1 and from 1 to 4. These
links cost at most $0.10 (as they may already exist). Therefore, this alternative network is
cheaper and weakly increases information flow. Consequently, the original network cannot be
efficient. It is easy to see that networks involving a subset of links in the star network are
also inefficient (just add links of the star that are missing). Therefore, the star centered on
agent 1 is uniquely efficient.



in the network environment. We will focus here on two such models, involving
varying degrees of strategic choice: (Nash) best response and simple strategic
behavior.

Best response, studied in a network context by Bala and Goyal (2000), as-
sumes that agents naively and myopically respond to the network environment.
More formally, in a model of simultaneous choice, this decision rule supposes
that each agent reacts to the current link selections of other agents by choosing
the set of links that maximizes his payoff (given these links). It is myopic in
that future payoffs are ignored, and naive in that adjustments by other agents
are not anticipated.

Bala and Goyal (2000) develop a model of dynamic network formation in-
volving repeated rounds and in each round agents make simultaneous link for-
mation decisions. They assume that agents best respond although with a degree
of inertia (i.e., with some probability they do not change their selection from one
round to another). In a remarkable theoretical result, Bala and Goyal (2000)
show that, despite the myopic and naive behavior of agents, Nash equilibrium
social communication networks (of the one-shot game) evolve very rapidly. This
result is perhaps best interpreted as a benchmark with respect to the evolution-
ary capabilities of networks: that with self-interested and boundedly rational
agents convergence to stable networks is possible.

Simple Strategic Behavior is a model based on the possibility that agents
act with a greater degree of sophistication than allowed for by the best response
decision rule. It may be suspected that agents make choices with more foresight,
as well as learn and even teach optimal strategies to themselves and other
agents. Unfortunately, given the complexity of network environments, even the
simple structure studied here, the application of complex decision rules does not
provide much insight or testing power. Therefore, we consider here only one
simple decision rule tailored to the network environment. Simple Strategic
Behavior (SS) requires agents to connect only one link, and that this link be
their part of a focal wheel network. We denote the behavior by (SScc) when
the network is the counter-clockwise wheel, and (SScw) when the network is
the clockwise wheel.

The logic behind the SS decision rule is the following. For many parameter
values, including sets 1 and 2 from Section 2.2, the wheel network is not only
optimal for the agents as a collective, but it is also optimal for every agent
individually. Further, the clockwise and counter-clockwise wheels are in many
respects focal. Therefore, a reasonable expectation would be that agents are
moving towards these configurations even if the corresponding link selections

10



are not in their short term interests. These choices would increase the chances
of coordination on an optimal network, as well as teach other agents the optimal
strategy.!> These calculations may not necessarily lead an agent to conform to
SS behavior as, for example, he may add an additional link for insurance pur-
poses. However, simple strategic behavior captures the basic intuition of these
arguments and intentions, and as we will see later, performs well in describing
the choices of agents in network environments.

3 Experimental Procedures

A total of twelve experiments were performed. Each experiment consisted of
six inexperienced subjects recruited from the undergraduate and graduate pop-
ulation of the California Institute of Technology. As summarized in Tables 3
and 4 the experiments consist of five experiments in Series One and seven ex-
periments in Series T'wo, and followed the design principles described in Section
2.1.

** Tables 3 and 4 about here.

Subjects were randomly assigned to locations so friends arriving together tended
not to be sitting next to each other. Each subject was assigned an identification
number from 1 to 6. Instructions were read to subjects (see Appendix) and
the subjects were given a practice exercise (without payment) and tested before
the experiment began.

The experiments consisted of rounds during which subjects could make con-
nections to any other subject at a cost. The profits to a subject for each round
were the value of the information received minus the cost of connection. The
network began anew at the beginning of each round and links were chosen.

A principle focus of our experimental design is to determine whether decen-
tralized networks could self-organize and converge to stationary configurations.
The parameters and procedures of Series One were aimed at exploring this
question. The design of Series Two reflects the experiences of Series One. An
important operational question in this work is the definition of a stationary
configuration. Trading off empirical certainty with experimental constraints,
we deemed a network to have “converged” if the same configuration was chosen
in three consecutive rounds.!* As will be discussed later, in some cases when a

13This notion is similar in spirit to recent work on “strategic teaching” by Camerer, Ho
and Chong (2002).
14The experimental constraints included end-effects and potential boredom.
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configuration was unchanged for three periods, parameters were changed to see
if the “disequilibrated” configuration would evolve to another similar, stationary
configuration.

3.1 Series One

The experiments of Series One were heavily influenced by the model presented
by Bala and Goyal (2000). The startling findings of Bala and Goyal are that
decentralized agents can, via a series of simultaneous decision making rounds,
organize and stabilize at strict Nash network configurations. In Series One we
attempted to test the first half of these findings — that networks can converge
to stationary configurations. The experimental design replicated the principle
features of the Bala and Goyal model, the primary restriction being that com-
munication among agents was limited solely to their link selections each round
(which were announced simultaneously). Parameter set 1, which satisfies the
assumptions of Bala and Goyal (2000), was used in all Series One experiments
(see Table 1). These values were employed as the confluence of theoretical pre-
dictions gave convergence “its best shot” (the wheel is uniquely efficient and
strict Nash, as well as focal, network architecture).

The experiments were performed manually and payoffs were calculated using
a physical process. In each round every agent recorded their link selection and
this was submitted to the experimenter. They then placed in front of themselves,
in full view of all agents, physical signs corresponding to their selections. The
benefits of connections from the networks were then easily computed with each
individual adding the signs exhibited by each node to which the individual was
connected. This process quickly iterated to an accurate computation of the
information accruing to each node. The network chosen was then drawn on
the board at the front of the room. Agents computed their earnings and the
round was complete. A random stopping rule was employed to minimize last
round effects whereby between 10 and 20 rounds were possible.!> There was
an increasing chance of stopping as more rounds were played. We refer to this
rule as stopping Rule 1. The probabilities of stopping at any point, along with

»The only exception is experiment 010528 that instead involved a fixed 10 rounds. This
trial was included in the final analysis as it provided an additional 60 observations (6 agents,
10 rounds) of individual decisions for tests of behavioral strategies. Critically, the inclusion
of this experiment does not favorably bias our results towards network convergence as this
experiment did not converge to a stationary configuration.

