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Comparisons of Auctions in Large Economies

Matthew O. Jackson Ilan Kremer

Abstract

We analyze competitive pressures in a sequence of auctions with a growing number
of bidders, in a model that includes private and common valuations as special cases.
We show that the key determinant of bidders' surplus (and implicitly auction revenue)
is how the goods are distributed. In any setting and sequence of auctions where the
allocation of good(s) is concentrated among a shrinking proportion of the population,
the winning bidders enjoy no surplus in the limit. If instead the good(s) are allocated
in a dispersed manner so that a non-vanishing proportion of the bidders obtain objects,
then in any of a wide class of auctions bidders enjoy a surplus that is bounded away
from zero. Moreover, under dispersed allocations, the format of the auction matters. If
bidders have constant marginal utilities for objects up to some limit, then uniform price
auctions lead to higher revenue than discriminatory auctions. If agents have decreasing
marginal utilities for objects, then uniform price auctions are asymptotically eÆcient,
while discriminatory auctions are asymptotically ineÆcient. Finally, we show that in
some cases where dispersed allocations are eÆcient, revenue may increase by bundling
goods at the expense of eÆciency.

JEL classi�cation numbers: D44, C72, D41, G14

Key words: auction, competition, mechanism, asymptotic eÆciency, revenue equivalence



On the Concentration of Allocations and

Comparisons of Auctions in Large Economies

Matthew O. Jackson� Ilan Kremery

1 Introduction

In many markets, including treasury auctions, IPO's, security markets, and internet based
markets, large numbers of agents compete for a limited supply of resources. Moreover,
these markets use a variety of rules for setting prices including uniform price auctions,
pay-your-bid auctions, hybrids of these, as well as many other rules. A fundamental
question arises as to when competitive pressures render the choice of auction mechanism
irrelevant.

The mechanism design literature provides a partial answer to this question in the
revenue equivalence theorem (Myerson (1981), Riley and Samuelson (1981), Ausubel and
Cramton (1998), Reny (1999), Jehiel and Moldovanu (2001b), Krishna and Maenner
(2001)), which states that if a unit of a good is to be allocated and bidders have inde-
pendent information and satisfy some regularity conditions on interdependencies,1 then
the choice of auction formats in a given class is irrelevant. Although revenue equivalence
extends to multiple units,2 it does not hold when types are correlated or aÆliated. With
such correlation in information, auctions resulting in the same allocation of goods can
result in di�erent revenues (e.g., see Milgrom and Weber (1982)).

While the independent case is of some interest, there are many important applications,
including most of those mentioned above, that involve some correlation or aÆliation of
information. The main focus of this paper is to look beyond independent types and
understand when and to what degree the choice of an auction mechanism matters in

�Division of Humanities and Social Sciences 228-77, California Institute of Technology, Pasadena,
California 91125, USA. Email: jacksonm@hss.caltech.edu

y Graduate School of Business, Stanford University, Stanford CA 94305, USA. Email: ikre-
mer@stanford.edu

1See Ausubel and Cramton (1998) and Reny (1999) for versions that cover classes of interdependent
types under independence.

2See Weber (1983), Englebrecht-Wiggans (1988), and Krishna and Perry (1997). It also extends, in
an approximate sense, to allow for uncertainty about supply and multiple unit demands as shown by
Swinkels (2001).



large economies; and in particular how this is related to the way that goods are being
allocated.

One might guess that for some standard auction formats where the previous literature
gives us some guide to the structure of equilibria we could make direct calculations of the
limiting outcome. However, even in the simplest cases this is an illusion. For example,
even with a �rst price auction in a pure common value setting, where there is a known
closed form solution for equilibrium strategies, it is diÆcult to directly compute the
bidders' surplus in the limit. Hence, we follow the more general framework of mechanism
design and work with what are commonly referred to as direct revelation mechanisms.
As it turns out, working with this more abstract structure provides much more direct
insight and allows us to prove some general results about limiting bidders' surplus and
auction revenue. Moreover, in many cases of interest, one can then go back and apply
these results to deduce what will happen standard auctions, as we will discuss.

A main insight of the paper is that the concentration or dispersion of the allocation
of goods is the critical determinant of whether bidders in auctions enjoy any surplus, and
whether (and how) the auction format impacts revenue and eÆciency.

To be more speci�c, we examine sequences of auctions with growing numbers of
bidders, in a model (building on that of Milgrom (1981)) including private and common
valuations as special cases. We consider the allocation of some quantity of a good that
might vary with population size. The key distinction that we uncover is between two
cases. One case is what we call concentrated allocations: where the equilibrium allocation
of the good is concentrated among a vanishing fraction of bidders. The other case is what
we call dispersed allocations: where the equilibrium allocation of the good is dispersed
among a non-trivial proportion of the bidders.

Before proceeding any further, let us point out several important aspects of these
de�nitions of concentrated or dispersed allocations.

First, these de�nitions apply to the allocations that result in equilibrium. The char-
acterization of auctions in terms of equilibrium allocations allows us to make statements
that do not depend directly on speci�c features of the auctions such as whether there
is a reserve price, how winning bidders are determined, how prices are determined, etc..
This has the advantage of making the intuition clear and direct, and makes for a sharp
and tight characterization. It has a disadvantage as well: one has to have knowledge
of some properties of an auction's equilibrium allocations, and clearly the allocation is
endogenous. Nevertheless, the classi�cation of whether or not the allocation turns out to
be concentrated or dispersed is often straightforward. For instance, as we shall discuss,
a concentrated allocation will necessarily result if the quantity of good to be allocated is
a vanishing fraction of n, or when there is some private component to the valuation and
agents have no limit on the amount they desire. A dispersed allocation will necessarily
result if bidders have a �nite bound on the amount of the good that they desire and the
amount of the good grows in proportion to n.

2



Second, these de�nitions apply to sequences of auctions and concern the limiting
allocations, thus all of our results are about asymptotics. We present some results on
rates of convergence so that we have a sense of how \large" an economy has to be in
order for the results to apply.

Third, the relevant factor of the distinction between concentrated and dispersed al-
locations is the relative holdings of the good, and so these conditions are not logically
related to straight identi�cations of numbers of objects. For instance, a sequence of auc-
tions of only one object, but such that the object is simply randomly given away (ignoring
bids) so that each bidder has an equal chance of getting the object would be a dispersed
allocation. In contrast, a sequence of auctions of increasing numbers of goods, but such
that all goods go to the single highest bidder would be a concentrated allocation, even
though the number of goods is increasing. We discuss this in detail in what follows.

Fourth, the de�nitions of concentrated and dispersed allocations do not keep track of
what the eÆcient allocation is; rather just what the equilibrium allocation is. At times
these will be related, and we discuss eÆciency at several points in the paper. As we
remark at several points, however, most of the results in the paper apply directly to the
equilibrium allocations, and only indirectly to what might be eÆcient.

We establish this distinction between concentrated and dispersed allocations through
a series of results that can be brie
y described as follows.

(1) Concentrated Allocations-

(a) In any sequence of auctions with concentrated allocations the per- unit surplus
enjoyed by the bidders goes to zero.3 The intuition behind this is that under
concentrated allocations there is a strong competition for all goods. For any
unit of the good that is obtained by some bidder, there is a bidder with nearly
the same information and preferences who has a low probability of getting a
unit of the good. This results in a competition that drives away all of the
surplus that goes to the winning bidders.

(b) The above implies an \asymptotic revenue equivalence result" for concentrated
allocations: If two sequences of auctions lead to approximately the same con-
centrated allocations, then they lead to the same limiting revenue.

(c) Another corollary is that any sequence of auctions that leads to an approxi-
mately eÆcient and concentrated allocation, leads to the optimal revenue in
the limit. Hence, a variety of standard auctions (�rst, second, English) will
provide full revenue extraction in the limit.

(d) We can also establish rates of convergence for standard auctions when the
item is indivisible. For instance, mechanisms that award the entire good to
the highest bidder lead to a per-unit surplus to bidders that is of the order

3The surplus of a bidder is the total utility obtained from objects won in the auction less payments
in the auction.
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1=n where n is the number of bidders. The rate of convergence of both bid-
ders' surplus and revenue applies to many standard auctions such as the �rst,
second price, and English auctions. We show how this can be used to study
endogenous (costly) entry decisions regardless of the auction format.

(e) For the case where the eÆcient allocation is concentrated, we describe simple
mechanisms that extract all revenue (as if the auctioneer was fully informed)
in the limit.

(2) Dispersed Allocations-

(a) In any sequence of auctions that results in dispersed allocations, if there is any
private aspect to bidders' valuations and an individual rationality constraint
is satis�ed, then bidders enjoy a per-unit surplus that is bounded away from
0. This is the counterpoint to (1-a) and has the following intuition. Here
the allocation of goods is such that there are some goods and correspond-
ing winning bidders for whom any other bidder with similar information and
preferences also expects to obtain some goods. For these goods there is less
competitive pressure and so at least some surplus is enjoyed by the bidders in
such sequences of auctions.

Under dispersed allocations, with any correlation among the information observed
by bidders, the choice of auction format matters in some systematic ways. In some
cases where eÆcient allocations are dispersed, we compare some standard auction
formats to �nd that:

(b) If bidders have \
at" demand curves,4 then uniform price auctions result in
revenues that are higher, by an amount bounded below, than discriminatory
auctions, even when resulting in exactly the same allocations.

(c) With downward sloping demand function and private (possibly correlated)
values, the uniform auction is asymptotically eÆcient, while in contrast, dis-
criminatory auctions are necessarily asymptotically ineÆcient.

(d) EÆcient auction mechanisms can be dominated in terms of revenues by auc-
tions that ineÆciently bundle objects together for sale.

(e) If the eÆcient allocation is dispersed, then any sequence of mechanisms which
extract full revenue in the limit must violate an individual rationality con-
straint.5 This together with (1-e) shows how optimal mechanism design de-
pends on the structure of the eÆcient allocation.

4That is, a bidder values objects equally up to some number of items that they wish to purchase.
This includes, for instance, single unit demands.

5The type of individual rationality constraint in question is what we call 'safety'. It is stronger
than the standard interim constraint, but weaker than an ex-post constraint. It is equivalent to interim
individual rationality under independent signals, but slightly stronger otherwise.
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The fact that the choice of auction matters under dispersed allocations contrasts
with what we saw under concentrated allocations. We note, however, that this
contrast is not an obvious implication of other di�erences between concentrated
and dispersed allocations: for instance, bidders' surplus depends on whether the
allocation is concentrated or dispersed. That is, it is conceivable that even though
dispersed allocations lead to some bidders' surplus, the surplus would be the same
across any auctions that led to similar allocations. However, this turns out not to
be true. The details depend on how bidders must behave to be sure they get an
object when they have high values, and we discuss this in some detail.

1.1 Contributions and Relation to the Literature

Two closely related papers in terms of examining the asymptotics of revenue across auc-
tion formats are Kremer (2002) and Bali and Jackson (2002). Both papers consider
auctions with growing numbers of bidders and a single unit of a good for sale. Kremer
shows that in some common values settings the expected revenues of �rst price, second
price and English auctions all converge to the expected value of the object.6 Bali and
Jackson show that such convergence holds in a across a wide class of auctions and in-
formation settings. The intuition is that in a large population the bidder observing the
highest signal (and winning the object) faces competition from bidders who have nearby
signals and hence almost the same information. Such competing bidders can act as if they
had a slightly higher signal no matter what the payment mechanism, and so the winning
bidder's surplus will be competed away. This ties down the revenue of the auction simply
through incentive compatibility.

The results we show here broaden our understanding in several directions. First, we
show that the key characteristic determining whether or not mechanisms matter is the
allocation is dispersed or concentrated. So, the asymptotic revenue equivalence and full
extraction result is not restricted to single object auctions, but extends provided the
allocation is concentrated among a shrinking set of bidders. Moreover, we show that the
size of the surplus going to winning bidders as a function of the population is of the order
1
n
. This tight bound is useful, for example, in characterizing endogenous entry. Third,

and perhaps most importantly, we show that under dispersed allocations competition
no longer ties down the asymptotic revenue and the speci�cs of the auction make a
signi�cant di�erence, both in terms of revenue and eÆciency. Moreover, we show that
under dispersed allocations (with some minimal private value component to valuations),
bidders enjoy non-vanishing surplus. Thus, we develop an explicit understanding of how
the way in which goods are allocated determines the extent to which competitive forces
dictate price formation.

