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Abstract

We develop a model where agents obtain information about job opportunities through
an explicitly modeled network of social contacts. We show that an improvement in the
employment status of either an agent's direct or indirect contacts leads to an increase
in the agent's employment probability and expected wages, in the sense of �rst order
stochastic dominance. A similar e�ect results from an increase in the network contacts
of an agent. In terms of dynamics and patterns, we show that employment is positively
correlated across time and agents, and the same is true for wages. Moreover, unem-
ployment exhibits persistence in the sense of duration dependence: the probability of
obtaining a job decreases in the length of time that an agent has been unemployed. Fi-
nally, we examine inequality between two groups. If staying in the labor market is costly
(in opportunity costs, education costs, or skills maintenance) and one group starts with
a worse employment status or a smaller network, then that group's drop-out rate will be
higher and their employment prospects and wages will be persistently below that of the
other group.

JEL classi�cation numbers: A14, J64, J31, J70

Key words: networks, labor markets, employment, unemployment, wages, wage inequal-
ity, drop-out rates, duration dependence



Social Networks in Determining Employment and

Wages: Patterns, Dynamics, and Inequality

Antoni Calv�o Matthew O. Jackson

1 Introduction

The importance of social networks in labor markets is pervasive and well-documented.
Granovetter (1973, 1995) found that over 50% of jobs in a survey of residents of a Mas-
sachusetts town obtained jobs through social contacts. Earlier work by Rees (1966)
found numbers of over 60% in a similar study. Exploration in a large number of studies
documents similar �gures for a variety of occupations, skill levels, and socio-economic
backgrounds.1

In this paper, we take the role of social networks as a manner of obtaining information
about job opportunities as a given and explore its implications for the dynamics of
employment and wages. In particular, we examine a simple model of the transmission of
job information through a network of social contacts. Each agent is connected to others
through a network. Information about jobs arrives randomly to agents. Agents who
are unemployed and directly hear of a job use the information to obtain a job. Agents
who are already employed, depending on whether the job is more attractive than their
current job, might keep the job or else might pass along information to one (or more) of
their direct connections in the network. Also, in each period some of the agents who are
employed randomly lose their jobs. After documenting some of the basic characteristics
and dynamics of this model, we extend it to analyze the decision of agents to drop-out
of the labor force based on the status of their network. This permits us to compare the
dynamics of drop-out rates, employment status, and wages across groups.

There are several issues that we are interested in analyzing in the context of this
model. These issues are all interrelated and each is important in its own right. Let us
motivate these from one particular perspective, but they do not need to be viewed only
from this vantage.

The persistent inequality in wages between whites and blacks is one of the most
extensively studied areas in labor economics. Smith and Welch (1989), using statistics

1See Montgomery (1991) for further discussion and references.



from census data, break the gap down across a variety of dimensions and time. The gap
is roughly on the order of 25% to 40%, and can be partly explained by di�erences in
skill levels, quality of education, and other factors (e.g., see Card and Krueger (1992),
Chandra (2000)).2 The analysis of Heckman, Lyons, and Todd (2000) suggests that
di�erences in drop-out rates are an important part of the inequality and that accounting
for drop-outs actually increases the gap.3 The fact that participation in the labor force
is di�erent across groups such as whites and blacks is well-documented. For instance,
Card and Krueger (1992) quote a di�erence in drop-out rates of 2.5 to 3 times for blacks
compared to whites. Chandra (2000) provides a breakdown of di�erences in participation
rates by education level and other characteristics, and �nds ratios of a similar magnitude.

Even if one believes the inequality to be entirely explainable by di�erences in factors
such as education, skills, and drop-out rates; one is then left to explain why those should
di�er across races.4 An analysis of social networks provides a basis for observing both
higher drop-out rates in one race versus another and sustained inequality in wages and
employment rates, even among those remaining in the labor force.

In order to understand why a model based on network transmission of job information
exhibits these features, let us discuss the patterns and dynamics of wages and employment
that a network model exhibits. Consider a given agent in a network. In the model we
consider, the better the employment and wage status of the agent's connections (e.g.,
relatives, friends, acquaintances), the more likely it is that those connections will pass
information concerning a job opening to the given agent. This might be for any number
of reasons. One is that as the employment and wage status of a connection improves it
is less likely that the connection will want to keep the job for him or herself. Another
reason is that the improved employment and wage status of a connection might improve
their access to information about openings. There is also an indirect e�ect. As the
employment status of other agents in the network improves, the more likely indirect
information might be passed along, and also the more likely that an agent's connection
might choose to pass it to that agent rather than an agent who already has a (good)
job. The result of this sort of information passing is positive correlation between the
employment and wage status of agents who are directly or indirectly connected in the
network, within a period and across time. Establishing this turns out to be much trickier
than the above explanation would suggest, for reasons that we will detail below.

Let us mention that correlation of employment and wages is observed in the data.
It can be seen on a basic level in the inequality mentioned previously, as this indirectly
suggests correlation within race. One can also look directly for correlation patterns. The
correlation across likely social contacts is documented in recent work by Topa (2001) who

2See Farley (1990) for a comparison of labor market outcomes for 50 racial-ethnic groups in the U.S..
3Ignoring drop-outs biases estimated wages upwards. Given much higher drop-out rates for blacks,

this can bias the wage di�erential.
4The extent to which inequality is explainable by such factors is still a point of some debate. See for

instance, Darity and Mason (1998) and Heckman (1998). Independent of whether there is a signi�cant
residual gap, one still needs to explain why any di�erences should exist and why things like drop-out
rates should di�er.
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demonstrates geographic correlation in unemployment across neighborhoods in Chicago,
and �nds a signi�cantly positive amount of social interactions across such neighborhoods.
Conley and Topa (2001) �nd that correlation also exists under metrics of travel time,
occupation, and ethnicity; and that ethnicity and race are dominant factors in explaining
correlation patterns.

The positive correlation that we establish between the wage and employment sta-
tuses of di�erent agents in a network then provides a basis for understanding sustained
di�erence in drop-out rates, and resulting inequality in employment and wages. The dif-
ference and resulting inequality can arise for (at least) two reasons. One has to do with
di�erences in initial conditions in a network, and the other has to do with di�erences in
network structure. Let us discuss these in turn.

Consider two identical networks, except that one starts with each of its agents having
a better employment and wage status than their counterparts in the other network.
Now consider the decision of an agent to either remain in the labor market or to drop
out. Remaining in the labor market involves some costs, which could include things like
costs of skills maintenance, education, and opportunity costs. Agents in the network with
worse initial starting conditions have a lower expected discounted stream of future income
from remaining in the network than agents in the network with better initial starting
conditions. This comes from our results on the dynamics and correlation patterns of
employment and wages. This might even be a very minor di�erence at �rst. This minor
di�erence might cause some agents to drop-out in the worse network but remain in the
better network. However, dropping-out has a contagion e�ect. As some of an agent's
connections drop-out, that agent's future prospects worsen since the agent's connections
are no longer as useful a source of job information. Thus, other agents will be more
likely to drop out, and this can escalate. This means that even slight di�erences in
initial conditions can lead to substantial di�erences in drop-out rates, and then worse
employment and wage status for those agents who remain in the network with more drop-
outs, not to mention a substantial di�erence in overall employment and wage status.

The above discussion shows how di�erences in initial conditions between two networks
can lead to sustained di�erences in drop-out rates, employment and wages over time. Let
us also discuss how di�erences in network structure might matter. Consider two networks
where each agent has the same number of connections, but one of which is a smaller and
thus \tighter-knit" network; with the smaller network representing the minority group.5

Even with the same arrival rates of per-capita job information, the expected future
employment and wage status of agents in the smaller network will be worse than for the
agents in the larger network even with similar starting conditions, as essentially a smaller
network has a more introverted path structure. Even very small di�erences can then be
magni�ed through a sort of contagion in drop-out rates similar to that discussed above.
This again leads to inequality in drop-out rates, employment and wages.

5A large number of studies in the economic sociology of immigration document the tightness and
closeness of immigrant networks. See for instance Portes and Sensebrenner (1993) and references therein.
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Up to this point, we have discussed three features that we show emerge from a net-
worked labor market:

� Employment and wages are positively correlated across agents both within and
across periods.

� A poor status of social connections strengthens the incentives to withdraw from the
labor force, and can lead to substantial di�erences in drop-out rates across groups.
Moreover, small di�erences in starting conditions or network structure can lead to
large di�erences in drop-out rates due to contagion e�ects.

� Higher drop-out rates are consistent with persistent employment and wage inequal-
ity. Not only do the drop-outs have low employment and wage status, but also the
short-run as well as the long-run steady state distributions of employment and
wages will be worse (in the sense of �rst order stochastic dominance) for the group
with the higher drop-out rate. Thus, inequality in wages and employment will
persist.

Before proceeding to the model, let us also mention a fourth feature that is also
exhibited by the model.

� Unemployment exhibits duration dependence and persistence. That is, when con-
ditioning on a history of unemployment, the expected probability of obtaining a
job and expected future wages decrease in the length of time that an agent has
been unemployed.

The reason that we see duration dependence in a networked model of labor markets
is a simple one. A longer history of unemployment is more likely to come when direct
and indirect contacts are unemployed (or have a lower wage status). Thus, seeing a long
spell of unemployment for some agent leads to a high conditional expectation that the
agent's contacts are unemployed. This in turn leads to a lower probability of obtaining
information about jobs through the social network.

Such duration dependence is well-documented in the empirical literature (e.g., see
Schweitzer and Smith (1974), Heckman and Borjas (1980), Flinn and Heckman (1982),
and Lynch (1989)). For instance, Lynch (1989) �nds average probabilities of �nding
employment on the order of .30 after one week of unemployment, .08 after eight weeks
of unemployment and .02 after a year of unemployment.

While there are other explanations for why one might observe duration dependence, it
is still useful to note that the network model is consistent with it. Also, this explanation
is quite orthogonal and hence complementary to the standard ones such as unobserved
heterogeneity. We discuss this in more detail when we present the result.

At this point, let us preview a di�erence in policy prediction that emerges from a
networked model compared to other labor market models. For instance, in the case of
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inequality in employment and wages, there is a predicted synergy across the network.
Improving the status of a given agent also improves the outlook for that agent's connec-
tions. This is the contagion e�ect mentioned above in reverse. As a result, in a networked
model there are local increasing returns to subsidizing education, and other policies like
aÆrmative action.6 One implication is that it can be more eÆcient to concentrate sub-
sidies or programs so that a cluster of agents who are interconnected in a network are
targeted, rather than spreading resources more broadly so that only a small fraction of
agents in any part of a network are a�ected. The model also provides suggestions to
change the network structure itself.

Before presenting the model let us point out that we are certainly not the �rst re-
searchers to recognize the importance of social networks in labor markets. Just a few
of the studies of labor markets that have taken network transmission of job information
seriously are Boorman (1975), Montgomery (1991, 1992, 1994), Calv�o-Armengol (2000),
Arrow and Borzekowski (2001), Topa (2001); not to mention the vast literature in sociol-
ogy.7 The contribution here is that this is the �rst to study an explicit network model and
prove some of the resulting implications for the patterns and dynamics of employment
and wages, as well as the inequality across races.

Finally, we point out that although our focus in this paper is on labor markets, this
model can easily be adapted to other sorts of behaviors where social networks play a
key role in information transmission. An example is whether or not individuals take
advantage of certain available welfare programs. Recent studies by Bertrand, Luttmer,
and Mullanaithan (2000) and Aizer and Currie (2002) point to the importance of social
networks in such contexts.

2 A Special Case of the Network Model

In Section 3 we will present the general network model. Before presenting the general
model, however, we �rst present a very special case where many of the intuitions are easily
seen and the material can be presented informally. Answers to any questions regarding
full details of the model can be found in Section 3.

The special case of the model that we start with is one that we refer to as homogeneous
job networks.

6In our model, improving the status of one agent has positive external e�ects on other agents' expected
future employment and wage status. There are, of course, other factors that might counterbalance this
sort of welfare improvement: for instance, the diÆculty that an agent might have adapting to new
circumstances under aÆrmative action as discussed by Akerlof (1997).

7Some related references can be found in Granovetter (1995), Montgomery (1991), and Dutta and
Jackson (2002).
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2.1 Homogeneous job networks

N = f1; : : : ; ng is a set of agents and time evolves in discrete periods, t 2 f0; 1; 2; : : :g.

Homogeneous job networks are network economies where jobs are all identical (e.g.,
unskilled labor) and wages depend only on whether a worker is employed or not. Thus, for
these networks all that we need to keep track of is whether or not an agent is employed.

Let sit denote the employment status of agent i at time t. The vector st 2 f0; 1gn

represents a realization of the employment status at time t, with sit = 1 indicating that
agent i is employed at the end of period t.

So, a period begins with some agents being employed and others not. Next, infor-
mation about job openings arrives. In particular, any given agent hears about a job
opening with a probability a that is between 0 and 1. If the agent is unemployed, then
he or she will take the job. However, if the agent is unemployed then he or she will pass
the information along to a friend, relative, or acquaintance who is unemployed. This is
where the network pattern of relationships is important, as it describes who passes infor-
mation to whom, which is ultimately very important in determining a person's long-term
employment prospects.

In the simple case we treat in this section, the passing is done in a very straightforward
way. People either know each other or don't. If a person hears about a job and is already
employed, then the person randomly picks an unemployed acquaintance to pass the job
information to. If all of a person's acquaintances are already employed, then the job
information is simply lost. The network of connections among agents is described by a
graph g, which is an n � n matrix. For now, suppose that gij 2 f0; 1g and that g is a
symmetric matrix. If gij = 1 then i is linked to j and gij = 0 if i is not linked to j.
The interpretation is that if gij > 0, then when i hears about a job opening, i may tell j
about the job. The symmetry of the network means that the acquaintance relationship
is a reciprocal one: if i knows j, then j knows i.

In what follows, we will also be interested in indirect relationships, as friends of a
friend will play a couple of roles: �rst, they are competition for job information in the
short run, and second, they help keep an agent's friends employed which is a bene�t in
the longer run. We say that two agents i and j are path-connected under the network g
if there exists a sequence of links that form a path between i and j (and again, we defer
formal de�nitions to the next section).

The passing of information from i to j is thus described by the following probability
pij(s) as a function of the state of employment s at the beginning of the period

pij(s) =

8>>>>><>>>>>:

a if j = i and si = 0,

agijP
k:sk=0

gik
if si = 1 and sj = 0, and

0 otherwise.
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Finally, there is an exogenous breakup rate b between 0 and 1 which describes the
(i.i.d.) probability that any given employed agent will lose their job in a given period.
For convenience, we let this be the last thing that happens in a period.

2.2 The dynamics and patterns of employment

It is clear from the description above, that in this model employment follows a �nite
state Markov process, where the state is the vector of employment status at the end
of the period. The relationship between the one-period-ahead employment status of
an agent and his pattern of connections is clear, and described by the pij(s)'s above.
Having more employed links improves i's prospects, as does decreasing the competition
for information from two-links away connections. The other indirect relationships in
the network (more than two-links away) and status of other agents does not enter the
calculation for one period ahead. However, once we take a longer time perspective, the
evolution of employment across time depends on the larger network and status of other
agents. This, of course, is because the larger network and status of other agents a�ect
the employment status of i's connections.

