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How to cut a cake healthily
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Abstract

The Sliding Knife procedure as well as the Cake Cutting and Fair Border existence
theorems, stated for additive evaluations, hold unchanged for concave ones.
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How to cut a cake healthily∗

Fabio Maccheroni Massimo Marinacci

1 Introduction

The problem of dividing an object among some people so that everybody is satisfied of
the received share is an ancient one, some interesting cases are reported in the Bible
(e.g. Numbers 33:54) and in the Babylonian Talmud (e.g. Kethubot 93a). Mathematical
issues on the existence and construction of a solution evolved and grew at an impressive
speed after the seminal work of Steinhaus (1949), see for example Brams and Taylor
(1996) or Robertson and Webb (1998) and the references therein.

Building on earlier contributions of Banach, Knaster, and Steinhaus, in a classic
paper, Dubins and Spanier (1961) devised a procedure to cut a cake for n individuals so
that each of them receives a slice she evaluates at least 1/nth of the entire cake.

“...A knife is slowly moved at constant speed parallel to itself over the top of the
cake. At each instant the knife is poised so that it could cut a unique slice of the
cake. As times goes by the potential slice increases monotonely from nothing until
it becomes the entire cake. The first person to indicate satisfaction with the slice
then determined by the position of the knife receives that slice and is eliminated
from further distribution of the cake. (If two or more participants simultaneously
indicate satisfaction with the slice, it is given to any one of them.) The process is
repeated with the other n−1 participants and with that remains of the cake...The
method described above is equally applicable for the division of any object provided
only that (1) the value assigned by any participant to any part of the object equals
the sum of the values of the subparts when the part is subdivided into any finite
number of subparts; and (2) the value to each participant of the potential slice
varies in a continuous fashion as the knife is moved over the object...”

∗We wish to thank Marco Dall’Aglio, Paolo Ghirardato, Marco Scarsini, and Marciano Siniscalchi for
helpful discussions. The financial support of MURST is gratefully acknowledged. Part of this research
was conducted while the first author was visiting the Division of HSS at the California Institute of
Technology. Maccheroni’s address is: Istituto di Metodi Quantitativi, Università Bocconi, Viale Isonzo
25, 20135 Milano, ITALY; fabio.maccheroni@uni-bocconi.it. Marinacci’s address is: Dipartimento
di Statistica e Matematica Applicata, Università di Torino, Piazza Arbarello 8, 10122 Torino, ITALY;
massimo@econ.unito.it.



Though the procedure is claimed to work under assumptions (1) and (2), it is easy to
see that it does not require the full strength of (1). As a matter of fact, it is enough to
assume that: (1’) the value assigned by any participant to any part of the object is not
greater than the sum of the values of the subparts when the part is subdivided into any
finite number of subparts.

Starting from this observation, we decided to consider the cake cutting problem in a
more general setting in which the participants’ evaluations of the slices are represented
by submodular set functions rather than additive measures. The motivation for this
generalization is quite natural: after eating a first slice of a cake, the next slice is likely
to be less desirable, because of satiety, dietary and health concerns, etc.

In the economics jargon, we are moving from constant to decreasing marginal evalu-
ations, which is the usual assumption in consumer theory. To the best of our knowledge,
the only attempt in this sense was made by Berliant, Dunz, and Thomson (1992). Our
approach seems simpler and more intuitive (see the Concluding Remarks).

2 The Result

Let us introduce some notions. Given a measurable space (S, Σ), a capacity on Σ is a set
function ν : Σ → [0, 1] such that

(a) ν (∅) = 0 and ν (S) = 1,

(b) ν (A) ≤ ν (B) for all A, B ∈ Σ such that A ⊆ B,

(c) ν (An) ↓ 0 for any monotone sequence {An} ⊆ Σ with An ↓ ∅.

A capacity ν is concave (submodular) if

(d) ν (A ∪B) ≤ ν (A) + ν (B)− ν (A ∩B) for all A, B ∈ Σ;

while it is a probability measure if

(e) ν (A ∪B) = ν (A) + ν (B)− ν (A ∩B) for all A, B ∈ Σ.

Finally, ν is nonatomic if

(f) for each set A such that ν (A) > 0 there exists B ⊆ A such that 0 < ν (B) < ν (A).
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Our contribution is to consider nonatomic concave capacities rather than nonatomic
probability measures. To see why property (d) captures the idea of decreasing marginal
evaluations, consider a nonatomic probability measure µ and a continuous strictly in-
creasing function u : [0, 1] → [0, 1] such that u (0) = 0 and u (1) = 1. It is easy to check
that the set function defined, for all A ∈ Σ, by

ν (A) = u (µ (A))

is a nonatomic concave capacity if and only if u is concave.1 Therefore, if µ represents an
ideal “frictionless” evaluation, without any concern for satiation, diets and health, etc.,
the capacity ν adds this obviously important concerns into the picture by assigning a
decreasing value (utility) to the extra pieces of the good the person is getting.