We make two other small remarks before proceeding.

Our work also has some side implications for how prices can aggregate information

6See Goeree and O�erman (1999) for a related result.
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in large economies and how that depends on the price setting mechanism. Pesendorfer
and Swinkels (1997) examined purely common value settings, and showed that whether
or not price converges to value in large uniform price auctions depends on whether or
not both the number of bidders getting objects and the number of bidders not getting
an object go to in�nity. Since we show that di�erent auction formats lead to di�erent
revenues with dispersed allocations, we can deduce that this nice property of information
aggregation that is enjoyed by uniform price auctions with large numbers of objects is not
exhibited by other prominent auctions. In particular, for discriminatory price auctions,
not even the average price (nor the max, min, or any order statistic) converges to value.
We discuss this in more detail in what follows.

Finally, our work also points out some situations where simple mechanisms extract
nearly all of the revenue. Cr�emer and McLean (1985, 1988) (see also McAfee and Reny
(1992)) have shown that with some correlation in information a seller can extract the
full value of an object in auctions of a single object.7 However, such mechanisms are
quite complicated and depend critically on knowledge of the underlying distribution
of information. As our asymptotic revenue equivalence results show, the complicated
mechanisms required for full revenue extraction are not needed when there are large
numbers of bidders and concentrated allocations are eÆcient. In these cases any sequence
of auctions that is approximately eÆcient will also fully extract revenue in the limit.
Most importantly, one can use standard auction formats that are independent of the
distribution of information in the society (and even when information is independent).

2 Information and Preferences

Economies

A sequence of economies is indexed by n, the number of agents in the economy. A
non-random quantity Qn of a good is to be sold in economy n. It may be fully divisible or
may come in indivisible units. Through randomization in the allocation, indivisible units
may in e�ect be divided. We will be addressing conditions relating to Qn that identify
when and how di�erences in auction formats appear.

Information

Information is described by a framework that we borrow from Milgrom (1981), as
described in detail below. Note, however, that through much of the paper we do not
assume the monotone likelihood ratio property. This information structure is particu-
larly suited to the discussion of growing sequences of economies, all based on the same

7The auctions we consider in obtaining the lower bound of 1

n on the surplus going to bidders place
an upper limit on the price paid and only have payments made by winning bidders. These conditions
are violated by the Cr�emer-McLean style mechanisms, explaining why their full extraction results do
not contradict our convergence rates.
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underlying information structure. We use upper case letters to denote random variables
and lower case letters to denote realizations. We use f to denote a density or conditional
density of a random variable and F to denote a distribution. In some cases when it may
be unclear to which random variables we refer, we use subscripts such as fX (�) ; while
when it is clear we will omit the subscripts.

Each agent i 2 f1; : : : ; ng in economy n observes a private signal Si that takes on
values in [0; 1]. There is also an underlying random variable X taking on values in [0; 1].
The Si's are independently and identically distributed conditional onX. This conditional
distribution of Si given X is described by the density function f (sijx).8 We assume that
the unconditional (marginal) density of each Si, f(si), is positive for all si.

Let S denote the vector of signals S1; : : : ; Sn and let S�i denote the vector of signals
omitting Si. Let Y (k) denote the k-th order statistic of the signals S and let Y�i(k)
denote the k-th order statistic of the signals S�i.

We also assume that:

(A1) There exists � > 0 such that for almost every x the density of X conditional on Si
satis�es

jf(xjsi)� f(xjs0i)j < �jsi � s0ijf(xjs0i):

(A1) is a Lipschitz condition that implies uniform continuity in signals across x.9

The important implication of this condition is that two nearby signals provide similar
information about the realization of X.

Preferences

Agent i's valuation for the good is described by v : [0; 1]2 ! [0; 1], where v (si; x)
is i's valuation given the realizations (si; x) of i's signal and of the state variable. In
this setting, X represents an objective quality of the good or part that is common to
all bidders; and the signal Si has a dual role: it contains information regarding X and
also represents a personal taste (see Milgrom (1981)). This framework includes as special
cases settings of pure private values, where v (si; x) = si, and pure common values, where
v (si; x) = x:

The following condition requires that at least one of the variables be important, and
that there is some upper bound on the derivative with respect to the private signal.

(A2) v (si; x) is di�erentiable and non-decreasing in both variables. Moreover, there exist
� > 0 and 
 > 0 such that dv

dsi
+ dv

dx
> � and dv

dsi
< 
.

8The assumption that the random variables have continuous distributions is made to simplify the
exposition, but is not critical to the results.

9For most of our results it is suÆcient to assume only uniform continuity.
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Condition (A2) is important in implying that signals have some importance, either
directly in terms of private values, or in providing some information about preferences
through the common component. The upper bound also puts some limit on how sensitive
preferences are to information.

A Private Value Component

We sometimes refer to situations in which there is some private value component to
the valuation. This does not have to be a case of pure private values, but is captured by
the following de�nition.

A good has a private value component if there exists � > 0 such that dv
dsi
(si; x) > �

for any (si; x).

In the �rst part of our analysis, bidders have \
at demand curves." That is, the
payo� to a bidder from consuming an amount qi is simply

v(si; x)qi:

This assumption provides for a more straightforward exposition in the �rst part of
the paper, without much e�ect on the qualitative results.10 Once we get to the case of
dispersed allocations, however, this assumption starts to have important consequences.
Thus, in Section 4.4 we explicitly account for how utility depends on quantity consumed.

Mechanisms

Invoking the well-known revelation principle, we restrict attention to direct mecha-
nisms.11 A mechanism in the n-th economy is a pair of functions (qn; tn), where

1. qn : [0; 1]n ! IRn is an allocation rule that assigns quantities to bidders as a function
of the pro�le of announced signals s, such that

Pn
i=1 q

n
i (s) � Qn, and

2. tn : [0; 1]n ! IRn
+ is a payment function that speci�es the payment each bidder

makes as a function of the pro�le of announced signals s, where ti (s) denotes the
payment of bidder i.

10Under concentrated allocations, assuming bidders who see similar signals have similar demands,
competition still drives their surplus to zero. Under dispersed allocations, bidders still enjoy some
surplus and mechanisms matter.

11Regarding existence: under our information and preference assumptions, there exists a (symmetric)
equilibrium for a wide variety of auction formats (including all the standard ones) if the tie-breaking
is allowed to be endogenous (see Jackson, Simon, Swinkels, and Zame (2002)), and even with �xed
tie-breaking for the case of private and possibly correlated values (see Jackson and Swinkels (2001)).
Regardless of whether one deals with a pure or mixed strategy equilibrium or the nature of the tie-
breaking, the corresponding direct mechanism is handled by our approach in this paper, and so the
results here apply.
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We make three remarks about the allocation and payment functions. First, the allo-
cation function does not necessarily allocate all of Qn. This allows for the incorporation
of reserve prices into the auctions considered. Second, tni can be positive even when qni
is not. Thus, the speci�cation allows for bidders to pay even when they do not receive
any allocation, and so it allows for features such as entry fees and \all-pay" require-
ments. Third, qni and tni can be thought of as expected allocations and payments so that
randomization is permitted.

In some of the examples we consider mechanisms that treat bidders symmetrically.
Most of the results, however, apply to asymmetric mechanisms. We will be explicit in
noting when symmetry is assumed.

Payo�s and Incentive Compatibility

Bidders are risk neutral, and so under a mechanism (qn; tn) the expected surplus (or
payo�) obtained by bidder i who has a signal si and declares s0i is

Surni (si; s
0
i) = E [qni (s

0
i; S�i) v (si; X)� tni (s

0
i; S�i) jSi = si] :

Note that Surni is a function of the mechanism (qn; tn), but we suppress this notation as
the mechanisms will usually be given.

Incentive compatibility is written as

Surni (si; si) � Surni (si; s
0
i)

for each i, si, and s0i.
12

Individual Rationality

In what follows we refer to di�erent forms of participation constraints, depending on
the timing with respect to which they are applied. We state a familiar one here and defer
the other de�nitions until they are needed.

A mechanism (qn; tn) is interim individual rational if

Surni (si; si) � 0

for each i and si.

12As usual, all conditions are required to hold only almost surely and we omit such mention in what
follows.
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2.1 Concentrated versus Dispersed Allocations

One of the main insights in this paper is the di�erence between concentrated and dis-
persed allocations.

Let qn � Qn

n
denote the per-capita supply of objects for sale, and P be the (uncondi-

tional) probability measure over Si.

Concentrated Allocations:

A sequence of allocation functions fqng is concentrated if for every b > 0 there exists
an n0 such that for n > n0 and every i

P

 (
E

"
qni (S)

�qn
jSi
#
� b

)!
< b:

Dispersed Allocations:

A sequence of allocation functions fqng is dispersed if there exists b > 0 such that for
in�nitely many n

P

 (
E

"
qni (S)

�qn
jSi
#
� b

)!
� b;

for a number of agents i that is at least bn.

In what follows, we refer to a sequence of mechanisms as being concentrated or dis-
persed if their corresponding allocation functions are.

The intuition behind these de�nitions is that a completely evenly dispersed allocation
would give qni = qn to each bidder, so that

qni
qn

would be 1. If this expression is going

to zero for almost all bidders, then the allocation is concentrated in the hands of just
a small proportion of the bidders (i.e., those who saw certain signals), while if it is not
vanishing for some non-trivial proportion of bidders (and so one can expect to get objects
conditional on seeing a non-trivial range of signals) then there is reasonable dispersion.

Let us make a few remarks about the details of the de�nitions.

First, they are de�ned relative to the per-capita supply of the good. It is possible
to have a dispersed allocation even if qn ! 0 and each bidder's allocation is actually
going to 0. Similarly, it is possible to have a concentrated allocation even when qn !1
and where every bidder is getting an arbitrarily large allocation in the limit, but the

10



highest signal bidders are getting the lion's share.13 So the important intuition regarding
competition that emerges here is that it is the relative disparities in allocations that
determine whether or not surplus is competed away in large auctions.

Second, the de�nitions allow for asymmetric mechanisms, so that di�erent bidders
might have di�erent expectations under the mechanisms in question. However, it is
important to note that concentration requires a uniformity in the convergence across
bidders i. Without this, it would be possible, for example, to have non-vanishing fractions
of bidders expecting to get signi�cant fractions of the objects at any date. For example,
suppose that objects are simply randomly given to agents with labels between n=2 and
n in auction n. Here, any given bidder eventually expects to get no objects at all, and
yet the allocation is clearly not what one would want to call \concentrated." Thus, the
uniformity in convergence rates across bidders under the de�nition of concentration is
critical.

Third, there is a gap between the de�nitions of concentrated and dispersed allocations.
Some sequences of mechanisms do not fall into either category. This gap is in fact
necessary given that we wish to account for asymmetric mechanisms. For instance,
consider the following situation. There are n bidders and the object is always simply
given to bidder 1 at a price of 0.14 This clearly fails to be a concentrated sequence under
the de�nition. This is important, because the results that are claimed for sequences of
concentrated mechanisms (e.g., bidders' surplus going to 0) would not be true for this
particular sequence of asymmetric mechanisms. Note also, that it would not make sense
to call this a \dispersed allocation," as the objects are always going to one bidder. The
reason that our results do not apply is that the particular asymmetry in the mechanism
has eliminated all competition for one bidder. Thus, allowing for asymmetric mechanisms
requires some gap between the de�nitions. Note, however, that if one restricts attention
to symmetric mechanisms, then the de�nitions are essentially complementary.

Finally, whether the allocation is concentrated or dispersed depends on the setting
and the equilibrium that will result in a given sequence of auctions. Looking at things
through the lens of the allocation allows us to extract the general insight regarding how
competitive forces work in large economies and how this depends on the distribution of
goods. Nevertheless, it is important to be able to tell which type of allocation applies
in di�erent situations. The classi�cation of whether or not the allocation turns out to
be concentrated or dispersed is often straightforward. That is, many situations can be
categorized into general classes where it is clear which type of allocation will result under
most standard auction formats. A simple classi�cation is as follows.