12



those for Rule 2 which was used in Series 2 experiments, are detailed in Table 5.

** Table 5 about here.

3.2 Series Two

Several changes were made to the design for Series Two. In this series we
attempted to confirm the findings of Series One (convergence to the wheel net-
work) as well as differentiate among the principles that may dictate the con-
vergent state of a network. Parameter sets 2, 3 and 4 were employed. The
nonanonymous and asymmetric parameters of sets 3 and 4 allow the predic-
tions of the network principles to be distinguished and, therefore, tested. We
expected that coordination problems (which were even present in Series One
experiments) would complicate convergence and weaken the test. To facilitate
convergence, and thus allow the network principles to be distinguished, we al-
lowed agents to make their link decisions continuously over two minute rounds
and for these decisions to be public knowledge and adjusted repeatedly in real
time. Previous market experiments as well as committee experiments suggested
that this would work.

To operationalize this design the experimental process was moved to com-
puters for Series Two and agents were partitioned into different segments of the
laboratory (which further reduced the focalness of the clockwise and counter-
clockwise wheel networks). The link connection fee was charged, and benefits
accrued, only at the end of periods. To minimize cheap talk the agents were
charged an adjustment fee of 5 cents each time they added or subtracted a
link during each round. All Series 2 experiments commenced with parameter
set 2, with the wheel again efficient and a unique strict Nash equilibrium. If
convergence was achieved (the same configuration in three consecutive rounds)
then the parameters were changed to set 3 and the experiment continued. If
convergence was again achieved then parameter set 4 was adopted. Subjects
were unaware of the potential change of parameters.!®

Series Two experiments employed random stopping rule 2, with between 15
and 20 rounds taking place, again with an increasing probability of stopping as
more rounds occurred. The details of both experimental series are detailed in

16Thus, the application of parameter sets 3 and 4 were determined endogenously by play
in early rounds of the experiments. The resultant self-selection of treatments is intentional as
the question we wish to address is conditional: given a network can converge, which principle
determines the convergent state?

13



Table 6.
** Table 6 about here.

4 Results

The results are divided into three sections. We begin with findings on macro
features of network structures, and continue with an investigation of the strate-
gies employed by individual agents. We conclude with synthesis results on how
individual decisions impact the evolution of dynamic networks.

4.1 Macro: Network Configurations

Table 7 contains a summary of data from all experiments. Eight of the twelve
networks converged to Nash equilibrium configurations (two of five from Series
One and six of seven from Series Two). The convergent state was achieved
as early as round 4 and as late as round 17. All convergent states were Nash
equilibria of the one-shot game, although not always strict Nash. The remain-
ing four experiments did not converge to any stationary configuration, Nash or
otherwise but three of these experiments temporarily achieved Nash configura-
tions (either weak or strict) that did not prove stationary. At no point in any
experiment was the empty network chosen.

** Table 7 about here.

The first result is that networks can occur and evolve. Agent decisions reflect
the unique characteristics of networks as opposed to arbitrary choices.

Result 1 Networks happen. Not only are links formed but an appreciation of
the externalities inherent in networks is incorporated into agent decisions.

Support: In each experiment a network instantaneously formed. At no point
was the empty network nor the complete, point-to-point network chosen
(i.e., everyone connects to everyone else) reflecting understanding of the
value and externalities in link formation.

This basic evidence suggests that given appropriate conditions a social or
economic network will emerge. The simple observation provides initial confir-
mation that networks can arise by economic forces. In the remainder of the
paper we attempt to understand the nature of these economic forces.

14



In a sense Result 2 is central by establishing two important facts. First, the
process of network formation tends to stop — a type of equilibration. Secondly,
the final configuration tends to be at a Nash equilibrium. Thus, there is a
convergence process and the forces at work in the process are captured by game
theory in general and the Nash equilibrium in particular. Network formation is
not simply a random process.

Result 2 (a) Networks tend to converge to stationary configurations, and (b)
Nash equilibrium is a necessary condition for stationarity, and (c) a greater
tendency toward convergence is exhibited by institutions that allow con-
tinuous adjustment.

Support: (a) See Table 7. Eight of the twelve networks converged to Nash
equilibrium configurations (two of five from Series One and six of seven
from Series Two). After convergence, the parameters were changed in
three of the Series Two experiments and convergence to different networks
followed in all three. The convergent state was first achieved in rounds 9
and 11 of the Series One experiments, and in rounds 17, 16, 5, 7, 4, and
15 of the Series Two experiments.

With six agents there are (25)6 = 1,073,741, 824 possible networks. The
probability of convergence with random selection in an n round experi-
ment (the same network in three consecutive periods) is then strictly less
than (’213_()?2 AT Therefore, the hypothesis that network dynamics are ran-
dom can be rejected with an extremely high level of confidence.!®
(b) All eight convergent networks (and the three re-convergent networks
after parameter changes) are Nash equilibria of the one shot game. In no
experiments did a network exhibit equilibration at non-Nash equilibrium
configurations.

(c) Continuous decision making was employed in Series Two experiments
and discrete decision making was employed in Series One. Roughly speak-

1"This simple expression is the probability that any three consecutive networks are iden-
tical in n periods. It is used here for analytical simplicity. The exact probability that the
experiment ceases because of convergence is strictly less than this.