We are now ready to state our result. For the sake of clarity we provide a detailed
proof.

Theorem 1 Let ν1, ν2, ..., νn be nonatomic concave capacities on a measurable space
(S, Σ). Then, given any α1, α2, ..., αn ≥ 0 with

∑n
i=1 αi = 1, there exists a partition

{A1, A2, ..., An} of S in Σ such that

νi(Ai) ≥ αi

for each i = 1, 2, ..., n. Moreover, if νj 6= νk for some j 6= k and α1, α2, ..., αn > 0, the
partition {A1, A2, ..., An} can be chosen to satisfy

νi(Ai) > αi

for each i = 1, 2, ..., n.

Proof. Let i ∈ {1, 2, ..., n} and M (νi) be the set of all probability measures µ such that
µ (A) ≤ νi (A) for all A ∈ Σ.

Claim 1. For all A ∈ Σ,
νi (A) = max

µ∈M(νi)
µ (A) ,

and there exists µ∗i ∈ M (νi) such that each µ ∈ M (νi) is absolutely continuous with
respect to µ∗i .

2

Proof. By Theorem 14 of Kelley (1959), since νi satisfies (a), (b), and (d), then for any
subalgebra Σ′ of Σ and any finitely additive probability µ′ on Σ′ such that µ′ (A′) ≤ νi (A

′)
for every A′ ∈ Σ′,3 there exists an extension µ of µ′ to Σ which is a finitely additive

1Notice that the capacities of the form u (µ (·)) are only a small subset of the class of nonatomic
concave capacities.

2µ is absolutely continuous with respect to µ∗
i if A ∈ Σ and µ∗

i (A) = 0 imply µ (A) = 0.
3A finitely additive probability is a set function µ′ satysfying (a), (b) and (e).
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probability such that µ (A) ≤ νi (A) for every A ∈ Σ. As a consequence, if E (νi) is the
set of all finitely additive probabilities µ such that µ (A) ≤ νi (A) for all A ∈ Σ, we have

νi (A) = max
µ∈E(νi)

µ (A) (1)

for all A ∈ Σ. In fact, for every B ∈ Σ, 1 = νi (B ∪Bc) ≤ νi (B) + νi (B
c), hence

1 − νi (B) ≤ νi (B
c). Consider the finitely additive probability on Σ′ = {∅, B, Bc, S}

defined by µ′B (∅) = νi (∅) = 0, µ′B (B) = νi (B), µ′B (Bc) = 1 − νi (B) ≤ νi (B
c),

µ′B (S) = νi (S) = 1. There exists a finitely additive extension µB of µ′B to Σ such that
µB (A) ≤ νi (A) for every A ∈ Σ. Hence, E (νi) is nonempty and, for every A ∈ Σ,
there exists µA ∈ E (νi) such that νi (A) = µA (A) ≤ supµ∈E(νi)

µ (A) ≤ νi (A), that is
νi (A) = maxµ∈E(νi) µ (A) for all A ∈ Σ.

For any µ ∈ E (νi) and any monotone sequence {An} ⊆ Σ with An ↓ ∅, µ (An) ≤
νi (An) → 0. Hence:

(i) µ is a probability measure, and E (νi) = M (νi);

(ii) the continuity of µ at ∅ is uniform with respect to µ in M (νi).
4

By Theorems IV.9.1 and IV.9.2 of Dunford and Schwartz (1958), points (i) and (ii)
along with the convexity of M (νi), guarantee the existence of a µ∗i in M (νi) such that
every µ ∈M (νi) is absolutely continuous with respect to µ∗i (see also Schmeidler, 1972,
p. 221 and Delbaen, 1974, p. 226). �

Claim 2. M (νi) consists of nonatomic probability measures.

Proof. Assume that A is an atom for µ∗i .
5 Then µ∗i (A) > 0 and νi (A) > 0. Let

Σ 3 B ⊆ A, we have either µ∗i (B) = 0 or µ∗i (B) = µ∗i (A). If µ∗i (B) = 0, then µ (B) = 0
for every µ ∈ M (νi), thus νi (B) = 0. Else µ∗i (B) = µ∗i (A), then µ∗i (A−B) = 0, and
µ (A−B) = 0 for every µ ∈M (νi), so µ (A) = µ (B) for every µ ∈M (νi), and νi (B) =
νi (A). Then A is an atom for νi, a contradiction. Therefore µ∗i is nonatomic. Next we
show that this implies the nonatomicity of all elements µ in M (νi). Suppose there exists
a µ in M (νi) having an atom A. Since µ (A) > 0, we have µ∗i (A) > 0. Let {A1, B1} be
a partition of A such that µ∗i (A1) = µ∗i (B1) = 1

2
µ∗i (A). It must be either µ (A1) = µ(A)

or µ (B1) = µ(A). Without loss of generality, assume µ (A1) = µ(A), A1 is an atom for
µ. Let {A2, B2} be a partition of A1 such that µ∗i (A2) = µ∗i (B2) = 1

2
µ∗i (A1) = 1

22 µ
∗
i (A).