We �rst present an example which makes it clear why a full analysis of the dynamics
of employment requires a close scrutiny.

Example 1 Negative Conditional Correlations

Consider a homogeneous job network with three agents, where agents 1 and 2 are
linked, as are agents 2 and 3. Suppose the current employment state is st�1 = (0; 1; 0).

Conditional on this state, the employment states s1t and s3t are negatively correlated.
In a sense, agents 1 and 3 are \competitors" for job information or a job o�er from news
�rst heard through agent 2.

Despite the fact that 1 and 3 are competitors for news from agent 2 and hence have
a negative correlation in the shorter run, in the longer run agent 1 can bene�t from 3's
presence. Agent 3's presence can ultimately help improve 2's employment status. Also,
when agent 3 is employed then agent 1 is more likely to hear about any job that agent
2 hears about. These aspects of the problem counter the local (conditional) negative
correlation, and help induce a positive correlation between the employment status of
agents 1 and 3.

The bene�ts from having other agents in the network ultimately outweigh the local
negative correlation e�ects, if we take a long run perspective. The following examples
illustrate the long run behavior of the Markov process regulating employment as shaped
by the underlying network of contacts between agents.

Example 2 Correlation and Network Structure.
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Consider a simple homogeneous network setting with n = 4 agents. Let a = :100 and
b = :015. For instance, if we think about these numbers from the perspective of a time
period being a week, then an agent loses a job approximately every 67 weeks, and hears
(directly) about a job every ten weeks. Through the network, these lead to the following
results:8

g Prob(s1 = 0) Corr(s1; s2) Corr(s1; s3)

r1

r2 r3

r4 :132 � �

r1

r2 r3

r4 :083 :041 �

r1

r2 r3

r4 :063 :025 :019

r1

r2 r3

r4�@ :050 :025 :025

If there is no network relationship at all, then Prob(si = 0) = :132 under the steady
state distribution. This represents an unemployment rate of 13.2%. Even moving to just
a single link (g12 = g21 = 1) a�ects the individual probability for the linked agents of being
employed substantially as it drops by more than a third to 8.3%. The resulting aggregate
unemployment rate is 10.75%. As we see from the table, adding more links further
decreases the unemployment rate, but with a decreasing marginal impact. This makes
sense, as the value to having an additional link comes only in providing job information
when all of the existing avenues of information fail to provide any. The probability of
this is decreasing in the number of connections.

We also see that employment of both directly linked and indirectly linked agents is
correlated. The correlation is decreasing in the number of links that an agent has, and
is higher for direct compared to indirect connections. The decrease as a function of the
number of links is due to the decreased importance of any single link if an agent has many
links. The di�erence between direct and indirect connections in terms of correlation is
due to the fact that direct connections provide information, while indirect connections
only help by indirect provision of information that keeps friends or friends or friends,
etc., employed.

Also, note that the correlation between agents 1 and 3 in the \circle" (g12 = g23 =
g34 = g41 = 1) is positive (1.9%). Thus, even though they are in competition for in-
formation from both agents 2 and 4 in the shorter run, their employment is positively
correlated in the long run steady state distribution. We will see that this is true more
generally, below.

Next let us examine some eight person networks, with the same information arrival

8The numbers for more than one agent are obtained from simulations in Maple. The programs are
available upon request from the authors. The correlation numbers are only moderately accurate, even
after several hundred thousand periods.
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and job breakup rates, a = :100 and b = :015.

g Prob(s1 = 0) Corr(s1; s2) Corr(s1; s3) Corr(s1; s4) Corr(s1; s5)

r

r

r r

r

r

rr
1

2

3 4

5
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78
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Here, again, the probability of unemployment falls with the number of links, and the
correlation between two employed agents decreases with the distance of the shortest
path of links (geodesic) between them.

Also, we can see some comparisons to the four person networks: an agent has a
lower unemployment rate with a complete four person network rather than in an eight
person circle. In this case, the direct connection is worth more than a number of indirect
ones. More generally, the trade o� between one direct connections and many indirect
ones will depend on the network architecture and the arrival and breakup rates. In this
example, agents rarely lose jobs, and hear about them relatively more frequently, and so
direct connections are employed with a high probability regardless of the number of their
neighbors, and so indirect connections are less important than direct ones. In situations
with higher breakup rates and lower arrival rates, this tradeo� can be reversed.

Example 3 Structure Matters: densely versus closely-knit networks

We can also use the model to analyze how the structure matters. For instance, let us
compare two di�erent network structures that have the same number of links, but very
di�erent properties. \Stars" and \lines" are both minimally connected networks with
n� 1 links each. Here, a star means that a center agent is connected to each other link,
while a line is a sequence of agents each linked to the previous and following agents in
the sequence (except for the end agents). The �gure below shows a star and a line for
n = 9 agents.
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An easy way to see the contrast between these structures is to keep track of the average
length of the paths connecting di�erent agents. The average length of the minimum path
between agents, denoted d, is 2 (n� 1) =n in the star and (n + 1) =3 in the line. When
n!1, we have d(star)! 2 and d(line)!1. In this way we can think of stars as an
example of densely-knit network and lines as loosely-knit networks.
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Again, let a = :100 and b = :015. The following are the long-run average unemploy-
ment rates for stars and lines and for di�erent values of n.

Star n = 4 n = 8 n = 16 n = 32 n!1
Average lenght d 1:50 1:75 1:86 1:94 2:00
Unemployment :076 :081 :094 :114 :132

Line n = 4 n = 8 n = 16 n = 32 n!1
Average lenght d 1:67 3:00 5:67 11:00 1
Unemployment :069 :065 :062 :062 :061

It is clear that the line dominates the star in terms of its average unemployment rate.
In fact, the unemployment rate falls in the line while it increases in the star. In the star,
the center agent bene�ts with the increase in n and her unemployment rate converges
to b, as she will hear information about a job with a probability approaching one as the
number of links increases, as then almost surely at least one connection will be employed
and hear about a job. However, peripheral agents in the star are all connected to the
same agent. In the limit, the chance that any single one of them hears about information
from the center agent converges to 0, and so in the limit it is as if they were not connected
at all.

Note, that this does not contradict our earlier claims (or results below) regarding
positive correlation in employment. Here we are varying the network structure and
comparing employment averages, rather than examining the correlation structure within
a �xed network. While the star is an extreme network structure, this example does show
that having a positive correlation with another agent's employment does not guarantee
that the other agent is good to have around. Here the peripheral agents would like to
see fewer other peripheral agents.

The model also provides a tool for analyzing asymmetries in the network.

Example 4 Bridges and Asymmetries

Consider the following network, and again the same arrival and breakup rates.
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In this network the steady state unemployment probabilities are 4.7% for agents 1 and
6, 4.8% for agents 2,5,7 and 10, and 5.0% for the rest. While these are fairly close, just
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some very simple di�erences in the place in the network a�ects the unemployment rates
of the agents, even though they all have the same number of connections. Here agents 1
and 6 have lower unemployment rates than the others, and 3, 4, 8, and 9 are the worst
o�. If we compare agent 3 to agent 1, we note the following: each of 3's connections are
each on a path to each other with at most two links (and that does not contain 3). In a
sense, they are not \well-diversi�ed". In contrast, some of the connections of agent 1 are
not so closely tied to each other. For instance, agents 5 and 6 are not path connected
(except through 1). In fact, 1 and 6 form what is referred to as a \bridge" in the social
networks literature.9

The fact that the long run employment status of path-connected agents is positively
correlated in the above examples, is something that holds generally. In particular, as we
divide a and b both by some larger and larger factor �so that we eventually are looking at
very short time periods� then we can begin to sort out the short and longer run e�ects.
Essentially, in the limit we approximate a continuous time (Poisson) process, which is
e�ectively the natural situation, where such temporary competition for jobs is short-lived
and inconsequential while the overall status of indirect connections does tell one a great
deal about the possible status of direct connections and the longer run e�ects come to
dominate.

Proposition 5 Under �ne enough sub-divisions of periods, the unique steady-state long-
run distribution on employment is such that the employment statuses of any path-connected
agents are positively correlated.

Despite the short run conditional negative correlations between competitors for jobs
and information, in the longer run any interconnected agents' employment is positively
correlated. There is a clustering of agents by employment status, and employed workers
tend to be connected with employed workers. This is consistent with the sort of clustering
observed by Topa (2001). The intuition is strong: conditional on knowing that some set
of agents are all employed, it is more likely that their neighbors will end up receiving
information about jobs, and so on.

Moreover, the positive correlations hold not only under the steady-state distribution,
but also across any arbitrary time periods. That is, comparing i's status at time t with
j's status at time t0.

Proposition 6 Under �ne enough sub-divisions of periods, starting under the steady-
state distribution, the employment statuses of any path-connected agents are positively
correlated across arbitrary periods.

This follows, as having agents employed is bene�cial both in helping their neighbors

9The lower unemployment (higher employment) rate of these agents is then consistent with ideas
such as Burt's (1992) structural holes, although for di�erent reasons than the power reasoning behind
Burt's theory.
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become employed in the future and in helping their neighbors pass to other people who
need jobs.

2.3 Duration dependence and persistence in unemployment

As mentioned in the introduction, there are some other patterns of unemployment that
have been observed in the data and can be established in a networked model. To see
this, let us examine some of the serial patterns of employment that emerge.

Again, consider a homogeneous network setting with an job arrival and breakup rates
of a = :100 and b = :015.

Ask the following question: suppose that a person has been unemployed for at least
X periods. What is the probability that they will become employed in this period? We
can examine the answer to this question as we vary the number of periods of observed
past unemployment:

g 1 period 2 periods 10 periods limit

r1

r2 r3

r4 :099 :099 :099 .099

r1

r2 r3

r4 :176 :175 :170 .099

r1

r2 r3

r4�@ :305 :300 :278 .099

Again, the patterns observed here are not particular to the example but can be shown
to hold more generally.

Proposition 7 Under �ne enough sub-divisions of periods and starting under the steady-
state distribution, the conditional probability that an individual will become employed in
a given period is decreasing with the length of their observed (individual) unemployment
spell.

Indeed, longer past unemployment histories lead to worse inferences regarding the
state of one's connections and the overall state of the network. This leads to worse
inferences regarding the probability that an agent will hear indirect news about a job.
That is, the longer i has been unemployed, the higher the expectation that i's connections
and path connections are themselves also unemployed. This makes it more likely that
i's connections will take any information they hear of directly, and less likely that they
will pass it on to i. In other words, a longer individual unemployment spell makes it
more likely that the state of one's social environment is poor, which in turn leads to low
forecasts of future employment prospects.

As we mentioned in the introduction, this explanation for duration dependence is com-
plementary to many of the previous explanations. For instance, one (among a number
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of) explanations that has been o�ered for duration dependence is unobserved hetero-
geneity.10 A simple variant of unobserved heterogeneity is that agents have idiosyncratic
features that are relevant to their attractiveness as an employee and are unobservable to
the econometrician but observed by employers. With such idiosyncratic features some
agents will be quickly re-employed while others will have longer spells of unemployment,
and so the duration dependence is due to the unobserved feature of the worker. While
the network model also predicts duration dependence, we �nd that over the lifetime of a
single worker, the worker may have di�erent likelihoods (which are serially correlated) of
reemployment depending on the current state of their surrounding network. So, it also
predicts that controlling for the state of the network should help explain the duration
dependence. In particular, it o�ers an explanation for why workers of a particular type
in a particular location (assuming networks correlate with location) might experience
di�erent employment characteristics than the same types of workers in another location,
all other variables held constant. So for example, variables such as location that capture
network e�ects should interact with other worker characteristic variables which would
not be predicted by other models.11

Some comments on stickiness in the dynamics of employment

Let us discuss some aspects of the resulting aggregate employment dynamics. In
our model, the stochastic processes that regulate each individual employment history
are interrelated. In particular, past employment within a close-knit set of connections
breeds future employment for these connected individuals. Any shock to or change
in employment has both a contemporaneous and a delayed impact on labor outcomes.
In other words, duration dependence for individuals are also re
ected in persistence
for aggregate employment dynamics. This means that individual employment (viewed
in isolation of the overall state) does not follow a Markov process, but exhibits the
duration dependence documented in the above proposition. This also means that the
process governing aggregate employment exhibits special features. The higher the overall
employment rate, the faster unemployed vacancies are �lled. So, the closer one comes
to full employment, the harder it is to leave full employment. The converse also holds
so that the lower the employment rate, the slower vacancies are �lled. The process
will oscillate between full employment and unemployment. But it exhibits a certain
stickiness and attraction so that the closer it gets to one extreme (high employment or
high unemployment) the greater the pull is from that extreme. This leads to a sort of
boom and bust e�ect.12

10Theoretical models predicting duration dependence, though, are a bit scarcer. In Blanchard and
Diamond (1994), long unemployment spells reduce the reemployment probability through a stigma e�ect
that induces �rms to hire applicants with lower unemployment durations (see also Vishwanath (1989)
for a model with stigma e�ect). In Pissarides (1992), duration dependence arises as a consequence of a
decline in worker skills during the unemployment spell.

11We thank Eddie Lazear for pointing this out to us.
12We have not explicitly modeled equilibrium wages and the job arrival process. Incorporating these

e�ects might mitigate some of the e�ects our model exhibits. However, taking the arrival process as
exogenous helps us show how the network e�ects pushes the process to have certain characteristics. See
Wright (1986) for a search model that generates 
uctuating dynamics in a proper market setting.
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Note also that, given an aggregate unemployment rate, �lled jobs need not be evenly
spread on the network, and this can even be ampli�ed in cases where the network is
asymmetric in some ways to begin with (as in Example 4). As a result temporal patterns
may be asynchronous across di�erent parts of the network, with some parts experiencing
booms and other parts experiencing recessions at the same time.

2.4 Dropping out and inequality in wages and employment

We now turn to showing how the network model has important implications for inequality
across agents, and how that inequality can persist.

Our results so far show that an agent's wage and employment status will depend in
important ways on the status of those agents who are path connected to the agent in
the network. This can lead to some heterogeneity across agents, as local conditions in
their networks vary. Note however, that in the absence of some structural heterogeneity
across agents, their long run prospects will look similar. That is, if the horizon is long
enough, then the importance of the starting state will disappear.

However, expanding the model slightly can introduce substantial and sustained in-
equality among agents, even if their network structures are identical. The expansion in
the model comes in the form of endogenizing the network by allowing agents to have a
choice to \drop-out" of the network. This decision can be sensitive to starting conditions,
and have lasting and far reaching e�ects on the network dynamics. Let us take a closer
look.

Suppose that agents have to decide whether to stay in the labor market network or
to drop out. Staying in the labor market requires payment of an expected present value
of costs ci � 0. These include costs of education, skills maintenance, opportunity costs,
etc. We normalize the outside option to have a value of 0, so that an agent chooses to
stay in the labor force when the discounted expected future wages exceed the costs.