13These features make the conditions di�erent, for instance, from checking whether Qn and n�Qn are
getting large as in the double-largeness condition of Pesendorfer and Swinkels (1997). In fact, n�Qn does
not play any role in our analysis, and Qn only plays a role in the denominator in determining relative
allocations. This means that there are some di�erences between conditions that ensure information
aggregation, and those which correspond to surplus extraction.

14This is not such a silly mechanism, as note that it corresponds to an asymmetric equilibrium in a
second price auction where bidder 1 always bids 1 regardless of her signal and all other bidders always
bid 0.
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� A concentrated allocation will necessarily result if: the quantity of good to be
allocated (Qn) is a vanishing fraction of n, and the good is (asymptotically and
approximately) eÆciently allocated and there is some private component to the
valuation.

� A dispersed allocation will necessarily result if: Bidders have a �nite bound on
the amount of the good that they desire and the amount of the good grows in
proportion to n.

The above only provides a rough classi�cation, but still covers many of the cases of
interest. Auctions of limited numbers of objects (e.g., an art auction) will generally fall
into the �rst case and have a concentrated allocation, while auctions of many objects
(e.g., treasury auctions) will often fall into the second case and have dispersed alloca-
tions. Given the variety of mechanisms and settings admitted in the model, a fuller
characterization of when concentrated versus dispersed allocations result would be quite
complicated, without adding much insight. We provide a fuller treatment of two promi-
nent auction formats (uniform and discriminatory) in what follows. We now turn to
analyzing auctions under the two types of allocations.

3 Concentrated Allocations

We �rst examine sequences of mechanisms that result in concentrated allocations. In
concentrated allocations, for any bidder who gets a signi�cant proportion of the good we
can �nd another bidder who receives a nearby signal (and hence has nearby beliefs and
valuation), but only gets a relatively small amount of the good. The competition from
such nearby bidders eliminates the surplus enjoyed by all bidders.

The following \continuity" lemma is useful in establishing this result and some others
that follow. The lemma states that the surplus obtained by a given type is nearly
obtainable by a nearby type who pretends to be of the given type.

Lemma 1 If (A1) and (A2) are satis�ed, then in any sequence of interim individually
rational mechanisms and for any n

jSurni (si; s0i)� Surni (s
0
i; s

0
i)j � (2� + 
) jsi � s0ijEn [qni (S) j Si = s0i] ;

where � and 
 are as de�ned in (A1) and (A2).

Lemma 1 follows from the continuity assumptions and the structure of information
we outlined. The intuition is straightforward: altering an agent's signal slightly, but
not their report, leads to nearly the same beliefs, preferences, and expectations of the
allocation. Under individual rationality, the payments cannot vary much more drastically
than the allocation. So the surplus cannot vary by much relative to the total expected
allocation.
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Once we couple Lemma 1 with incentive compatibility, we deduce that nearby signals
must lead to similar expected surpluses. An implication of the above Lemma is that if
the allocation sequence is concentrated, then agents compete away their surplus, which
is stated as follows.

Theorem 2 If (A1) and (A2) hold, then for any sequence of concentrated, interim in-

dividually rational, and incentive compatible mechanisms,
P

i
Surni (Si;Si)

Qn converges to 0 in

probability.15

The intuition behind the theorem is as follows. Under a concentrated allocation, the
circumstances in which a bidder can expect to win non-trivial amounts of objects (in
per-capita terms) is shrinking. That is, the set of signals under which a bidder expects
to win objects is a shrinking set. Nearby signals must lead to expectations of no surplus.
Then given incentive compatibility, and the continuity noted in Lemma 1, since nearby
signals expect a low surplus, the winning signals must also expect a low surplus. In terms
of more traditional language of competition: the objects are being concentrated in the
hands of just a few winning bidders. As the economy grows, there will also be many
other bidders who have very similar information and preferences to those who end up
winning. The competition between these bidders eliminates the surplus.

3.1 Revenue Equivalence

Theorem 2 implies that the total revenue in an a sequence of auctions with concentrated
allocation functions is the approximate full (expected) valuation of the objects to the
winning bidders. As we have not speci�ed the allocation functions beyond being concen-
trated, this does not necessarily imply full revenue extraction. For instance, it could be
that the mechanisms never give any objects away and do not result in any revenue.

However, Theorem 2 still provides a revenue equivalence result, in that any two se-
quences with similar allocation functions must result in similar revenues. This is stated
in the following corollary.

Corollary 3 Let (A1),(A2) hold and consider two sequences of incentive compatible and
interim individually rational mechanisms, f(qn; tn)g and f(qn; tn)g, with concentrated
allocation functions. If the allocation functions are approximately the same, i.e.,

E [
P

i q
n
i (S)v(Si; X)�P

i q
n
i (S)v(Si; X)]

Qn
! 0;

then they lead to approximately the same expected revenues:

E [
P

i t
n
i (S)�

P
i t

n
i (S)]

Qn
! 0:

15We actually prove that the expected per unit surplus converges to 0, which implies convergence in
probability since this is a nonnegative random variable.
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Corollary 3 provides a fairly general asymptotic revenue equivalence theorem, as it
applies with correlated values and/or common values, and the sale of more than one
object.16

As we shall see, it is critical to the above result that the mechanisms be concentrated.
Otherwise, mechanisms with identical allocation functions can lead to very di�erent rev-
enues, even in the limit.

3.2 Optimal Mechanisms

Let us note another important implication of Theorem 2: any sequence of auctions that
results in concentrated and eÆcient allocations provides full revenue extraction in the
limit. One implication of this is that with large numbers of bidders, auction formats
that lead to eÆcient and concentrated allocations also lead to approximately full revenue
and one does not need to resort to the complicated and parametric types of mechanisms
identi�ed by Cr�emer and McLean (1988) and McAfee and Reny (1992). Moreover, this
holds in a variety of settings, including correlated private values, common values, as well
as under complete independence (where Cr�emer and McLean mechanisms fail to work).

To be careful, we have to argue that there will exist some mechanisms that achieve
eÆciency (at least approximately when eÆcient allocations are concentrated) in order
for the above statements to be non-vacuous.17 Indeed, there exist mechanisms, even
symmetric ones, that will achieve an approximately eÆcient allocation in a variety of
situations, and so full revenue extraction is feasible. This mechanism even satis�es ex-post
individual rationality constraints and works without the correlation structure inherent
in the Cr�emer-McLean approach. Without giving a formal argument, let us heuristically
describe such mechanisms in the case where the eÆcient allocation involves awarding all
objects to one bidder.18, 19 Pick some subset of agents and ask them their signals. If
symmetry is desired, randomly pick the agents. Keep this set of surveyed agents of sizep
n , so that it grows with n, but is negligible in the limit. These agents will not get any

of the allocation, so it is incentive compatible for them to reveal their information. Based
on their announcements, estimate X, and then v(1; X). Randomly order the remaining
agents, and make them take it or leave it o�ers at the price of v(1; X) � ", until some
agent agrees to buy the objects. This will happen with very high probability for large
enough n, and the object(s) will end up in the hands of an agent who values them at
nearly the maximal possible level.

16Corollary 3 generalizes the main result of Bali and Jackson (1999), in that it applies to the auctioning
of more than one good, and also allows for entry fees. However, it requires more structure on information
(the mineral rights setting) and on mechanisms than the results of Bali and Jackson (1999).

17We thank a referee for pointing this out.
18With 
at demands it is eÆcient to treat the supply as indivisible. This can be modi�ed as long as

the eÆcient allocation is concentrated.
19Variations on this sort of \folk" mechanism appear in a number of places. For an auctions version,

where interdependencies in valuations are present, see Jackson (1998). For versions satisfying strategy-
proofness in private values settings, see Cordoba and Hammond (1998) and Kovalenkov (2002).
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3.3 Indivisible Goods

A case of concentrated allocations that is of particular interest is where an indivisible
good is to be auctioned to the highest bidder. This covers, for instance, �rst price,
second price, and English auctions. We focus on this case to get some insight into rates
of convergence to the competitive outcome. We �rst show that the surplus to the winning
bidder decreases at a faster rate than na�1 for any a > 0: To develop a tight bound on
surplus, we also consider the following condition on the information structure.

(A3) There exists � > 0 such that � > f (si j x) > 1
�
for every si and x.

(A3) bounds the likelihood of any signal conditional on a given X both above and
below, thus limiting the informativeness of any given signal and implying some diversity
in the signals observed.

Theorem 4 Let (A1)-(A3) hold and consider a sequence of incentive compatible and
interim individually rational mechanisms, f(qn; tn)g , which award the entire Qn to a
highest signal observer. The bidders' surplus (per unit) converges to zero at a rate faster

than na for any a < 1: That is for any a < 1, na
P

i
Surni (Si;Si)

Qn converges to 0 in probability.

The bound in Theorem 4 comes from bounding the conditional probability of winning
for an observer of a given signal. That probability goes to 0 at an exponential rate, even
for signals going to 1 at a rate na (a < 1). This bounds the surplus that can be expected
for high signals. The Lipschitz continuity of information then implies that this surplus is
approximately the same as is enjoyed by the highest signal. The complete proof appears
in the appendix.

We now explore the tightness of this bound. We show that the surplus going to
bidders is at least the order of 1

n
in any case where the good has some private value

component, and so the bounds established in Theorem 4 are tight for a standard class of
auctions.

Theorem 5 Let (A1)-(A3) hold and consider a good that has a private value component
and a sequence of incentive compatible mechanisms qn; tn such that all of the good is given
to a single bidder who has the highest signal, and payments (tni (s)) never exceed 1 and
are only made conditional on receiving the object (tni (s) > 0 implies qni (s) > 0).20 There
exists � > 0 such that the total surplus per unit to the bidders is at least �

n
for all n. That

is, there exists � > 0 such that for any n

E [
P

i Sur
n
i (Si; Si)]

Qn
>

�

n
:

20This \losers do not pay" condition has been studied by Lopomo (2001) in analyzing conditions under
which the English auction is optimal. See Lopomo (2001) for additional discussion of this condition, and
optimal mechanisms subject to it.
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Theorem 5 shows that the bound established in Theorem 4 is tight. It is proven
by showing that the winner expects a distance between her signal and the next highest
signal that is on the order of 1

n
. This implies, given the private value component, that the

winner expects to have a valuation that is higher than the second highest by an amount
that is of the order of 1

n
. Then, regardless of the particular payment format, incentive

compatibility implies that winner must get a surplus of the order of 1
n
.

If we allow for arbitrary mechanisms, then with correlation among the signals there is
a possibility of extracting full surplus from the bidders, as shown by Cr�emer and McLean
(1988)21. The full extraction mechanisms are ruled out under Theorem 5 as payments
never exceed the maximum possible value and are only made conditional on receiving the
object. Neither of these conditions are met by the Cr�emer-McLean style mechanisms,
as such mechanisms require occasionally large payments and payments even by bidders
who do not obtain the object. These features of Cr�emer-McLean style mechanisms are
not exhibited by many standard auction formats (e.g., �rst price, second price, English
auctions, etc.) which satisfy the condition of Theorem 5.

3.4 An Application to Endogenous Entry

We now show that the results regarding the convergence rate of bidders' surplus are not
simply a technical curiosity, but can be used to provide insight into auctions where the
entry decision is endogenous and costly. 22

Suppose that a quantity of the good Q is sold as an indivisible good, and bidders
must pay an (ex-ante) entry fee of c.23 Let us examine the number of entrants and the
markdown in prices as a function of Q and entry cost, c. The novelty is that we establish
these relations without relying on a speci�c mechanism. We only assume that mechanism
does not charge a bidder unless they get the good (excluding the entry cost), payment
never exceeds the upper bound on the good's value, and the good has some private value
component (we also assume the information assumptions from the last section).

Theorem 5 tells us that there exists some � > 0 such that total surplus that goes to
bidders exceeds �Q

n
for any n. Hence, in order for it to be an equilibrium for n and not

n+ 1 bidders to enter (at an ex ante stage before signals are observed) we know that

c � 1

n + 1

 
�Q

n+ 1

!

21McAfee and Reny (1992) show that this is also true for the continuous signal case, to an arbitrary
approximation.

22For other examples of usefulness of such convergence rates in auctions and bargaining see Satterth-
waite, Rustichini, and Williams (1994) and Neeman (1999).