18Tt should be noted that the claim that network dynamics are not random is quite robust.
Even if we restrict agents to choose only one link at a time (what they would need to choose in
the efficient Nash network) then randomness can still be rejected at a high level of significance.
In this case there are 55 = 15625 possible networks. Thus the probability of convergence with

random selection in an n period trial is strictly less than #}%z.
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ing, continuous decision making seemed to aid convergence (convergence
in six out of seven experiments versus 2 out of 5).

While convergence is not guaranteed, the predictability of convergence, in
addition to the convergence itself, should be interpreted as strong evidence that
something systematic is driving network dynamics. Clearly the Nash equilib-
rium is a useful concept for capturing what is observed and that fact suggests
questions about other features of the model and other principles that might be
used in conjunction or as substitute principles for modeling and understanding
the process. Three concepts surface immediately. Two of these, efficiency and
focalness, were detailed in Section 2. The third possibility is the concept of
strict Nash equilibrium, a refinement of Nash equilibrium. In the many
applications of game theory it is well known that the concept of Nash equilib-
rium is a somewhat weak condition. These same concerns apply to the study of
networks as well. Bala and Goyal (2000, p.1194) calculate that there exist in ex-
cess of 20,000 Nash networks for the environment studied in this paper. They
show that the refinement of strict Nash equilibrium reduces the equilibrium
set to a unique architecture (the wheel) which has 120 possible configurations.
Our next result provides evidence that none of the three alternative possibilities
accurately predict stationary network configurations.

Result 3 Each of focalness, efficiency, and strict Nash equilibrium can be re-
jected as being a necessary condition for a configuration to become sta-
tionary.

Support: Experiment 010607b converged to a non-focal and inefficient config-
uration in rounds 16-18. Experiment 010528 converged to a non-focal
wheel in rounds 17-19. Further, after the parameter changes in exper-
iments 010613a, 010613b, and 010614a, the networks diverged from the
focal wheel (that was no longer efficient) and reconverged to non-focal
wheels. In experiment 010607b the network converged to a weak Nash
equilibrium configuration. This convergent network is depicted in Figure
6. In this network agent 5 is indifferent between connecting a single link
from agents 1, 2, 3 or 6, and agent 3 is indifferent between connecting a
single link from agents 4, 5, or 6.

** Figure 6 about here.
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Combined with Result 2, this result indicates that Nash equilibrium is the
guiding principle of network dynamics and convergence, and that focalness and
efficiency are not.' This result confirms, if nothing else, that networks are a real
economic phenomenon, and should be looked at from an economic perspective.
Networks exhibit the classic economic tension between individual incentives and
inefficient outcomes.

An important caveat to Result 2, and further complicating the question of an
appropriate model, especially one with roots in equilibrium selection concepts,
is that Nash configurations did not always prove stationary in the different
experiments. We observe that network formations can “pass through” Nash
equilibria.

Result 4 The principle of Nash equilibrium, or even strict Nash equilibrium,
does not prove a sufficient condition for a configuration to be stationary.

Support: Weak Nash configurations that did not prove stable were played in
experiments 981106 (two weak Nash), 010528, 010607a, 010607b, 010613a
(three weak Nash), and 010614b. Further, strict Nash configurations
(the wheel) were played in experiments 990115, 010607a (in rounds 4,
11-12, and 15), and 010614b (in rounds 9-10, and 12-13). In experiment
010614b the same strict Nash configuration played in rounds 9-10 and
12-13 ultimately proved stationary in rounds 15-17.

In view of Result 2, these deviations, particularly from the strict Nash con-
figurations, are surprising and naturally lead to speculation and conjectures
about how the model might be modified to account for the phenomena. The
most obvious candidates are that these deviations resulted from mistakes, bore-
dom, or confusion. However, this would not seem to be the complete story
for the following reasons. Firstly, all participants successfully completed the
example calculations in the instructions. Secondly, at least in Series 2 the
participants had the opportunity to rectify any mistakes.?’ And, thirdly, no

19 Although the evidence supporting Result 3 is brief, it is sufficient to provide counterex-
amples and support the claim. Further evidence against efficiency is provided in Result 5.

20 Assuming they were not making their choices at the last second. This was only the case
for one agent in experiment 010614b and this agent, in fact, was not the one to deviate from
the Nash equilibrium.
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participants indicated any of these three factors in their comments at the end
of the experiments.?!

Deeper speculations lead to the idea of common knowledge upon which the
notion of equilibrium is built. With respect to equilibrium this concept says
that every agent knows that every agent is maximizing, and that every agent
knows every agent knows every agent knows, and so on. Consequently, it is
possible that a group of agents is not in a stationary network even though the
focal, efficient and strict Nash wheel configuration is being played. Supporting
evidence, although weak, can be found in experiment 010614b where agent 3
delayed his link choice in each round of play until only a few seconds remained,
even when a focal wheel was reached in rounds 9-10. This behavior suggests
that agent 3 was not completely aware of the strategic situation, and may have
been a factor in the agent 5’s deviation from Nash in round 11. If this was
in fact how agent 3 was playing then a notable finding is that efficiency and
coordination were still achieved with individually optimizing behavior. This
possibility is consistent with the intuition behind Bala and Goyal’s result.

We conclude this section with an important finding on the dynamic path of
networks (we return to dynamics in Section 4.3). Result 5 asks if “efficiency
seeking” alone, which is closely related to the Nash equilibria, could be driving
the results to Nash. By looking at the non-convergent examples and asking if
they are efficiency improving even if they do not converge to some stationary
configuration, the question is answered negatively.

Result 5 Non-convergent networks do not exhibit increasing efficiency.