In the following examples, having more agents participate is better news for a given
agent as it e�ectively improves the agent's network connections and prospects for future
employment. Therefore, the decisions to stay in the labor force are strategic complements,
implying that the drop-out game is supermodular. The theory of supermodular games
then guarantees the existence of a maximal Nash equilibrium in pure strategies (again,
see the next section for details). We restrict attention to such maximal equilibria.

This supermodular aspect of the drop-out decisions also means that there are con-
tagion e�ects. An agent dropping out is bad news for the agents connections, which
increases the chance that they drop out, and so forth. Thus, drop-out decisions are not
i.i.d., even when the costs of staying in the labor force are i.i.d. across agents.

Example 8 Drop Outs
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Consider a simple homogeneous network setting with a society of n individuals, where
a = :100 and b = :015. Suppose that individual costs of staying in the network, ci, are
drawn at random from a uniform distribution with support on [0; 1].

We compute the percentage of drop-outs for di�erent values of n and w, where w is the
wage of an employed worker and they simply compare ci to their steady state expectation
of employment times wage.13 The calculations are made for complete networks among
the participating agents.

Dropout Percentage n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n!1
w = 1 11:5 8:3 4:6 2:8 2:1 1:7 1:5
w = 0:8 28:2 27:7 24:0 23:2 21:9 21:6 21:2
w = 0:6 47:2 46:6 44:5 45:5 41:8 41:6 40:9
w = 0:4 65:6 64:4 62:3 62:0 61:4 61:0 60:6
w = 0:2 83:7 82:9 82:2 82:0 81:1 80:7 80:3

To get a feeling for the importance of the variance of the ci's across the population,
suppose that individual costs of staying ci are instead drawn at random from a uniform
distribution with support on some subset of [0; 1]. We see how this matters below, when
w is �xed at 1.

Dropout Percentage n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n!1
w = 1; ci � U [0; 1] 11:5 8:3 4:6 2:8 2:1 1:7 1:5
w = 1; ci � U [:8; 1] 65:5 49:8 29:8 16:9 10:9 8:7 3:0
w = 1; ci � U [:9; 1] 100 98:0 76:0 43:4 23:7 17:3 15:0

Drop-out percentages are clearly decreasing in wages and increasing in costs. These
e�ects are obvious. The intuition behind the drop-out rates decreasing in the size of n is
also fairly clear: with larger numbers of links, there is more of a chance of hearing about
jobs and so the future prospects of employment are higher.

Next, let us consider how the initial condition of the network a�ects drop-out rates.
This will be the place were slight starting di�erences can end up having lasting e�ects.

Take the ci to be uniformly distributed on [:8; 1] and �x w = 1. We compute the
percent of drop-outs for di�erent values of n. We do the calculation for two initial states:
everybody employed, s0 = (1; : : : ; 1), and everybody unemployed, s0 = (0; : : : ; 0)

13The steady state expected employment here captures the present discounted value, except for the
scaling of a discount factor Æi. In particular, the present discounted value of expected wages is simply
w pi

1�Æi
, where pi is the equilibrium steady state employment probability. The scale of Æi can then be

subsumed into either w or ci.
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The calculations are done for a discount rate of .9, where we simplify things by
assuming that an agent starts in the initial state, and then jumps to the steady state in
the next \period". This just gives us a rough calculation, be enough to see the e�ects.
So, an agent gets a payo� of :1si+:9p; where p is the steady state employment probability
in the maximal equilibrium of the dropout game and si is their starting state.

In calculating the dropout percentage, we can ask what amount is due to the \conta-
gion" e�ect. That is, we consider the following. We can ask how many people would drop
out without any equilibrium e�ect: so if they each did the calculation supposing that
everyone else was going to stay in. Then we can calculate how many people will drop
out in the equilibrium. Any extra people dropping out in the equilibrium, are dropping
out as the result of somebody else dropping out �which we call the \contagion e�ect".

So, for instance, in the lower table below, when n = 16 and everybody is initially
unemployed, we have 68% of the people dropping out on average. This means that we
expect about 11 people to drop out on average and about 5 people to stay in. The 8.7%
due to contagion means that about 1.5 (= :087�16) of the people dropping out are doing
so because others drop out, and they would be willing to stay in if all the others were
willing to. Thus about 9.5 of the 11 people would drop out even if all stayed in, and 1.5
of the 11 drop out because of the fact that some others have dropped out.

s0 = (1; : : : ; 1) n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n!1
Dropout Percentage 58:3 44:5 26:2 14:7 9:7 7:8 6:8

Percentage Due to Contagion 0 8:8 5:0 1:4 0:4 0:2 0

s0 = (0; : : : ; 0) n = 1 n = 2 n = 4 n = 8 n = 16 n = 32 n!1
Dropout Percentage 100 97:8 92:9 82:2 68:0 60:6 56:8

Percentage Due to Contagion 0 12:1 21:7 18:9 8:7 3:0 0

Note that the contagion e�ect is larger for the worse starting state and is also larger
for smaller networks (although not entirely monotone). This is true because the impact of
someone dropping out is more pronounced in worse starting states and smaller networks.
In the limit, the impact of having people drop out is negligible and so the contagion e�ect
disappears when agents have very large numbers of connections (holding all else �xed).
For n = 1, there cannot be a contagion e�ect, so the number is 0 there as well.

The non-monotonicity is a bit subtle. The possibility of contagion is initially non-
existent. It then increases as the number of connections increases, since there are more
possible combinations of neighbor dropouts that can take place with three connections
(when n = 4) than one connection (when n = 2), and any one can then trigger another.
Eventually, with large numbers of connections, the marginal impact of an additional
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connection to a given agent is already very low, and in fact becomes second order in the
number of agents. The fact that it shrinks so much means that eventually the contagion
e�ect disappears as even having some fraction of one?s connections drop out is no longer
a problem if there are still a large number left.

The previous examples show that di�erent social groups with identical network rela-
tionships but di�ering by their starting employment state, have di�erent drop-out rates.
Because dropping out hurts the prospects for the group further, this can have strong
implications for inequality patterns. We now show that this holds more generally.

For simplicity, but at some loss of generality, in analyzing the drop-out game for
the proposition below we do not alter the network structure when an agent drops out;
instead we simply set the drop-out's employment status to be 0 forever. This does
introduce a bias in terms of underestimating some gains of direct competitors to a drop-
out for information from other agents. However, in most networks this bias will be
small.14 Without this simplifying assumption, keeping track of the impact of changes
in the network for arbitrary structures becomes intractable. So, this approach provides
for substantial simpli�cations in the analysis of the drop-out decisions and allows us to
establish some analytical results.

Proposition 9 Consider two social groups with identical network structures. If the start-
ing state person-by-person is higher for one group than the other, then the set of agents
who drop out of the �rst group (in the maximal equilibrium) is a subset of their coun-
terparts in the second group. These di�erences in drop-out rates generate persistent
inequality in probabilities of employment between the two groups.

The wage distribution and employment outcomes may thus di�er among two social
groups with identical economic characteristics that just di�er in their starting state.
In fact, many empirical studies illustrate how accounting for voluntary drop-outs from
the labor force negatively a�ect the standard measures of black economic progress (e.g.
Chandra (2000), Heckman, Lyons, and Todd (2000)).

While this comparison is a bit stylized, the fact that we consider two completely
identical networks except for their starting states emphasizes how important starting
conditions can be. It points out that when combined with the network dynamics and
drop-out decisions, di�erences in initial conditions can lead to sustained inequality in a
network. Moreover, these conditions will feed on each other: as one agent decides to
drop-out this worsens the prospects for the agent's connections, who then drop-out at
a higher rate, and so forth. This means that slight initial variations can have drastic
implications.

14A network structure where the bias might be more substantial is the star network, as we can see
from the earlier example where peripheral agents actually su�er from the addition of other peripherals.
Even so, in such situations the bias is small for large numbers of agents.
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Classical theories of discrimination, such as that of Becker (1957) or Schelling (1971),
postulate that individuals have an intrinsic preference for individuals in their own soci-
etal group.15 Because of such preferences and externalities, individuals end up segregated
in the workplace, and the resulting sorting patterns by group aÆliation can breed wage
inequality.16 Our model o�ers an alternative and novel explanation for inequality in
wages and employment.17; 18 Two otherwise identical individuals embedded in two so-
cietal groups with di�erent collective employment histories (or with di�erent networks
as discussed below) typically will experience di�erent employment outcomes. In other
words, social networks in
uence economic success of individuals at least in part due to
the di�erent composition and history of individuals' networks. When coupled with drop-
out decisions, sustained inequality can be the result of di�erences in history. We discuss
some policy implications of this network viewpoint below.

Minority traps

The previous proposition makes the point that simple di�erences in starting condi-
tions can lead to di�erent decisions to drop-out, which can in turn lead to sustained
gaps in employment and wages between two otherwise identical groups. Let us add an-
other observation to this that indicates that di�erences in network structure, rather than
starting conditions, can also lead to di�erent drop-out decisions and sustained inequality.

Minority groups tend to be closer knit in terms of their network connections (e.g., see
Portes and Sensenbrenner (1993)), which is partly due to the size of the group. This leads
to di�erent network dynamics as having more dispersed network connections is bene�cial.
For instance, as we saw in Example 2, under exactly the same a and b and with each
agent having two links, the expected long run unemployment of an agent in a network of
four agents is 6.3% while it is 6% for an agent in a network of eight agents. While the

15There is also an important literature on \statistical" discrimination that follows Arrow (1972),
McCall (1972), Phelps (1972), and others. Our work is quite complementary to that work as well.

16We use the word \can" because it may be that some employers discriminate while the market wages
do not end up unequal. As Becker (1957) points out, the ultimate outcome in the market will depend on
such factors as the number of non-discriminating employers and elasticities of labor supply and demand.

17While we have not included \�rms" in our model, note that to the extent to which the job information
comes initially from an employee's own �rm, there would also be correlation patterns among which �rms
connected agents work for. That is, if an agent's acquaintance is more likely to be getting information
about job openings in the acquaintance's own �rm, then that agent has a more than uniformly random
likelihood of ending up employed in the acquaintance's �rm. This would produce some segregation
patterns beyond what one would expect in a standard labor market model.

18Two other important explanations for inequality can be found in Loury (1981) and Durlauf (1996).
As in our model, both papers relate social background to individual earning prospects. In Loury's paper,
the key aspect of social background is captured by family income which then determines investment
decisions in education. In Durlauf's work, education is modelled as a local public good, and community
income, rather than family incomes, a�ects human capital formation. In both cases, because the social
background imposes constraints on human capital investment, income disparities are passed on across
generations. In our paper, we focus instead on the larger societal group within which one is embedded,
its network structure, collective employment history, and access to information about jobs. This o�ers
a complementary, rather than competing, explanation for sustained inequality.
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di�erence in this example is small (on the order of a 5 percent change in unemployment),
it can easily become magni�ed as follows. Even if there are just a few agents who face
drop-out costs that are on this order, such an agent's decision could di�er depending
on which group they are in. Thus, they would drop out if part of the smaller network,
but not if they are part of the larger network. Their decision to drop out of the smaller
network, then has implications for other agents who then might also tend to drop out.
This contagion e�ect can lead to drastically di�erent drop-out rates in the two networks,
thus amplifying the di�erences in the networks and the resulting wage and employment
dynamics.

As this e�ect involves group size, we call such a drop-out cascade a \minority-trap".
This complements our earlier result on drop-out rates based on initial conditions. Here
it is not the initial conditions that matter, but instead the network structure.

2.5 A look at policy implications

Let us mention some lessons that can be learned from our model about policy in the
presence of network e�ects. One obvious lesson is that the dynamics of the model show
that policies that a�ect current employment or wages will have both delayed and long-
lasting e�ects.

Another lesson is that there is a positive externality between the status of connected
individuals. So, for instance, if we consider improving the status of some number of
individuals who are scattered around the network, or some group that are more tightly
clustered, there will be two sorts of advantages to concentrating the improvements in
tighter clusters. The �rst is that this will improve the transition probabilities of those
directly involved, but the second is that this will improve the transition probabilities of
those connected with these individuals. Moreover, concentrated improvements lead to
a greater improvement of the status of connections than dispersed improvements. This
will then propagate through the network.

To get a better picture of this, consider the drop-out game. Suppose that we are in
a situation where all agents decide to drop out. Consider two di�erent subsidies: in the
�rst, we pick agents distributed around the network to subsidize; while in the second we
subsidize a group of agents that are clustered together. In the �rst case, other agents
might now just have one (if any) connection who is in the market. This might not be
enough to induce them to enter, and so nobody other than the subsidized agents enter
the market. This hurts both their prospects and does not help the drop-out rate other
than through the direct subsidy. In contrast in the second clustered case, a number of
agents now have several connections who are in the market. This may induce them to
enter. This can then have a contagion e�ect, carrying over to agents connected with
them and so on. This decreases the drop-out rate beyond the direct subsidy, and then
improves the future status of all of the agents involved even further through the improved
network e�ect.
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Exactly how one wants to distribute subsidies to maximize their impact is a subtle
matter.

Concentration of subsidies

Let us again consider a society of eight individuals, again where a = :100 and b =
:015. Suppose that individual costs of staying in the network, ci, are drawn at random
from a uniform distribution with support [:8; 1]. Initially, everybody is unemployed, so
s0 = (0; : : : ; 0). We work with drop out decisions when the discount rate is .9, as in the
previous example.

The experiment we perform here is the following. In each case we subsidize two
agents. The question is which two agents we subsidize. In the network, each agent has
four connections. The network structure is as follows. Each agent has three links - two
immediate neighbors and one that is slightly further away. In particular the links in the
network are: 12, 23, 34, 45, 56, 67, 78, 81; as well as 13, 28, 46, 57. This is pictured
below.
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The table provides the percentage of agents who stay in the network as a function
of who is subsidized (two agents in each case) and what the range of costs (randomly
drawn) are.19

Agents Cost Range
Subsidized :80 to 1 :82 to 1 :84 to 1 :86 to 1
1 and 2 52:9 39.4 27.8 25:0
1 and 3 53:6 39:4 27:1 25:0
1 and 4 57:2 43:4 27:9 25:0
1 and 5 57:9 43:8 27:0 25:0
1 and 6 57:9 44.0 27.0 25:0
1 and 7 57:1 43.4 27.8 25:0
1 and 8 53:5 39:4 27:1 25:0
3 and 4 54.5 39.3 26.1 25:0
3 and 7 57.7 43.6 27.4 25:0
3 and 8 56:2 42:9 29:1 25:0

There are some interesting things to note.
19Note that the di�erent cases of who are subsidized cover all possible con�gurations, up to a relabeling

of the agents.
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In the highest cost range, even having one neighbor stay in is not enough to induce
an agent to stay, and so the only agents staying in are the subsidized ones. Here it is
irrelevant which agents are subsidized as they are the only ones staying in.