23We are considering a two stage process where bidders �rst decide whether to enter or not and then
observe their signals and participate in the auction if they have paid the entry fee.
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or that

n �
s
�Q

c
� 1:

This gives us a lower bound on n. Next, let us explore an upper bound. If Q
c
(and hence

n) is large, Theorem 4 bounds the total surplus to be below Q
na

for any a < 1. Thus, for
n bidders to be willing to enter we must have

�
1

n

�
Q

na
� c;

or �
Q

c

� 1

1+a � n:

Putting these lower and (approximate) upper bounds together leads to

�
Q

c

� 1

1+a � n �
s
�Q

c
� 1;

for any a < 1. So, we have obtained an approximation on the number of bidders who
will enter an auction:24

n /
s
Q

c

Since the expected surplus excluding entry costs that goes to the bidders is on the order
of Q

n
(Theorems 4 and 5), substituting from the approximation for n we �nd that the

expected surplus going to bidders in the auction is approximately proportional to
p
Qc.

This in turn implies that the average markdown in price per unit (compared to the
winner's valuation) is approximately proportional to

q
c
Q
.

4 Dispersed Allocations

We now turn our attention to sequences of auctions with dispersed allocations. First
we use the general mechanism design approach to provide some impossibility result for
surplus extraction. We then turn our attention to explicit mechanisms: the uniform and
discriminatory auctions.

4.1 The Impossibility of Full Surplus Extraction

Individual Rationality and Safety

24The approximation, of course, is only valid for large n, and so is more accurate if the total value of
goods to be auctioned relative to the entry cost (Qc ) is large.
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In what follows we consider a strengthening of interim individual rationality. It is
useful to compare it to a standard strengthening is the following condition, which is the
following.

A mechanism (qn; tn) is ex-post individual rational if

qni (s)E [v (si; x) jS = s]� tni (s) � 0

for each i and s.

Ex post individual rationality requires that agents do not over-pay when conditioning
on all signals. While this condition holds for some standard mechanisms in a private
values (possibly correlated) setup, it is often violated when there is any common value
component.

We introduce a concept that is intermediate to interim and ex-post individual ratio-
nality, which captures the idea that bidders should not expect to over pay conditional on
their own information - but not independent of the realization of the other signals.

A mechanism (qn; tn) is safe if

E [qni (si; S�i) v (si; X)� tni (si; S�i) jSi = s0i] � 0

for each i, si, and s0i such that s0i � si.

This condition of safety looks like interim individual rationality, except that beliefs
are taken relative to any signal s0i � si rather than si; and hence it is a stronger condition.
It requires that a given type s0i does not expect lower types to over-pay. It is equivalent to
interim individual rationality if signals are independent, and is always implied by ex-post
individual rationality. If the often-assumed monotone likelihood ratio property holds,
then safety is satis�ed by many standard auctions, even under common values. This is
because a higher type estimates the common value component to be higher.

There is a major di�erence in behavior between mechanisms with dispersed versus
concentrated allocations. The following theorem shows that the (approximate) full-
extraction of revenue that occurs with concentrated allocations will generally not hold
with dispersed allocations.

Theorem 6 Let (A1) and (A2) hold and consider a good that has a private value com-
ponent, and a sequence of incentive compatible and safe mechanisms that are dispersed.
There exists � > 0 such that the expected total surplus per unit obtained by the bidders
in the auction is at least �Qn for any n: That is, there exists � > 0 such that for every n

E

"X
i

Surni (Si; Si)

#
� �Qn:
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Theorem 6 tells us that under dispersion, if there is any private component to the
valuation structure, then bidders will capture some rents.

The theorem itself follows from a simple intuition. We state the intuition for the case
where allocations are to high bidders, but such monotonicity is not essential (see the
proof for details). Under dispersed allocations, a bidder with a high signal could pretend
to have a slightly lower signal and still expect with some non-trivial probability to obtain
some of the object. As long as (i) the high signal bidder does not expect to pay more
than what would be fair for a bidder for the lower signal (the role of the safety condition),
and (ii) according to the high type's belief a lower type should expect to get a non-trivial
fraction of the good (the role of dispersion); it follows that the high signal bidder could
obtain a positive expected surplus by pretending to have observed the lower signal. By
incentive compatibility, the high-signal observing bidder must get at least this surplus
under truthful announcement of his signal.

4.2 Non-Existence of Approximately Optimal Mechanisms

An implication of Theorem 6 is that the possibility of designing approximately optimal
mechanisms in terms of extracting full revenue is precluded for the case where the eÆcient
allocation is dispersed, at least if one wants to respect safety. With independent signals
safety is no stronger than the standard incentive constraint. Hence, there does not exist
a mechanism that achieves �rst best. With correlated signals, in order to extract full
revenue, especially from high-valued signal observers, one can still resort to methods of
�a la Cr�emer and McLean (1988). The necessary violation of safety, however, means that
extracting full revenues, even in a limiting sense, must involve very sensitive use of the
correlation structure.

4.3 Di�erent Mechanisms{Di�erent Revenues

While Theorem 6 shows that the full revenue extraction that held with concentrated
allocations fails under dispersed allocations, it does not tell us whether the particulars of
the auction format matter. We now show that under dispersed allocations, the auction
format matters signi�cantly, and this represents a further departure from the results of
concentrated allocations.

For the following result, we concentrate on a particular, but still prominent and
interesting class of dispersed allocations. We return to a more general setting in the next
section.

The class we examine here is one such that a quantity Qn is auctioned in indivisible
units and any bidder is awarded (or values) at most one unit. In particular, we look at
mechanisms for which, in equilibrium, the goods are allocated to the Qn bidders with
the highest signals. In this setting, the allocation is dispersed.
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To obtain a comparison of revenues of auctions, we work under the familiar strict
monotone likelihood ratio property. To simplify the exposition we also assume continuity:

(A4) F (sijx) and f(x) are continuous in x and the Strict Monotone Likelihood Ratio
Property (henceforth, MLRP) holds:

f (si j x)
f (s0i j x)

>
f (si j x0)
f (s0i j x0)

for all si > s0i and x > x0:

We now show that there is an asymptotic revenue di�erence between two standard
mechanisms that have dispersed equilibrium allocations when the number of objects for
sale Qn is proportional to n. The mechanisms we examine are:

� Discriminatory price (pay-your-bid) auction: each bidder submits a bid for a single
unit and pays his bid upon winning.

� Uniform price (pay the highest losing bid) auction: the Qn highest bidders each get
a single unit and pay the highest losing bid.

Note that under (A4) there exist (symmetric) equilibria for both mechanisms and that
they support the same eÆcient allocation, where the Qn highest signal holders obtain the
objects.25 We denote the corresponding expected payments by tn;d and tn;u, respectively.

Theorem 7 Let (A2) and (A4) and hold and Qn

n
! b where 1 > b > 0. The uniform

price auction yields higher expected revenue per capita (and per-unit) than a discrimina-
tory price auction, by an amount that is bounded below as n!1.

We prove the theorem (in the appendix) using the following technique. Using the
logic of Milgrom and Weber (1982), we can show that the expected payment of any given
signal holder in a uniform auction is at least that of his clone in a discriminatory auction.
We then argue that above a certain signal (one that is approximately sure to receive
an object for large n) the payment schedule for a discriminatory auction 
attens out,
as higher signal holders can always bid as if they had this lower signal and will still be
approximately certain to get an object. In the uniform auction, however, this payment
schedule does not 
atten out, as under strict MLRP observers of higher signals expect
higher market clearing prices. Through this we establish a bound on the di�erence in
revenues.

We provide two simple examples that illustrate Theorem 7. We consider two cases,
a pure private value case and a pure common value case. In both cases the revenue in

25Milgrom (1981) provides the unique symmetric equilibrium strategy in the uniform price auction (see
also Pesendorfer and Swinkels (1997)). An extension of the equilibrium of the �rst price auction described
in Milgrom and Weber (1982) constitutes a symmetric equilibrium in a multiple unit discriminatory
mechanism. It is the unique equilibrium in the class of monotonic symmetric equilibria in which bidders
use pure strategies, but its uniqueness properties are more generally diÆcult to ascertain.
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the uniform price auction is approximately 16% higher than that of the discriminatory
auction, even as n becomes large.

The following describes the information structure for these examples.

� X is distributed uniformly on [0; 1]:

� Signals are distributed uniformly on [0; x], that is (SijX = x) � U [0; x].

� Qn = n
2
.

Example 8 Private Values.

First, consider the case of private values where v (si; x) = si:

We begin by analyzing the discriminatory (pay-your-bid) auction format. Let FYn=2jSi

and fYn=2jSi denote the distribution and density functions of the median signal conditional
on Si. A similar argument to that of Milgrom and Weber (1982) shows that a monotonic
symmetric pure strategy equilibrium bidding function in the n-th economy, bn, is the
solution to the following di�erential equation:

bn0 (si)FYn=2jSi (sijsi) + bn (si) fYn=2jSi (sijsi) = sifYn=2jSi (sijsi) ;
which satis�es the boundary condition bn (0) = 0:This equation has a closed form solution
that implies bn (si)! b (si), where b (si) satis�es the following equation for si < 0:5.26

b0 (si)
si

1� si
+ b (si)

2

1� si
= si

2

1� si
; (1)

and b0 (si) = 0 for si > 0:5. Together with the boundary condition, b (0) = 0; we get a
unique expression for the limit of the bidding functions, b.

b (si) =

(
2si
3

if si < :5, and
1
3

if si � :5.

Conditional on X = x, we compute expected revenues by computing the average bid
over winning signals. For large n; the distribution of `winning' signals is approximately
uniform over [x=2; x]: Hence, for x < 0:5 we get an approximate average winning bid of27

1

0:5x

Z x

x=2

2si
3
dsi =

x

2
:

For x � 0:5; the average winning bid converges to:

1

0:5x

 Z 0:5

x=2

2s

3
ds+

Z x

0:5

1

3
ds

!
= �x

6
+

2

3
� 1

6x
:

26Note that FYn=2jSi (tjt)! min[1; t
1�t ]:

27This and other calculations below follow from the Dominated Convergence Theorem and the point-
wise convergence of bn to b.
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Taking expectations over X, average revenue per unit converges to

Z 0:5

0

x

2
dx +

Z 1

0:5

�
�x

6
+

2

3
� 1

6x

�
dx = 0:215:

Let us compare this to the revenue in a uniform price auction. There the Qn highest
bidders get objects and pay the Qn + 1 highest bid. There is a symmetric equilibrium
(which involves unique dominant strategies) where each bidder bids his personal valua-
tion, that is, bn (si) = si. This implies that the price is set to the valuation of the agent
who has the Qn + 1 highest signal. The price in a uniform auction thus converges to x

2

as n ! 1. When taking expecations over x; we �nd that in the uniform auction the
average revenue per unit converges to

Z 1

0

x

2
dx = 0:25:

Thus, the revenue in large uniform price auctions is approximately 16% more than
that of discriminatory auctions.

Also note that as Theorem 5 predicts, both mechanisms fail to extract all the surplus
from the bidders even in the limit. The expected average value of the goods to winning
bidders is E[3X

4
] = :325.

Example 9 Common Values.

Next, consider the case of common values where v (si; x) = x:

A similar argument to the one used in the private value setup implies that the sym-
metric monotonic equilibrium bidding strategy in the discriminatory auction converges
to the solution of the following di�erential equation:

b0 (si)
2

1� si
+ b (si)

si
1� si

=
4si

1� si
for si < 0:5

and b0 (si) = 0 for si > 0:5: Using the boundary condition of b (0) = 0 we get the following
characterization for the limiting bid function.

b (si) =

(
4si
3

if si < :5, and
2
3

if si � :5.

Note that this is twice the bidding function that we saw in the private values case,
and hence expected revenue per unit converges to :43, which is twice that of the private
value case.
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In the uniform price auction, it is an equilibrium for an agent with a signal si to
bid the expected value of X conditional on Yn

2
= Yn

2
+1 = si (see Milgrom (1981)).

Straightforward calculations lead to

bn (si)! b (si) = 2si:

Price per unit is given by the marginal bid b
�
Yn
2
+1

�
: This implies that conditional on

X = x, the price converges to the true value of the good, x. When averaging over x we
get revenues per unit of 0.5.

Again, the uniform price auction leads to revenue that is 16% more than that of a
discriminatory auction.