Support: See Figures 7 a, b, and ¢, and Figure 8b. These graphs represent
measures of network efficiency throughout experiments 981106, 990115,
990128, and 01067a, respectively (the non-convergent networks). The
measure of efficiency in a network is the amount of information earned
per link paid for in the network as a whole. So if the network is at an
efficient wheel configuration the measure of efficiency is 6: each agent
receives every available piece of information at the cost of only one link.
The slope parameters of these graphs were estimated using ordinary least
squares and the t-statistics of these estimates are, respectively, 0.47, 1.74,

21'These comments were only elicited after the experiments of Series Two. As a result of
the deviations from Nash configurations in the experiments of Series One we began asking
participants to describe, at the completion of the experiment, the strategy they employed as
well as how they thought their fellow participants were behaving.
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1.33, and 1.08. So for all four experiments we fail to reject, even at the
10% level, the null hypothesis that efficiency is not increasing.

** Figures 7 and 8 about here.

Result 5 makes an important point. It tells us that the dynamics of net-
work evolution and change are not guided by a principle of efficiency seeking
(and thus inefficiencies can be institutionalized). This suggests that the princi-
ples that are work are not the same as those in markets, where trade tends to
guide the process to increasing levels of efficiency. Instead the principles seem
to have elements of public economics, where unilateral actions do not neces-
sarily increase efficiency unless they are executed within some carefully crafted
mechanism.

Note that Results 3 and 5 do not imply that efficiency and focalness should
be completely disregarded in analyzing networks. While they are not the deter-
mining principle when considered alone, the appropriate model might include
elements of each — some combination of these principles. Indeed, the fact that
six out of eight convergent networks were to the focal wheel suggests the possible
importance of theoretical mergers.

4.2 Micro: Individual Decision Making

In our attempt to understand the evolution of networks we turn now to individ-
ual behavior. The complexity of networks and the relatively few observations
we obtain for each agent make the job difficult but we are able to construct
significant tests of decision rules from the theoretical literature. We also test a
conjecture, described in Section 2.3, that in a dynamic environment agents will
use link choice to signal and teach, other agents. In the following section we
attempt to piece together behavioral findings with the dynamics of Section 4.1
to further understand the evolution of networks.

In this section we restrict attention to the decisions of individuals in the
experiments of Series One. This is done for two reasons. Firstly, this series
most closely resembles the theoretical model of Bala and Goyal (2000) and,
therefore, provides the more appropriate test of their theory of individual be-
havior. Secondly, it provides, in a sense, cleaner data. In Series Two agents
made decisions continuously and it is difficult to infer the information available
to, or the intentions of, each agent at the time the decision was made.
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To test and compare decision rules we employ statistical techniques intro-
duced by El-Gamal and Grether (1995). Decision rules are generally modeled as
rigid and precise behavior and are easily rejected by a single deviant. To allow
for noise in data, El-Gamal and Grether suppose that the use of any particular
decision rule is prone to error of a given probability (whether by the agents
themselves or external factors). The likelihood that the decision rule (now with
a fixed error rate) produced the observed sample is then estimated. Essentially
the test involves an examination of how frequently the decision rule was used
(e.g., the more it was used then the more likely it could, for a given error rate,
produce a given sample). If the likelihood thus calculated is too small then we
reject the hypothesis that the decision rule with error was used by the agent.
By examining the likelihood that different decision rules produced an observed
sample, these techniques also allow us to determine which rule is more likely to
have been employed by a particular agent.

The first test is of the best response decision rule employed by Bala and
Goyal (2000) (see Section 2.3). The best response rule is not well supported
by the data from the decisions of individual agents. We find that no agent
follows best response precisely, and that only weak evidence exists that agents
are even best responding with error. The lack of accuracy of the best response
model leads naturally to models of individual decisions that are somewhat more
sophisticated but also a bit more ad hoc. We compare best response to one
such strategy, simple strategic behavior, and find that a majority of agents
are more likely to be using the counter-clockwise simple strategic decision rule.
Further, we find the evidence supporting best response is further weakened once
attention is restricted to agents more likely to be employing the rule. The full
sample support for best response (albeit weak) arises only because the best
response and simple strategic decision rules coincide in their requirements for
some network configurations. That is, what appears as best response behavior
is indistinguishable from simple strategic behavior.

Result 6 (i) Agents do not act in accordance with the best response decision
rule,
(ii) More agents exhibit counter-clockwise simple strategic behavior than
best response. Moreover, among agents more likely to be using best re-
sponse, very weak evidence supports that they are actually using best
response.

Support: (i) As a deterministic decision rule best response is rejected imme-
diately as no agent followed its requirements every round, even allowing
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for any degree of inertia. The left half of Table 8 presents the findings
for all thirty agents when allowing for error. As inertia was originally
included to model non-optimal behavior it has been included as an error
in the analysis.

** Table 8 about here

The hypothesis that best response is being employed can be rejected.
Weak support is only available for a 25% error level, although this result
is more reflective of the lack of power of the tests than confirmation of the
decision rule.

Aggregating the data leads to an even more overwhelming rejection. We
find that even with a 50% chance of error the hypothesis that agents
employ the best response decision rule with error can be rejected at the
1% level of significance. Such an aggregated test is appropriate if, as
mentioned previously, agents are assumed to be homogenous. Therefore,
either no agent uses the rule or the assumption of homogeneity across
agents is inappropriate.

(ii) 12 agents are more likely to be using best response rather than simple
strategic behavior. One agent is equally likely to be using both rules. The
right half of Table 8 restricts the analysis of the left side of the table to
only the 12% agents more likely to be using best response.

This evidence on individual behavior contrasts with the findings of the pre-
vious section that networks are indeed capable of converging to the efficient
and Nash equilibrium wheel network. The systemic behavior is predicted by
the model of Bala and Goyal, but the evidence at the individual level conflicts
with the micro behavior postulated by their model. This combination leads to
a paradox frequently observed in economic experiments that the models work
well when applied at the systemic level but the exact behavior of the agents is
at odds with the behavioral principles at the foundation of the model.

