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QUASI-MAXIMUM LIKELIHOOD ESTIMATION FOR CONDITIONAL

QUANTILES¤

By Ivana Komunjery

In this paper we derive the asymptotic distribution of a new class of quasi-maximum

likelihood estimators (QMLE) based on a ‘tick-exponential’ family of densities. We

show that the ‘tick-exponential’ assumption is a necessary and su¢cient condition for

a QMLE to be consistent for the parameters of a correctly speci…ed model of a given

conditional quantile. Hence, the role of this family of densities in the conditional quan-

tile estimation is analog to the role of the linear-exponential family in the conditional

mean estimation. The ‘tick-exponential’ QMLEs are shown to be asymptotically nor-

mal with an asymptotic covariance matrix that has a novel form, not seen in earlier

work, and which accounts for possible model misspeci…cation. For practical purposes,

we show that the maximization of the ‘tick-exponential’ (quasi) log-likelihood can con-

veniently be carried out by using standard gradient-based optimization techniques.

More importantly, we provide a consistent estimator for the asymptotic covariance

matrix based on the “scores” of the log-likelihood, which allows us to compute the

conditional quantile con…dence intervals.
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1. INTRODUCTION

The vast majority of the empirical literature in economics has traditionally focused on con-

ditional mean models, often using the quasi-maximum likelihood framework for estimation

and inference. The cornerstones of the asymptotic theory for quasi-maximum likelihood esti-

mators (QMLEs) have been set by White (1982), Gourieroux, Monfort and Trognon (1984),

Bollerslev and Wooldridge (1992), White (1994) and Newey and Steigerwald (1997). Virtu-

ally all quasi-maximum likelihood literature has since focused on the problem of conditional

mean and variance estimation, leaving behind other potentially interesting distribution char-

acteristics, such as its quantiles. Over the last decade however, there has been a growing

interest in the problem of conditional quantile estimation and inference, prompt by a rapid

growth in the empirical quantile regression literature in various applied areas of economics

(see e.g., Koenker and Hallock, 2000, for a review). Hence, the focus of this paper is the

asymptotic theory for conditional quantile QMLEs.

Since the seminal work by Koenker and Bassett (1978), several authors have provided

asymptotic distribution results for conditional quantile estimators obtained by quantile re-

gression (QR) under various dependence structures. In the context of linear models, for ex-

ample, results for independent random variables have been derived by Koenker and Bassett

(1978), for special cases of conditionally heteroskedastic processes by Koenker and Bassett

(1982) and Koenker and Zhao (1996), while a rather complete asymptotic theory for linear

quantile regression estimators with dependent data is due to Portnoy (1991). Treatment of

possibly misspeci…ed linear quantile regression models with independent observations has

been recently proposed by Kim and White (2002). Fewer results are available in the context

of nonlinear models, with exception of censored quantile regression models, as treated by

Powell (1986) for example.

In this paper we consider possibly misspeci…ed nonlinear conditional quantile models

that we estimate by using a quasi-maximum likelihood approach. We show that there is

only one class of QMLEs - class that we call ‘tick-exponential’ - which is consistent for the

parameters of a correctly speci…ed model of a given conditional quantile. Moreover, the ‘tick-

exponential’ QMLEs are shown to be asymptotically normal with an asymptotic covariance
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matrix that has a novel form, which takes into account possible model misspeci…cation.

Hence, we propose a rather complete asymptotic theory for QMLEs of possibly misspeci…ed

nonlinear conditional quantile models with dependent random variables, which, to the best

of our knowledge, has not yet been derived in the literature.

When compared with the existing QR results, there are several advantages in using the

QMLEs for conditional quantile estimation. Firstly, the asymptotic distribution results de-

veloped here cover all previously obtained quantile regression results as special cases. They

are therefore applicable to both linear and nonlinear models, under a wide range of de-

pendence structures and they take into account model misspeci…cation e¤ects. Secondly,

a quasi-maximum likelihood approach provides a “directly” computable consistent estima-

tor of the asymptotic covariance matrix. This point is particularly relevant for empirical

applications, in which the computation of con…dence intervals for QR estimators typically

involves di¤erent simulation or bootstrap techniques that considerably increase the com-

putational costs (see e.g., Buchinsky, 1995, Fitzenberger, 1997). Finally, the computation

of the QMLE can be easily carried out by transforming the initial maximization of a non-

di¤erentiable (quasi) log-likelihood into a “minimax” problem involving continuously dif-

ferentiable functions allowing the use of standard gradient-based optimization techniques.

This computational advantage is particularly important in nonlinear conditional quantile

models in which linear programming techniques need to be replaced by more cumbersome

interior-point optimization methods (see e.g., Koenker and Park, 1996).

The remainder of the paper is organized as follows: Section 2 is an overview in which we

introduce the ‘tick-exponential’ family of densities. In Section 3 we show that for a QMLE to

be consistent for the parameters of a given conditional quantile, it is necessary and su¢cient

condition to be built upon a density which belongs to the ‘tick-exponential’ family. In Section

4 we show asymptotic normality of ‘tick-exponential’ QMLEs and derive a novel form for

the asymptotic covariance matrix which takes into account model misspeci…cation. The

practical implementation issues - optimization and consistent covariance matrix estimation

- are treated in Section 5, which concludes the paper. All technicalities regarding the proofs

as well as the assumptions used in the paper are relegated to the Appendix.
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2. OVERVIEW

Consider a stochastic process X ´ fXt : ­ ¡! Rn+1; n 2 N; t = 1; : : : ; Tg de…ned on
a complete probability space (­;F ; P0) where F = fFt; t = 1; : : : ; Tg and Ft is the ¾-…eld
Ft ´ ¾fXs; s 6 tg. In what follows, we partition the observed vector Xt as Xt ´ (Yt¡1; Z 0t)0,
where Yt¡1 2 R is the scalar variable of interest and Zt 2 Rn a vector of exogenous variables.1

We denote by yt¡1 and zt the observations of the variables Yt¡1 and Zt, respectively. The

variable Yt is assumed to be continuous and we denote by F0;t (resp. f0;t) its true conditional

distribution (resp. density with respect to a given measure º), which is unknown. By

convention, the subscript t denotes conditioning on the information set Ft.
Let Q®(YtjFt) denote the ®-quantile of Yt conditional on the information set Ft, where

for a given value of probability level ® 2 (0; 1), ® = P0(Yt 6 Q®(YtjFt)jFt). The aim of this

paper is to study the asymptotic properties of a large class of estimators for Q®(YtjFt) - the
quasi-maximum likelihood estimators (QMLE).

The approach used to construct the QMLE of the conditional ®-quantile of Yt is analog

to those which are employed to estimate the conditional expectation of Yt. Let M denote

a model for the conditional ®-quantile of Yt,M = fq®t g, with q®t (Wt; ¢) : £! R and where

Wt is a vector of variables that are Ft-measurable. In practice, Wt consists of di¤erent

functions of (i) a subset of Zt, n-vector of exogenous variables, and (ii) lags of Yt¡1. In

…nance, examples of di¤erent speci…cations for q®t are: Koenker and Zhao’s (1996) conditional

quantile model: q®t (Wt; µ) ´ ¯0+
Pp

i=1 ¯iYt¡i+¾tq® for a particular class of ARCH processes

where the conditional scale, ¾t, satis…es ¾t = °0 +
Pq

j=1 °jjYt¡j ¡ ¯0 ¡
Pp

i=1 ¯iYt¡j¡ij;
Engle and Manganelli’s (1999) CAViaR model with …rst order representation: q®t (Wt; µ) ´
¯0+¯1q

®
t¡1(Wt¡1; µ)+ l(¯2; Yt¡1; q

®
t¡1(Wt¡1; µ)), in which l corresponds to some loss function;

Taylor’s (1999) and Chernozhukov and Umanstev’s (2000) linear VaR: q®t (Wt; µ) ´W 0
tµ and

quadratic VaR models: q®t (Wt; µ) ´W 0
t¯ +WtBW

0
t :

In what follows, we treat two types of situations, depending on whether or not the

model M is correctly speci…ed. We say that M is correctly speci…ed for the parameters

of the conditional ®-quantile of Yt if there exists a k-vector µ0 in £, £ ½ Rk, such that

q®t (Wt; µ0) = Q®(YtjFt), where Wt is a vector of variables that are Ft-measurable.
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We want to estimate µ0 by considering the class of quasi-maximum likelihood estimators,

µ̂T , obtained by solving

max
µ2£

LT (µ) ´ T¡1
TX
t=1

ln lt(yt; q
®
t (wt; µ));(1)

where lt is a period-t conditional (quasi) log-likelihood of Yt given Ft. It is a well know
result that di¤erent choices of lt a¤ect the asymptotic properties of the QMLE µ̂T when

the object of interest is the conditional mean of Yt. Speci…cally, and under standard reg-

ularity assumptions, the QMLE provides a consistent estimate of the true parameters of

a correctly speci…ed model of the conditional mean, f¹tg, if and only if lt belongs to the
linear-exponential family, i.e. for y 2 R,

lt(y; ´) = exp[at(´) + bt(y) + yct(´)];(2)

where the functions at : Mt ! R and ct : Mt ! R are continuous, Mt ½ R, the function

bt : R! R is Ft-measurable, and at, bt, ct are such that lt is a probability density with mean
´. The QMLE obtained by solving maxµ2£ T¡1

PT
t=1 ln lt(yt; ¹t(wt; µ)) in which lt is given

by (2) is consistent for the true value µ0 of a correctly speci…ed model for the conditional

mean even if other aspects of the conditional distribution of Yt are misspeci…ed, i.e. the true

density f0;t is not equal to lt(¢; ¹t(wt; µ)). This property was derived by White (1994), as a
generalization of the result proposed by Gourieroux, Monfort, and Trognon (1984). In this

paper, we derive an analog result for the case where the object of interest is the conditional

®-quantile of Yt. We start by de…ning the tick-exponential family of densities - family whose

role in the conditional quantile estimation is analog to the role of the linear-exponential

family in the conditional mean estimation.