In the lowest two cost ranges, having one neighbor stay in has a big impact, and so
spreading the subsidies out has the maximal impact. Agents 1 and 5 are on opposite
ends of the circle and have no direct contact in common. Subsidizing agents 1 and 5
thus amounts for spreading subsidies out, and it is indeed the best policy in terms of
maximizing the number of agents who stay in the market when the cost is at its lowest
level.20 When the cost is in the .82 to 1 range, we begin to see a slight change, where
now subsidizing agent 1 and 6 is better, and these agents are slightly closer together.

The places where things favor a di�erent sort of policy is in the middle range of costs.
Here costs are high enough so that it is quite likely that an agent will drop out if she
has only one neighbor who stays in. Contagion e�ects are high. Spreading the subsidies
out to agents 1 and 5, or 3 and 7, etc., does worse than having them close together (1
and 2, 1 and 3, 1 and 4) and the best possible is of the form 3 and 8. What matters
to concentrate subsidies is the number of contacts subsidized agents have in common:
the higher this number, the more concentrated the subsidies are. Agents 3 and 8 are
well-placed since both 1 and 2 are connected to both of them. Thus, this concentrates
subsidies in a way that provides a high probability that 1 and 2 will stay in. Without
such a concentration of subsidies, we get a higher drop-out rate.

What this suggests, is that in designing subsidy or aÆrmative action programs, at-
tention to network e�ects is important. Concentrating e�orts more locally, can end up
having a higher return. We can see this not only in the choice of who to subsidize, but
also how to spread subsidies, as the next calculation also shows.

Subsidies and increasing returns

The above example showed the importance of network and contagion e�ects in the
choice of how to allocate subsidies given a �xed number of such subsidies. Suppose now
that we have a �xed amount to give to the agents. We can then ask the question of
whether it is better to give it all to one agent or to split it up among many agents.

Generally, the answer will depend on many factors. If the subsidy is very large, then
spreading it around makes clear sense, as even a fraction of the subsidy is enough to
encourage an agent (and perhaps some neighbors) to stay in. However, with a smaller
sized subsidy, we can ask how this might optimally be split. Clearly, on the opposite
extreme where the subsidy is very small, splitting it up makes no sense as that may
spread it to thin so that it has no impact at all.

The following, however, shows that the contagion e�ect of the network can generally
lead to some increasing returns. First let us do a primitive calculation, and then talk

20It is almost a tie with 1 and 6, but slightly ahead in the next decimal.

21



about the sense of it.

Consider a society of four individuals, again where a = :100 and b = :015. As before,
individual costs of staying in the network, ci, are drawn at random from a uniform
distribution with support [:8; 1], and everybody is initially unemployed, so s0 = (0; 0; 0; 0).

In this case, the threshold values of costs below which an individual decides to stay
in are :855, :8424 and :8253 in a complete network of 4, 3 and 2 agents, respectively. The
probability of various numbers of drop-outs can then be calculated, taking into account
the contagion e�ects.

Number of agents subsidized Percentage Staying In
0 7:1
1 26:6
2 52:3

Let SI (x) be the percentage of agents who stay in the labor market given that x
agents are subsidized to stay in. Thus,

1

2
[SI (2) + SI (0)]29:7| {z } > SI (1)| {z }

26:6

:

What this shows, is that one would rather have 2 agents subsidized with probability
one half, rather than one agent subsidized for sure. Note that this does not account for
the cost of subsidizing. However, the cost of subsidizing an agent to stay in is even lower
when another agent is subsidized to stay in, and so that will even further reduce the cost
and increase the impact. This shows a sort of local increasing returns in the number
of agents subsidized, even without accounting for the decrease in the per-capita cost of
subsidy.

While this simple model is very highly stylized to the point that policy implications
should be interpreted cautiously, the examples point out that the importance of network
e�ects and their inherent contagion sorts of features can have intuitive and speci�c pre-
scriptions for bene�ts of structuring policies with networks in mind. Moreover, as we
shall show in the next section, the types of e�ects noted in the model above are not
unique to the homogeneous setting, but extend to a wide variety of situations and are
thus representative of networked markets.

2.6 Some comparative statics and possible tests

The following tables show dropout rates and contagion e�ects for di�erent arrival and
breakup rates, and two di�erent cost ranges, all for the case of four agents. The sim-
ulations assume that the starting state is one where all agents are employed, and the
corresponding discount factor is .9.
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The �rst �gure in each entry is the drop-out rate, and the second is the amount
attributable to contagion e�ects.

ci � U [:8; 1] b
:015 :045 :075 :105 :135 :165 :195 :225 :255 :285

:05 69:27 100:0 100:0 100:0 100:0 100:0 100:0 100:0 100:0 100:0
:10 27:5 99:27 100:0 100:0 100:0 100:0 100:0 100:0 100:0 100:0
:15 17:2 76:27 99:12 100:0 100:0 100:0 100:0 100:0 100:0 100:0
:20 13:1 52:13 97:28 100:0 100:0 100:0 100:0 100:0 100:0 100:0

a :25 11:1 42:10 83:26 100:16 100:0 100:0 100:0 100:0 100:0 100:0
:30 10:1 37:9 68:18 98:24 100:2 100:0 100:0 100:0 100:0 100:0
:35 9:1 29:3 61:15 88:24 100:12 100:0 100:0 100:0 100:0 100:0
:40 9:1 27:2 53:11 84:23 98:18 100:0 100:0 100:0 100:0 100:0
:45 8:0 25:2 46:7 76:18 96:20 100:6 100:0 100:0 100:0 100:0
:50 7:0 25:2 45:6 69:14 91:20 100:11 100:0 100:0 100:0 100:0

ci � U [:6; 1] b
:015 :045 :075 :105 :135 :165 :195 :225 :255 :285

:05 24:3 96:25 100:0 100:0 100:0 100:0 100:0 100:0 100:0 100:0
:10 11:1 44:8 90:26 100:0 100:0 100:0 100:0 100:0 100:0 100:0
:15 8:1 28:3 56:12 85:21 99:16 100:0 100:0 100:0 100:0 100:0
:20 6:0 22:3 45:10 66:15 90:23 98:16 99:3 100:0 100:0 100:0

a :25 5:0 18:2 34:5 54:12 71:16 92:22 99:16 100:0 100:0 100:0
:30 4:0 16:2 28:3 44:8 60:11 75:14 94:20 100:15 100:3 100:0
:35 4:0 14:1 27:3 37:5 52:8 65:11 82:16 95:18 100:12 100:1
:40 4:0 13:1 24:2 34:4 46:6 58:9 71:10 87:16 96:15 100:8
:45 4:0 12:1 21:1 32:3 42:5 56:9 69:12 80:14 90:14 99:13
:50 4:0 11:1 20:1 30:2 37:1 52:7 63:9 75:12 84:12 96:15

The above tables provide some idea of various comparative statics. Some are quite
obvious: (1) as the expected cost increases (relative to wages, which are �xed at 1 in the
above), the dropout rate increases, (2) as the breakup rate increases the dropout rate
increase, and (3) as the arrival rate increases, the dropout rate increases. However, there
are also some more subtle comparisons that can be made.

For instance, let us examine what happens as job turnover increases. Here, as the
arrival and breakup rates are both scaled up by the same factor, we can see the e�ects
on the dropout rates. Note that such a change leaves the base employment rate (that
of an isolated agent) unchanged - and so the di�erences are attributable entirely to the
network e�ects. The table below pulls out various rescalings of the arrival and breakup
rates for the two cost ranges. As before, the �rst �gure is the drop-out rate, and the
second is the amount attributable to contagion e�ects.

Scaled by 1 3 5 7 9
a and b :05; :015 :015; :045 :25; :075 :35; :105 :45; :135

ci � [:8; 1] 69:27 76:27 83:26 88:24 96:20
ci � [:6; 1] 24:3 28:3 34:5 37:5 42:5
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As we can see, higher turnover rates (higher rescalings of a and b) lead to higher
dropout rates. The intuition behind this is as follows. With higher turnover rates, when
an agent becomes unemployed it is more likely that some of his neighbors are unemployed.
This is actually quite subtle, as the base unemployment rate has not changed. However,
higher turnover makes it more likely that several agents lose their jobs at the same time,
and end up competing for information. This e�ect then lowers the employment rate,
which in turn feeds back and results in less valuable connections.

This e�ect provides for a testable implication: industries with higher turnover rates,
all else held equal, should have higher drop-out rates. Operationalizing this requires some
care, however, as we do not model the career choices for workers or an equilibrium in
wages. Nonetheless, it is clear that the prediction is that the wage to education cost ratio
must be relatively higher in order to induce workers to enter careers where the turnover
rate is high compared to those where it is low, even after correcting for any risk-aversion
or income smoothing motives.

Let us brie
y mention some other possible empirical tests of the model. To the extent
that direct data on network relationships is available, one can directly test the model. In
fact, such information in the form of survey data (the General Social Survey) has been
used extensively in the sociology literature and also in conjunction with wage data (e.g.,
Tassier (2001)).

There are also other tests that are possible. For instance, there is data concerning how
the reliance on networks for �nding jobs varies across professions, age and race groups,
etc. (see the table in Montgomery (1991), for instance, to see some di�erences across pro-
fessions). Our model then predicts that the intensity of clustering, duration dependence,
and drop-out rate should also vary across these socio-economic groups. Moreover, even
within a speci�c socio-economic group, our model predicts di�erences across separate
components of the network as the local status of the connections changes.

3 The General Model of a Network of Labor Market

Contacts

The results presented in the simple version of the homogenous job networks can also be
established in a much more general model. This is important not only because of the
potential applications beyond unskilled labor markets, but also because it shows that the
reasoning behind the results is quite robust.

We now present the general model and a formal statement of the results.

3.1 Employment Status

There are several things that we keep track of over time.
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The �rst is the employment status of agents. At time t, an agent i 2 N can either
be employed (state sit = 1) or unemployed (state sit = 0). So, the vector st 2 f0; 1gn

represents a realization of the employment status at time t.

We follow the convention of representing random variables by capitol letters and
realizations by small letters. Thus, the sequence of random variables fS0; S1; S2; : : :g
comprise the stochastic process of employment status.

3.2 Wage Status

In addition to employment status, we track wages over time.

The random variable Wit keeps track of the wage of agent i at time t. We normalize
wages to be 0 if i is unemployed (Sit = 0), and more generally Wit takes on values in
IR+. The vector wt = (w1t; : : : ; wnt) represents a realization of the wage levels a time t.
With homogeneous job networks, the variables St and Wt are equivalent in terms of the
information that they convey.

We allow (but do not require) the wage of an agent to depend on how many job
opportunities they have come across. We now discuss how employment and wages evolve
over time.

3.3 Labor Market Turnover

The labor market we consider is subject to turnover which proceeds repeatedly through
two phases as follows.

� In one phase, each currently employed worker i is �red with probability bi 2 (0; 1),
which is referred as the breakup rate.

� In the other phase, each agent i is directly informed about at most one job vacancy
with some probability (which may depend on the current state). If an agent directly
hears about a job vacancy, then he or she either keeps that information or passes
the job on to one of their direct connections in the network. Probabilities pij(w)
(as a function of the last period wage status w) keep track of the probability that i
�rst hears about a job and this job ultimately results in an o�er for agent j.21 We
discuss these pij functions in more detail below.

As these phases occur repeatedly over time, it is irrelevant whether we index periods
so that �rst the breakup phase occurs and then the hiring phase occurs, or vice-versa. It

21Note that it is possible that an agent hears about more than one job vacancy in a given period,
as the agent may hear about a job directly and also may indirectly hear about jobs from one or more
connections.
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turns out to be more convenient to consider the hiring phase �rst and then the breakup
phase. Thus, our convention is that St and Wt are the employment and wage status that
occurs at the end of period t. So, in the beginning of period t the status is described by
St�1;Wt�1. Next, agents hear about jobs, possibly transfer that information, and hiring
takes place. This results in a new employment and wage pattern. Then, the breakup
phase takes place and the period ends with an employment and wage status St;Wt.

3.4 Speci�cs of Information Transmission

There are many possible variations to consider how information is transmitted and how
information a�ects wages. There are at least three important dimensions that we con-
sider.

One dimension to consider is whether or not an already employed agent can make
direct use of information about a new job. In the case of completely homogeneous jobs
(as in the section above), information about a new opening is of no use to an employed
agent, and so it will be passed on. In the case of heterogeneous jobs (where jobs may
have di�erent characteristics and values to di�erent agents), the new job may be an
improvement for an already employed agent and so that agent might wish to switch jobs,
and so the information about the new job is not passed on. However, there may also be
a probability that the new information is not valuable to the agent (e.g., the new job is
worse than their current position) and so they wish to pass it on. Generally, the higher
the current wage of the agent, the higher the probability that the current job will not
generate an improving o�er and so the agent will pass on information about a job that
he or she hears of directly.

Another dimension for consideration is to whom an employed agent passes job infor-
mation. The agent may pass the job information on only to unemployed connections, or
may instead select among all of his or her connections in passing on the job information.
In the case where jobs are all homogeneous, it makes sense for the agent to pass the
job information on to an unemployed connection. However, in the case where jobs are
heterogeneous, it may make still sense for the agent to pass the job on to another agent
who is already employed. Also, the agent may choose to pass the job depending on the
current status of the connections.

Third, it is also possible that the agent passes the job information to more than one
connection, and even that they indirectly pass it on to others, and that a number of
agents end up applying or being considered for the job.

In order to capture all of these variations on information passing, we model the job
transmission in a general way that allows for a wide range of cases.

The job transmission and o�er generation is described by a function pij : IRn
+ !

[0; 1]n. Here pij(Wt�1) is the probability that i originally hears about a job and then
it is eventually j that ends up with an o�er for that job. The case where j = i (that
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is, pii(Wt�1)) represents the situation where i hears about a job and is the one who
eventually gets an o�er for the job.

The function pij is a reduced form that can accommodate a very large variety of

situations. All that is important for our analysis is to keep track of who �rst heard
about a job and who (if anyone) eventually ended up getting an o�er for the job. In
the interim it might be that agents keep any job information they hear about or it may
be that they pass the information on. When passing information, agents may pass it to
just one connection at a time or they may tell several connections about the job. These
connections might also pass the information on to others, and it could be that several
agents end up in competition for the job. And of course, all of this can depend on the
current state w. Regardless of this process, we simply characterize the end result through
a probability that any given agent j ends up with an o�er for a job that was �rst heard
about by agent i.

Let pi(w) =
P

j pji(w). So, pi(w) represents the expected number of o�ers that i
will get depending on the wage state in the last period being w. We assume that the
realizations under pji(w) and pki(w) are independent. Note that this is very di�erent from
the realizations under pij and pik, which will generally be negatively correlated. So we
are just assuming that j and k do not coordinate on whether they pass i a job. We could
allow agents to coordinate on whom they pass information to. This would complicate
the proofs in the paper, but would not alter the qualitative conclusions. In fact, as we
let the periods become small, the probability that more than one job appears in a given
period will go to zero in any case, and so it will be clear that the results extend readily.