We turn now to a detailed analysis of simple strategic behavior. The follow-
ing result indicates that the strategy and foresight underlying simple strategic
behavior is evident within networks.

Result 7 (i) Many agents exhibit significant simple strategic behavior, some
agents use simple strategic behavior in every round,
(ii) More agents exhibit simple strategic behavior than best response.
Agents using simple strategic behavior are more likely to follow the deci-
sion rule than agents best responding.
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Support: (i) Despite the fact that a wheel network appeared in only nine out
of the 67 rounds played in the five experiments of Series One, five out of
the thirty agents exhibited simple strategic behavior in every single round.
Two of these agents persisted with this strategy despite participating in
experiments in which a wheel network never occurred. Three of the five
agents in fact selected the same link, the counter-clockwise wheel (SScc),
every period of their experiment. The other two changed between the
clockwise and the counter-clockwise wheels at some point in the experi-
ment in what appears to be attempts to coordinate with other agents on
which of the focal wheels will actually be chosen. The remaining agents
do not act consistently and uniformly in accordance with simple strategic
behavior. So, it is a question of frequency and propensity. Table 9 and
the left half of Table 10 present the findings on whether agents exhibit
simple strategic and counter-clockwise simple strategic behavior allowing
for error. As can be seen, many agents appear to act in accordance with
simple strategic behavior.

** Tables 9 and 10 about here.

(ii) 17 agents are more likely to be using counter-clockwise simple strategic
behavior rather than best response, one agent is equally likely to be using
both rules. The right half of Table 10 restricts the analysis of the left
side to only the 17% agents more likely to be using SScc.

These results indicate that most agents engage in strategic signaling and
coordination efforts through their link selections. Relatively few attempt to
optimize current payoffs by using the best response decision rule. Further, the
results imply that agents behave in some sense strategically and with foresight
in network environments. Many agents employ a strategy that seems to be
an attempt to teach, signal, and coordinate all agents within a network and in
doing so facilitate movement toward Pareto optimality. Not all agents employ
the same strategy. It would appear that agents are making decisions on more
analysis than simply their immediate payoff or their own actions.??

22These conclusions should not be interpreted as conflicting with the results of Bala and
Goyal (2000). As mentioned previously, the results of Bala and Goyal are best interpreted as
the benchmark capabilities of network evolution.
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4.3 Interdependence: Micro and Macro

The findings of the previous section leave two prominent questions. Firstly,
how instrumental are the strategies of individuals, particularly those employing
simple strategic behavior, in achieving convergence? And, secondly, how do
agents behave who neither best respond nor use simple strategic behavior? We
produce an answer to the first question, and present some aggregate evidence
to provide insight into the second, which is explored with the final result of this
section.

The behavior of individual agents appears to be crucial to whether or not
convergence to the wheel network is achieved. Specifically, individual agents
appear to be capable of influencing the evolution of networks by signaling to
their fellow agents an optimal strategy. By following SS behavior agents can
teach other agents the structure of the game and the nature of payoffs. This
induces these agents, who begin with some other strategy, to switch to SS
behavior and as a consequence the probability of convergence increases.

This individual capability is best seen by considering how convergent and
non-convergent networks differ. Surprisingly, they differ by only a small, but
significant, amount. For all experimental networks, convergent or not, the
majority of agents exhibited some simple strategic behavior throughout and
several agents did not. In the convergent networks the remaining agents learned
the optimal configuration and began coordinating with their fellow agents on
counter-clockwise simple strategic behavior. In the non-convergent networks
this learning did not occur. These findings are captured by the following two
results.

Result 8 Network convergence is critically dependent on the behavior of all
agents. Moreover, agents can learn to choose optimal strategies and
enable networks to converge to efficient, Nash outcomes.

Support: The results are presented in Table 11. All six agents in the networks
that converged exhibit counter-clockwise simple strategic (SScc) behavior.
By contrast, for the non-convergent networks such consistency of behav-
ior was not observed, although there were at least four agents for whom
randomness is rejected in favor of SScc behavior.

** Table 11 about here.

Upon closer inspection, however, it can be seen that all six agents in con-
vergent networks do not exhibit SScc behavior consistently throughout
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the experiment. To expose this shift in networks that converged, Table
12 performs the same analysis as above but omits the periods after con-
vergence has occurred. It can now be seen that, surprisingly, convergent
networks look very similar to the networks that didn’t converge.

** Table 12 about here.

Thus, all of the experiments appeared similar up until a critical point in two
of the networks at which the remaining agents learned to play the SScc strategy
and convergence to efficiency was achieved. In the non-convergent networks
this learning simply did not occur, and consequently inefficiency was the result.

The next result shows that the devotion of agents to a particular strategy,
in this case SScc, is also critical to network dynamics. Agents in the ultimately
stationary networks are significantly more committed to the simple strategic
strategy, and this dedication appears to be pivotal in achieving convergence.

Result 9 Network convergence depends on the commitment to simple strategic
behavior of individual agents. Thus, all agents can impact the probability
of convergence.

Support: This result is exposed by the relationship between whether a net-
work converged and the rate at which counter-clockwise simple strategic
behavior is played (before convergence was achieved in the convergent
networks).?® Table 13 details these variables.

** Table 13 about here.

Unfortunately, because of the small number of observations, the power
of this test is limited. Nevertheless, a significant relationship emerges.
Estimating the equation y = a + 3 (2) + ¢ by OLS (where the variables
are defined in the table and y is coded 1 for convergence and 0 otherwise)
we find that the estimate of (3 is positive and significantly different from
zero (3 estimate of 0.61, t-statistic of 2.38, and p-value of 0.14; « estimate
of -0.97, t-statistic of -1.51, and p-value of 0.26).24:%

231f instead the number of observations by the leading four agents is used here, as may be
interpreted from Result 10, the conclusions are not affected (the number of observations in
this instance are 22, 36, 20, 23, and 26, respectively).