Definition 1 (tick-exponential family) A family of probability measures on R ad-

mitting a density '®t indexed by a parameter ´, ´ 2 Mt;Mt ½ R, is called tick-exponential
of order ®, ® 2 (0; 1), if and only if: (i) for y 2 R,

'®t (y; ´) = expf¡(1¡ ®)[at(´)¡ bt(y)]1(y 6 ´) + ®[at(´)¡ ct(y)]1(y > ´)g;
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where at : Mt ! R is continuously di¤erentiable and bt : R ! R and ct : R ! R are

Ft-measurables; the functions at, bt and ct are such that for ´ 2Mt: (ii) '®t is a probability

density, i.e.
R
R '

®
t (y; ´)dy = 1; (iii) ´ is the ®-quantile of '®t , i.e.

R ´
¡1 '

®
t (y; ´)dy = ®.

In other words, for a given value of probability ®, '®t is linear-exponential “by parts”

where the two parts have di¤erent slopes, proportional to 1 ¡ ® and ®, respectively. Note
that by setting dt(y) ´ (1¡ 2®)¡1 ¢ [(1¡ ®)bt(y)¡ ®ct(y)] and gt(y) ´ ®(1¡ ®)(2®¡ 1)¡1 ¢
[bt(y) ¡ ct(y)], we obtain an alternative expression for '®t , given by '®t (y; ´) = expfgt(y) ¡
(1¡®)[at(´)¡ dt(y)]1(y 6 ´)+®[at(´)¡ dt(y)]1(y > ´)g, which has separately been studied
by Gourieroux, Monfort and Renault (1987) in the M-estimation context.2 In a special case

when at(´) = [1=(®(1 ¡ ®))]´ and bt(y) = ct(y) = [1=(®(1 ¡ ®))]y, the function ln'®t is
proportional to t®(y; ´) ´ (®¡ 1(y 6 ´)) ¢ (y ¡ ´), which corresponds to the ‘tick’ function,
also known as ‘asymmetrical slope’ or ‘check’ function in the literature. This is why we call

‘tick-exponential’ the family of functions de…ned in De…nition 1.

Property 2 Let '®t : R £Mt ! R be a tick-exponential density of order ®, ® 2 (0; 1),
as de…ned in De…nition 1. For every ´ 2 Mt, the functions at : Mt ! R, bt : R ! R and

ct : R! R then satisfy:

(i) a0t(´) > 0;

(ii) expf¡(1¡ ®)[at(´)¡ bt(´)]g = ®(1¡ ®)a0t(´);
(iii) expf®[at(´)¡ ct(´)]g = ®(1¡ ®)a0t(´);
(iv) (1¡ ®)bt(´) + ®ct(´) = at(´).

Note that the last equality (iv) in particular implies that '®t (¢; ´) is continuous on R.
In cases where the argument ´ corresponds to a function of a random variable Wt and of

the k-vector of parameters µ, such as q®t (Wt; µ) for example, we further assume that for all

µ we have q®t (Wt; µ) 2 Mt a.s.-P0, and that the conditions of De…nition 1 are satis…ed for

'®t (Yt; q
®
t (Wt; µ)).
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3. CONSISTENCY OF THE TICK-EXPONENTIAL QMLE

Let us now turn to the asymptotic properties of the QMLE based on tick-exponential

family of order ®. Let '®t be a tick-exponential density of order ®, as de…ned in De…nition

1 and µ̂T the corresponding QMLE, solution to

max
µ2£

LT (µ) ´ T¡1
TX
t=1

ln'®t (yt; q
®
t (wt; µ)):(3)

The following theorem establishes consistency of µ̂T . For the sake of clarity, all the assump-

tions used in this and the following theorems are grouped in the Appendix.

Theorem 3 (Sufficient Conditions for Consistency) Let µ̂T be a tick-exponential

QMLE, obtained by solving the maximization problem (3). Under assumptions (A0)-(A5)

and (A7), µ̂T
p! µ0.

In other words, if lt belongs to the tick-exponential family of densities, the QMLE provides

a consistent estimate of the true parameters of a correctly speci…ed model of the conditional

®-quantile of Yt despite distributional misspeci…cation, i.e. even if the true conditional

distribution of Yt is not tick-exponential. Hence, we need not know the true distribution

of neither Yt nor the exogenous variables Zt in order to obtain consistent estimates for

the parameters of the conditional ®-quantile of Yt. Even though the consistency result in

Theorem 3 is robust to distributional misspeci…cation, it is only valid if the conditional

quantile model M = fq®t g is correctly speci…ed (assumption (A0)), which may not always
be true. Under model misspeci…cation we have the following result.

Corollary 4 (Sufficient Conditions for Consistency under Misspecification)

Let µ¤ ´ argmaxµ2£ L0(µ) be the pseudo-true value of the parameter µ when the model

M = fq®t g for the conditional ®-quantile of Yt is not correct, and let µ̂T be a tick-exponential
QMLE, solution to the maximization problem (3). Under assumptions (A1)-(A5) and (A7),

µ̂T
p! µ¤.
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Both consistency results are valid under standard regularity assumptions, which in gen-

eral can be classi…ed in three groups: compactness, uniqueness and uniform convergence

assumptions. The parameter space £ is compact by assumption (A1). The purpose of the

uniqueness assumptions is to ensure that µ0 (or µ
¤) is the unique maximizer of the expected

log-likelihood L0(µ) ´ E[ln'®t (Yt; q®t (Wt; µ))]. While this requirement is trivially veri…ed for

µ¤, it needs to be checked for µ0, under correct speci…cation of the conditional ®-quantile of

Yt (assumption (A0)). The uniqueness is achieved by imposing an identi…cation assumption

on the conditional quantile modelM = fq®t g (assumption (A3)). The most delicate part of
the consistency proof relies on the uniform convergence assumptions. These need to ensure

(i) that the function ln'®t is uniformly continuous in µ and (ii) that the stochastic process

fln'®t g has certain dependence structure so that a uniform law of large numbers (ULLN)

can be applied. The …rst requirement is achieved by considering functions that satisfy the

Lipshitz condition, implied in the paper by (A2) and (A4). The second requirement is met

by imposing heterogeneity restrictions on the process fln'®t g. More speci…cally, we use
Andrews’ (1988) concept of L1-mixingales (assumption (A7)), which covers a wide range of

dependence structures for Xt. Assumption (A5) ensures that fln'®t g is moreover uniformly
integrable, which allows us to use the ULLN.

We now derive conditions which are necessary if we want a QMLE to be consistent for

the parameters of a given conditional ®-quantile.

Theorem 5 (Necessary Condition for Consistency) Let µ̂T be the QMLE obtained

by solving the maximization problem (1) in which q®t (Wt; ¢) and ln lt(Yt; q®t (Wt; ¢)) are con-
tinuously di¤erentiable on £ a.s.-P0. Assume that (i) £ is compact; (ii) LT (µ) converges

uniformly in probability to L0(µ) ´ E[ln lt(Yt; q®t (Wt; µ))]; (iii) L0(µ) is continuous; (iv) L0(µ)

is uniquely maximized at µ0. Then, a necessary condition for µ̂T to be consistent for the para-

meters of the conditional ®-quantile of Yt, q®t (Wt; µ0), is that lt be a tick-exponential density

of order ®.

In other words, if we want the QMLE to be consistent for the true parameters of a

correctly speci…ed model of the conditional ®-quantile of Yt then we must choose a mem-

ber lt of the tick-exponential family. Note that Theorem 5 is not exactly the converse of
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the result given in Theorem 3. In order to derive the necessary condition for consistency

we assume that q®t (Wt; ¢) and ln lt(Yt; q®t (Wt; ¢)) are continuously di¤erentiable on £ a.s.-P0,
i.e. that for all (yt; w0t)

0 in some set At of measure one, P0(At) = 1, we have q®t (wt; ¢) and
ln lt(yt; q

®
t (wt; ¢)) continuously di¤erentiable on £. This property is for example satis…ed

when for every µ 2 £, @ ln lt(yt; q®t (wt; µ))=@µ exists and is continuous for almost all (yt; w0t)0,
or when @ ln lt(yt; q®t (wt; µ))=@µ has a …nite set of discontinuities fµj(yt)g where each dµj=dyt
exists and is not zero. The remainder of the assumptions in Theorem 5 are the standard

consistency assumptions (i) - (iv). Note that under the additional di¤erentiability assump-

tions we obtain the continuous di¤erentiability of the expected log-likelihood L0(µ) and can

therefore write the …rst order condition, rµL0(µ0) = 0, upon which is based the proof of

Theorem 5.