We let p denote the vector of functions across i and j. Let w denote the maximum
value in the range of wages. The functions pij are assumed to satisfy the following
conditions for any w in the range of wages:

(1) pi(w) is nondecreasing in w�i and nonincreasing in wi, and

(2) pi(w) > 0 for any w and i such that wi < wi

(3) if pi(w) > pi(w�j; ewj) for j 6= i, then pi is increasing in wj whenever wi < wi.

(1) imposes two requirements. The �rst is that the expected number of jobs that i
hears about is weakly increasing in the wages of agents other than i. This encompasses the
idea that other agents are (weakly) more likely to directly or indirectly pass information
on that will reach i if they are more satis�ed with their own position, and also that
they might have better access to such information as their situation improves. It also
encompasses the idea that other agents are (weakly) less likely to compete with i for an
o�er if they are more satis�ed with their own position. The second requirement is similar
but keeps track of i's wage. Note that this allows for i to be more likely to directly hear
about a job as i's situation worsens (allowing for a greater search intensity).22

22Note that it is possible to have the probability that an employed agent directly hears about a job
vacancy be higher or lower than the same probability for an unemployed agent, and still be consistent
with the condition (1).
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We remark that (1) is not in contradiction with the fact that some agents might be
more quali�ed than other agents for a given job. Such quali�cations can be completely
built into the agents' identities i, j, etc., which are accounted for in the pij's. Condition
(1) only describes how changes in agents' current circumstances a�ect job transmission.

(2) simply requires that if an agent is not at their highest wage level, then there is
some probability that they will obtain an o�er. This is clearly satis�ed as long as there
is some probability that they directly obtain an o�er, and is a very weak requirement.

(3) is a simplifying assumption. This guarantees that if i's probability of hearing
about a job is sometimes sensitive to j's status, then it is sensitive to j's status whenever
i is not at the highest wage level. This simply allows us to make statements about
positive correlations that do

not need to be conditioned on particular circumstances. Without this assumption,
some strict inequalities simply become weak ones in some special cases.

3.5 The Determination of O�ers, Wages, and Employment

Determination of O�ers

The above described process leads to a number of new job opportunities that each
agent ends up at the end of the hiring process. Let Oit be the random variable denoting
the number of new opportunities that i has in hand at the end of the hiring process at
time t. Given Wt�1 = w, the distribution of Ot is governed by the realizations of the
pij(w)'s.

Determination of Employment

As before, the labor market we consider is subject to turnover which proceeds re-
peatedly through two phases: �rst, the breakup phase where each agent i loses job with
probability bi, then, the hiring phase where agent i gets o�ers. The employment status
then evolves as follows. If agent i was employed at the end of time t � 1, so Si;t�1 = 1,
then the agent remains employed (Sit = 1) with probability (1 � bi) and becomes un-
employed (Sit = 0) with probability bi. If agent i was unemployed at the end of time
t� 1, so Si;t�1 = 0, then the agent becomes employed (Sit = 1) with probability (1� bi)
conditional on Oit > 0, and otherwise the agent stays unemployed (Sit = 0).

Determination of Wages

The evolution of wages is as follows. The function wi : IR+ � f0; 1; 2; : : :g ! IR+

describes the wage that i obtains as a function of i's previous wage and the number of
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new job opportunities that i ends up with at the end of the hiring phase. This function
is increasing in past wages and satis�es wi(Wi;t�1; Oit) � Wi;t�1.

There may still be a loss of wages, but this occurs during the breakup phase when
an agent becomes unemployed. It is also assumed that wi(Wi;t�1; Oit) is nondecreasing
in the number of new o�ers received, Oit, and that wi(0; 1) > 0 so that a new job brings
a positive wage.

In the case of completely homogeneous jobs, the wage will simply depend on whether
the agent is employed or not. But in the case of heterogeneous jobs, the wage might
be increasing in the number of o�ers an agent has. This captures the fact that the best
match of a larger set of o�ers is likely to be better, and also that if an agent has several
potential employers then competition between them will bid the wage up.23

We emphasize that this is not at all in contradiction with the previous assumptions
on the pij's. Wages are increasing in the o�ers that an agent eventually obtains, which
can be thought of as the \viable" o�ers. An agent might hear about a job that is a poor
match for him or her (e.g., their current location or position dominates the new job)
and would never lead to a viable o�er. It is then perfectly rational for the agent to pass
the job information on to other agents, as might happen under the pij's. The important
distinction is that the o�ers (Oit's) that are kept track of in the model are only the viable
ones.

For simplicity in what follows, we assume that wi takes on a �nite set of values and
that these fall in simple steps so that if w0 > w are adjacent elements of the range of wi,
then w0

i = wi(w; 1). This means that wages are delineated so that an agent may reach
the next higher wage level with one o�er. We assume that the highest wage an agent
may obtain is above 0, that is wi > 0. We also assume that wi(w

0; o) � wi(w; o + 1)
for any o and w0 and w such that w0

i > wi. This simply says that having a higher wage
status is at least as good as having one additional o�er (at least in expectations).

The wage of an agent then evolves according to the following

Wit = wi(Wi;t�1; Oit)Sit

Multiplying the expression by Sit keeps track of whether i loses his or her job during the
breakup phase.

Networks

In the general model, the network through which information is passed is already
completely embodied in the p function. Nevertheless it will still be useful for us to keep

23One can see the reasoning behind this in search models and, for instance, in Arrow and Borzekowski
(2001) where �rms compete for an agent and the best match must pay the value of the second highest
match.
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track of some connection relationships. In particular, it is helpful to keep track of agents
i and j for which pi(w) is sensitive to changes in wj for some w.

We will say that i is connected with j if pi(w) 6= pi(w�j; ewj) for some w and ewj.

Let us emphasize that the term \connected" does not necessarily mean that i and j
pass information to each other. It might be that pij(w) = pji(w) = 0 for all w, and yet
still pi(w) is sensitive to wj. This would happen if pki(w) depended on wj, and hence
the connection might be \indirect". In words, two agents who are connected need not
pass each other information; it is just that their statuses directly or indirectly a�ect each
other's probability of hearing about a job.24

Let
Ni(p) = fj j i is connected with jg

It is natural to focus on situations where connection relationships are at least mini-
mally reciprocal, so that i 2 Nj(p) if and only if j 2 Ni(p). We maintain this assumption
in what follows. In the absence of such an assumption, some of the statements in the
results that follow need to be more carefully quali�ed. Generally, all of the nonnegative
correlation results will still hold. However, for strictly positive correlations to ensue, it
must be that information can have implications that travel suÆciently through the net-
work to have one agent's status a�ect another, and so the de�nition of path connected
would need to be carefully modi�ed to account for directed paths.

We can also keep track of further levels of this \connection" relationship. Let

N2
i (p) = Ni(p) [ ([j2Ni(p)Nj(p)):

and inductively de�ne

Nk
i (p) = Nk�1

i (p) [ ([j2Nk�1

i
(p)Nj(p)):

Nn
i (p) then captures all of paths generated by the indirect connection relationships

of an agent i. We say that i and j are path connected if j 2 Nn(p).

The sets Nn
i (p) partition the set of agents, so that all the agents in any element of

the partition are path connected to each other. We denote that partition by �(p).

We assume that any � 2 �(p) contains at least two agents. Thus each agent is
connected with at least one other agent. Completely isolated agents have dynamics of
wages and employment that are trivial, and so we restrict our attention to non-isolated
agents for whom network relationships matter.

24Note also that this de�nition can also have pij > 0, but i and j not be \connected" (if pi does not
depend on wj). This is merely an issue of semantics, as for our results it is important how changes in
one agent's status a�ect another, and hence our de�nition of connected.
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An Economy

Given an initial distribution over states �0 and a speci�cation of N , pi's, and bi's,
the stochastic process of employment fS1; S2; : : :g and wages fW1;W2; : : :g is completely
speci�ed. We refer to the speci�cation of (N; p; b) satisfying the properties that we have
outlined as an economy. We discuss the dependence on the initial distributions over
states when necessary.

We remark that keeping track of employment status is redundant given wages, but it
is still useful to distinguish these in the discussion below.

4 The Dynamics and Patterns of Employment and

Wages

Next, we turn to understanding the dynamics and patterns in both employment and
wages, as we look across agents and/or across time.

4.1 Patterns of Wages

We begin with patterns of wages as the results on employment have an added compli-
cation that we will discuss shortly. Before stating a theorem on wage patterns, let us
discuss an issue that arises that we need to address.

Consider a situation where agents are more likely to pass job information on to direct
connections with lower wages than to direct connections with higher wages. In such a
situation, an agent who has a low wage, but whose wage is still higher than some other
agents who are competitors for information about a job, might end up with a next period
expected wage that is lower than what they would expect if they quit their job. This
can happen because if they were to quit their job, their direct connections would be
more likely to pass information to them, and they might have a positive probability of
obtaining several o�ers at once.

While this might be an unusual case, it is one that we have not precluded under the
assumptions on p. This diÆculty is overcome when we look at �ne enough subdivisions
of a period, as then the probability of obtaining more than one o�er becomes negligible
compared to the probability of obtaining one o�er, provided the probability of obtaining
at least one o�er is not zero, which is assured under (3). This is captured in the following
de�nition.

T -period Subvidisions
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A natural way to analyze shortened periods is simply by dividing p and b by some
T .25

More formally, starting from some economy (N; p; b), the T -period subdivision, de-
noted (N; pT ; bT ), is such that bTi = bi

T
and pTij =

pij
T

for each i and j.

T -period subdivisions are also the natural way to sort out the short run competition
from the longer run bene�ts of indirect connections (see Example 1). As the periods
shorten, the competitive e�ects become outweighed by the longer run bene�ts. Again,
this is the natural approximation of the underlying Poisson arrival process.

Recall that � (p) is the partition of the agents so that all the agents in any element
of the partition are path connected to each other under p.

Theorem 10 Consider any economy (N; p; b). There exists T 0 such that for any T �
T 0, the wages of any path connected agents are positively correlated under the (unique)
steady state distribution on wages corresponding to the T -period subdivision of (N; p; b).
Moreover, the limit of the steady state distributions is strongly associated relative to �(p).

The theorem states that any path connected agents have positively correlated wage
levels, and in fact exhibit strong association, which is a property that provides for positive
interrelationships between all di�erent subgroups. We provide a detailed de�nition of
strong association in the appendix.

We emphasize that the limit of the steady state distributions as T becomes large
is a very natural thing to consider, as it is a Poisson birth/death process which would
naturally describe the job search. The reason we work with a discrete time approximation
is purely for tractability.

The proof of Theorem 10 is long and appears in the appendix. The proof can be
broken down into several steps. The �rst step shows that for large enough T the steady
state distribution is approximately the same as one for a process where the realizations
of pij(w) across di�erent j's is independent. Essentially, the idea is that for large enough
T , the probability that just one job is heard about overwhelms the probability that more
than one job is heard about. This is also true under independence. The proof then uses a
characterization of steady state distributions of Markov processes by Freidlin and Wentzel
(1984) (as adapted to �nite processes by Young (1993)). We use the characterization to
verify that one can simply keep track of the probabilities of just a single job event to
get the approximate steady state distribution for large enough T . Next, note that under
independence of job hearing, the negative correlation e�ects of Example 1 are no longer
an issue. So we can then establish that the conclusions of the theorem are true under
the independent process. Finally, we come back to show that the same still holds under
the true (dependent) process, for large enough T .

25In the limit, this simply approximates a continuous time Poisson arrival process.
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While Theorem 10 provides results on the steady state distribution, we can deduce
similar statements about the relationships between wages at di�erent times.

Theorem 11 Consider any economy (N; p; b). For �ne enough sub-divisions and start-
ing under the steady state distribution, there is a strictly positive relationship between the
wage statuses of any path connected agents and at any times. That is, for any any times
t and t0 there exists T 0 such that for any T � T 0 and

CovT [WitWjt0 ] > 0;

where i and j are path connected, where CovT is the covariance associated with the T -
period subdivision of (N; p; b) starting at time 0 under the steady state distribution �T .

Although Theorem 11 is similar to Theorem 10 in its structure, it provides di�erent
implications. Theorem 10 addresses the steady state distribution, or the expected long
run behavior of the system. Theorem 11 addresses any arbitrary dates in the system.26

It is important in Theorem 11 that we start from the steady state distribution. For
instance, if we start from a given state, such as that in Example 1, we could end up with
a negative correlation.

4.2 Employment Patterns and Dynamics

One might conjecture (as we initially did) that it would be a simple Corollary to Theorem
10 for employment to exhibit the same positive correlation structure as wages. It turns
out to directly follow from the positive correlation (in fact the strong association) of
wages that employment is nonnegatively correlated (in fact, weakly associated) across
agents. However, positive correlation of wages does not always translate into positive
correlation of employment status. That is, it is possible for two agents to have positively
correlated wages and yet have their employment status be independent.

This is illustrated in the following example.

Example 12 Positive Correlation of Wages but Independence of Employment.

Let agent i's wages take on three values f0; 1; 2g and agent j's wages take on two
values f0; 1g. Let i and j be path connected (but say not connected).27 Consider a
limiting steady state distribution which has the following marginal distribution on Wi

and Wj:

26Theorem 10 almost seems to be a corollary of Theorem 11, since as we let t and t0 become large,
the distributions of Wt and Wt0 approach the steady state distribution. However, we cannot deduce
Theorem 10 from Theorem 11 since it is not ruled out that the positive correlation vanishes in the limit
under Theorem 11, while we know that this is not the case from Theorem 10.

27That is, i and j wage statuses do not in
uence each other, but i and j are connected through a
chain of agents whose wages statuses do in
uence each other.
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wj = 0 wj = 1
wi = 2 1

12
1
4

wi = 1 1
4

1
12

wi = 0 1
6

1
6

Under this marginal distribution, Wi and Wj are positively correlated. That is easily
checked from the above table. Note, however, that Si and Sj are independent. That is
easily seen since the above distribution reduces to the following distribution on employ-
ment:

sj = 0 sj = 1
si = 1 1

3
1
3

si = 0 1
6

1
6

This type of distribution cannot arise if p is a function of S rather than of W . Thus,
with this added condition we can establish positive correlation in employment.

Theorem 13 Consider any economy (N; p; b).

� There exists T 0 such that for any T � T 0 the employment of any connected agents
is positively correlated under the (unique) steady state distribution on employment
corresponding to the T -period subdivision of (N; p; b).

� The limit (as the subdivisions become �ner) of the (unique) steady state distributions
on employment status is associated.28

� If p can be written as a function of S,29 then the limit of the (unique) steady state
distributions on employment is strongly associated relative to �(p). Thus, exists T 0

such that for any T � T 0 the employment of any path-connected agents is positively
correlated under the (unique) steady state distribution on employment corresponding
to the T -period subdivision of (N; p; b).

Theorem 13 establishes the positive interrelationships between the employment of any
collections of path connected agents under the steady state distribution.

The role of the assumption that p is dependent only on S is important in establishing
the strong association of employment of agents who are path connected (rather than
connected), as was shown in Example 12.