24For this regression we omitted the rather special case of experiment 990115 that achieved
the focal wheel but immediately diverged. Including it in the estimation as a non-converged
network (or even a converged network) does not change the results substantially.

25 As we are interested in establishing the existence of a significant relationship between
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These results begin to expose the integral role of individual decisions in
network formation. Agents can educate their fellow agents to follow strategies
that lead to efficient outcomes but this requires the educator agents to play their
component of the focal wheel network, and to play it consistently. Unfortu-
nately the precise nature of the resulting learning cannot be clearly ascertained
from these data. The final two agents may learn to play the simple strategic
strategy because the repeated play of SScc by the other agents has taught them
the common benefits of such play. Alternatively, they may eventually play SScc
because it is a best response to the choice of SScc by their fellow agents.

The next result indicates that there is still more to the story of individual
behavior and how agents are making decisions if not using SScc. Unfortunately,
the possibilities are far too complex for meaningful tests of individual behavior
to be conducted on the relatively few observations reported here. As a result,
the analysis turns to the aggregate data. In an admittedly crude test, and
employing data from both experimental series to increase test power, we are able
to infer aggregate responses to network situations which exhibit best response-
like behavior.

The logic behind the aggregate analysis, which is reported as Result 10
below, is the following. If in a network the total number of information pieces
collected is less than 36 (six pieces per agent) then the network is inefficient as
it must be possible to add additional links that would increase individual and
group profit. Therefore, the best response of at least one individual, assuming
all other links remain unchanged, is to add more links. Similarly, the network
is inefficient if the number of links connected is greater then six, and it must be
the best response of at least one agent to reduce the number of links connected.

Aggregate level quasi-best responsiveness We say that there is “aggre-
gate level quasi-best responsiveness” if an inefficiency caused by a short-
age of information is followed at the aggregate level by the connection of
additional links. Likewise, if all information is collected and there is an
excess of links then this is followed by a reduction in the number of links.

While aggregate data analysis cannot be used to make inferences about spe-
cific individuals, it can be used as a guide to the nature and process of network
evolution and as a source of suggestions about models that might be useful at the

these two variables, we will not make a further distributional assumption to produce estimates
of the probability of convergence (though, of course, if the uniform distribution is assumed
the probability estimates are equal to the constrained OLS estimates).
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individual level. There are many possible explanations for individual behavior
that could produce the aggregate effects documented here. Arguably, however,
the main lesson suggested is that agents not employing the SScc strategy are
still exhibiting some kind of rationality.

Result 10 Network dynamics exhibit strong evidence of “aggregate level quasi-
best” responsiveness.

Support: Evidence of this group dynamic can best be seen graphically. Fig-
ure 9 depicts the relationship between the total number of links selected
and the average number of pieces of information received by each agent
through the 18 rounds of experiment 010607b.

** Figure 9 about here.

The aggregate level quasi-best responsiveness is evident in the correlation
of these two measures. In all but one period (the final period before con-
vergence) an inefficient accumulation of information by the agents (less
than 6) is followed by an increase in the number of connected links in the
following rounds. Similarly, in all rounds (other than after convergence
was achieved) an efficient accumulation of information by the agents (av-
erage of 6) is followed by a decrease in the number of connected links in
the following rounds.

To test this idea more formally we regress the average information value
on the change in total links from period to period. This is written,

At:()é"‘ﬁlt

Where I; is the average information level in round t, A, = Ly 1 — L;, and
L; is the total links chosen in round ¢. The estimates for this equation
for all experiments combined are given in Table 14.26

** Table 14 about here.

These findings indicate that the causal relationship between information
accumulation and changes in the number of links selected is negative and
statistically significant (at the 1% level). The data produce strong sup-
port for aggregate level quasi-best responsiveness.

20For consistency, rounds in Series Two after convergence (when the parameters were
changed) are excluded.
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5 Conclusion

This research has attempted to present some key characteristics and princi-
ples of network evolution. The principles studied are theoretically general,
with potential applications beyond the particular environments studied here.
From a theoretical point of view there are many reasons why decentralized net-
work development and evolution might fail. The flows within networks create
externalities and, not surprisingly, free rider issues that relate to the public
goods problem. Similarly the development of these links involve coordination
problems and, as they are typically costly, implicit bargaining. Indeed, the
asymmetry of payoffs within networks, even efficient and Nash equilibrium con-
figurations, is reminiscent of ultimatum games (all agents force another into a
low payoff network).

In spite of the inherent potential for problems, not only do networks develop
(Result 1) but they tend to converge to a configuration that has the properties
of a Nash equilibrium (Result 2). While Nash appears to be a necessary
condition for stationary configurations, efficiency and Strict Nash do not (Result
3). Furthermore, none of the candidate models are sufficient conditions for
convergence (Result 4) and the dynamic paths are not efficiency enhancing
(Result 5).

The analysis shifts focus from an equilibrium and stationarity perspective
to a focus on the decision rules and behavior exhibited by the individuals. In-
dividuals tend to use simple strategic responses as opposed to Nash responses
(Results 6 and 7). This creates a paradox not atypical of economic models.
The equilibrium model receives support but the model of individual decisions
on which the equilibrium model is created does not. This paradox caused us
to look somewhat deeper into the data to see what might be suggested. Two
prominent features reveal themselves. First, network convergence is associated
with strategy commitments by some agents (Results 8 and 9) and this commit-
ment could play a role of “teaching” other agents about “appropriate” behavior.
Secondly, the system exhibits a response to events at an aggregated level (Re-
sult 10). In particular, if the system “needs” additional links in a period the
aggregate response is an increase in the number of links the next period. Simi-
larly if the system has too many links then in the aggregate the number of links
is reduced. Of course these responses are themselves uncoordinated so may or
may not improve efficiency.