4. ASYMPTOTIC NORMALITY OF THE TICK-EXPONENTIAL QMLE

Let us now turn to the asymptotic normality of the tick-exponential QMLE µ̂T , solution to

the maximization problem (3). The classical asymptotic normality results for QMLE require

that the log-likelihood function LT (µ) be twice continuously di¤erentiable. The main idea

is to then use the …rst-order Taylor expansion of the gradient rµLT (µ) around the QMLE

µ̂T , which satis…es the …rst order condition rµLT (µ̂T ) = 0. This approach requires LT (µ)

to be su¢ciently smooth, which is not the case with the tick-exponential family of densities

due to the presence of indicator functions in De…nition 1. Indeed, under tick-exponential

assumption,

LT (µ) = T
¡1

TX
t=1

f¡(1¡ ®)[at(q®t (wt; µ))¡ bt(yt)]1(yt 6 q®t (wt; µ))(4)

+®[at(q
®
t (wt; µ))¡ ct(yt)]1(yt > q®t (wt; µ))g;

where the functions at(¢), bt(¢) and ct(¢) are as de…ned in De…nition 1. The non-di¤erentiability
problem has prompt several authors to develop asymptotic normality results under a weaker

set of assumptions, generally requiring that rµLT (µ) exist with probability one. Exam-

ples include Daniels (1961), Huber (1967), Pollard (1985), Pakes and Pollard (1989), Newey
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and McFadden (1994). In the particular case of this paper, we assume that the function

q®t (Wt; ¢) : £! R is continuously di¤erentiable on £ a.s.-P0 (assumption (A4)), so that the

log-likelihood function LT (µ) is continuously di¤erentiable on £ with probability one, i.e.

for every µ 2 £,

rµLT (µ) ´ T¡1
TX
t=1

[®¡H(q®t (wt; µ)¡ yt)]a0t(q®t (wt; µ))rµq
®
t (wt; µ);(5)

exists and is continuous for almost all (yt; w0t)
0
t=1;:::;T . The function H : R¤ ! f0; 1g is the

Heaviside function, i.e. H(x) = 1 if x > 0 and 0 if x < 0.

We now derive the asymptotic distribution of µ̂T .

Theorem 6 (Asymptotic Normality) Let µ̂T be the tick-exponential QMLE, i.e. µ̂T =

argmaxµ2£ T¡1
PT

t=1 ln'
®
t (yt; q

®
t (wt; µ)). Under assumptions (A0), (A1’), (A2’), (A3), (A4’)

and (A5)-(A8)
p
T (µ̂T ¡ µ0)!N (0;¢¡10 §0¢¡1

0 );

where

¢0 = ¡E[f0;t(q®t (Wt; µ0)) ¢ a0t(q®t (Wt; µ0)) ¢ rµq
®
t (Wt; µ0)rµq

®
t (Wt; µ0)

0]

and

§0 = ¡®(1¡ ®)E[(a0t(q®t (Wt; µ0)))
2 ¢ rµq

®
t (Wt; µ0)rµq

®
t (Wt; µ0)

0]:

Note that the assumptions imposed in Theorem 6 are stronger than the ones used for the

consistency of µ̂T in Theorem 3. We now require µ0 to be an interior point of £ (assumption

(A1’)). The functions at(¢) and q®t (Wt; ¢) are assumed to be twice continuously di¤erentiable
(assumptions (A2’) and (A4’)), so that the gradient of the log-likelihood function, rµLT , is

stochastically equicontinuous. Similarly to the assumption (A7), assumption (A8) consists

of dependence constraints on the process Xt, while by (A6) we constrain the true conditional

density of Yt, f0;t, to be bounded and non-zero at the true conditional ®-quantile q®t (Wt; µ0).

The result of Theorem 6 can easily be generalized by relaxing the correct speci…cation

assumption (A0). As previously, we denote by µ¤ the pseudo-true value of the parameter

µ, µ¤ ´ argmaxµ2£ L0(µ), when the model fq®t g is not correctly speci…ed. Under model
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misspeci…cation, µ¤ is a solution to the …rst order condition E[(® ¡ H(q®t (Wt; µ
¤) ¡ Yt)) ¢

a0t(q
®
t (Wt; µ

¤)) ¢ rµq
®
t (Wt; µ

¤)] = 0, but we no longer have Et[®¡H(q®t (Wt; µ
¤)¡Yt)] = 0, i.e.

® = F0;t(q
®
t (Wt; µ

¤)), which is a stronger requirement. Hence, the asymptotic distribution of

µ̂T changes, as stated by the following Corollary.

Corollary 7 (Asymptotic Normality under Misspecification) Let µ¤ ´ argmaxµ2£ L0(µ)
be the pseudo-true value of the parameter µ when the model fq®t g for the conditional ®-quantile
of Yt is not correct. Under assumptions (A1’), (A2’), (A3), (A4’) and (A5)-(A8),

p
T (µ̂T ¡ µ¤)!N (0;¢¤¡1§¤¢¤¡1);

where

¢¤ = ¡E[f0;t(q®t (Wt; µ
¤)) ¢ a0t(q®t (Wt; µ

¤)) ¢ rµq
®
t (Wt; µ

¤)rµq
®
t (Wt; µ

¤)0]

+E[(®¡ F0;t(q®t (Wt; µ
¤)))

¢[a00t (q®t (Wt; µ
¤)) ¢ rµq

®
t (Wt; µ

¤)rµq
®
t (Wt; µ

¤)0 + a0t(q
®
t (Wt; µ

¤)) ¢ rµµq
®
t (Wt; µ

¤)]]

and

§¤ = E[(®2 ¡ (2®¡ 1)F0;t(q
®
t (Wt; µ

¤))) ¢ (a0t(q®t (Wt; µ
¤)))2 ¢ rµq

®
t (Wt; µ

¤)rµq
®
t (Wt; µ

¤)0]:

The asymptotic distribution derived in Corollary 7 is a generalization of all the results

obtained by the previous literature on conditional quantile estimation. For example, let

at(´) = [1=(®(1 ¡ ®))]´ and bt(y) = ct(y) = [1=(®(1 ¡ ®))]y, so that the function ln'®t is
proportional to the “tick” function, t®(y; ´). Hence, µ

¤ is a solution to a standard non-linear

quantile regression problem, minµ2£E[(®¡ 1(Yt 6 q®t (Wt; µ))) ¢ (Yt ¡ q®t (Wt; µ))]. Assuming

a linear model for the conditional ®-quantile of Yt, q®t (Wt; µ) = µ0Wt, it can be shown

that ¢¤ = ¡1=(®(1 ¡ ®)) ¢ E[f0;t(µ¤0Wt)WtW
0
t ] and §

¤ = 1=(®(1 ¡ ®))2 ¢ E[(®2 ¡ (2® ¡
1)F0;t(µ

¤0Wt))WtW
0
t ]. This case, under an additional iid assumption on Xt, corresponds

to Kim and White (2002):
p
T (µ̂T ¡ µ¤) ! N (0; E[f0;t(µ¤0Wt)WtW

0
t ]
¡1 ¢ E[(®2 ¡ (2® ¡

1)F0;t(µ
¤0Wt))WtW

0
t ] ¢ E[f0;t(µ¤0Wt)WtW

0
t ]
¡1). In a more restricted case where the linear
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conditional quantile model is correctly speci…ed, it can be shown that
p
T (µ̂T ¡ µ0) !

N (0; ®(1¡ ®)E[f0;t(µ00Wt)WtW
0
t ]
¡1 ¢E[WtW

0
t ] ¢E[f0;t(µ00Wt)WtW

0
t ]
¡1), which was derived by

Powell (1986). Finally, if the true conditional density of Yt is Ft-independent, i.e. f0;t = f0,
we obtain the original result by Koenker and Bassett (1978):

p
T (µ̂T ¡ µ0) ! N (0; ®(1 ¡

®)[f20 (µ
0
0Wt) ¢ E(WtW

0
t)]

¡1).

5. PRACTICAL IMPLEMENTATION

The quasi-maximum likelihood approach based on tick-exponential family of densities

provides consistent and asymptotically normal estimators for conditional quantiles under a

relatively weak set of assumptions. In practice, however, solving the maximization prob-

lem (3) seems di¢cult a task. The objective function LT (µ) is not everywhere di¤erentiable,

which prevents us from using the traditional gradient-based optimization techniques in order

to determine the maximum µ¤. When the conditional quantile model is linear, the optimiza-

tion can easily be carried out by linear programming. In the nonlinear case, however, the

optimization relies on interior-point methods and is substantially less e¤ective to carry out,

as shown by Koenker and Park (1996) for example. The optimization algorithm that we de-

sign in this paper applies to the general case and can be used to optimize the log-likelihood

function LT (µ) in spite of its non-everywhere di¤erentiability.

We describe the intuition behind our approach by …rst considering the case T = 1, i.e.

only observations (y1; z1) are available. The problem of maximizing L1(µ) becomes in that

case maxµ2£ ln'®1 (y1; q
®
t (w1t; µ)), i.e.

max
µ2£

min flnÃ®1 (y1; q®t (w1t; µ)); lnÁ®1 (y1; q®t (w1t; µ))g(6)

where we have de…ned

Ã®t (y; ´) ´ expf®[at(´)¡ ct(y)]g;
Á®t (y; ´) ´ expf¡(1¡ ®)[at(´)¡ bt(y)]g;

for all t > 0, y 2 R and ´ 2 Mt. Recall that at : Mt ! R is continuously di¤erentiable and

bt : R ! R and ct : R ! R are Ft-measurables. Hence, the functions Ã®t (y; ¢) : Mt ! R

12



and Á®t (y; ¢) : Mt ! R are continuously di¤erentiable. By noting that for all (x; y) 2
R2 we have min fx; yg = ¡max f¡x;¡yg, the maximization problem (6) is equivalent to

maxµ2£[¡max f¡ lnÃ®1 (y1; q®t (w1t; µ));¡ lnÁ®1 (y1; q®t (w1t; µ))g]. Moreover, if £ is compact

(assumption (A1)), the previous maximization problem is equivalent to the minimization

problem

¡min
µ2£
[max f¡ lnÃ®1 (y1; q®t (w1t; µ));¡ lnÁ®1 (y1; q®t (w1t; µ))g]:(7)

We have thus transformed the initial maximization problem, maxµ2£ ln'®1 (y1; q
®
t (w1t; µ)),

into a “minimax” problem (7), which involves only continuously di¤erentiable functions Ã®1

and Á®1 . Similar reasoning applies when T > 1 and the corresponding equivalence is provided

by the following Theorem.