28Having �xed an initial state W0, an economy induces a Markov chain on the state Wt. Note that
this does not correspond to a Markov chain on the state St, as the probability of transitions from St
to St+1 can still depend on Wt (rather than just St) and hence on t for a given starting distribution.
Nevertheless, as the wage states do form a Markov chain, there is a steady state distribution induced on
the wage state W . As S is a coarsening of W , there is a corresponding steady state distribution on S.

29(3) is relaxed to hold relative to S rather than W .
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We also have an analog of Theorem 11, stating that the positive interrelationships
between employment statuses hold both under the steady distribution and at any time
along the dynamics.

Theorem 14 Consider any economy (N; p; b) such that p is a function of employment
status.30 For �ne enough sub-divisions and starting under the steady state distribution,
there is a strictly positive relationship between the employment statuses of any path con-
nected agents and at any times. That is, for any times t and t0 there exists T 0 such that
for any T � T 0

CovT [SitSjt0] > 0

for any path connected i and j, where CovT is the covariance associated with the T -period
subdivision of (N; p; b) starting at time 0 under the steady state distribution �T .

5 Duration Dependence and Persistence in Unem-

ployment

We now present a theorem outlining the duration dependence that we discussed in the
introduction and in the previous section for the simple case of homogeneous job networks.

Theorem 15 Consider an economy (N; p; b) such that p is a function of employment
status. For �ne enough sub-divisions, every agent's employment exhibits duration de-
pendence.31 That is, for any t there exists T 0 such that starting from the steady state
distribution at time 0, for all i and t > 0,

ProbT (Si;t+1 = 1jSit = � � � = Si;0 = 0) < Prob T (Si;t+1 = 1jSit = � � � = Si;1 = 0) ;

for all T -period subdivisions of (N; p; b) where T � T 0.

An implication of Theorem 15 is that longer histories of unemployment (simply iter-
atively applying the theorem) lead to lower expectations of obtaining a job o�er in the
future.

6 Dropping Out and Inequality in Wages and Em-

ployment

Consider the following game endogenizing the network structure. Let di 2 f0; 1g denote
i's decision of whether to stay in the labor market. Each agent discounts future wages

30The result also holds for connected agents without this assumption.
31Recall that we have assumed that each agent is connected to at least one other, so that Ni(p) 6= ;

for each i. Isolated agents would not exhibit any duration dependence.
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at a rate 0 < Æi < 1 and pays an expected discounted cost ci � 0 to stay in. Agents
dropping out get a payo� of zero.

An augmented economy is a speci�cation (N; p; b; c; Æ), where c is a vector of costs
and Æ is a vector of discount rates.

When an agent i exits the labor force, we reset the p's so that pij(w) = pji(w) = 0
for all j and w, but do not alter the other pkj's. The agent who drops out has his or her
wage set to zero.32 Therefore, when an agent drops out, it is as if the agent disappeared
from the economy.

Fix an augmented economy (N; p; b; c; Æ) and a starting state W0 = w. A vector of
decisions d is an equilibrium if for each i 2 f1; : : : ; ng, di = 1 implies

E

"X
t

ÆtiWit jW0 = w; d�i

#
� ci;

and di = 0 implies the reverse inequality.

The \drop-out" game is supermodular (see Topkis (1979)) which leads to the following
lemma.

Lemma 16 Consider any economy (N; p; b), state W0 = w, and vector of costs c 2 IRn
+.

There exists T 0 such that for any T -period subdivision of the economy (T � T 0), there is
a unique equilibrium d�(w) such that d�(w) � d for any other equilibrium d.

We refer to the equilibrium d�(w) in Lemma 16 as the maximal equilibrium.

Theorem 17 Consider any augmented economy (N; p; b; c; Æ). Consider two starting
wages states, w0 � w with w 6= w0. There exists T 0 such that the set of drop-outs under
the maximal equilibrium following w0 is a subset of that under w that for any T -period
subdivision (T � T 0); and for some speci�cations of the costs and discount rates the
inclusion is strict. Moreover, if d�(w)i = d�(w0)i = 1, then the distributions of i's wages
and employment Wit and Sit for any t under the maximal equilibrium following w0 �rst
order stochastic dominate those under the maximal equilibrium following w, with strict
dominance for large enough t if d�(w)j 6= d�(w0)j for any j who is path connected to i.
In fact for any increasing f : IRn

+ ! IR and any t

ET [f(Wt) jW0 = w0; d�(w0) ] � ET [f(Wt) jW0 = w; d�(w)] ;

with strict inequality for some speci�cations of c and Æ.

Theorem 17 shows how persistent inequality can arise between two otherwise similar
groups with di�erent initial employment conditions.

32This choice is not innocuous, as we must make some choice as to how to reset the function pkj when
i drops out, as this is a function of wi. How we set this has implications for agent j if agent j remains
in the economy.
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7 Concluding Discussion

As we have mentioned several times, we treat the network structure as largely given,
except to the extent that we consider drop-outs in the last section. Of course, people do
have some important control over whom they socialize with both in controlling through
direct friendships they undertake as well as through making education and career choices
that a�ect whom they meet and fraternize with on a regular basis. Examining the
network formation and evolution process in more detail could provide a fuller picture of
how the labor market and the social structure co-evolve by mutually in
uencing each
other: network connections shape the labor market outcomes and, in turn, are shaped
by them.33

In addition to further endogenizing the network, we can also look deeper behind the
pij's. There are a wide variety of explanations (especially in the sociology literature, for
instance see Granovetter (1995)) for why networks are important in job markets. The
explanations range from assortive matching (employers can �nd workers with similar
characteristics by searching through them), to information asymmetries (in hiring models
with adverse selection), and simple insurance motives (to help cope with the uncertainty
due to the labor market turnover). In each di�erent circumstance or setting, there may be
a di�erent impetus behind the network. This may in turn lead to di�erent characteristics
of how the network is structured and how it operates. Developing a deeper understanding
along these lines might further explain di�erences in the importance of networks across
di�erent occupations.

Another aspect of changes in the network over time, is that network relationships can
change as workers are unemployed and lose contact with former connections. To some
extent that can be captured in the way we have set up the pij's to depend on the full
status of all workers. So we do allow the strength of a relationship between two agents
to depend, for instance, on their employment status. But beyond this, the history of
how long one has been at a current status might also a�ect the strength of connections.
Long unemployment spells can generate a de-socialization process leading to a progressive
removal from labor market opportunities and to the formation of unemployment traps.
This is worth further investigation.

Finally, as we have mentioned at several points, we have not formally modeled the
job arrival process or an equilibrium wage process. Extending the model to endogenize
the labor market equilibrium so that probability of hearing about a job depends on

33See Holland and Leinhardt (1977) for an early model of network co-evolution. There is a growing
literature on the formation of networks that now provides a ready set of tools for analyzing this problem.
An incomplete list of some of the literature includes Aumann and Myerson (1988), Jackson and Wolinsky
(1996), Dutta and Mutuswami (1997), Tesfatsion (1997), Dutta, van den Nouweland, and Tijs (1998),
Jackson andWatts (1998, 1999), Bala and Goyal (2000), Skyrms and Pemantle (2000), Dutta and Jackson
(2000) Kranton and Minehart (2001), Currarini and Morelli (2001), Johnson and Gilles (2000), Droste,
Gilles, and Johnson (2000), Slikker and van den Nouweland (2001), Jackson and van den Nouweland
(2001), Mutuswami and Winter (2001), and Watts (2001). See Dutta and Jackson (2002) for an overview
and further references.
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current overall employment and wages are equilibrium ones, is an important next step
in developing a network-labor market model. This would begin to give insights into how
network structure in
uences equilibrium structure.
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Appendix

We begin our analysis with two straightforward results that present intuitive ob-
servations regarding employment and wage status. These are useful later on.

The following lemmas describe the Markov process governing the evolution of em-
ployment and wages as it depends on two features: the current state of the process (wt)
and the transition probabilities (pij's).

Lemma 18 Consider any economy (N; p; b), time t > 0, two wage states w 2 IRn
+ and

w0 2 IRn
+ and an agent i who is unemployed in both states (wi = w0

i = 0). If w0
j � wj

for all j 2 N2
i , then the distribution of i's employment, o�ers, and wages (Sit, Oit,

and Wit) conditional on Wt�1 = w0 �rst order stochastically dominate the corresponding
distributions conditional on Wt�1 = w. If pi(w

0) 6= pi(w), then the �rst order stochastic
dominance is strict.

Lemma 18 says that improving the wage status of any of an agent's connections leads
to an increase (in the sense of stochastic dominance) in the probability that the agent
will be employed and the agent's expected wages. The proof of Lemma 18 follows from
the fact that for any i and j the function pji is nondecreasing in wk for k 6= i (condition
(2)). The proof appears in the appendix.

We o�er a parallel result where the state is �xed but the network (pij's) improves.

Fix an economy (N; p; b) and consider an alternative social structure p0. We say that
p0 one-period dominates p at w 2 IRn

+ from i's perspective if p0ki(w) � pki(w) for all k.

We refer to the above as \one-period domination" since i's perceived status will
improve for the next period under p0 compared to p. However, since p0 and p might di�er
beyond i's connections, the long run comparison between p and p0 might di�er from the
one period comparison.

As an example, under homogeneous job networks (Subsection 2.1), this one period
domination condition is satis�ed at w for some i if wi = 0 implies that for each k: g0ki � gki
and gkj � g0kj for each j 6= i such that wj = 0.

Lemma 19 Consider an economy (N; p; b) and an alternative social structure p0 that
one-period dominates p at w 2 IRn

+ from some agent i's perspective. The distributions of
i's employment, o�ers and wages (Sit, Oit andWit) conditional onWt�1 = w under p0 �rst
order stochastically dominate the corresponding distributions under p. If p0i(w) 6= pi(w),
and wi < wi, then the �rst order stochastic dominance is strict.

Lemma 19 states that an agent's probability of being employed, expected number of
o�ers and wages all go up (in the sense of stochastic dominance) if the agent's probability
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of hearing job information through the network improves. Again, the straightforward
proof appears in the appendix.

Proof of Lemmas 18 and 19: We prove the statements for the distribution of Oit.
The �rst order stochastic dominance statements for Wit and Sit then follow easily, since
Wit is simply w(0; Oit) with probability 1 � bi and 0 with probability bi, and similarly
Sit = 1 when Oit > 0 with probability 1� bi, and is 0 otherwise. We remark on the strict
�rst order stochastic dominance for Wit and Sit at the end of the proof.

Fix some w and p. Consider i such that wi = 0. Fix any agent k 6= i and consider
any C � N n fkg. Let

P k
C(w) = (�j2Cpji(w))(�j2Nn(C[k)(1� pji(w))):

Thus, P k
C(w) is the probability that i hears of job o�ers from each agent in C and none

of the agents in N n (C [ k). We can then write the probability that i obtains at least h
o�ers as

Prob (fOit � hg j p;Wt�1 = w) =
X

C�Nnk:jCj�h

(1�pki(w))P
k
C(w)+

X
C�Nnk:jCj�h�1

pki(w)P
k
C(w):

Simplifying, we obtain

Prob (fOit � hg j p;Wt�1 = w) =
X

C�Nnk:jCj�h

P k
C(w) +

X
C�Nnk:jCj=h�1

pki(w)P
k
C(w): (1)

To establish �rst order stochastic dominance of a distribution of Oit conditional
on Wt�1 = w0 over that conditional on Wt�1 = w (and/or similarly comparing p0

and p), we need only show that Prob (fOit � hg j p0;Wt�1 = w0) is at least as large
Prob (fOit � hg j p;Wt�1 = w) for each h. Strict dominance follows if there is a strict
inequality for any h.

Note that from (1) we can write Prob (fOit � hg j p;Wt�1 = w) as a function of the
pki's, which are in turn functions of w. Since P k

C(w) is independent of pki(w) for any
k 2 N , it follows from equation (1), that Prob (fOit � hgj p;Wt�1 = w), viewed as a
function of the pki's, is non-decreasing in the pki's. Moreover, it is increasing in pki
whenever there is some h such that P k

C(w) > 0 for some C � N n fkg : jCj = h� 1.

Thus, if p0ji(w
0) � pji(w) for each j 2 N , then we have �rst order stochastic domi-

nance, and that is strict if the inequality is strict for some k such that there is some h
such that P k

C(w) > 0 for some C � N n fkg : jCj = h� 1. Note that since pji(w) < 1 for
all j 2 N , it follows that 1 � pji(w) > 0 for all j 2 N . This implies that when h = 1,
P k
C(w) > 0 for C = ; corresponding to jCj = h � 1 = 0. Thus, we get strict �rst order

stochastic dominance if we have p0ji(w
0) � pji(w) for each j 2 N with strict inequality

for any j. Therefore, any changes which lead all pji's to be at least as large (with some
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strictly larger), will lead to the desired conclusions regarding (strict) �rst order stochastic
dominance.

To establish the strict part of �rst order stochastic dominance for Sit and Wit, it is
suÆcient to conclude �rst order stochastic dominance and additionally that

Prob (fOit � 1g j p0;Wt�1 = w0) > Prob (fOit � 1g j p;Wt�1 = w) :

As argued above (the case of h = 1), this holds whenever p0ji(w
0) � pji(w) for all j with

strict inequality for some j; as in the premise of the results.

The following de�nitions and lemmas are useful in the proof of Theorems 13 and 10.

We �rst de�ne some useful tools.

7.1 Association

While �rst order stochastic dominance is well suited for capturing distributions over a
single agent's status, we need a richer tool for discussing interrelationships between a
number of agents at once. There is a generalization of �rst order stochastic dominance
relationships that applies to random vectors, that was introduced into the statistics
literature by Esary, Proschan, and Walkup (1967) under the de�nition of association.

� is associated if
Cov� (f; g) � 0

for all pairs of non-decreasing functions f : IRn ! IR and g : IRn ! IR, where Cov(f; g)
is the covariance E�[fg]� E�[f ]E�[g].

Association tells us that good news about the state (conditioning on g(x) � d) leads
us to higher beliefs about the state in the sense of domination. If W1; : : : ;Wn are the
random variables described by an associated measure �, then we say that W1; : : : ;Wn

are associated. Note that independent random variables are associated by de�nition.

Note that if W is a random vector described by a measure �, then association of
� implies that Wi and Wj are non-negatively correlated for any i and j. Essentially,
association is a way of saying that all dimensions of W are non-negatively interrelated.
If W were just a two dimensional vector (e.g., there were just two agents), then this
would reduce to saying that there was non-negative correlation between the agents' wage
levels. The de�nition captures more general interactions between many agents, and says
that good news in the sense of higher values of Wi; i 2 fi1; : : : ; i`g about any subset or
combinations of agents (here, fi1; : : : ; i`g) is good (not bad) news for any other set or
combinations of agents. This concept is useful in describing clustering and general forms
of positive correlations in employment and wages in what follows.
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Strong Association

As we often want to establish strictly positive relationships, and not just non-negative
ones, we also de�ne a strong version of association. Since positive correlations can only
hold between agents who are path connected, we need to de�ne a version of strong
association that respects such a relationship.

Given is a partition � of f1; : : : ; ng that captures which random variables might be
positively related.