Basic lessons emerge. The first is that the recent models of network emer-
gence have predictive power but the source of that power is not entirely clear
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and may be fragile. That is, while the environments studied here would seem
to be very supportive of convergence, many parameter changes including asym-
metric costs and information, decay, lack of public knowledge of links or moves,
multiple directional flows, etc. can produce networks of much greater complex-
ity than we have studied. Furthermore fragility might be related to the types
of institutional arrangements within which network formation takes place. The
results reported here suggest that institutions that facilitate an understanding
of the intentions of players, a means for formation of and communication of
rationality and a common knowledge of it, could be important.

6 Appendix

NETWORK EXPERIMENT INSTRUCTIONS?”

This is an experiment of network formation. If you follow these instructions
and make appropriate decisions, you can earn an appreciable amount of money.
At the end of the experiment your earnings will be paid to you privately, and
in cash. In this experiment each person holds some private information. This
information is valuable to you, and to every other person who can access it. It
has a value of 25 cents for every person, including yourself, who holds it. You
can access someone else’s information directly by forming a link from them.
Each link costs 15 cents. You may form as many links as you like. A piece of
information can be passed along multiple times.

Say in a three person network that you connect a link from Person 1. Then
if Person 1 is also linked to Person 2 you receive the information from both
Person 1 and Person 2, but you only have to pay for the link from Person 1.
This is shown in the following diagram. Note that the tip of the arrow points
to the person who is paying for the link and so receiving the information.

2TThese are the instructions used in Series Two of the experiments. Other than minor
changes to allow for the differences between the series, the instructions used in Series One are
identical.
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You |« Person 1

Person 2

Information you now hold: You, Person 1, and Person 2

Value = 3 x 25 cents

Costly links you have paid for: From Person 1

Cost = 15c

Net profit for you for this round = 75c — 15c = 60 cents

The information links are only one way. So in the above example, if you
have paid for the link from Person 1 then you receive Person 1’s information,
but Person 1 does not receive your information. Person 1 would have to pay
for a link from you if he wanted your information. Note that it is permitted for
any two people to pay for links from each other simultaneously.

Let’s try a simple example. In the following diagram what would be the prof-
its for persons 1,2 and 37 Write your answers in the space provided. Represent
links paid for by circling the person number from whom each link is connected.
Circle ‘N’ if a person has not paid for any links. Remember, you also receive
value from holding your own information.

Person 1l |« Person 2
>

Person 3

Links Chosen | Cost | Information Received | Value | Profit
Person 1 N123 15c 1,2,3 3x25c | 60c

Person 2 N123
Person 3 N123
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The experiment will involve multiple rounds. Each round will close after two
minutes. In each round you will select from which people you wish to pay for a
link. You will mark your selection(s) in the box marked ‘Link Submission Form’
and submit by clicking on ‘submit links.” You may change your selections as
often as you like during each round. However, you will be charged an adjustment
fee of 5¢ every time you add or subtract a link and click on ‘submit links.” (5¢
for each addition or subtraction) You can record these charges on your Record
Sheet in the column marked ‘Cost of Changes.’

The box marked ‘Connections’ represents the links currently selected by each
person (read horizontally), with your expected payoff below. This record will
be updated continuously as people connect and disconnect links during each
round.

The ‘Link/Total Value’ box describes the value you will receive by connecting
a single link from each other person. At the end of each round you will pay
the 15¢ connection fee for each currently selected link. These connections will
then be used to calculate the information you accumulate and the earnings you
receive. Note that you will be paid for your performance in each round of play.

This process is then repeated in each subsequent round. In each round
connections start anew, so you will pay for any links you hold in that round,
regardless of whether you have held that link previously. In each round you
may connect any link, or combination of links, that you desire.

The exact number of rounds to be conducted will be determined randomly.
We will conduct at least fifteen rounds. At the end of the fifteenth round and
after every subsequent round a pair of dice will be rolled. If the sum of the roll
exceeds a certain number, specified in the table below, then the experiment will
stop. Otherwise we will continue with another round and repeat the process.
You will notice that the probability of stopping after a given round increases as
we play more rounds.

Round | End if Sum > | Prob End
15 12 1/36
16 10 6/36
17 8 15/36
18 6 26/36
19 4 33/36
20 2 1

After the experiment is completed you will be paid your profits. Are there
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any questions before we begin? Please do not talk or communicate with anyone
else during the experiment. We will insist that everyone remain silent until the
end of the last period. If we observe you communicating with anyone, other than
the experimenter, we will ask you to leave without completing the experiment.
We are now ready to begin round one. Please choose your desired connections
for round one on your screens.
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Figure 1: A Six Agent Network

Parameter Set Link Connection Cost Info Value
Number per unit
1 $0.15 $0.20
2 $0.15 $0.25
3 $0.30 from neighbors, $0.15 from others $0.25
4 free connection in/out 1, $0.15 from others $0.25
Table 1: Parameter Sets
Parameters Strict Nash Weak Nash Focal Efficient
Set 1 wheel many (e.g., star) (counter-)clockwise wheel ~wheel
Set 2 wheel many (e.g., star) (counter-)clockwise wheel ~wheel
Set 3 wheel many (e.g., star) (counter-)clockwise wheel non-focal wheel
Set 4 wheel /star many (counter-)clockwise wheel star centred on 1

Table 2: Model Predictions
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Figure 2: The Counter-Clockwise Wheel
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Figure 3: A Weak Nash Configuration with 8 links
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Figure 4: An Efficient Non-Focal wheel (parameter set #3)

B ;

Figure 5: An Efficient Star (parameter set #4)

Property Value of Property
- number of agents 6

- flow quality no decay

- flow direction one way

- actors individuals at nodes

Table 3: Experimental Design: Common
Features Series One and Series Two
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Series 1

- 5 experiments

- conducted manually
- simultaneous moves
- no cost of adjustment
- random stopping between 10-20 rounds