Theorem 8 (Optimization) Let "µ ´ ("µ;1; "µ;2; : : : ; "µ;T )
0 be a T -vector of order statis-

tics, "µ;1 6 "µ;2 6 : : : 6 "µ;T , of an “error” term "t ´ yt ¡ q®t (wt; µ), and let yµ ´
(yµ;1; yµ;2; : : : ; yµ;T )

0 and wµ ´ (wµ;1; wµ;2; : : : ; wµ;T )
0 be T -vectors of corresponding observa-

tions. Under assumption (A1), the QMLE µ̂T is a solution to the “minimax” problem

min
µ2£
[ max
06k6T

fPk(yµ; wµ; µ)g]

where Pk(yµ; wµ; µ) is de…ned as

Pk(yµ; wµ; µ) ´

8>>>>>>>>>><>>>>>>>>>>:

T¡1
TP
t=1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ)); if k = 0,

T¡1[
kP
t=1
¡ lnÁ®t (yµ;t; q®t (wµ;t; µ))

+
TP

s=k+1

¡ lnÃ®s (yµ;s; q®s (wµ;s; µ))];
if 1 6 k 6 T ¡ 1,

T¡1
TP
t=1
¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)); if k = T .

The tick-exponential QMLE µ̂T can thus be obtained as a solution to the classical “min-

imax” problem. Moreover, for all k, 0 6 k 6 T , the function Pk(yµ; wµ; ¢) is continuously
di¤erentiable on £. We can therefore use the standard gradient-based optimization tech-

niques to determine the optimum µ̂T .
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We now turn to the problem of asymptotic covariance matrix estimation. One approach

to estimating the asymptotic covariance matrix of µ̂T is to use the formulas for ¢¤ and

§¤, derived in Corollary 7. The main di¢culty of this approach however is that it requires

estimating conditional density, f0;t, and distribution, F0;t, of Yt, which is a di¢cult problem in

itself. An alternative approach is to estimate ¢¤ and §¤ by numerical di¤erentiation. Recall

that ¢¤ corresponds to expected value of the “Hessian” of ln'®t , while §
¤ is the asymptotic

covariance matrix of the “scores” of ln'®t . This second-moment matrix can be estimated

by the sample second moment of the scores fst(µ̂T )g16t6T , §̂ ´ T¡1
PT

t=1 st(µ̂T )st(µ̂T )
0. The

jth row of st, st;j, is obtained by numerical di¤erentiation,

st;j ´ [ln'®t (yt; q®t (wt; µ̂T + ej²T ))¡ ln'®t (yt; q®t (wt; µ̂T ¡ ej²T ))]=2²T ;(8)

where ej the jth unit vector and ²T a small positive constant that depends on the sample

size. Similarly, the second-order numerical derivative estimator of¢¤, ¢̂, has (i; j)th element

given by

¢̂i;j ´ [LT (µ̂T + ei²T + ej²T )¡ LT (µ̂T ¡ ei²T + ej²T )(9)

¡LT (µ̂T + ei²T ¡ ej²T ) + LT (µ̂T ¡ ei²T ¡ ej²T )]=4²2T :

If the step size ²T is such that ²T ! 0 and T 1=2²T !1, then §̂¡§¤ p! 0 and ¢̂¡¢¤ p! 0.

Hence the asymptotic covariance matrix of µ̂T can be consistently estimated by ¢̂¡1§̂¢̂¡1

(see, e.g. Theorem 7.4 in Newey and McFadden 1994).

6. CONCLUSION

In this paper we have de…ned a new family of densities, called ‘tick-exponential’, whose

role in the conditional quantile estimation is analog to the role of the linear-exponential fam-

ily in the conditional mean estimation. Our …rst result is that the class of ‘tick-exponential’

QMLEs is consistent for the parameters of a correctly speci…ed conditional quantile model.

Our second result is that the ‘tick-exponential’ assumption is also a necessary condition for

consistency. Our third result is that the class of ‘tick-exponential’ QMLEs is asymptotically

normal with the asymptotic covariance matrix which accounts for possible model misspec-
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i…cation. A natural extension of our results is to derive a speci…cation test for conditional

quantile models, topic which we leave for future research.

For practical purposes, we have provided an easy-to-implement algorithm for the max-

imization of the ‘tick-exponential’ (quasi) log-likelihood as well as a consistent covariance

matrix estimator based on the scores. More generally, the estimation method proposed in

this paper can be seen as an alternative to the computationally expensive nonlinear quantile

regression methods. A more detailed comparison of conditional quantile con…dence inter-

vals obtained through our approach with di¤erent bootstrap methods, traditionally used in

quantile regression, is an interesting empirical topic that we leave for future research.
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Notes

1The choice of di¤erent time subscripts for Yt¡1 and Zt depends on whether we want to

condition on contemporaneous Zt.

2The author wishes to thank Alain Monfort for pointing out this analogy, which she was

unaware of prior to the writing of this paper.
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7. APPENDIX

Assumptions:

(A0) there exists a k-vector µ0 in £, £ ½ Rk, such that q®t (Wt; µ0) = Q®(YtjFt), where Wt is

a vector of variables that are Ft-measurable;
(A1) the parameter space £ is compact, £ ½ Rk;
(A1’) the parameter space £ is compact, £ ½ Rk, and µ0 and µ¤ are interior points of £;
(A2) the function at : Mt ! R has bounded derivative, i.e. there exists a constant K > 0

such that for all ´ 2Mt we have 0 < a0t(´) 6 K;
(A2’) the function at :Mt ! R is twice continuously di¤erentiable with bounded derivatives,

i.e. there exist constants K > 0 and M > 0 such that for all ´ 2Mt we have 0 < a0t(´) 6 K
and ja00t (´)j 6M ;
(A3) the model M = fq®t g is such that µ0 2 £ is identi…ed, i.e. for any µ 2 £, q®t (Wt; µ) =

q®t (Wt; µ0) a.s.-P0, implies µ = µ0;

(A4) the function q®t (Wt; ¢) : £! R is continuously di¤erentiable on £ a.s.-P0, and for each

µ 2 £, E[jjrµq
®
t (Wt; µ)jj] <1;

(A4’) the function q®t (Wt; ¢) : £ ! R is twice continuously di¤erentiable on £ a.s.-P0, and

there exist some ± > 0 and ² > 0 such that, for each µ 2 £, E[jjrµq
®
t (Wt; µ)jj2+±] <1 and

E[jjrµµq
®
t (Wt; µ)jj1+²] <1. Moreover, E[rµq

®
t (Wt; µ0)rµq

®
t (Wt; µ0)

0] is nonsingular;

(A5) for some ± > 0, E[jbt(Yt)j1+±] <1, E[jct(Yt)j1+±] <1 andE[(supµ2£ jat(q®t (Wt; µ))j)1+±] <
1;
(A6) the true density of Yt conditional on the information set Ft, f0;t, is bounded, i.e.
there exists some C > 0 such that supy2R f0:t(y) = C < 1, and nonzero at q®t (Wt; µ0) and

q®t (Wt; µ
¤);

(A7) fln'®t (Yt; q®t (Wt; µ));Ftg is an L1-mixingale;
(A8) fs2t (Yt;Wt; µ);Ftg and f¢(Yt;Wt; µ);Ftg are L1-mixingales, where st is the gradient of
the tick-exponential log-likelihood ln'®t (Yt; q

®
t (Wt; µ)),

st(Yt;Wt; µ) ´ [®¡H(q®t (Wt; µ)¡ Yt)] ¢ a0t(q®t (Wt; µ)) ¢ rµq
®
t (Wt; µ);
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and ¢ the Hessian matrix of second derivatives

¢(Yt;Wt; µ) ´ [(®¡H(q®t (Wt; µ)¡ Yt)) ¢ a00t (q®t (Wt; µ))¡ ±(q®t (Wt; µ)¡ Yt) ¢ a0t(q®t (wt; µ))]
¢rµq

®
t (wt; µ) ¢ rµq

®
t (Wt; µ)

0 + a0t(q
®
t (Wt; µ)) ¢ rµµq

®
t (Wt; µ);

Proof. (Property 2) Di¤erentiating the property (iii) in De…nition 1 with respect to

the variable ´, we have, for every ´ 2Mt,

expf¡(1¡ ®)[at(´)¡ bt(´)]g ¡ (1¡ ®)a0t(´)
Z ´

¡1
'®t (y; ´)dy = 0;

which implies that

expf¡(1¡ ®)[at(´)¡ bt(´)]g = ®(1¡ ®)a0t(´);

for every ´ 2Mt. Hence the equality (ii) in Property 2 is satis…ed. Similarly, by combining

(ii) and (iii) in De…nition 1 and then di¤erentiating the resulting equation with respect to

´, we show that the equality (iii) in Property 2 holds, i.e.

expf®[at(´)¡ ct(´)]g = ®(1¡ ®)a0t(´);

for every ´ 2 Mt. These two equalities in particular imply that '®t (¢; ´) is continuous at
y = ´, i.e. (1¡®)bt(´)+®ct(´) = at(´), for every ´ 2Mt, and that the function at is strictly

increasing onMt, i.e. for every ´ 2Mt, a0t(´) > 0,.which shows that (i) and (iv) in Property

2 hold.

Proof. (Theorem 3) To show that Theorem 3 holds we use the fundamental consis-

tency result for extremum estimators:

The basic consistency theorem: If there is a function L0(µ) such that (i) L0(µ) is uniquely

maximized at µ0; (ii) £ is compact; (iii) L0(µ) is continuous; (iv) LT (µ) converges uniformly

in probability to L0(µ), then µ̂T
p! µ0 (see e.g., Theorem 2.1 in Newey and McFadden, 1994,

p 2121).