4.3.1 Information Aggregation and EÆciency Under Flat Demands

The results that di�erent auction formats lead to di�erent revenues also has a side impli-
cation for the ability of di�erent auction formats to aggregate the information of bidders.

Pesendorfer and Swinkels (1997) examine uniform price auctions in a common value
setting which has features similar to the previous section. They address the issue of
information aggregation in competitive markets. They argue that while the condition for
information aggregation in the case of a single object identi�ed by Milgrom (1979, 1981)
(see also Wilson (1977)) is very strong, prices aggregate information in cases in which
the number of goods increases with the number of bidders. Speci�cally, they show that
if a double largeness condition holds: Qn !1 and (n�Qn)!1, then price converges
to value almost surely. 28

Our analysis shows that the results in Pesendorfer and Swinkels (1997) do not extend
to discriminatory auctions.29 Of course, in discriminatory auctions, there is no single
price to identify. Nevertheless, one might expect that in a discriminatory price auction
the average price paid would converge to the good's value. As Theorem 7 and Example
9 show, not only is the average price not a consistent estimator for the good's value, it is
a biased estimator: the average price is biased downward even in the limit. This implies
that the minimal price being paid is also biased downward, and as the example shows, so
is the median price. It also shows that the highest price does not converge to the good's
value.

Finally we note the fact that in a discriminatory auction the average price does not
converge to the asset's value may lead to eÆciency loss. This occurs if the seller has a
reservation value or has a cost of producing the items. In the next section we demonstrate

28See Hong and Shun (2000) for a detailed look at how the rate of information aggregation in common
value uniform auctions compares to that of standard single object auctions.

29Again, the concepts of dispersed and concentrated allocations consider the relative distribution
of objects, and so do not correspond to the double largeness condition of Pesendorfer and Swinkels.
However, there are still allocations that are both dispersed and doubly large.

23



that the discriminatory auction results in eÆciency loss even when the selling decision is
taken as given.

4.4 EÆciency in Uniform and Discriminatory Auctions

In the previous section we examined uniform and discriminatory auctions when agents
have single unit demands. While that case is of interest, we now a develop a wider
understanding of the behavior of uniform and discriminatory auctions under dispersion.

In order to develop a deeper understanding, we specialize to the case of private (but
possibly correlated or aÆliated) valuations. At the same time, however, we also generalize
the previous setting in another direction. We allow bidders to have di�erent valuations for
di�erent quantities. 30 In particular, a bidder may have a decreasing marginal valuation
for additional objects.3132 Each agent values m units. The value of the j-th unit for an
agent who has a signal si is given by vj (si). We modify (A2) to:

(A2') Agents have private values and decreasing marginal utilities, that is, vk(si) � vj(si)
for any si and j � k and v1(si) > vm(si). fvj(si)gmj=1 are di�erentiable and increas-
ing in si. We normalize v1(si) to be equal to si.

The utility of an agent i who is awarded k units and pays ti is

kX
j=1

vj (si)� ti

In uniform auctions with multi-unit demands, the impact a bidder has on price can
a�ect equilibrium behavior.33 This can persist even with large numbers of bidders. How-
ever, if there is a small uncertainty about the number of active bidders, then the problem
disappears, as shown by Swinkels (2001). So, we follow Swinkels (2001) (see his de�nition
3) in assuming that

(A5) There is some probability � > 0 that each bidder is inactive. The inactivity is
independent across bidders and is independent of X:

30The previous analysis was essentially one of a 
at demand, where a bidder's valuation was constant
up to some limit and then zero thereafter. Although we assumed that the marginal valuation was
constant, it is straightforward to extend the analysis to allow for a zero valuation after some limit.

31This is similar to the setting of Swinkels (2001), except that we maintain the structure of aÆliated
signals while Swinkels (2001) examines the case of independent signals. This results in some critical
di�erences in behavior of the auctions.

32See Jackson and Swinkels (2001) for a proof of existence of equilibria for a wide range of auction
formats in such private value settings.

33As is well-known, the �ne details of how the price is set matters. For instance, the true Vickrey-
Groves auction form does not encounter such diÆculties, while a uniform auction format that is often
used in practice does.
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(A5) can be thought as adding an atom in the distribution of signals at Si = 0. It
is also equivalent to having a random number of participants. The randomness however
is quite mild. Laws of large numbers imply that in the limit there are approximately
(1� �) n active bidders. But, as mentioned above, this slight randomness helps in ruling
out persistent price manipulation in large economies.

We consider uniform price and discriminatory auctions. In each auction each bidder
submits m bids; we denote the j-th bid of bidder i by bij (si). We order bids so that
bij (si) is non-increasing in j. In either auction format, the Qn highest bids are each
awarded a unit of the good. In the discriminatory auction bidders pay the sum of their
winning bids. In a uniform price mechanism all bidders pay the same price per unit,
which is the Qn + 1-st highest bid.

It is important to note that in both cases our results will apply to all equilibria, in-
cluding asymmetric ones or those in mixed strategies. The existence of a pure-strategy
equilibrium or a monotonic equilibrium are important open problems in our setup. How-
ever, this existence does not a�ect our conclusions.

4.4.1 Allocations and EÆciency

We break our analysis into two parts. First we analyze and compare the auctions with
regards to the allocations they induce and their asymptotic eÆciency properties. After
that, we return to the question of revenue comparisons.

Let

u(si; qi) =
qiX
j=1

vj(si):

This is the utility of agent i observing signal si and obtaining a number of objects qi.

Asymptotic EÆciency

A sequence of allocations is said to be asymptotically eÆcient if in the limit the per
unit loss of ex-ante total surplus compared to the eÆcient surplus converges to zero.
That is, letting q�n(s) be an eÆcient allocation, qn is asymptotically eÆcient if

E

"P
i ui(q

�n
i (S); Si)

Qn
�
P

i ui(q
n
i (S); Si)

Qn

#
! 0:

We focus on the case in which Qn

n(1��)
! a < m, where a > 0. This implies that the

allocation will be dispersed, and that a non-trivial fraction of bidders receive less than
their full demand.34 We maintain this assumption for the remainder of Section 4.

34The case where a � m is a trivial one where all (active) agents can simultaneously be satiated at
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4.4.2 EÆcient Allocations in Uniform Price Auctions

We �rst argue that:

Lemma 10 Consider a setting satisfying (A1), (A2'), and (A5), and a sequence of equi-
libria of uniform price auctions. For any " > 0; there exists a large enough n such that
conditional on any state X the probability that any bidder i can in
uence the price by
more than an " is smaller than ":

Lemma 10 implies that in the limit the outcome of a uniform price auction is com-
petitive. Price converges to the price that would occur if there was no asymmetric
information and the allocation becomes eÆcient. Let pnc denote this price (the Qn + 1-st
highest valuation in the population) which we term the \competitive" price.

Theorem 11 Consider a setting satisfying (A1), (A2'), and (A5), and any sequence
equilibria of uniform price auctions. The equilibrium allocations are asymptotically eÆ-
cient and the corresponding equilibrium prices converge to the competitive price in prob-
ability; that is, pn � pnc ! 0 in probability (where pn is the equilibrium price, the Qn + 1
highest bid).

Note that this applies to any sequence of equilibria, and not just symmetric ones. The
key is that under (A5), the asymmetric strategies where some bidders bid 1 and others
bid 0, for instance, are not equilibria. The fact that some bidders may be inactive give
all bidders some chance of winning objects in equilibrium.

This theorem tells us that uniform auctions are well behaved in this dispersed alloca-
tion setting, providing eÆcient allocations and competitive prices. We now turn to the
more muddied analysis of discriminatory auctions.

4.4.3 IneÆcient Allocations in Discriminatory Auctions

The analysis of discriminatory auctions is trickier. To get some intuition as to why, note
that in a sense the discriminatory auction is like an asymmetric auction (we discuss this
in more detail below). For instance, with n = m = 2 = Qn each bidder's high bid
competes with the other bidder's low bid, and vice versa. With a uniform auction, even
with this sort of asymmetry, the incentives are reasonably straightforward as ones bid
is unlikely to a�ect the price. However, with a discriminatory auction, one's bid always
a�ects the price paid (if an object is won). This asymmetry means that bids are no
longer monotonic in value when compared across bidders. For example a value of 1/2 on
a second unit corresponds to a di�erent signal and hence information about the potential

a bid of zero. At the other extreme where Qn=n ! 0, if the monotone likelihood ratio property holds,
then under either of the auction formats the allocation is approximately eÆcient and concentrated. In
that situation the full surplus is extracted and the choice of mechanism does not matter in determining
either the allocation or revenue.
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bids of others, than a value of 1/2 on a �rst unit. This loss of monotonicity across bidders
is the key reason why the discriminatory auction is ineÆcient even in the limit.

To simplify the exposition we add two new assumptions. Let Mn denote the eÆcient
cuto�, i.e., the Qn-th highest valuation. Let

min(si) = sup fv j limnProb (M
n � vjSi = si) = 1g :

So, min(si) is the minimum of the support of Mn under the limiting distribution condi-
tional on Si = si.

35

The MLRP and continuity assumptions imply that min (si) is continuous and non-
decreasing.

(A6) In an eÆcient allocation, at least one type sees a positive probability of obtaining
m units. That is, min (si) < vm (si) for some si.

Since min (si) and vm(si) are continuous, and min (si) lies above vm(si) at si = 0 and
below vm(si) for some si under (A6), it follows that there exists s� so that min (s�) =
vm (s�).

We assume that

(A7) min (vm (s�)) < min (s�), for some s� such that min (s�) = vm (s�).

While (A6) is fairly mild, (A7) has a bit more to it. (A6) is essentially without loss
of generality, as otherwise we can reset m to simply cover units that might be obtained.
(A7) requires that min (s) is increasing between vm(s

�) and s� (or at least comparing the
endpoints). This means that signals convey some information about the support of the
eÆcient cuto� value Mn, at least in the limit.

Theorem 12 states that under the above assumptions, the discriminatory auction
always yields ineÆcient outcomes even in the limit.

Theorem 12 Under assumptions (A1), (A2'), (A6) and (A7), any sequence of equilibria
of discriminatory auctions fails to be asymptotically eÆcient. 36

The intuition behind the theorem is quite straightforward. If the allocation were to
be eÆcient, some of the marginal bids would be coming from bidders who are bidding
on their �rst unit (with value si), while others would be coming from bidders who are
bidding on their last unit (with value vm (si)). Under (A7), these two classes of bidders
near the margin for an eÆcient allocation have di�erent beliefs about the cuto� value.

35Note that this may (and generally will) be above 0 even if Mn has full support for each n.
36This theorem also holds if (A5) is added, with e�ectively no changes to the proof, and so can be

compared to Theorem 11 under (A6) and (A7).
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This provides for di�erent bidding behavior of the same valuations. The resulting bids
are not monotonic in values and the allocation fails to be eÆcient, even approximately
and asymptotically.

We conclude this subsection with an example.

Example 13 IneÆciency in Discriminatory Auctions.

� X � U [0:5; 1]

� Si � U [0; X]

� Qn = n and m = 2

� v2(si) = �si, where 0 < � < 1.

In the limit there is a fraction X�v
X

of the bidders with a value of the �rst unit
exceeding some value v; and a fraction �X�v

�X
of bidders who have a value for their second

unit that exceeds v. The limit of the cuto� Mn, denoted M is the solution of

X �M

X
+
�X �M

�X
= 1)M =

�X

1 + �
:

It follows that

min (si) = max

(
�

2 (1 + �))
;
si�

1 + �

)
:

Assumption (A6) is satis�ed since min (1) = �
�+1

< � together with the fact that
min (0:5) = �

2(1+�))
> �=2. We conclude that there exists a unique s� 2 [0:5; 1] for which

min (s�) = �s�: Since min (si) =
si�
1+�

on [0:5; 1], it follows that min (�s�) < min (s�) and
that assumption (A7) also holds.