A measure � on IRn is strongly associated relative to the partition � if it is associated,
and for any � 2 � and nondecreasing functions f and g

Cov� (f; g) > 0

whenever there exist i and j such that f is increasing in wi for all w�i, g is increasing in
wj for all w�j, and i and j are path connected under �.

Strong association captures the idea that better information about any of the dimen-
sions in � leads to unabashedly higher expectations regarding every other dimension in
�. One implication of this is that Wi and Wj are positively correlated for any i and j in
�.

Domination

Consider two probability measures � and � on a state space that is a subset of IRn.

� dominates � if
E� [f ] � E� [f ]

for every non-decreasing function f : IRn ! IR.34 The domination is strict if strict
inequality holds for some non-decreasing f .

Domination captures the idea that \higher" realizations of the state are likely under
� than under �. In the case where n = 1 it reduces to �rst order stochastic dominance.

Lemma 20 Consider two measures � and � on IRn which have supports that are a subset
of a �nite set W � IRn. � dominates � if and only if there exists a Markov transition
function � : W ! P(W ) such that

�(w0) =
X
w

�ww0�(w);

where � is a dilation (that is �ww0 > 0 implies that w0 � w). Strict domination holds if
�ww0 > 0 for some w0 6= w.

34We can take the probability measures to be Borel measures and E�[f ] simply represents the usualR
IRn f(x)d�(x).
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Thus, � is derived from � by a shifting of mass \upwards" under the partial order �
over states w 2 W .

Proof of Lemma 20: This follows from Theorem 18.40 in Aliprantis and Border
(2000).

Let
E = fE � W j w 2 E;w0 � w ) w0 2 Eg:

E is the set of subsets of states such that if one state is in the event then all states
with at least as high wages (person by person) are also in. Variations of the following
useful lemma appear in the statistics literature (e.g., see Section 3.3 in Esary, Proschan
and Walkup (1967)). We include a proof of this version for completeness.

Lemma 21 Consider two measures � and � on W .

� (E) � � (E)

for every E 2 E, if and only if � dominates �. Strict domination holds if and only if the
�rst inequality is strict for at least one E 2 E . The measure � is associated if and only if

�(EE 0) � �(E)�(E 0)

for every E and E 0 2 E . The association is strong (relative to �) if the inequality is
strict whenever E and E 0 are both sensitive to some � 2 �.35

Proof of Lemma 21: First, suppose that for every E 2 E :

� (E) � � (E) : (2)

Consider any non-decreasing f . Let the elements in its range be enumerated r1; : : : ; rK,
with rK > rk�1 : : : > r1. Let EK = f�1(rK). By the non-decreasing assumption on f ,
it follows that EK 2 E . Inductively, de�ne Ek = Ek+1 [ f�1(rk�1). It is also clear that
Ek 2 E . Note that

f(w) =
X
k

(rk � rk�1)IEk
(w):

Thus,
E�(f(Wt)) =

X
k

(rk � rk�1)�(Ek)

and
E�(f(Wt)) =

X
k

(rk � rk�1)�(Ek):

35E is sensitive to � if its indicator function is. A nondecreasing function f : IRn ! IR is sensitive to

� 2 � (relative to �) if there exist x and ex� such that f(x) 6= f(x��; ex�) and x and x�� ; ex� are in the
support of �.
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Thus, by (2) it follows that E�(f(Wt)) � E�(f(Wt)) for every non-decreasing f . This
implies the dominance.

Note that if �(E) > �(E) for some E, then we have E�(IE(Wt)) > E�(IE(Wt)), and
so strict dominance is implied.

Next let us show the converse. Suppose that � dominates �. For any E 2 E consider
f(w) = IE(w) (the indicator function of E). This is a non-decreasing function. Thus,
E�(IE(Wt)) � E�(IE(Wt)) and so

� (E) � � (E) :

To see that strict dominance implies that � (E) > � (E) for some E, note that under
strict dominance we have some f for which

E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek) > E�(f(Wt)) =
X
k

(rk � rk�1)�(Ek):

Since �(Ek) � �(Ek) for each Ek, this implies that we have strict inequality for some
Ek.

The proof for association (and strong association) is a straightforward extension of
the above proof that we leave to the reader (or see Esary,

Proschan and Walkup (1967)).

Lemma 22 Let � be associated and have full (�nite) support on values of W . If f is
nondecreasing and is increasing in Wi for some i, and g is a nondecreasing function
which is increasing in Wj for some j, and Cov�(Wi;Wj) > 0, then Cov�(f; g) > 0.

Proof of Lemma 22: We �rst prove the following Claim.

Claim 23 Let � be associated and have �nite support. If f is an increasing function of
Wiwhich depends only on Wi, and g is an increasing function of Wj which depends only
on Wj, and Cov� (Wi;Wj) > 0, then Cov� (f (W ) ; g (W )) > 0.

Proof of Claim 23: We write

Cov� (Wi;Wj) =
Z +1

�1

Z +1

�1
Cov�

�
IWi

(s) ; IWj
(t)
�
dsdt; 36

36See, for instance, Corollary B in Section 3.1 of Szekli (1995). As � has �nite support, these integrals
trivially exist.
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where IWi
(s) = 1 ifWi > s, and IWi

(s) = 0, otherwise. By assumption, Cov� (Wi;Wj) >

0. Therefore, Cov�
�
IWi

(s) ; IWj
(t)
�
> 0 for a set of s; t's. Also,

Cov� (f (Wi) ; g (WJ)) =
Z +1

�1

Z +1

�1
Cov� (If (s) ; Ig (t)) dsdt; (3)

where If (s) = 1 if f (Wi) > s, and If (s) = 0, otherwise. For each s as described above,
there exists some s0 such that IWi

(s) = 1 if and only if If (f (s
0)) = 1, and similarly

for t, g, and t0. Therefore, Cov� (If (f (s
0)) ; Ig (g (t

0))) > 0. Given the �nite support of
W , the sets of such s; t's and corresponding s0; t0's are unions of closed intervals with
nonempty interiors. By association also we know that Cov� (If (f (s)) ; Ig (g (t))) � 0 for
any s; t. Since this expression is positive on a set with positive measure, and everywhere
nonnegative, it follows from (3) that Cov� (f; g) > 0.

Next consider f that is increasing inWi, but might also depend onW�i. Label the pos-
sible wage levels of i by wk

i where w
1
i = 0 and wK

i = wi. Let 
 = minK�k>1;w�i
f(wk

i ; w�i)�
f(wk�1

i ; w�i). By the increasing property of f it follows that 
 > 0. De�ne f 0(wk
i ) =

f(0; : : : ; 0)+k 


2
. Let f 00(w) = f(w)�f 0(wi). It is easily checked that f 00 is non-decreasing.

Similarly de�ne g0 and g00 for g relative to Wj. Then

Cov(f; g) = Cov(f 00; g00) + Cov(f 00; g0) + Cov(f 0; g00) + Cov(f 0; g0):

By association, each expression is nonnegative. By Claim 23 the last expression is
positive.

Fix the economy (N; p; b). Let P T denote the matrix of transitions between di�erent
w's under the T -period subdivision. So P T

ww0 is the probability that Wt = w0 conditional
on Wt�1 = w.

Let P T
wE =

P
w02E P

T
ww0.

Lemma 24 Consider an economy (N; p; b). Consider w0 2 W and w 2 W such that
w0 � w, and any t � 1. Then there exists T 0 such that for all T � T 0 and E 2 E

P T
w0E � P T

wE:

Moreover, if w0 6= w, then the inequality is strict for at least one E.

Proof of Lemma 24: Let us say that two states w0 and w are adjacent if there exists
` such that w0

�` = w�` and w0
` > w` take on adjacent values in the range of `'s wage

function.

We show that
P T
w0E � P T

wE:
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for large enough T and adjacent w and w0, as the statement then follows from a chain
of comparisons across such w0 and w. Let ` be such that w0

` > w`. By de�nition of two
adjacent wage vectors, w0

i = wi, for all i 6= `.

We write
P T
w0E =

X
o

ProbTw0(Wt 2 EjOt = o)ProbTw0(Ot = o)

and similarly
P T
wE =

X
o

ProbTw(Wt 2 EjOt = o)ProbTw(Ot = o);

where ProbTw is the probability conditional on Wt�1 = w. Note that by property (1)
of p, p`j(w

0) � p`j(w) for all j 6= `. Also since w0
k = wk for all k 6= ` property (1)

also implies that pij(w
0) � pij(w) for all j 6= ` and for all i. These inequalities imply

that ProbTw0(O�`;t) dominates ProbTw(O�`;t). It is only `, whose job prospects may have
worsened.

Since w0
` > w`, given our assumption on wages (that wi(w

0; o) � wi(w; o+ 1) for any
o and w0 and w such that w0

i > wi), it is enough to show that for any a, ProbTw0(O�`;t �
a) � ProbTw(O�`;t � a + 1). This holds for large enough T , given the independence of
di�erent realizations of pj` and pi` for i 6= j and property (2) of p, as then the probability
of some number of o�ers is of a higher order than that of a greater number of o�ers
(regardless of the starting state).37

To see the strict domination, consider E = fwjw` � w0
`g. Since (for large enough T )

there is a positive probability that ` hears 0 o�ers under w, the inequality is strict.

Given a measure � on W , let �P T denote the measure induced by multiplying the
(1� n) vector � by the (n� n) transition matrix P T . This is the distribution over states
induced by a starting distribution � multiplied by the transition probabilities P T .

Lemma 25 Consider an economy (N; p; b) and two measures � and � onW . There exists
T 0 such that for all T � T 0, if � dominates �, then �P T dominates �P T . Moreover, if �
strictly dominates �, then �P T strictly dominates �P T .

Proof of Lemma 25:

[�P T ](E)� [�P T ](E) =
X
w

P T
wE (�w � �w) :

By Lemma 20 we rewrite this as

[�P T ](E)� [�P T ](E) =
X
w

P T
wE

 X
w0

�w0�w0w � �w

!
:

37This holds provided w0

` < w`, but in the other case, the agent is already at the highest wage state
and so the claim is veri�ed.
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We rewrite this as

[�P T ](E)� [�P T ](E) =
X
w

X
w0

�w0�w0wP
T
wE �

X
w

�wP
T
wE:

As the second term depends only on w, we rewrite that sum on w0 so we obtain

[�P T ](E)� [�P T ](E) =
X
w0

 X
w

�w0�w0wP
T
wE � �w0P T

w0E

!
:

Since � is a dilation, �w0w > 0 only if w � w0. So, we can sum over w � w0:

[�P T ](E)� [�P T ](E) =
X
w0

0@ X
w�w0

�w0�w0wP
T
wE � P T

w0E

1A :

Lemma 24 implies that for large enough T , P T
wE � P T

w0E whenever w � w0. Thus since
�w0w � 0 and

P
w�w0 �w0w = 1; the result follows.

Suppose that � strictly dominates �. It follows from Lemma 20 that there exists
some w 6= w0 such that �w0w > 0. By Lemma 24, there exists some E 2 E such that
P T
wE > P T

w0E. Then [�P T ](E) > [�P T ](E) for such E, implying (by Lemma 21) that �P T

strictly dominates �P T .

We prove Theorem 10 and then Theorem 13, as the latter makes use of the proof of
the former.

Proof of Theorem 10: Recall that P T denotes the matrix of transitions between dif-
ferent w's. Since P T is an irreducible and aperiodic Markov chain, it has a unique steady
state distribution that we denote by �T . The steady state distributions �T converge to
a unique limit distribution (see Young (1993)), which we denote ��.

Let P
T
be the transition matrix where the process is modi�ed as follows. Starting

in state w, in the hiring phase each agent i hears about a new job (and at most one)

with probability pi(w)
T

and this is independent of what happens to other agents, while

the breakup phase is as before with independent probabilities bi
T
of losing jobs. Let �T

be the associated (again unique) steady state distribution, and �� = limT �
T (which is

well-de�ned as shown in the proof of Claim 26 below).

The following claims establish the theorem.

Claim 26 �� = ��.

Claim 27 �� is strongly associated.

The following lemma is useful in the proof of Claim 26.
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Let P be a transition matrix for an aperiodic, irreducible Markov chain on a �nite
state space Z.

For any z 2 Z, let a z-tree be a directed graph on the set of vertices Z, with a unique
directed path leading from each state z0 6= z to z. Denote the set of all z-trees by Tz.

Let
pz =

X
�2Tz

[�z0;z002�Pz0z00] : (4)

Lemma 28 Freidlin and Wentzel (1984)38: If P is a transition matrix for an aperiodic,
irreducible Markov chain on a �nite state space Z, then its unique steady state distribution
� is described by

�(z) =
pzP

z02Z pz0
;

where pz is as in (4) above.

Proof of Claim 26: Given w 2 W , we consider a special subset of the set of Tw, which
we denote T �

w . This is the set of w-trees such that if w0 is directed to w00 under the tree
� , then w0 and w00 are adjacent. As P T

w0;w00 goes to 0 at the rate 1=T when w0 and w00 are
adjacent,39 and other transition probabilities go to 0 at a rate of at least 1=T 2, it follows
from Lemma 28 that �T (w) may be approximated for large enough T by

P
�2T �

w

h
�w0;w002�P

T
w0w00

i
PbwP�2T �bw [�w0;w002�P T

w0w00]
:

Moreover, note that for large T and adjacent w0 and w00, P T
w0w00 is either bi

T
+ o(1=T 2)

(when w0
i > w00

i ) or
pi(w0)
T

+ o(1=T 2) (when w0
i < w00

i ), where o(1=T
2) indicates a term that

goes to zero at the rate of 1=T 2. For adjacent w0 and w00, let eP T
w0w00 = bi

T
when w0

i > w00
i ,

and pi(w
0)

T
when w0

i < w00
i .
40 It then follows that

��(w) = lim
T!1

P
�2T �

w

h
�w0;w002�

eP T
w0w00

i
PbwP�2T �bw

h
�w0;w002�

eP T
w0w00

i : (5)

By a parallel argument, this is the same as ��(w).

Proof of Claim 27: Equation 5 and Claim 26 imply that

��(w) = lim
T!1

P
�2T �

w

h
�w0;w002�

eP T
w0w00

i
PbwP�2T �bw

h
�w0;w002�

eP T
w0w00

i :
38See Chapter 6, Lemma 3.1; and also see Young (1993) for the adaptation to discrete processes.
39Note that under property (3) of p, since w0 and w00 are adjacent, it must be that P T

w0;w00 6= 0.
40We take T high enough such that all coeÆcients of the transition matrix eP are between 0 and 1.
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Multiplying top and bottom of the fraction on the right hand side by T , we �nd that

��(w) =

P
�2T �

w

h
�w0;w002�

bPw0w00

i
PbwP�2T �bw

h
�w0;w002�

bPw0w00

i ; (6)

where bP T is set as follows. For adjacent w0 and w00 (letting i be the agent for whom
w0
i 6= w00

i )
bP T
w0w00 = bi when w0

i > w00
i , and pi(w

0) when w0
i < w00

i ,
41 and bP T

w0w00 = 0 for
non-adjacent w0 and w00.