Let LT (µ) ´ T¡1
PT

t=1 ln'
®
t (yt; q

®
t (wt; µ)) and L0(µ) ´ E[ln'®t (Yt; q®t (Wt; µ))].
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Compactness: the compactness condition (ii) is satis…ed by imposing (A1).

Uniqueness: we …rst show that under correct speci…cation of the conditional ®-quantile of

Yt (assumption (A0)), µ0 maximizes L0(µ), i.e. L0(µ) 6 L0(µ0) for all µ 2 £:
Recall that we have

L0(µ) = E[¡(1¡ ®)(at(q®t (Wt; µ))¡ bt(Yt)) ¢ 1(Yt 6 q®t (Wt; µ))

+®(at(q
®
t (Wt; µ))¡ ct(Yt)) ¢ 1(Yt > q®t (Wt; µ))]

= E[at(q
®
t (Wt; µ)) ¢ (®¡ 1(Yt 6 q®t (Wt; µ)))

+(1¡ ®)bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ))

¡®ct(Yt) ¢ 1(Yt > q®t (Wt; µ))]

= Efat(q®t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

+(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ))]g;

so that we need to show

at(q
®
t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

+(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ))]

6

(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ0))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ0))]; a:s¡ P0;

i.e.

at(q
®
t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

6

(1¡ ®)Et[bt(Yt) ¢ (1(Yt 6 q®t (Wt; µ0))¡ 1(Yt 6 q®t (Wt; µ)))]

¡®Et[ct(Yt) ¢ (1(Yt > q®t (Wt; µ0))¡ 1(Yt > q
®
t (Wt; µ)))]; a:s:¡ P0:
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Under correct speci…cation q®t (Wt; µ0) = Q®(YtjFt) (assumption (A0)) andEt[1(Yt 6 q®t (Wt; µ0))] =

® so that the previous inequality becomes

at(q
®
t (Wt; µ)) ¢ Et[dt(Yt;Wt; µ; µ0)] 6(10)

Et[((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0)]; a:s:¡ P0;

where dt(Yt;Wt; µ; µ0) ´ 1(Yt 6 q®t (Wt; µ0))¡1(Yt 6 q®t (Wt; µ)). We now show that inequality

(10) holds: …rst, consider the sets At ´ f! 2 ­ : q®t (Wt(!); µ0) 6 q®t (Wt(!); µ)g and Bt ´
f! 2 ­ : q®t (Wt(!); µ0) < Yt(!) 6 q®t (Wt(!); µ)g. We have dt(Yt;Wt; µ; µ0) = 1(q®t (Wt; µ0) <

Yt 6 q®t (Wt; µ)) = ¡1 on At \Bt, and = 0 on At \ Bct . Moreover, by continuity of '®t (¢; ´),
we have (1 ¡ ®)bt(Yt) + ®ct(Yt) = at(Yt) 6 at(q®t (Wt; µ)) on At \ Bt (recall that a0t > 0) so
that

at(q
®
t (Wt; µ)) ¢ dt(Yt;Wt; µ; µ0) 6 ((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0); on At \Bt;

at(q
®
t (Wt; µ)) ¢ dt(Yt;Wt; µ; µ0) = ((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0) = 0; on At \Bct :

Next, consider Act = f! 2 ­ : q®t (Wt(!); µ0) > q®t (Wt(!); µ)g and Ct ´ f! 2 ­ :

q®t (Wt(!); µ) < Yt(!) 6 q®t (Wt(!); µ0)g. Similarly, dt(Yt;Wt; µ; µ0) = 1(q®t (Wt; µ) < Yt 6
q®t (Wt; µ0)) = 1 on Act \ Ct, and = 0 on Act \ Cct . Now we have (1 ¡ ®)bt(Yt) + ®ct(Yt) =
at(Yt) > at(q

®
t (Wt; µ)) on Act \ Ct so that

at(q
®
t (Wt; µ)) ¢ dt(Yt;Wt; µ; µ0) < ((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0); on Act \ Ct;

at(q
®
t (Wt; µ)) ¢ dt(Yt;Wt; µ; µ0) = ((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0) = 0; on Act \ Cct :

We conclude that

at(q
®
t (Wt; µ)) ¢ dt(Yt;Wt; µ; µ0) 6 ((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ0); a:s:¡ P0;

which in turn implies that inequality (10) holds and that µ0 is a maximizer of L0(µ).

We now show that it is unique: note that the previous inequality becomes an equality if

and only if At \ Bt = ; and Act \ Ct = ;, i.e. if and only if Bt = Ct = ;. The variable Yt
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being continuous, we have that Bt = Ct = ; if and only if q®t (Wt; µ) = q®t (Wt; µ0) a.s.-P0.

Assumption (A3) implies that q®t (Wt; µ) = q
®
t (Wt; µ0) a.s.-P0 if and only if µ = µ0, so that

we have uniqueness.

Uniform convergence: we next show that both the continuity condition (iii) and the

uniform convergence condition (iv) hold by using a weak form of the uniform law of large

numbers (ULLN).

The weak ULLN theorem: If the function ln'®t (Yt; q
®
t (Wt; µ)) is Lipshitz-L1 a.s. on £ and

fln'®t (Yt; q®t (Wt; µ)); Ftg is a uniformly integrable L1-mixingale, then LT (µ) converges uni-
formly in probability to L0(µ) and L0(µ) is continuous on £ (see e.g., Theorem A.2.9 in

White, 1994, p 355).

We start by showing that ln'®t (Yt; q
®
t (Wt; µ)) is Lipshitz-L1 a.s. on £. First, recall the

de…nition of a function that is Lipshitz-L1 a.s. on £: for each µ0 2 £, there exists a con-
stant ±0 > 0 and an Ft-measurable function L0t : ­ ! R+ such that for all µ such that

jjµ ¡ µ0jj 6 ±0, we have

j ln'®t (Yt; q®t (Wt; µ))¡ ln'®t (Yt; q®t (Wt; µ0))j 6 L0t jjµ ¡ µ0jj; a:s:¡ P0:(11)

Moreover, L0t has to satisfy: T
¡1PT

t=1E[L
0
t ] <1 (see e.g., De…nition A.2.3 in White, 1994,

p 352). By assumption (A4), q®t (Wt; ¢) is continuous a.s. on £, i.e. for each µ0 2 £ and

for each " > 0 there exists ±";0 > 0 such that for jjµ ¡ µ0jj < ±";0, q®t (Wt; µ0) and q®t (Wt; µ)

are ‘su¢ciently’ close, meaning that if Yt ? q®t (Wt; µ0) a.s.-P0 then Yt ? q®t (Wt; µ) a.s.-P0.

CASE 1: if Yt < q®t (Wt; µ0) a.s.-P0, then for jjµ ¡ µ0jj < ±";0 we have

j ln'®t (Yt; q®t (Wt; µ))¡ ln'®t (Yt; q®t (Wt; µ0))j
= (1¡ ®) ¢ jat(q®t (Wt; µ0))¡ at(q®t (Wt; µ))j; a:s:¡ P0
= (1¡ ®) ¢ a0t(q®t (Wt; ¹µ0)) ¢ jrµq

®
t (Wt; ¹µ0)

0(µ ¡ µ0)j; a:s:¡ P0

for some ¹µ0 ´ cµ+ (1¡ c)µ0, c 2 (0; 1): Note that by assumption (A2) a0t is bounded on Mt,

i.e. there exists a constant K > 0 such that a0t 6 K on Mt, and that by assumption (A4)

E[jjrµq
®
t (Wt; µ)jj] <1. Therefore

j ln'®t (Yt; q®t (Wt; µ))¡ ln'®t (Yt; q®t (Wt; µ0))j 6 K ¢ jjrµq
®
t (Wt; ¹µ0)jj ¢ jjµ ¡ µ0jj; a:s:¡ P0:
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We have thus constructed an Ft-measurable function L0t , L0t ´ Kjjrµq
®
t (Wt; ¹µ0)jj, such that

the inequality (11) holds, and satisfying T¡1
PT

t=1E[L
0
t ] < 1. CASE 2: if Yt > q®t (Wt; µ0)

a.s.-P0, then by a similar reasoning we can show that the same result holds. Thus, we

conclude that ln'®t (Yt; q
®
t (Wt; µ)) is Lipshitz-L1 a.s. on £.

Next, the requirement that fln'®t (Yt; q®t (Wt; µ));Ftg be a uniformly integrable L1-mixingale,
is treated in two steps. First, by assumption (A7) we know that fln'®t (Yt; q®t (Wt; µ));Ftg
is a L1-mixingale. Examples of dependent processes that are L1-mixingales can be found in

Andrews (1988) and White (1994). We second need to show that the uniform integrability

condition holds (see e.g., De…nition A.2.8 in White, 1994, p 354). According to White (1994),

the uniform integrability condition will be satis…ed under mild domination conditions, such

as E[(supµ2£ j ln'®t (Yt; q®t (Wt; µ))j)1+±] < 1 for some ± > 0. This domination condition is

implied by assumption (A5) since

j ln'®t (Yt; q®t (Wt; µ))j 6 jat(q®t (Wt; µ))j+ (1¡ ®)jbt(Yt)j+ ®jct(Yt)j; a:s:¡ P0;

so that

sup
µ2£

j ln'®t (Yt; q®t (Wt; µ))j 6 (1¡ ®)jbt(Yt)j+ ®jct(Yt)j+ sup
µ2£

jat(q®t (Wt; µ))j; a:s:¡ P0:

For a given ± > 0, there exists a constant n± > 1 such that

(sup
µ2£

j ln'®t (Yt; q®t (Wt; µ))j)1+±

6 max(1; n±[(1¡ ®)1+±jbt(Yt)j1+± + ®1+±jct(Yt)j1+± + (sup
µ2£

jat(q®t (Wt; µ))j)1+±]); a:s:¡ P0:

Thus, E[jbt(Yt)j1+±] < 1, E[jct(Yt)j1+±] < 1 and E[(supµ2£ jat(q®t (Wt; µ))j)1+±] < 1 (as-

sumption (A5)) imply E[(supµ2£ j ln'®t (Yt; q®t (Wt; µ))j)1+±] < 1, so that the uniform inte-

grability condition holds.