Series 2

- 7 experiments

- conducted over computer
- continuous opportunity to move
- adjustment cost imposed
- random stopping between 15-20 rounds

Table 4: Experimental Design: Specific Features Series One and Series Two

Stop if dice roll >

Round Rule 1 Rule 2

Round Rule 1l Rule 2

10 12 - 15 7 12
11 11 - 16 6 10
12 10 - 17 5 8
13 9 - 18 4 6
14 8 - 19 3 4
15 7 12 20 2 2
Table 5: Stopping Rules
Series 1 Series 2
Experiment Parameters Rounds Experiment Parameters Rounds
981106 Set 1 1-10 010528 Set 2 1-19
990115 Set 1 1-15 010607a Set 2 1-17
990128 Set 1 1-16 010607b Set 2 1-18
990212a Set 1 1-13 010613a Set 2 1-7
990212b Set 1 1-13 Set 3 8-12
Set 4 13-16
010613b Set 2 1-9
Set 3 10-16
010614a Set 2 1-6
Set 3 7-17
010614b Set 2 1-17

Table 6: Experimental Design: Parameters
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Series 1
Experiment
981106
990115
990128
990212a
990212b

Series 2
010528
010607a
010607b
010613a
010613b
010614a

010614b

Rounds
10
15
16
13
13

19
17
18
16
16
17

17

Result

No convergence

No convergence

No convergence

Converged to focal wheel in rounds 9-13
Converged to focal wheel in rounds 11-13

Converged to non-focal wheel in rounds 17-19

No convergence

Converged to inefficient weak Nash in rounds 16-18
Converged to focal wheel in rounds 5-7

Converged to efficient non-focal wheel in rounds 10-12
No convergence in rounds 13-16

Converged to focal wheel in rounds 7-9

Converged to efficient non-focal wheel in rounds 14-16
Converged to focal wheel in rounds 4-6

Converged to efficient non-focal wheel in rounds 15-17
Converged to focal wheel in rounds 15-17

Table 7: Summary Data: All Experiments
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Figure 6: Stationary Weak Nash Configuration in Experiment 010607b
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38




6 6
5 5
X X
£ 4 £ 4
g g
L2 L2
£ =
1 1
0 0
- (3l n ~ o - o n ~ (2] - [} wn ~ o — [} n ~
— — — — — — — —
Fig 7a: 010528 Round Fig 7b: 0106072 Round
6 6
5 5
£ 4 4
g3 g3
o o
£°2 E?
1 1
0 0
-~ ™ wn ~ o - o™ wn
- - -
Fig 7c: 010607b Round Fig 7d: 010613a Round
6 6
5 5
£a =
33 g3
L2 22
£ =
1 1
0 0
- ™ n ~ o - ™ wn Lal ™ wn ~ o - o™ wn ~
Ll - - - - - Ll
Fig 7e: 010613b Round Fig 7f: 010614a Round
6
5
<4
33
22
£
1
0
— [yl n ~ o — o« n ~
— — — —
Fig 7g: 010614b Round

Figure 8: Series Two Network Efficiency

39




Error Level

All 30 Agents 125 Agents using Best Response
Level of Significance | 1% | 5% | 10% | 25% | 1% | 5% | 10% 25%
1% 010 1 14 {0 | 0 1 5
2% 010 1 12 {1 0] 0 1 4
5% 00 0 8 0O 0 1
10% 00 0 2 010 0 1

Table 8: Number of Agents for Whom the Best Response
Decision Rule Cannot be Rejected

Error Level
Level of Significance | 1% | 2% | 5% | 10% | 25%
1% 6 7 8 12 20
2% 6 6 8 12 18
5% 6 6 7 10 16
10% 6 6 6 10 15

Table 9: Number of Agents for Whom Simply Strategic Behavior Cannot

be Rejected

Error Level

All 30 Agents

175 Agents using SScc

Level of Significance | 1% | 5% | 10% | 25% | 1% | 5% | 10% | 25%
1% 3 5 10 17 3 5 10 14
2% 3 5 9 15 3 5 9 12
5% 3 5! 5! 13 3 5 5 12
10% 3 5! 5! 11 3 5 5 11

Table 10: Number of Agents for Whom the Counter-Clockwise Simple
Strategic Behavior (SScc) Cannot be Rejected
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Experiment?®
Level of Significance | 981106 | 990115 | 990128 | 990212a | 990212b
1% 4 4 3 6 6
2% 4 5) 4 6 6
5% 4 ) 4 6 6
10% 4 6 4 6 6

Table 11: Agents For Whom Randomness is Rejected in Favor of
Counter-Clockwise Simple Strategic Behavior (SScc)

Experiment
Level of Significance | 990212a | 990212b
1% 4 4
2% 4 4
5% 4 5
10% 4 5

Table 12: Agents for Whom Randomness is Rejected in Favor of
Counter-Clockwise Simple Strategic Behavior Before Convergence Occurs

Experiment
Before Convergence: | 981106 | 990115 | 990128 | 990212a | 990212b
Observations of ssa(7) 23 41 21 25 29
Rounds (n) 10 15 16 8 10
Rate of ssa (%) 2.3 2.733 | 1.313 3.125 2.9
Converged (y) No No No Yes Yes

Table 13: Observations of Counter-Clockwise Simple Strategic Behavior

28The hypothesis tested here is that agents choose among all strategies (including SScc)
randomly. The results, therefore, reject the hypothesis for a majority of agents that a ran-
dom selection generated the observed sample of frequent SScc selection. Thus, this leads to
the conclusion that agents chose according to the SScc strategy with greater than random

probability.
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Figure 9: Total Links and Average Information Received

Variable | Estimate | t-statistic
o 4.86 7.66
1] -1.00 -8.29
R?2=0.32| n=148

Table 14: “Aggregate Level Quasi-Best Responsiveness”