The proof of the claim is then established via the following steps.

Step 1: �� is associated.

Step 2: �� is strongly associated.

Proof of Step 1: We show that for any T and any associated �, �P
T
is associated.

From this, it follows that if we start from an associated �0 at time 0 (say an independent

distribution), then �0(P
T
)k is associated for any k. Since �T = limk �0(P

T
)k for any

�0 (as �T is the steady-state distribution), and association is preserved under (weak)
convergence,42 this implies that �T is associated for all T . Then again, since association
is preserved under (weak) convergence, this implies that limT �

T = �� is associated.

So, let us now show that for any T and any associated �, � = �P
T
is associated. By

Lemma 21, we need to show that

�(EE 0)� �(E)�(E 0) � 0 (7)

for any E and E 0 in E . Write

�(EE 0)� �(E)�(E 0) =
X
w

�(w)
�
P
T

wEE0 � P
T

wE�(E
0)
�
:

Since Wt is independent conditional on Wt�1 = w, it is associated.43 Hence,

P
T

wEE0 � P
T

wEP
T

wE0:

Substituting into the previous expression we �nd that

�(EE 0)� �(E)�(E 0) �
X
w

�(w)
�
P
T

wEP
T

wE0 � P
T

wE�(E
0)
�
:

or
�(EE 0)� �(E)�(E 0) �

X
w

�(w)P
T

wE

�
P
T

wE0 � �(E 0)
�
: (8)

41If pi(w
0) > 1 for some i and w0, we can divide top and bottom through by some �xed constant to

adjust, without changing the steady state distribution.
42See, for instance, P5 in Section 3.1 of Szekli (1995).
43See, for instance, P2 in Section 3.1 of Szekli (1995).
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Under the properties of the pij's, both P
T

wE and
�
P
T

wE0 � �(E 0)
�
are non-decreasing func-

tions of w. Thus, since � is associated, it follows from (8) that

�(EE 0)� �(E)�(E 0) �

"X
w

�(w)P
T

wE

# "X
w

�(w)
�
P
T

wE0 � �(E 0)
�#

:

Then since
P

w �(w)
�
P
T

wE0 � �(E 0)
�
= 0 (by the de�nition of �), the above inequality

implies (7).

Proof of Step 2: We have already established association. Thus, we need to establish
that for any f and g that are increasing in some wi and wj respectively, where i and j
are path connected,

Cov��(f; g) > 0:

By Lemma 22 it suÆces to verify that

Cov��(Wi;Wj) > 0

For any transition matrix P , let Pwij =
P

w0 Pww0w0
iw

0
j, and similarlyPwi =

P
w0 Pww0w0

i.
Thus these are the expected values of the product WiWj and the wage Wi conditional
on starting at w in the previous period, respectively.

Let
CovTij =

X
w

�T (w)P
T

wij �
X
w

�T (w)P
T

wi

X
w0

�T (w0)P
T

w0j:

It suÆces to show that for each i; j for all large enough T

CovTij > 0:

The matrix P
T
has diagonal entries P

T

ww which tend to 1 as T ! 1 while other
entries tend to 0. Thus, we use a closely associated matrix, which has the same steady
state distribution, but for which some other entries do not tend to 0.

Let

P T
ww0 =

(
TP

T

ww0 if w 6= w0

1�
P

w00 6=w TP
T

ww00 if w0 = w.

One can directly check that the unique steady state distribution of P T is the same as

that of P
T
, and thus also that

CovTij =
X
w

�T (w)P T
wij �

X
w

�T (w)P T
wi

X
w0

�T (w0)P T
w0j:

Note also that transitions are still independent under P T . This implies that starting
from any w, the distribution P T

w is associated and so

P T
wij � P T

wiP
T
wj:
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Therefore,
CovTij �

X
w

�T (w)PT
wiP

T
wj �

X
w

�T (w)P T
wi

X
w0

�T (w0)P T
w0j:

Note that P T
wi converges to

ePwi, where ePwi is the rescaled version of bP (de�ned in the
proof of Claim 26), ePww0 =

(
T bPww0 if w 6= w0

1�
P

w00 6=w T
bPww00 if w0 = w.

It follows that

lim
T!1

CovTij �
X
w

��(w) ePwi
ePwj �

X
w

��(w) ePwi

X
w0

��(w0) ePw0j:

Thus, to complete the proof, it suÆces to show thatX
w

��(w) ePwi
ePwj >

X
w

��(w) ePwi

X
w0

��(w0) ePw0j: (9)

Viewing ePwi as a function of w, this is equivalent to showing that Cov( ePwi; ePwj) > 0.
From Step 1 we know that �� is associated. We also know that ePwi and ePwj are both
non-decreasing functions of w.

First let us consider the case where j 2 Ni(p).
44 We know that ePwi is increasing in

wi, and also, given the assumptions on p, that ePwi is increasing ni wj for j 2 Ni(p).
Similarly, ePwj is increasing in wj. (9) then follows from Lemma 22 (where we apply it to
the case where Wi = Wj), as both ePwi and ePwj are increasing in wj.

Next, consider any k 2 Nj(p). Repeating the argument above, since ePwj is increasing
wj we apply Lemma 22 again to �nd thatWi andWk are positively correlated. Repeating
this argument inductively leads to the conclusion thatWi andWk are positively correlated
for any i and k that are path connected.

The Theorem 10 now follows from Claim 27 since �T ! ��.

Proof of Theorem 13: For the case where p depends only on S, the proof is an analog
of the proof of Theorem 10. For the more general case, the association of the limiting
distribution follows directly from the proof of Theorem 10. The remaining item is to show
that in the general case, there is a large enough T so that any two indirectly connected
agents have positively correlated employment under the steady state.

Consider i and j 2 Ni(p). We can write S as a function of W . For �� de�ned on W ,
let

��(si) =
X

w:Si(w)=si

��(w):

44If i is such that Ni(p) = ;, then strong association is trivial. So we treat the case where at least two
agents are path connected.
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Note that �� viewed as a measure on Si is associated since �� viewed as a measure on
W is associated, and since Si(w) is non-decreasing (see Esary, Proschan and Walkup
(1967)).

Next, let
E ePsij =

X
w

��(wjsi)
X
w0

ePww0Sj(w
0) (10)

So, (recalling that Si takes on values in f0; 1g) this is the expected value of Si conditional
on the last period Sit�1 = si, under the distribution �

�. Note that under the steady state
distribution ��, for any k

E[Sk] =
X
si

��(si)E ePsik:

Then, following steps similar to those in Step 2 we can write45

Cov��(Si; Sj) �
X
si

��(si)E ePsiiE
ePsij �

X
si

��(si)E ePsi

X
s0i

��(s0i)E
ePs0

i
j:

The remainder of the proof then follows the same lines as that of Theorem 10. E ePsii

is clearly increasing in si.
46 There we need to employ (10). We note that under asso-

ciation ��(wjsi) is nondecreasing in si (write si = 1 as the indicator function which is
nondecreasing). Finally, since j 2 Ni(p) we know that E ePsij is increasing in si.

Proof of Theorems 11 and 14: We show Theorem 11, as the other then follows from
a similar argument. We know from Claim 27 that �� is strongly

associated. The result then follows by induction using Lemma 25,47 and then taking
a large enough T so that �T is close enough to �� for the desired strict inequalities to
hold.

Proof of Theorem 15: For any t > t0 � 0, let ht
0;t
i0 be the event that Sit0 = Sit0+1 � � � =

Sit�1 = Sit = 0.

Let hti1 be the event that Sit0 = 1 and Sit0+1 � � � = Sit�1 = Sit = 0. So, ht
0;t
i0 and ht

0;t
i1

di�er only in i's status at date t0.

We want to show that

P
�
Si;t+1 = 1jh0ti0

�
< P

�
Si;t+1 = 1jh1ti0

�
: (11)

45We remark that this still holds even though S does not follow a Markov process (past information
about W matters and is not fully coded in the current value of S), provided we start from the steady

state distribution and given that our de�nition of E eP allows us to transition once.
46It is essentially 1� bi when si = 1 and is pi(s) otherwise. Without loss of generality, starting with

a large enough T this is increasing.
47While Lemma 25 does not state that the strict inequalities are preserved on given elements of the

partition �(p), it is easy extension of the proof to see that this is true.
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Since (paying close attention to the subscripts and superscripts in the de�nition of h�t�t)
P (Si;t+1 = 1jh1ti0) is a weighted average of P (Si;t+1 = 1jh0ti0) and P (Si;t+1 = 1jh0ti1), (11)
is equivalent to showing that

P
�
Si;t+1 = 1jh0ti0

�
< P

�
Si;t+1 = 1jh0ti1

�
: (12)

By Bayes' rule,

P
�
Si;t+1 = 1jh0ti0

�
=

P (Si;t+1 = 1; h0ti0)

P (Si;t+1 = 1; h0ti0) + P (Si;t+1 = 0; h0ti0)

and

P
�
Si;t+1 = 1jh0ti1

�
=

P (Si;t+1 = 1; h0ti1)

P (Si;t+1 = 1; h0ti1) + P (Si;t+1 = 0; h0ti1)

>From the two above equations, we rewrite (12) as

P (Si;t+1 = 1; h0ti0)

P (Si;t+1 = 1; h0ti0) + P (Si;t+1 = 0; h0ti0)
<

P (Si;t+1 = 1; h0ti1)

P (Si;t+1 = 1; h0ti1) + P (Si;t+1 = 0; h0ti1)
: (13)

Rearranging terms, (13) is equivalent to

P
�
Si;t+1 = 1; h0ti0

�
P
�
Si;t+1 = 0; h0ti1

�
< P

�
Si;t+1 = 1; h0ti1

�
P
�
Si;t+1 = 0; h0ti0

�
:

For any � , let E�
i0 be the set of s� such that si� = 0 and E�

i1 be the set of s� such that
si� = 1.

Letting �� be the limiting steady state distribution, We divide each side of the above
inequality by ��(E0

i0)�
�(E0

i1) to obtain

P (Si;t+1 = 1; h0ti0)

��(E0
i0)

P (Si;t+1 = 0; h0ti1)

��(E0
i1)

<
P (Si;t+1 = 1; h0ti1)

��(E0
i1)

P (Si;t+1 = 0; h0ti0)

��(E0
i0)

:

Thus, to establish (11) it is enough to show that

P (Si;t+1 = 1; h0ti0)

��(E0
i0)

<
P (Si;t+1 = 1; h0ti1)

��(E0
i1)

(14)

and
P (Si;t+1 = 0; h0ti1)

��(E0
i1)

<
P (Si;t+1 = 0; h0ti0)

��(E0
i0)

: (15)

Let us show (14), as the argument for (15) is analogous.

Then,

P (Si;t+1 = 1; h0ti0)

��(E0
i0)

=
X

s02E0
i0

X
s12E1

i0

� � �
X

st+12Et+1
i1

��(s0)

��(E0
i0)

Ps0s1Ps1s2 � � �Pstst+1:
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Which we rewrite as

P (Si;t+1 = 1; h0ti0)

��(E0
i0)

=
X
s0

X
s12E1

i0

� � �
X

st+12Et+1
i1

��(s0jE0
i0)Ps0s1Ps1s2 � � �Pstst+1:

Similarly

P (Si;t+1 = 1; h0ti1)

��(E0
i1)

=
X
s0

X
s12E1

i0

� � �
X

st+12Et+1
i1

��(s0jE0
i1)Ps0s1Ps1s2 � � �Pstst+1:

Note that by Theorem 13, ��(s0jE0
i1) strictly dominates ��(s0jE0

i0) (with some strict
inequalities since i is connected to at least one other agent). Then, by the above equa-
tions, and Lemma 25 applied iteratively,48 we derive the desired conclusion that (14) is
satis�ed.

Proof of Lemma 16: Consider what happens when an agent i drops out. The resulting
w0 is dominated by the w if that agent does not drop out. Furthermore, from Lemma 25
for large enough T , the next period wage distribution over other agents when the agent
drops out is dominated by that when the agent stays in, if one were to assume that the
agent were still able to pass job information on. This domination then easily extends
to the case where the agent does not pass any job information on. Iteratively applying
this, the future stream of wages of other agents is dominated when the agent drops out
relative to that where the agent stays in. This directly implies that the drop-out game
is supermodular. The lemma then follows from the theorem by Topkis (1979).

Proof of Theorem 17: Let w � w0 and d 2 f0; 1gn. We �rst show that for large
enough T

ET [f(Wt) jW0 = w0; d ] � ET [f(Wt) jW0 = w; d ] :

Lemma 24 implies that for a �ne enough T -period subdivision and for every non-decreasing
f ,

ET [f(W1) jW0 = w0; d ] � ET [f(W1) jW0 = w; d ] :

Lemma 25 and a simple induction argument then establish the inequality for all t � 1.
The inequality is strict whenever f is increasing and w0 > w.

Next, let d � d0. For a �ne enough T -period subdivision and for every non-decreasing
f , given that drop-outs have wages set to the lowest level it follows that

ET [f(W1) jW0 = w; d0 ] � ET [f(W1) jW0 = w; d ]
48To be careful, at each stage we are applying the lemma to P where Pss0 only has positive probability

on s0 where s0i = 0, except at time t + 1 when s0i = 1. It is easy to see that Lemma 25 extends to
this variation. Also, as seen in its proof, the lemma preserves some strict inequalities that correspond
to the employment status of agents who are path connected to i. For instance, for j connected to i,
��(E0

j1jE
0
i1) > ��(E0

j1jE
0
i0). Through Lemma 25 this translates to a higher probability on Et

j1 (condi-

tional on starting at E0
i1 rather than E0

i0) at each subsequent time through time t, which then leads to
a strictly higher probability of i receiving a job o�er at time t+ 1.
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As before, the inequality extends to all t � 1 by induction. Again, f increasing and
d0 > d imply a strict inequality.

Combining these observations, we �nd that for large enough T when w0 � w and
d0 � d

ET [f(Wt) jW0 = w0; d0 ] � ET [f(Wt) jW0 = w; d ] (16)

Consider the maximal equilibrium d�(w). By (16), for large enough T and all t

ET [Wit jW0 = w0; d�(w)] � ET [Wit jW0 = w; d�(w)]

Thus, X
t

ÆtiE
T [Wit jW0 = w0; d�(w)] �

X
t

ÆtiE
T [Wit jW0 = w; d�(w)]

If d�(w)i = 1, thenX
t

ÆtiE
T [Wit jW0 = w0; d�(w) ] �

X
t

ÆtiE
T [Wit jW0 = w; d�(w) ] � ci

and so also for all d0 � d�(w), if i is such that d�(w)i = 1, thenX
t

ÆtiE
T [Wit jW0 = w0; d0 ] � ci: (17)

Set d0i = d�(w)i for any i such that d�(w)i = 1. Fixing d0 for such i's, �nd a maximal
equilibrium at w0 for the remaining i's, and set d0 accordingly. By (17), it follows that
d0 is an equilibrium when considering all agents. It follows that d0 � d�(w). Given the
de�nition of maximal equilibrium, it then follows that d�(w0) � d0 � d�(w).
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