Finally, we can apply the basic theorem for consistency to show that µ̂T
p! µ0, which com-

pletes the proof of Theorem 3.

Proof. (Corollary 4) To show that Corollary 4 holds we need to check that L0(µ)
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is uniquely maximized at µ¤. The remainder of the proof is then identical to the one for

Theorem 3.

Recall that we have

L0(µ) = Efat(q®t (Wt; µ)) ¢Et[®¡ 1(Yt 6 q®t (Wt; µ))]

+(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ))]g:

Hence, we need to show that

at(q
®
t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

+(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ))]

=

at(q
®
t (Wt; µ

¤)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ
¤))]

(1¡ ®)Et[bt(Yt) ¢ 1(Yt 6 q®t (Wt; µ
¤))]

¡®Et[ct(Yt) ¢ 1(Yt > q®t (Wt; µ
¤))]; a:s¡ P0;

implies µ = µ¤. Note that the previous equality can be written

at(q
®
t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

¡at(q®t (Wt; µ
¤)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ

¤))]

=(12)

(1¡ ®)Et[bt(Yt) ¢ (1(Yt 6 q®t (Wt; µ
¤))¡ 1(Yt 6 q®t (Wt; µ)))]

¡®Et[ct(Yt) ¢ (1(Yt > q®t (Wt; µ
¤))¡ 1(Yt > q

®
t (Wt; µ)))]; a:s:¡ P0:
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As previously, let dt(Yt;Wt; µ; µ
¤) ´ 1(Yt 6 q®t (Wt; µ

¤))¡ 1(Yt 6 q®t (Wt; µ)). We then have

at(q
®
t (Wt; µ)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ))]

¡at(q®t (Wt; µ
¤)) ¢ Et[®¡ 1(Yt 6 q®t (Wt; µ

¤))]

=

®[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))]

+at(q
®
t (Wt; µ)) ¢ Et[dt(Yt;Wt; µ; µ

¤)]

¡[at(q®t (Wt; µ))¡ at(q®t (Wt; µ
¤))] ¢ Et[1(Yt 6 q®t (Wt; µ

¤))];

so that (12) becomes

[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))] ¢Et[®¡ 1(Yt 6 q®t (Wt; µ
¤))]

+at(q
®
t (Wt; µ)) ¢ Et[dt(Yt;Wt; µ; µ

¤)]

=(13)

Et[((1¡ ®)bt(Yt) + ®ct(Yt)) ¢ dt(Yt;Wt; µ; µ
¤)]; a:s:¡ P0:

First, consider the sets At ´ f! 2 ­ : q®t (Wt(!); µ
¤) 6 q®t (Wt(!); µ)g and Bt ´ f! 2 ­ :

q®t (Wt(!); µ
¤) < Yt(!) 6 q®t (Wt(!); µ)g. We have dt(Yt;Wt; µ; µ

¤) = 1(q®t (Wt; µ
¤) < Yt 6

q®t (Wt; µ)) = ¡1 on At \Bt, and = 0 on At \Bct . Hence, (13) becomes

[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))] ¢ ®
= at(q

®
t (Wt; µ))¡ [(1¡ ®)bt(Yt) + ®ct(Yt)]; on At \Bt;

and

[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))] ¢ [®¡ 1(Yt 6 q®t (Wt; µ
¤))] = 0; on At \Bct :

Next, consider Act = f! 2 ­ : q®t (Wt(!); µ
¤) > q®t (Wt(!); µ)g and Ct ´ f! 2 ­ :

q®t (Wt(!); µ) < Yt(!) 6 q®t (Wt(!); µ
¤)g. Similarly, dt(Yt;Wt; µ; µ

¤) = 1(q®t (Wt; µ) < Yt 6
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q®t (Wt; µ
¤)) = 1 on Act \ Ct, and = 0 on Act \ Cct , so that (13) becomes

[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))] ¢ [®¡ 1]

= [(1¡ ®)bt(Yt) + ®ct(Yt)]¡ at(q®t (Wt; µ)); on Act \ Ct;

and

[at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤))] ¢ [®¡ 1(Yt 6 q®t (Wt; µ
¤))] = 0; on Act \ Cct :

In particular, these equalities imply that

at(q
®
t (Wt; µ))¡ at(q®t (Wt; µ

¤)) = 0; on At \Bct and Act \ Cct ;

which in turn implies

q®t (Wt; µ) = q
®
t (Wt; µ

¤); on At \Bct and Act \ Cct ;(14)

since a0t > 0. The equality (14) implies that At ´ f! 2 ­ : q®t (Wt(!); µ
¤) = q®t (Wt(!); µ)g

and Bt = Act = ;, so that q®t (Wt; µ) = q
®
t (Wt; µ

¤); a:s: ¡ P0: Assumption (A3) implies that
q®t (Wt; µ) = q®t (Wt; µ

¤) a.s.-P0 if and only if µ = µ¤, so that µ¤ is the unique maximizer of

L0(µ).

Proof. (Theorem 5) The following proof is inspired by Gourieroux, Monfort, and

Trognon (1984). We show that the Theorem 5 already holds for P0 such that Yt is iid and

q®t (Wt; µ0) = µ0. In this case lt(Yt; qat (Wt; µ)) = l(Yt; µ) and £ ½ R. The log-likelihood func-
tion ln l(Yt; ¢) being continuously di¤erentiable on £ a.s.-P0, we know that for every y 2 A,
P0(A) = 1, ln l(y; ¢) is continuously di¤erentiable for all µ 2 £. Since L0(µ) ´ E[ln l(Yt; µ)] =R
R
ln l(y; µ)dP0(y) =

R
A
ln l(y; µ)dP0(y), the expected log-likelihood L0(µ) is continuously dif-

ferentiable on £, and the …rst order condition (FOC) holds, i.e. dL0=dµjµ=µ0 = 0.
Suppose that the support of Yt consists of y1 and y2, such that ¡1 < y1 6 µ0 < y2 < +1.
Let p0 ´ P0(Yt = y1). Since ® = P0(Yt 6 µ0) we have p0 = ®. The expected log-likelihood,
L0(µ), is then L0(µ) = [® ln l(y1; µ) + (1¡ ®) ln l(y2; µ)]. The FOC can be written

®
@ ln l(y1; µ)

@µ

¯̄̄̄
µ=µ0

+ (1¡ ®) @ ln l(y2; µ)
@µ

¯̄̄̄
µ=µ0

= 0:(15)
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First, consider y1 as …xed: then there exists a constant Á1(µ0) 2 R such that for every

y2 > µ0, we have @ ln l(y2; µ)=@µjµ=µ0 = ¡(®=(1 ¡ ®))Á1(µ0). Similarly, by …xing y2 and
varying y1, we conclude that there exists a constant Á2(µ0) such that for every y1 6 µ0, we
have @ ln l(y1; µ)=@µjµ=µ0 = ¡((1¡®)=®)Á2(µ0). Thus, the FOC (15) becomes (1¡®)Á2(µ0)+
®Á1(µ0) = 0. Let Á(µ0) ´ Á2(µ0)=® = ¡Á1(µ0)=(1¡ ®). We then have

@ ln l(y; µ)=@µjµ=µ0 =
8<: ¡(1¡ ®)Á(µ0); if y 6 µ0,

®Á(µ0); if y > µ0.
(16)

By integrating both parts of (16) with respect to µ we obtain

ln l(y; µ0) =

8<: ¡(1¡ ®)[a(µ0)¡ b(y)]; if y 6 µ0,
®[a(µ0)¡ c(y)]; if y > µ0,

(17)

where the continuity of ln l(¢; µ0) at y = µ0 implies (1¡ ®)b(µ0) + ®c(µ0) = a(µ0):

Proof. (Theorem 6)To show that Theorem 6 holds we use the following result adopted

from Newey and McFadden (1994):

The basic asymptotic normality theorem: Let '®t be a tick-exponential density of order ®, as

de…ned in De…nition 1 and µ̂T the corresponding QMLE,

µ̂T = argmax
µ2£

T¡1
TX
t=1

ln'®t (yt; q
®
t (wt; µ)):

Assume that µ̂T
p! µ0 and that

p
TrµLT (µ̂T )

p! 0. Suppose that (i) µ0 is an interior point

of £; (ii) E[rµ ln'
®
t (Yt; q

®
t (Wt; µ0))] = 0; (iii) there is ¢(Yt;Wt; µ0) such that with probabil-

ity one, r(Yt;Wt; µ) ´ jjrµ ln'
®
t (Yt; q

®
t (Wt; µ))¡rµ ln'

®
t (Yt; q

®
t (Wt; µ0))¡¢(Yt;Wt; µ0)(µ ¡

µ0)jj=jjµ ¡ µ0jj ! 0 as µ ! µ0; (iv) T¡1
PT

t=1¢(Yt;Wt; µ0)
p! E[¢(Yt;Wt; µ0)] ´ ¢0; (v)

there is " > 0 such that E[supjjµ¡µ0jj<" r(Yt;Wt; µ)] < 1; (vi) pTrµLT (µ0)
d! N (0;§0).

Then
p
T (µ̂T ¡ µ0)! N (0;¢¡1

0 §0¢
¡1
0 ) (see Theorems 7.2 and 7.3 in Newey and McFadden,

1994, p 2186-2188).