5 Concluding Remarks

We have shown that whether or not the auction format matters in large societies is
related to whether or not the allocation of objects is concentrated or dispersed. In
addition, for certain cases we are able to provide tight bounds on the revenues raised in
concentrated allocations, and discuss at length how allocations and revenue may di�er
under dispersed allocations. While this work points out the importance of the distinction
between concentrated and dispersed allocations, it also points to important questions for
future research, of which we now mention some obvious ones.
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5.1 Comparison of Revenues in the Two Auctions

Although we have allowed for asymmetric mechanisms, we have worked under an as-
sumption of some symmetry in information and preferences across bidders. While it is
clear that removing this assumption will not impact the basic properties of concentrated
and dispersed allocations, the symmetric setting was critical to results such as Theorem
7, which shows that with 
at demands the uniform price auction leads to higher rev-
enue per unit than discriminatory auctions by an amount that is bounded below. As is
evident from an example of Maskin and Riley (2000), with asymmetries among bidders
these revenue ranking can be reversed. As this question is an important one for a number
of applications,37 it will be important to untangle how asymmetries a�ect the relative
performance of various auction formats under dispersed allocations.38

Also, let us also mention that the revenue ranking between the auctions depends in
some other ways on the setting considered. For instance, it is natural to conjecture that
the asymptotic revenue for the discriminatory auction would be no higher than that of
the uniform price auction in symmetric settings. The reason that this seems natural
is that the uniform price auction leads to an asymptotically eÆcient allocation and the
competitive price in the limit, while the discriminatory auction can lead to an ineÆcient
allocation, and one might guess, that it then leads to a correspondingly lower price. This
would dovetail nicely with the analysis of Section 4. The following example illustrates,
however, that there are some additional issues to think about.

Example 14 Higher Revenue from Discriminatory Auctions.

Reconsider Example 8 with some modi�cations.

The information structure is the same: Each agent observes Si uniform on [0; X],
where X is uniformly distributed on [0,1]. However, agents value two objects. The value
for the �rst object is K + si and the value for the second is si, where K is to be de�ned
below. There are 3n=2 objects for sale. So, when K � 1, the eÆcient allocation is that
each bidder gets at least one object, and the n=2 bidders having the highest si's each get
two objects.

The asymptotic expected revenue per object in the Vickrey auction is easy: it con-
verges to X=2 and in expectation is .25.

In the discriminatory auction, for large enough K, the following is the limit of a

37For example, this has been an important issue for treasury auctions for many years. See Bikhchan-
dani and Huang (1993) for an overview of some of the debate over use of uniform versus discriminatory
auctions; and Binmore and Swiezbinski (2000) and Hortascu (2000) for some recent empirical investiga-
tions.

38Recent work by Pekec and Tsetlin (2002) shows that uncertain participation by bidders can be
another important factor in ranking auctions. We have not faced this issue, as we have been working
with large numbers. But clearly, understanding when large numbers of agents will participate is an issue
of importance.
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sequence of equilibria: bidders' �rst bid is always 1/3; and the bidders' second bid is as
described in Example 8.

This sequence of equilibria is asymptotically eÆcient39 and also gives higher revenue
in the limit than the Vickrey (or the uniform) auction. The revenue is as follows: in the
limit 2/3 of the objects are sold at a price of 1/3 and 1/3 of them are sold at a price of
.215; so this is an average price of .294. The average price in the Vickrey auction is .25.

Without providing full detail, let us sketch why this is the limit of a sequence of
equilibria. If all the �rst bids are above the support of the low bids, then the second
bids are still the limit of a sequence of equilibria since the n bidders end up bidding for
the remaining n=2 items, exactly as in Example 8. So the argument is that for some
large enough K and n, all bidders place their �rst bid at the top of the support of the
lower bids. This simply requires that when looking conditional on any si; there is some
minimum (bounded away from zero) of the conditional density of the cuto� bid falling
near the top of the support (which must happen in an equilibrium). This means that
even if a bidders sees a low si, that bidder still places some chance on high X 's. Then for
large K, lowering a bid by some " below the top of the support of the expected cuto� will
lower the payment by " when winning, but loses a value of at least K with probability "
times the marginal probability lost which is bounded below.

This example shows, when combined with Theorem 7, that one cannot generally
rank the auctions in terms of the asymptotic revenue they generate. Here, the downward
sloping demands introduce large enough additional asymmetries between �rst and second
object valuations to result in some interesting behavior and reversal in revenue ranking
from what we saw before.

This example also provides a comment on Theorem 12 regarding the ineÆciency of the
discriminatory auctions. Here K is large enough so that �rst objects are e�ectively not
competitive with second objects. It is almost as if there are two separate auctions going
on, and this results in eÆcient allocations. This is a rather special case, but points out
the importance of an assumption behind Theorem 12 - that some signals tell a bidder
that he will not be getting any objects. That fails in the above example, where even
bidders seeing the lowest signals are sure that they should get at least one object.

5.2 Revenue versus EÆciency

It is often natural to think about standard auctions where bidders can enter any number
of bids and objects are allocated to the highest bids. We now point out, however, that
even when this results in an eÆcient allocation, there may be other auction designs that
lead to higher revenues, and hence there can be a very fundamental tension between
eÆciency and revenue maximization.

39The example can easily be modi�ed to be ineÆcient, and so the ranking of revenues has no general
relationship with asymptotic eÆciency.
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In auction design, there are several tensions between eÆciency and revenue that have
been noted in the literature. First, the commitment to a reservation fee can raise expected
revenues while decreasing eÆciency (e.g., see Myerson (1981)), as sometimes an object
is not sold when it would be eÆcient to do so. Second, with asymmetric distributions
of information, awarding the object to the bidder with the highest virtual utility (which
maximizes revenue) may con
ict with awarding the object to the bidder with the highest
utility (which is eÆcient), as shown by Myerson (1981). Third, with heterogeneous
objects, a seller may have an incentive to bundle objects together (Palfrey (1983), Jehiel
and Moldavanu (2001)).

The example below points out that such an incentive to ineÆciently allocate ob-
jects (in particular to bundle them) arises in situations where dispersed allocations are
eÆcient, even in a case with homogeneous objects and independent symmetric type dis-
tributions. In particular we show that any mechanism which results in an allocation
which is approximately eÆcient is dominated in terms of revenue by one that bundles
goods and sells them in an ineÆcient manner. The intuition for this follows closely from
the optimal nonlinear pricing literature (e.g., see Wilson (1990)) where there is often
a tension between a monopolist's pro�t maximization and eÆciency. This shows that
even Vickrey mechanisms, or any other approximately eÆcient variation, lead to lower
revenue than from bundling the goods and auctioning them in pairs. The bene�ts of
ineÆcient bundling of goods is di�erent from the bene�ts of ineÆciency arising from use
of a reservation price.

The following example is one where dispersed allocations are eÆcient, and any mech-
anism leading to an (approximately) eÆcient allocation provides less revenue than one
which allocates the goods in a dispersed, but ineÆciently bundled manner.40

Example 15 Bundling

Si is distributed uniformly on [0; 1]. There are n
2
indivisible objects to be allocated.

Bidders have a value of si for a �rst object, a value of si
2
for a second object, and no

value for any additional objects.

First, consider any (approximately) eÆcient allocation, which for large numbers cor-
responds (approximately) to giving one object to each of the n

2
highest signal observers.

Given the independent signals, revenue equivalence among individually rational mecha-
nisms holds in this world (see Ausubel and Cramton (1995)), and so the expected revenue
of any mechanism that results in this allocation converges to 1

2
per object.

Next, consider the following ineÆcient allocation. Objects are bundled and only
sold in pairs. The pairs of objects are awarded to the n

4
highest signal holders via a

Vickrey auction. In this case, the price setting bidder for large n will have a signal of

40As shown by Ausubel and Cramton (1999), a perfect resale market for goods leads to a revenue
maximizing mechanism being an eÆcient one. So, it is important that perfect (costless) resale is not
possible in this example.

31



approximately 3
4
. That bidder's valuation for a pair of objects will be 3

4
+
�
1
2

�
3
4
= 9

8
, and

the revenue per object converges to 9
16
.

Although bundling leads to an ineÆcient allocation, it lead to an increase in revenue
of over 6% compared to mechanisms leading to the eÆcient allocation.

In the case of dispersed allocations we know that the mechanism matters. We have
made some progress here in comparing uniform and discriminatory auctions under dif-
ferent scenarios. However, as the last example (Example 15) shows, sellers might prefer
auctions which bundle or allocate objects in ways beyond these two standard auctions.
Moreover, this is not due to some externalities across objects, so that a combinatorial
auction is of value. This is more directly tied to incentive compatibility.

Obtaining a better understanding of optimal mechanisms in such situations, as well as
the tension between eÆciency and revenue maximization, is a challenging but important
open problem.
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6 Appendix

Proof of Lemma 1: Write

In + IIn � jSurni (si; s0i)� Surni (s
0
i; s

0
i)j

where In is the di�erence in the utility from the good received:

In =
����
Z
qni (s

0
i; s�i) v (si; x) dF

n (s�i; xjsi)�
Z
qni (s

0
i; s�i) v (s

0
i; x) dF

n (s�i; xjs0i)
����

and IIn is the di�erence in expected payment

IIn =
����
Z
tni (s

0
i; s�i) dF

n (s�ijsi)�
Z
tni (s

0
i; s�i) dF

n (s�ijs0i)
���� :

Step 1: In < (� + 
) jsi � s0ijE [qni (S) j Si = s0i]

(A2) ( dv
dsi

< 
) implies that for any n

����
Z
qni (s

0
i; s�i) [v (si; x)� v (s0i; x)] dF

n (s�i; xjs0i)
���� � 
jsi � s0ijE [qni (S) j Si = s0i] : (2)

(A1) implies that:

jdF n(s�ijsi)� dF n(s�ijs0i)j =
����
Z
x
fn(s�ijx)(f(xjsi)� f(xjs0i))dx

���� � �jsi � s0ijdF n(s�ijs0i):

Then since 1 � jv (s; x)j, we deduce that:

����
Z
qni (s

0
i; s�i) v (si; x) dF (s�i; xjsi)�

Z
qni (s

0
i; s�i) v (si; x) dF

n (s�i; xjs0i)
���� (3)

� �jsi � s0ijEn [qni (S) j Si = s0i] :

Hence, the claim in Step 1 follows from (2) and (3).

Step 2: IIn � �jsi � s0ijEn [qni (S) j Si = s0i]

Again using (A1), it follows that:����
Z
tni (s

0
i; s�i) dF

n (s�ijsi)�
Z
tni (s

0
i; s�i) dF

n (s�ijs0i)
���� � �jsi � s0ijEn [tni (S)jSi = s0i] ;

and so IIn < �jsi � s0ijEn [tni (S)jSi = s0i]. From the interim individual rationality con-
straint and the fact that 1 � v(si; x), it follows that:

En [qni (S)jSi = s0i] � En [tni (S)jSi = s0i] :
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which concludes the argument.

Proof of Theorem 2: We actually prove that

E (
P

i Sur
n
i (Si; Si))

Qn
=
X
i

Z
[0;1]

Surni (s; s)

Qn

dF (s);

converges to 0, which implies convergence in probability since Surni (Si; Si) is a nonneg-
ative random variable.

Fix any small " and by Lemma 1 �nd a Æ such that js� s�j < Æ implies that for all i
and n

jSurni (s�; s)� Surni (s; s)j � "En [qni (S) jSi = s] :

For the given " and any i, let An
i (") denote the set of types who expect to receive supply

less than "�qn; that is:

An
i (") = fsi s:t: E

"
qni (S)

�qn
jSi = si

#
< "g:

Pick n > n0 (where n0 is de�ned by concentration) so that for any s that is in
the support of f , there exists sni (s) 2 An

i (") such that js � sni (s)j < Æ .41 Incentive
compatibility and Lemma 1 then imply that:

Surni (s; s) � Surni (s
n
i (s); s

n
i (s)) + "En [qni (S)jSi = s] : (4)

By the de�nition of An
i (") and qn, we can bound the surplus of types sni (s) 2 An

i (") :

X
i

Surni (s
n
i (s); s

n
i (s))

Qn
�X

i

E

"
qni (S)

Qn
jSi = sni (s)

#
< ": (5)

Thus, from (4) and (5) it follows that for large enough n

X
i

Z
[0;1]

Surni (s; s)

Qn
dF (s) � "+

X
i

Z
[0;1]

"
En [qni (S)jSi = s]

Qn
dF (s): (6)

Since
Qn �

X
i

Z
[0;1]

En [qni (S)jSi = s] dF (s);

it follows that

1 �X
i

Z
[0;1]

En [qni (S)jSi = s]

Qn

dF (s): (7)

41Note the following simple claim. Consider any density f on [0,1]. For any Æ > 0, there exists 
 < 1
such that for every s in the support of f and every set A � [0; 1] with measure at least 
 under f , the
distance of s to A is less than Æ. (To see this, simply subdivide the interval into into Æ=2 sized pieces,
and set 
 to be one minus the smallest positive probability given to a subinterval under f .)
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(6) and (7) then imply that for large enough n

X
i

Z
[0;1]

Surni (s; s)

Qn

dF (s) � 2":

The following lemma is useful in the proof of Theorem 4.