It must be either µ (A2) = µ(A1) = µ (A) or µ (B2) = µ(A1) = µ (A). Without loss of
generality, assume µ (A2) = µ(A). Proceeding in this way, we can construct a decreasing
sequence {An} ⊆ Σ such that µ∗i (An) = 1

2n µ∗i (A) and µ (An) = µ(A) for all n ≥ 1.
Hence, µ∗i (

⋂∞
n=1 An) = 0 and µ (

⋂∞
n=1 An) = µ(A) > 0, a contradiction. �

4That is, for any monotone sequence {An} ⊆ Σ with An ↓ ∅ and any ε > 0 there exists N ≥ 1 such
that µ (An) ≤ ε for every n ≥ N and every µ ∈M (νi).

5A ∈ Σ is an atom for ν if ν (A) > 0, and for any B ∈ Σ such that B ⊆ A, either ν (B) = 0 or
ν (B) = ν (A), clearly ν is nonatomic if and only if it has no atoms.

4



Corollary 1.1 of Dubins and Spanier (1961) guarantees the existence of a partition
{A1, A2, ..., An} of S in Σ such that

νi(Ai) ≥ µ∗i (Ai) ≥ αi

for each i = 1, 2, ..., n.

If νj 6= νk, it must be M (νj) 6= M (νk). Choose µj ∈ M (νj) and µk ∈ M (νk) such
that µj 6= µk and µi ∈ M (νi) arbitrarily, if i 6= j, k. If α1, α2, ..., αn > 0, by Corollary
1.2 of Dubins and Spanier (1961), there exists a partition {A1, A2, ..., An} of S in Σ such
that

νi(Ai) ≥ µi (Ai) > αi

for each i = 1, 2, ..., n. Q.E.D.

3 Concluding Remarks

The elements A1, ..., An of the partition in Theorem 1 can be nastily shaped and it can
be important to know whether it is possible to guarantee to each participant a true slice
of the cake rather than a bunch of crumbles. This problem can be especially relevant
in territorial disputes where, for example, n countries have to partition a land bordering
each of them.

Hill (1983) solves the problem for evaluations represented by nonatomic probability
measures. The next theorem extends the result to evaluations represented by nonatomic
concave capacities. The proof, which is similar to that of Theorem 1, is omitted.

Theorem 2 Let L, C1, C2, ..., Cn be open connected subsets in R2 with Ci adjacent to L
for all i = 1, 2, ..., n.6 If ν1, ν2, ..., νn are nonatomic continuous concave (Borel) capacities
on L, and α1, α2, ..., αn ≥ 0 with

∑n
i=1 αi = 1. Then there exist disjoint open connected

subsets A1, A2, ..., An of L such that

• Ai is adjacent to Ci for all i = 1, 2, ..., n,

• νi(Ai) ≥ αi for all i = 1, 2, ..., n, and

•
⋃n

i=1 Ai = L.

Moreover, if νj 6= νk for some j 6= k and α1, α2, ..., αn > 0, A1, A2, ..., An can be
chosen to satisfy

νi(Ai) > αi

for each i = 1, 2, ..., n.

6Open connected subsets A and B of R2 are adjacent if ∂A∩∂B contains an open arc γ (homeomorphic
image of (0, 1)) such that A ∪B ∪ γ is open and connected.
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Like the original result, this theorem holds for subsets of Rk, and, dropping all adja-
cency requirements, this yields the existence of a fair division of a connected cake into
connected slices.

Finally, Berliant, Dunz, and Thomson (1992) proved that Theorem 2 holds for the
following class of set functions defined on the Borel σ-algebra B of an open subset L of
Rk:

“...Let m be Lebesgue measure on Rk...The function ui : B → R+ is concave
if there exists a function hi : {(x, B) ∈ L× B : x ∈ B} → R+ such that
(i) for all B ∈ B, hi (·, B) is integrable,
(ii) for all B, B′ ∈ B with B′ ⊆ B, for all x ∈ B′, hi (x, B′) ≥ hi (x, B), and
(iii) for all B ∈ B, ui (B) =

∫
B

hi (x, B) dm (x)...”

Relative to nonatomic concave capacities, this seems to be a more complicated and
less intuitive class of evaluations.
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