As previously, LT (µ) = T¡1
PT

t=1 ln'
®
t (yt; q

®
t (wt; µ)) and L0(µ) = E[ln'

®
t (Yt; q

®
t (Wt; µ))].

Asymptotic …rst order condition: we start by showing that the asymptotic …rst order

condition,
p
TrµLT (µ̂T )

p! 0, holds. From equation (5) we haverµLT (µ) = T
¡1PT

t=1 st(yt; wt; µ),
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where st(yt; wt; µ) is given by

st(yt; wt; µ) ´ [®¡H(q®t (wt; µ)¡ yt)] ¢ a0t(q®t (wt; µ)) ¢ rµq
®
t (wt; µ):

We use the approach by Ruppert and Carroll (1980) (see their proof of Lemma A.2). Let

LT;µ;j(a) ´ T¡1
XT

t=1
ln'®t (yt; q

®
t (wt; µ̂T + aej);

where fejgkj=1 is the standard basis of Rk, and a 2 R is such that for all j = 1; : : : ; k,

µ̂T + aej 2 £. Also, let GT;µ;j(a) be the derivative form right of LT;µ;j(a), so that

GT;µ;j(a) = T
¡1XT

t=1
[®¡H(q®t (wt; µ̂T +aej)¡yt)] ¢a0t(q®t (wt; µ̂T +aej)) ¢

@

@µj
q®t (wt; µ̂T +aej):

By the same argument as in Ruppert and Carroll (1980), we have

jGT;µ;j(0)j 6 T¡1
XT

t=1
ja0t(q®t (wt; µ̂T ))j ¢ j

@

@µj
q®t (wt; µ̂T )j ¢ 1(yt = q®t (wt; µ̂T )):

By assumption (A2’) a0t is bounded, 0 < a
0
t 6 K, so that

p
T jGT;µ;j(0)j 6 KT¡1=2 max

16t6T
j @
@µj

q®t (wt; µ̂T )j ¢
XT

t=1
1(yt = q

®
t (wt; µ̂T )):

Furthermore, T¡1=2max16t6T j @
@µj

q®t (Wt; µ̂T )j = op(1) by assumption (A4’). Now, note that
p
TrµLT (µ̂T ) =

p
TGT;µ(0). Since Yt is a continuous random variable, we have

PT
t=1 1(Yt =

q®t (Wt; µ̂T )) = Op(1), which ensures that
p
TrµLT (µ̂T )

p! 0, and completes the proof of the

asymptotic …rst order condition.

We now show that all other conditions of the basic asymptotic normality theorem are veri…ed.

Condition (i) is an assumption of Theorem 6. Condition (ii) holds since LT (µ) is continuously

di¤erentiable on £ with probability one. We now check for conditions (iii)-(v), which ensure

the stochastic equicontinuity of the gradient rµLT (µ).

Stochastic equicontinuity: note that the gradient of the tick-exponential log-likelihood
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can be written st(yt; wt; µ) = [®¡H(q®t (wt; µ)¡ yt)] ¢ gt(wt; µ), where

gt(wt; µ) ´ a0t(q®t (wt; µ)) ¢ rµq
®
t (wt; µ):

The function gt(Wt; ¢) : £ ! Rk is continuously di¤erentiable a.s. on £ with “derivative”

dgt(Wt; ¢) : £! Rk£k given by

dgt(Wt; µ) ´ a00t (q®t (Wt; µ)) ¢ rµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0 + a0t(q
®
t (Wt; µ)) ¢ rµµq

®
t (Wt; µ):

Note that the existence of a00t is guaranteed by assumption (A2’). Similarly, by (A4’) we

assume that the Hessian rµµq
®
t (Wt; µ) exists for every µ 2 £, a.s.-P0. The “gradient” of

st(Yt;Wt; ¢), i.e. the Hessian of ln'®t (Yt; q®t (Wt; ¢)), is the function ¢(Yt;Wt; ¢) : £ ! Rk£k

such that

¢(Yt;Wt; µ) ´ ¡±(q®t (Wt; µ)¡ Yt) ¢ gt(Wt; µ) ¢ rµq
®
t (Wt; µ)

0

+[®¡H(q®t (Wt; µ)¡ Yt)] ¢ dgt(Wt; µ);

where ±(¢) represents the Dirac function, i.e. ±(x) = 0 if x 6= 0 and RR ±(x)dx = 1. Alter-

natively, for any integrable function Á : R! R, the Dirac function veri…es
R
R ±(x)Á(x)dx =

Á(0). The function ±(¢) is the derivative of H(¢), so that we have jH(x+")¡H(x)¡"±(x)j =
o(j"j) for all x 2 R. We will show that ¢(Yt;Wt; ¢) is the “gradient” of st(Yt;Wt; ¢) in a
neighborhood of µ0, in a sense that jjst(Yt;Wt; µ)¡ st(Yt;Wt; µ0)¡¢(Yt;Wt; µ0)

0(µ ¡ µ0)jj =
op(jjµ ¡ µ0jj). Let

r(Yt;Wt; µ) ´ jjst(Yt;Wt; µ)¡ st(Yt;Wt; µ0)¡¢(Yt;Wt; µ0)
0(µ ¡ µ0)jj=jjµ ¡ µ0jj:

In order to simplify the notation, let Xt ´ q®t (Wt; µ0)¡ Yt and "t ´ q®t (Wt; µ) ¡ q®t (Wt; µ0).
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Thus

r(Yt;Wt; µ0) = jj[®¡H(Xt + "t)] ¢ gt(Wt; µ)¡ [®¡H(Xt)] ¢ gt(Wt; µ0)

+f±(Xt) ¢ gt(Wt; µ0) ¢ rµq
®
t (Wt; µ0)

0

¡[®¡H(Xt)] ¢ dgt(Wt; µ0)g0(µ ¡ µ0)jj=jjµ ¡ µ0jj
= jj[®¡H(Xt)] ¢ [gt(Wt; µ)¡ gt(Wt; µ0)¡ dgt(Wt; µ0)

0(µ ¡ µ0)]
+[®¡H(Xt + "t)] ¢ gt(Wt; µ)¡ [®¡H(Xt)] ¢ gt(Wt; µ) + "t ¢ ±(Xt) ¢ gt(Wt; µ)

+±(Xt) ¢ rµq
®
t (Wt; µ0) ¢ gt(Wt; µ0)

0(µ ¡ µ0)
¡±(Xt) ¢ [q®t (Wt; µ)¡ q®t (Wt; µ0)] ¢ gt(Wt; µ)jj=jjµ ¡ µ0jj;

so that

r(Yt;Wt; µ0) 6 jjgt(Wt; µ)¡ gt(Wt; µ0)¡ dgt(Wt; µ0)
0(µ ¡ µ0)jj=jjµ ¡ µ0jj(18)

+jH(Xt + "t)¡H(Xt)¡ "t ¢ ±(Xt)j ¢ jjgt(Wt; µ)jj=jjµ ¡ µ0jj(19)

+±(Xt) ¢ jjrµq
®
t (Wt; µ0) ¢ gt(Wt; µ0)

0(µ ¡ µ0)jj=jjµ ¡ µ0jj(20)

+±(Xt) ¢ jj[q®t (Wt; µ)¡ q®t (Wt; µ0)] ¢ gt(Wt; µ)jj=jjµ ¡ µ0jj(21)

Since the function gt(Wt; ¢) is continuously di¤erentiable a.s. on £ with gradient dgt(Wt; ¢),
the …rst term (18) of the right hand side of the previous inequality is op(1). For the second

term note that,

(19) = ja0t(q®t (Wt; µ))j ¢ jjrµq
®
t (Wt; µ)jj ¢ jq®t (Wt; µ0)¡ q®t (Wt; µ)j=jjµ ¡ µ0jj

¢jH(Xt + "t)¡H(Xt)¡ "t ¢ ±(Xt)j=j"tj:

By assumption (A2’), a0t is bounded by some positive constant K so that a0t(q
®
t (Wt; µ)) 6 K,

a.s-P0, and by assumption (A4’), q®t (Wt; ¢) is continuously di¤erentiable a.s. on £ so that

jq®t (Wt; µ0)¡ q®t (Wt; µ)j=jjµ ¡ µ0jj = Op(1), which implies that the …rst term of the previous

equality is Op(1). Moreover, for all x 2 R we have jH(x+ ")¡H(x)¡ " ¢ ±(x)j=j"j = o(1) so
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that the term (19) is op(1) as well. For the remaining terms note that

(20) 6 ±(Xt) ¢ jjrµq
®
t (Wt; µ0)jj ¢ jgt(Wt; µ0)

0(µ ¡ µ0)j=jjµ ¡ µ0jj
6 ±(Xt) ¢ jjrµq

®
t (Wt; µ0)jj ¢ jjgt(Wt; µ0)jj;

and

(21) 6 ±(Xt) ¢ jjgt(Wt; µ)jj ¢ jjq®t (Wt; µ)¡ q®t (Wt; µ0)]jj=jjµ ¡ µ0jj;

so that (by abuse of notation) both (20) and (21) can be written ±(Xt) ¢ Op(1). Now, note
that P0(Xt = 0) = 0, so that P0(±(Xt) 6= 0) = 0. By combining all those results we conclude
that r(Yt;Wt; µ0)

p! 0 as µ ! µ0 so that condition (iii) is veri…ed:

Moreover, both (18) and (19) are bounded by some positive constants so thatE[supjjµ¡µ¤jj<² r(Yt;Wt; µ0)] <