Lemma 16 Let sn = 1 � na�1: If (A3) is satis�ed, then there exists some b > 0 and
some N such that FY n

�i(1)jSi
(snjsin) < e�bn

a
for all n > N .

Proof of Lemma 16: The claim is clear if a � 1, so consider a < 1. Write

FY n
�i(1)jSi

(snjsin) =
Z
x
FY n

�i(1)jX
(snjx)f(xjsni )dx:

By (A3) it follows that for any x

FY n
�i(1)jX

(snjx) < (1� na�1

�
)n�1:

Thus,

FY n
�i(1)jSi

(snjsin) < (1� na�1

�
)n�1:

Since (1� na�1

�
)n�1 ! e�

na

� , the claim follows.

Proof of Theorem 4: First, we show that for any a > 0, there exists N 0 such that for
all si and all n > N 0

Surn (si; si) < 2�na�1Qn; (8)

where � is identi�ed in (A1).

Let sn = 1�na�1; and identify b and N from Lemma 16, such that FY n
�i(1)jSi

(snjsin) <
e�bn

a
for all n > N .

If si < sn for some n > N , then it follows that Surn (si; si) < Qne�bn. Taking, N 00

to be large enough so that e�bn
a
< �na�1, we know that (8) holds for any si < sn when

n > N 0 = maxfN;N 00g.

Next, consider any si � sn for some n > N 0. By Lemma 1

jSurn (sn; si)� Surn (si; si)j < �na�1Qn:

Since e�bnQn � Surn (sn; sn) � Surn (sn; si), this implies that

Surn (si; si) < e�bnQn + �na�1Qn:
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Since n > N 0 we know that e�bn
a
< �na�1 (recall the de�nitions of N 00 and N 0), and so

(8) holds for any si � sn. Thus, we have established (8).

So, let us now argue that for any a > 0,
n1�a

P
i
Surni (Si;Si)

Qn converges to 0 in probability.

Since Qn goes to just one bidder,42

Z
Surn(si; si)dFY n(1)(si) � E

"X
i

Surn(Si; Si)

#
:

So, from (8) it follows that for any a > 0 there exists N such that for any n > N

E

"X
i

Surn(Si; Si)

#
< 2�na�1Qn: (9)

Let us verify that this implies the theorem. First, we show that
n1�aE[

P
i
Surni (Si;Si)]
Qn

converges to 0. Suppose the contrary. Then there exists a0 > 0 and Æ > 0 such that

E

"X
i

Surn(Si; Si)

#
> Æna

0�1Qn

for in�nitely many n. Taking a < a0, this violates (9) for some large enough n. Thus, our

supposition was incorrect and so
n1�aE[

P
i
Surni (Si;Si)]
Qn converges to 0. Since Surni (Si; Si) �

0, it follows that for any a > 0,
n1�a

P
i
Surni (Si;Si)

Qn converges to 0 in probability.

Proof of Theorem 5

We bound nSurn(si; s
0
i)=Q

n from below (across n) for a bidder observing some si >
1 � a

n
and reporting s0i = 1 � 2a

n
, for some a > 0. By incentive compatibility, this

gives a lower bound on nSurn(si; si)=Q
n. We then show that there is a probability

bounded from below that a winning bidder observes such a signal, which then implies
that nE [

P
i Sur

n(Si; S
0
i)] =Q

n is bounded below.

So, let us show that nSurn(si; s
0
i)=Q

n is bounded below for a bidder observing some
si > 1� a

n
and reporting s0i = 1� 2a

n
, for some a > 0.

Sur(si; s
0
i) =

Z
qni (s

0
i; s�i) v (si; x)� tni (s

0
i; s�i) dF

n (x; s�ijsi) = In + IIn

where,

In =
Z
qni (s

0
i; s�i) [v (si; x)� v (s0i; x)] dF

n (s�i; xjsi)
and

IIn =
Z
[qni (s

0
i; s�i) v (s

0
i; x)� ti (s

0
i; s�i)] dF

n (xjsi)
42This inequality needs not hold with equality, since it may be that payments are made by losing

bidders.

36



We �rst examine In: Since the good has a private value component, v (si; x)� v (s0i; x) >
�a
2n
. This implies that:

In > Qn
�a

2n
FY n

�i(1)jSi
(s0i j si) : (10)

Given the state X = x signals are independent, hence:

FY n
�i(1)jSi;X

(s0i j si; x) = FY n
�i(1)jX

(s0i j x) = FSijX (s0i j x)n�1

Using assumption (A3), we conclude that FSijX (s0ijx) > 1 � 2a�
n

for all x which implies
that that there exists some �� > 0 so that43

FY n
�i(1)jX

(s0i j x) > ��

Thus, since FY n
�i(1)jSi

(s0i j si) =
R
x FY n

�i(1)jX
(s0i j x) df(xjsi), it follows from (10) that In=Q

n

n

is bounded below.

So, if IIn � 0, then the claim that nSurn(si; s
0
i)=Q

n is bounded below follows. So, we
need only consider the case where IIn < 0. We establish the claim by showing that in
this case there exists some � 0 > 0 so that IIn > � � 0

n2
. From assumption (A1), we know

that: �
1� 2�a

n

�
f (x; s�i j s0) < f (x; s�ijs) <

�
1 +

2�a

n

�
f (x; s�ijs0i)

Hence we conclude that:

IIn > Surn (s0i; s
0
i)�

2�a

n

Z
jqni (s0i; s�i) v (s0; x)� tni (s

0
i; s�i)j f (x; s�ijs0i) d(x; s�i)

Individual rationality implies that Surn (s0i; s
0
i) > 0, and so

IIn > �2�a

n

Z
jqni (s0i; s�i) v (s0; x)� tni (s

0
i; s�i)j fn (x; s�ijs0i) d(x; s�i) (11)

We also know that:Z
jqni (s0i; s�i) v (s0i; x)� tni (s

0
i; s�i)j fn (x; s�ijs0i) d(x; s�i)

= Surn (s0i; s
0
i) + 2

Z
fqni (s0i; s�i) v (s0i; x)� tni (s

0
i; s�i)]g� fn (x; s�ijs0i) d(x; s�i)

where Z� equals �Z when Z is negative and zero otherwise. Given that we are in
the case where IIn < 0, and the fact that jqni (s0i; s�i) v (s0i; x)� tni (s

0
i; s�i)j < Qn we

conclude that Surn (s0i; s
0
i) <

2�
n
: Since s0i = 1� 2a

n
and payment per unit is bounded by

1, we conclude that:

Z
fqni (s0i; s�i) s0 � tni (s

0
i; s�i)g� fn (x; s�ijs0i) d(x; s�i) <

2a

n
Qn

Hence the claim follows from (11).

43The expression (1� 2a�
n )n�1 converges to e�2a�.
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To complete the proof, we need to show that the probability that the winning signal
is larger than 1� a

n
is bounded below. Again, (A3) implies that FSijX

�
1� a

n
jx
�
< 1� a

�n

for all x and si > 1� a
n
. Thus, FY n(1)jX

�
1� a

n
jx
�
< (1� a

�n
)n, which converges to e�a=�.

So, there is a probability bounded below that the winning signal exceeds 1� a
n
.

Proof of Theorem 6: We need only prove the theorem for symmetric mechanisms.
The extension to asymmetric mechanisms is then seen rather simply.44 Suppose to the
contrary that some sequence of dispersed asymmetric mechanisms leads to an expected
surplus heading to zero. Construct a sequence of symmetric mechanisms by randomly
labeling the agents in the n-th mechanism. This must lead to the same expected total
surplus, and is still incentive compatible, safe, and dispersed. But this would contradict
the fact that the result holds for symmetric mechanisms.

By dispersion, there exists " > 0, a > 0, and for each n (taking a subsequence if
necessary) a signal sn < 1� 3" such that

E(qni (s
n; S�i)jSi = sn) >

a

n
Qn:

Since, by (A1)
���f(xjsi)
f(xjs0i)

� 1
��� < �jsi � snj, it follows that

��� f(s�ijsi)
f(s�ijsn)

� 1
��� < �jsi � snj. Thus,

there exists " such that for any si 2 [sn + "; sn + 2"]

E(qni (s
n; s�i)jSi = si) >

a

2n
Qn:

In a safe mechanism,

E[qni (s
n; s�i)v (s

n; x)� tni (s
n; s�i)jsi] � 0; (12)

for any si 2 [sn + "; sn + 2"]. Since the good has a private value component, and by
(A2) preferences are non-decreasing in signal, we know that there exists � > 0 such that
v (si; x)� v (sni ; x) > �". Thus,

E[qni (s
n; s�i) fv (si; x)� v (sn; x)g jsi] � �"

a

2n
Qn (13)

Since
Surn(si; s

n) = E[qni (s
n; s�i)v (si; x)� tni (s

n; s�i)jsi];
(12) and (13) imply that for any si 2 [sn + "; sn + 2"]

Surn(si; s
n) � �"

a

2n
Qn:

By incentive compatibility,

Surn(si; si) � �"
a

2n
Qn

This shows that conditional on getting a signal in [sni + "; sni + 2"] any agent expects a
surplus that is bounded away from zero (relative to the per-capita supply of objects Qn

n
).

44We thank an anonymous referee for pointing this out.
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The positive density of f(si) implies that there is a minimum positive probability that
signals fall in [sn + "; sn + 2"] regardless of the choice of sn, and hence the claim follows.

Proof of Theorem 7: Let s� (x) be the solution to F (si j x) = 1 � b, where Qn

n
! b.

Note that under (A4), s�(x) is increasing and continuous in x.

Let t
n;d

(si) ; t
n;u

(si) be the expected payment of a bidder conditional on observing
signal Si = si, in the discriminatory and the uniform price mechanisms respectively. The
expected revenues in the respective mechanisms are

n
Z
t
n;l
(si) dF (si) for l = u; d: (14)

Given (A2) and (A4), an argument similar to that underlying Theorem 15 in Milgrom
and Weber (1982) implies that

t
n;u

(si) � t
n;d

(si) for every n and si:

This implies that the expected revenue in the uniform price mechanism is no lower than
in the discriminatory one. However, it does not guarantee that there exists a positive
di�erence that is bounded below as we increase the number of bidders. To show that
such gap exists, we argue that there is an interval in which t

n;d
(si) becomes 
at as n

increases and that on the same interval, t
n;u

(si) is increasing. Speci�cally, we show this
for the interval [s�; 1] ; where s� is the max of the support of the random variable s�(X).
Thus, [s�; 1] is the interval in which 1� b � F (sijx) for almost every x:

Let us �rst show that t
n;d

(si) becomes 
at as n increases on the interval [s�; 1]. Note
that s� < 1 since the distribution of Si conditional on X = 1 is described by a density
function and b < 1 and so 1 > s�(1) � s�. Also, since f(si) > 0 for all si, there is
a positive (unconditional) probability that Si 2 [s�; 1]. For any si 2 (s�; 1], there is a
large enough n so that a bidder observing Si = si has an arbitrarily high (prespeci�ed)
probability of observing one of the highest Qn signals. This implies that an agent who
has a signal si > s� can pretend to have a lower signal with a minimal e�ect on the
probability of getting an object, for some large enough n. Hence, we conclude that for
any si > s0i > s�

t
n;d

(si)� t
n;d

(s0i)! 0: (15)

This implies that while t
n;d

(si) is increasing in si,
45 it converges to being 
at over the

interval (s�; 1] as n increases.

Before we show that the sequence t
n;u

converges pointwise on (s�; 1] to a function t�

that is increasing over (s�; 1], let us check that this together with the fact that t
n;d

(si)
converges to a constant function on the interval [s�; 1] imply the theorem.