1, which corresponds to condition (iv) of the basic theorem.
Also, we have

PT¡1
t=0 ¢(Yt;Wt; µ)=T

p! ¢ ´ E[¢(Yt;Wt; µ)] with

¢ = E[¡±(q®t (Wt; µ)¡ Yt) ¢ gt(Wt; µ) ¢ rµq
®
t (Wt; µ)

0

+[®¡H(q®t (Wt; µ)¡ Yt)] ¢ dgt(Wt; µ)]

= E[gt(Wt; µ) ¢ rµq
®
t (Wt; µ)

0 ¢ Et[¡±(q®t (Wt; µ)¡ Yt)]]
+E[dgt(Wt; µ)Et[®¡H(q®t (Wt; µ)¡ Yt)]]

= ¡E[f0;t(q®t (Wt; µ)) ¢ gt(Wt; µ) ¢ rµq
®
t (Wt; µ)

0](22)

+E[(®¡ F0;t(q®t (Wt; µ))) ¢ dgt(Wt; µ)];

where F0;t and f0;t are the true distribution and density of Yt conditional on the information

set Ft. Under correct speci…cation (assumption (A0)), ® = F0;t(q®t (Wt; µ0)) and the matrix

¢0 ´ E[¢(Yt;Wt; µ0)],

¢0 = ¡E[f0;t(q®t (Wt; µ0)) ¢ a0t(q®t (wt; µ0)) ¢ rµq
®
t (wt; µ0)rµq

®
t (Wt; µ0)

0];

is nonsingular at µ0 since f0;t(q®t (Wt; µ0)) 6= 0 (assumption (A6)), a0t > 0 andE[rµq
®
t (Wt; µ0)rµq

®
t (Wt; µ0)

0]

nonsingular (assumption (A4’)). Note that the convergence in probability of the sample mean

of ¢ holds since: by assumption (A6) f0;t is bounded, i.e. supy2R f0:t(y) = C < 1, and by
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(A2’) a0t is bounded, so that

E[jj¢(Yt;Wt; µ)jj1+±] 6 n±fmax(1; C1+±) ¢max(1; K1+±) ¢ E[jjrµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0jj1+±]
+E[jjdgt(Wt; µ)jj1+±]g;

where n± is some positive constant. By assumption (A4’), E[jjrµq
®
t (Wt; µ)jj2+²] <1 for some

² > 0, which implies that E[jjrµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0jj1+±] <1. Moreover, by assumption
(A2’)

E[jjdgt(Wt; µ)jj1+±] 6 m±fmax(1;M1+±) ¢ E[jjrµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0jj1+±]
+max(1;K1+±) ¢E[jjrµµq

®
t (Wt; µ)jj1+±]g;

m± being a positive constant, so that by (A4’) we obtain E[jjdgt(Wt; µ)jj1+±] <1. Therefore,
E[jj¢(Yt;Wt; µ)jj1+±] < 1: Finally, by using assumption (A8) and a law of large numbers
(e.g. Theorem A.2.7 in White 1994) we obtain the convergence of the sample mean of ¢,

which shows that condition (v) of the basic theorem holds.

At last, we show that condition (vi) holds, i.e. that
p
TrµLT (µ0)

d! N (0;§0). For this, we
use a central limit theorem (e.g. Theorem A.3.4 in White 1994): by assumptions (A2’) and

(A4’), we have

E[jjst(Yt;Wt; µ)jj2+±] 6 max(1; K2+±) ¢ E[jjrµq
®
t (Wt; µ)jj2+±] <1:

Moreover, by (A8) fs2t (Yt;Wt; µ);Ftg is an L1-mixingale so that
p
TrµLT (µ) =

PT
t=1 st(yt; wt; µ)=

p
T

d!
N (0;§) where

§ = E[(a0t(q
®
t (Wt; µ))

2 ¢ (®¡H(q®t (Wt; µ)¡ Yt)))2 ¢ rµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0]

= E[(a0t(q
®
t (Wt; µ)))

2 ¢ rµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0 ¢ Et[(®¡H(q®t (Wt; µ)¡ Yt))2]]:
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Note that

Et[(®¡H(q®t (Wt; µ)¡ Yt))2] = Et[®
2 ¡ 2®H(q®t (Wt; µ)¡ Yt) +H2(q®t (Wt; µ)¡ Yt)]

= Et[®
2 ¡ (2®¡ 1)H(q®t (Wt; µ)¡ Yt)]

= ®2 ¡ (2®¡ 1)Et[H(q
®
t (Wt; µ)¡ Yt)]

= ®2 ¡ (2®¡ 1)F0;t(q
®
t (Wt; µ));

since for all x 2 R we have H2(x) = H(x). Thus,

§ = E[(®2 ¡ (2®¡ 1)F0;t(q
®
t (Wt; µ))) ¢ (a0t(q®t (Wt; µ)))

2 ¢ rµq
®
t (Wt; µ)rµq

®
t (Wt; µ)

0]:(23)

Under correct speci…cation of the conditional ®-quantile of Yt (assumption (A0)), we have

®2 ¡ (2®¡ 1)F0;t(q
®
t (Wt; µ)) = ¡®(1¡ ®) so that

§0 = ¡®(1¡ ®)E[(a0t(q®t (Wt; µ0)))
2 ¢ rµq

®
t (Wt; µ0)rµq

®
t (Wt; µ0)

0]:

We can now use the basic asymptotic normality result adapted from Newey and McFadden

(1994, Theorems 7.2 and 7.3) to show that
p
T (µ̂T¡µ0)! N (0;¢¡1

0 §0¢
¡1
0 ), which completes

the proof of Theorem 6.

Proof. (Corollary 7) The proof of Corollary 7 is identical to the one for Theorem 6.

Note however that¢¤ and §¤ are now obtained from (22) and (23) without using the equality

Et[H(q
®
t (Wt; µ

¤) ¡ Yt)] = ®, which, in Theorem 6, was implied by the correct speci…cation

assumption (A0).

Proof. (Theorem 8)When T = 1 then note that P0(yµ; wµ; µ) = ¡ lnÃ®1 (yµ;1; q®1 (wµ;1; µ)) =
¡ lnÃ®1 (y1; q®1 (w1; µ)) and P1(yµ; wµ; µ) = ¡ lnÁ®1 (yµ;1; q®1 (wµ;1; µ)) = ¡ lnÁ®1 (y1; q®1 (w1; µ)) so
that the “minimax” problem minµ2£[max06k61fPk(yµ; wµ; µ)g] is equivalent to (7).
Let us now consider the case where T > 1. We denote by "t the “error” term "t =

yt ¡ q®t (wt; µ). In what follows we assume that "µ ´ ("µ;1; "µ;2; : : : ; "µ;T )
0 is a vector of

order statistics so that we have "µ;1 6 "µ;2 6 : : : 6 "µ;T . We denote by yµ and wµ,
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yµ ´ (yµ;1; yµ;2; : : : ; yµ;T )
0 and wµ ´ (wµ;1; wµ;2; : : : ; wµ;T )

0, the vectors of corresponding ob-

servations. For given observations (y1; w1; : : : ; yT ; wT ) the problem of maximizing the tick-

exponential log-likelihood can be restated as

¡min
µ2£
[T¡1

TX
t=1

max f¡ lnÃ®t (yt; q®t (wt; µ));¡ lnÁ®t (yt; q®t (wt; µ))g];(24)

by similar reasoning as for T = 1. In order to transform (24) into the standard “minimax”

problem we proceed as follows: for µ …xed, let kµ, 0 6 kµ 6 T , denote the order such that
"µ;kµ < 0 6 "µ;kµ+1. By convention "µ;0 ´ ¡1 and "µ;T+1 ´ +1. First consider all the
indices t such that 1 6 t 6 kµ. In that case we have "µ;t 6 "µ;kµ < 0 so that

max f¡ lnÃ®t (yµ;t; q®t (wµ;t; µ));¡ lnÁ®t (yµ;t; q®t (wµ;t; µ))g = ¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)); for 1 6 t 6 kµ.

In the same way, for t such that kµ + 1 6 t 6 T , we know that 0 6 "µ;kµ+1 6 "µ;t and so

max f¡ lnÃ®t (yµ;t; q®t (wµ;t; µ));¡ lnÁ®t (yµ;t; q®t (wµ;t; µ))g = ¡ lnÃ®t (yµ;t; q®t (wµ;t; µ)); for kµ+1 6 t 6 T .

Thus

T¡1
TX
t=1

max f¡ lnÃ®t (yt; q®t (wt; µ));¡ lnÁ®t (yt; q®t (wt; µ))g(25)

= T¡1[
kµX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))];

where by convention
sP
t

´ 0 if s < t. We now show that the right hand side of (25) is a

maximum over k of Pk(yµ; wµ; µ), i.e. that for every 0 6 k 6 T we have

T¡1[
kX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=k+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))](26)

6 T¡1[
kµX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))]:

35



First consider k < kµ. We then have

kX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=k+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))

=
kX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
kµX

t=k+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))

6
kX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
kµX

t=k+1

max f¡ lnÃ®t (yµ;t; q®t (wµ;t; µ));¡ lnÁ®t (yµ;t; q®t (wµ;t; µ))g

+
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))

=
kX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
kµX

t=k+1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ))

=

kµX
t=1

¡ lnÁ®t (yµ;t; q®t (wµ;t; µ)) +
TX

t=kµ+1

¡ lnÃ®t (yµ;t; q®t (wµ;t; µ)):

Similarly we can show that the same result holds for k > kµ, which proves (26) for every k.

Taking into account (25), we have just shown that

T¡1
TX
t=1

max f¡ lnÃ®t (yt; q®t (wt; µ));¡ lnÁ®t (yt; q®t (wt; µ))g = max
06k6T

fPk(yµ; wµ; µ)g;

which completes the proof of Theorem 8.
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