45This follows from incentive compatibility, (A2), and the strict MLRP-(A4).
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To do this, we �rst show that for any si 2 (s�; 1] there exists an N such that for all
n > N Z 1

s�
t
n;d
(si)dF (si) < t�(si) (1� F (s�)) : (16)

Pick some s0i 2 (s�; si] and �nd N such that

jtn;u(s0i)� t�(s0i)j < (t�(si)� t�(s0i))=3

for all n > N . Find N 0 such that for any n > N 0

jtn;d (1)� t
n;d

(s0i) j < (t�(si)� t�(s0i))=3:

It then follows that since t
n;u

(s0i) � t
n;d
(s0i) that if n > max[N;N 0] then for any si 2 [s0i; 1]

t
n;d

(si) < t� (si)� (t�(si)� t�(s0i))=3:

(16) then follows since t
n;d

is increasing.

Next, note that since t� is increasing we can �nd " > 0 and si 2 (s�; 1] so that

t�(si)(1� F (s�)) < "+
Z 1

s�
t�(si)dF (si):

Thus, by (16) it follows that there exists " > 0 and N such that for all n > N

Z 1

s�
t
n;d
(si)dF (si) < "+

Z 1

s�
t�(si)dF (si): (17)

By the Dominated Convergence Theorem

Z 1

s�
t
n;u

(si)dF (si)!
Z 1

s�
t�(si)dF (si):

This coupled with (17) implies the theorem.

We now complete the proof of the theorem by showing that t
n;u

converges pointwise
on (s�; 1] to a function t� that is increasing over (s�; 1]. This is established through the
following lemmas.

Lemma 17 If si > s�, then

t
n;u

(si)! t� (si) = E (v (s� (X) ; X) jSi = si) :

Lemma 18 t
�
(si) is increasing on (s�; 1]:

Proof of Lemma 17:
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Step 1: For any si in the support of s� (X),

bn (si)! b� (si) = v (si; x
� (si)) ;

where bn is the equilibrium bidding function and x�(si) is the inverse of s
�(x).46

For any si in the support of s� (X), X conditioned on Si = si and Y n
�i (Q

n) = si
converges in probability to x�(si). Thus, since (see Milgrom (1981))

bn (si) = E
h
v(si; X)jSi = si; Y

n
�i (Q

n) = si
i
; (18)

the claim follows from the convergence in probability and the continuity and boundedness
of v in x.

Step 2: For almost any x

E
�
bn
�
Y n
�i (Q

n)
�
jX = x

�
! v (s� (x) ; x) :

For any x, Y n
�i (Q

n) conditioned on X = x converges in probability to s�(x). By the
continuity of f (x) ; almost every x is in the interior of the support of X. Thus, given
strict MLRP and the continuity of F (sijx) in x, it follows that for almost every x, s�(x)
is in the interior of the support of s�(X). So, from Step 1 it follows that for almost every
x there is a neighborhood B of s�(x) such that bn (si) ! b� (si) for all si 2 B. Given
that Y n

�i (Q
n) conditioned on X = x converges in probability to s�(x), the probability of

Y n
�i (Q

n) conditioned onX = x has probability approaching 1 placed on B. Then from the

dominated convergence theorem, E
�
bn
�
Y n
�i (Q

n)
�
jX = x

�
! E

�
b�
�
Y n
�i (Q

n)
�
jX = x

�
,

and given the fact that b�(si) = v(si; x
�(si)) is bounded and continuous, the claim follows

since Y n
�i (Q

n) conditioned on X = x converges in probability to s�(x).

Step 3 For si > s�, t
n;u

(si)! t� (si).

We know that

t
n;u

(si) = E
h
Isi�Y n

�i(Q
n)b

n
�
Y n
�i (Q

n)
�
jSi = si

i
:

For si > s�, Isi�Y n
�i(Q

n) goes to 1, and so

t
n;u

(si)! E
h
bn
�
Y n
�i (Q

n)
�
jSi = si

i
:

Then, given the conditional independence of signals conditional on X, we can write

t
n;u

(si)! E
h
E
�
bn
�
Y n
�i (Q

n)
�
jX
�
jSi = si

i
:

So, from Step 2,
t
n;u

(si)! E [v (s� (X) ; X) jSi = si] ;

46By the strict MLRP, s� is increasing in x and so x� is well-de�ned on the support of s�(X).
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which is the desired conclusion.

Proof of Lemma 18:

By (A2) and since s� (x) is continuous and increasing, it follows that v (s� (x) ; x) is
continuous and increasing. Assumption (A4) implies that the distribution of X condi-
tional on Si = si is stochastically dominated by the distribution of X conditional on
Si = s0i, where s

0
i > si. The result then follows from the stochastic dominance.

This concludes the proof of Theorem 7.

Proof of Lemma 10: We �rst measure the in
uence a bidder has on prices by looking
at the event in which he is able to push the price above some threshold y 2 [0; 1], given
that the price would be below y in the absence of the bidder's bids. Let Y�i (l) denote
the l-th highest bid excluding i's bids. Using this notation for bidder i to be able to push
the price above y it must be that Y�i (Q

n �m) > y and Y�i (Q
n) < y: Laws of large

numbers imply that this happens with low probability. Speci�cally, the argument used
in Lemma 9.2 in Swinkels (2001) shows that for any " > 0 there exists some N" so that
n > N" implies that for any state X and bidder i:

Pr (Y�i (Q
n �m) > y and Y�i (Q

n) < yjX) < "

A sketch of the argument is as follows. There are (n� 1)m bids of bidders besides i:

One can de�ne random variables fZjg(n�1)
j=1 that give the number of bids above y that are

submitted by bidder j. The probability that i pushes the price above y when starting
below is then bounded by pr

�P(n�1)
j=1 Zj 2 [Qn �m;Qn]

�
: Conditional on X bids are

independent and hence so are the fZjg : This implies that this probability is negligible
for large n since m is �nite.

The above inequality implies that if we �x a positive integer J , then for any j 2
f1; : : : ; Jg there exists Nj such that for n > Nj

Pr
�
Y�i (Qn �m) >

j

J
and Y�i (Qn) <

j

J
jX
�
<

1

J2
:

Letting N� = maxj Nj, it follows that for all n > N�

Pr
�
9j : Y�i (Qn �m) >

j

J
and Y�i (Qn) <

j

J
jX
�
<

J

J2
=

1

J

Let p1 denote the price if bidder i submits the maximal possible bid on all of his units
and let p0 denote the price if i bids zero on all of his units. The above inequality implies
that for any J there exists NJ such that Pr

�
p1 � p0 >

2
J

�
< 1

J
for n > NJ . To conclude

the Lemma let J = 2=".

Proof of Theorem 11: First, let us show that the price converges to the competitive
price. That is, for any Æ > 0, for all high enough n, Pr (jpnc � pnj > Æ) < Æ.
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Suppose that this is not the case, so that there exists Æ > 0 such that for all n (taking
a subsequence if necessary), Pr (pnc � pn > Æ) > Æ. [The case where pn exceeds pnc is
analogous.] Since both prices and values are bounded in [0; 1] there exists some Æ� > 0
and some interval [a; a + Æ�] such that for all n47

Pr (pn < a and pnc > a + Æ�) > Æ�:

Hence, for large enough n there is a probability bounded away from 0 that some bidder
who values a unit by more than a + Æ�

2
does not obtain that object and the price is less

than a. Consider a deviation for such bidders to bid truthfully instead. This increases the
expected number of units such a bidder gets, but may a�ect the clearing price. However,
by Lemma 10 the price implications for such a deviation become negligible for large n.
This yields a contradiction as it guarantees an extra unit at a pro�t bounded away from
zero for such a bidder for large enough n, with negligible price impact.

Next, note that a similar argument to that above (again invoking Lemma 10) implies
that although bidders may place some bids above or below their corresponding values in
equilibrium, this can only be in cases where for large enough n, changing those bids to
be equal to the corresponding values would have a negligible probability of a�ecting the
equilibrium allocation.

The approximate eÆciency follows from the convergence of price to the competitive
one, and bidders bidding as if they bid their values.

Proof of Theorem 12: The following lemma is useful.

Consider an n bidder discriminatory auction. Let pn denote the minimal price paid
in equilibrium, i.e., the Qn � th highest bid, and let bnj (si) denote the bid in the n-th
auction for a j-th object by a bidder observing si. Also, for any 1 � j � m and Æ > 0 let

An
jÆ =

n
sijPr

�
vj (si) > Mn + Æ and pn > bnj (si)

�
> Æ

o

Bn
jÆ =

n
sijPr

�
vj (si) < Mn � Æ and pn < bnj (si)

�
> Æ

o
:

Lemma 19 If for some j and Æ it is true that for any N there exists n > N such
that either Pr

�
An
jÆ

�
> Æ or Pr

�
Bn

jÆ

�
> Æ, then the discriminatory price auction is not

asymptotically eÆcient.

Proof: Suppose that Pr
�
An
jÆ

�
> Æ for arbitrary large n; the case where Pr

�
Bn

jÆ

�
> Æ

is similar. Any signal that belongs to this set results in an eÆciency loss of at least Æ2:
The fact that Pr

�
An
jÆ

�
> Æ implies (appealing to the law of large numbers) that there is

an ex-ante eÆciency loss that is bounded away from zero when summing across bidders.

47Partition [0; 1] into 2=Æ intervals of size Æ=2 each, f[ai; ai+1]g
1=2Æ
i=1 . The case in which pn < pnc � Æ

implies that we can �nd some ai so that pn < ai and pnc > ai+1: This implies that there exists some
interval for which Pr (pn < ai and pnc > ai+1) > Æ2=2: Hence, we let Æ� = Æ2=2:
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Assume by contradiction that the outcome is asymptotically eÆcient.

First, let us argue that there exists Æ1 such that bn1 (si) < vm (s�) � Æ1 for all signals
si 2 [vm (s�) ; vm (s�) + Æ1] for large enough n. Using the continuity of min (s) and as-
sumptions (A6)-(A7) we conclude that there exists an " such that agents with a signal
si 2 [vm (s�) ; vm (s�) + "] can expect to win their �rst unit with a probability of at least
" by bidding vm (s�)� " for large enough n. This follows as prices never exceed Mn: In
equilibrium, these bidders make an expected pro�t on their �rst unit of at least "2 and
hence they must be bidding below their value by at least "2: If we let Æ1 = "2 we get that
bn1 (si) < vm (s�)� Æ1 for all signals si 2 [vm (s�) ; vm (s�) + Æ1].

Next, note that there exists some Æ2 > 0 so that si 2 [s�; s� + Æ2] implies that bnm (si) >
vm (s�) � Æ1. This follows since bidders with signals close to (but above) s� have a low
but positive probability of winning their m� th object in an eÆcient allocation, but that
probability goes to zero in n if they underbid by any �xed amount. As a result they bid
close to their reservation value on their m-th object for large n. Hence, there exists some
Æ2 > 0 so that si 2 [s�; s� + Æ2] implies that bnm (si) > vm (s�)� Æ1.

If we let Æ� = min (Æ1; Æ2) we conclude that agents with signal si 2 [vm (s�) ; vm (s�) + Æ1]
bid on their �rst unit no more than vm (s�)� Æ� while agents with signal si 2 [s�; s� + Æ�]
bid on their m� th unit at least this amount. Consider now the event that:

Mn 2 (vm (s�) + 2Æ�=5; vm (s�) + 3Æ�=5)

Since we assume that the distribution of signals has a full support, this event occurs with
some positive probability Æ��:

Consider two cases:

(i) pn � vm (s�) � Æ� : This event maps to A in Lemma 19. Bidders with types
si 2 [vm (s�) + 4Æ�=5; vm (s�) + Æ�] are not awarded their �rst object despite the fact that
their valuation exceeds the cuto� by more than Æ�=5.

(ii) pn < vm (s�) � Æ� : This event maps to B in Lemma 19. Bidders with types
si 2 [vm (s�) ; vm (s�) + Æ�=5] are awarded their m � th unit despite the fact that their
valuation is lower than the cuto� by more than Æ�=5.

Since either (i) or (ii) occurs with probability of at least Æ��=2 for large enough n,
Lemma 19 implies a contradiction.
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