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Abstract

We discuss the feasibility of Levi’s (1990) robust mode of aggregating individuals’
evaluations of acts into a social choice function. We examine the process in which we refine
decision–theoretic models and account for previously irrelevant parameters of a decision
situation (cf. Savage’s ‘small worlds’). Suppose that, for each individual, we consider a
coarse–grained and a fine–grained decision–theoretic model, both of which are consistent
with each other in a sense to be defined. We desire any social choice rule to be stable
under refinements in the sense that the group choice based on fine–grained individual
models and the group choice based on coarse–grained individual models agree for choices
among coarse–grained alternatives. We find that any stable robust social choice rule
must collapse back into ex ante aggregation. We also provide sufficient conditions, such
as Pareto optimality, under which robust aggregation leads to an infinite series of reversals
of group choice. For ex ante aggregation, we find that stability is ubiquitous and that it
follows from independence of irrelevant alternatives.

JEL classification numbers: D63, D71

Key words: ex ante aggregation, independence of irrelevant alternatives, refinements,
robust aggregation, small worlds, social choice theory.



The Instability of Robust Aggregation

Matthias Hild∗

1 Introduction

Levi (1990) proposes a novel mode for the aggregation of individuals’ expected utilities
into a social choice function. The idea behind this ‘robust’ mode of aggregation is to con-
sider not only the individuals’ actual evaluations of acts but also what we can call their
‘empathetic’ evaluations. Empathetic evaluations are the evaluations that real individu-
als would have if they were to keep their own utilities but adopted another individual’s
probabilities, or conversely. In the usual ex ante mode of aggregation, only the individ-
uals’ actual evaluations of acts enter the aggregation process. In Levi’s robust mode, all
empathetic evaluations enter into the aggregation process. Robust aggregation with I
individuals is thus defined as ex ante aggregation of I2 hypothetical individuals with all
possible empathetic evaluations. For ease of presentation, we will restrict ourselves in this
introduction to individuals who maximize expected utility. Later we will see that most of
the presently available decision theories are covered by our theorems. Suppose individuals
are expected utility maximizers characterized by pairs 〈pi, ui〉 of subjective probabilities
and utilities. Ex ante aggregation aggregates the expected utilities Ui of these individu-
als. Robust aggregation forms all hypothetical individuals of the form 〈pi, uj〉 and then
applies ex ante aggregation to the expected utilities Ui,j. Clearly, conventional ex ante
aggregation is a special type of robust aggregation for which the aggregation rule S does
not depend on evaluations the Ui,j (i 6= j) of hypothetical individuals.

We intend to argue against the viability of robust aggregation and in favour of ex
ante aggregation. To appreciate this argument, recall that Levi proposed the robust
mode in reaction to the disturbing Ex Ante Homogeneity Theorem regarding the ex
ante aggregation of Bayesian preferences. Assuming that individuals and the group
are expected utility maximizers, Goodman (1988), Seidenfeld/Kadane/Schervish (1989),
Broome (1990), Schervish/Seidenfeld/Kadane (1991), and Mongin (1995, 1998) show in
various decision–theoretic frameworks and in various degrees of generality that Pareto
optimal ex ante aggregation already presupposes a disturbingly high degree of homogene-
ity of either individual probabilities or utilities. In the case of two individuals (I = 2), a

∗Address for correspondence: California Institute of Technology, Mailcode 228–77, Pasadena, CA
91125 (USA). Email: matthias@hild.org. Website: http://www.hild.org. I wish to thank Christ’s
College, Cambridge for their generous financial and academic support.



high degree of homogeneity means that either the individuals’ probabilities are identical
or their utilities are identical up to affine transformations.1

Ex Ante Homogeneity Theorem (Mongin, 1995). Assume that individuals
and group maximize expected utility. Let M1, . . . ,MI the individuals’ decision–theoretic
models and M0 the group’s decision–theoretic model such that ex ante Pareto optimality
and a non–triviality condition are satisfied.2 Then either p1, . . . , pI are linearly dependent
or u1, . . . , uI are affinely dependent.

Turning vice into virtue, robust aggregation evades the Ex Ante Homogeneity Theo-
rem by embracing the homogeneity of hypothetical individuals. Trivially, the probabil-
ities and utilities of the hypothetical individuals Mij are linearly dependent even if the
real individuals’ probabilities and utilities are not, since each real individual’s probability
measure and utility function occurs at least twice among the models Mij.

We examine the feasibility of robust aggregation from the viewpoint of decision theory.
When decision theorists specify a model to describe an individual’s preferences in a
particular decision situation, they are faced with an infinity of potentially relevant details,
or parameters. Fortunately, most of these details do not matter for decision situations in
the real world. Nonetheless, the particular set of relevant details varies across different
decision situations. Parameters that were irrelevant for some choices may well become
relevant for other choices. For decision theory, it is therefore vital to consider the process
of refining a given decision–theoretic model by taking previously neglected parameters
into account (cf. Savage (1954) on ‘small worlds’). We consider refinements Mi =
〈p′i, u′i〉 of the individuals’ decision–theoretic models Mi = 〈pi, ui〉. A decision–theoretic
model M ′

i is more detailed than model Mi iff, firstly, M ′
i can describe all states and

consequences of Mi and, secondly, M ′
i individuates states and consequences between

which the coarser model Mi is unable to discriminate. As an example, think of the
coarsely described consequence of a rise in the Euro/USD exchange rate and the more
finely described consequences of a rise of at least 10% and a rise of less than 10%. We
view the factorization of the individuals’ evaluations of uncertain prospects into beliefs
and utilities as an iterative, fractal–like, process. What is a utility on one level of analysis
is a compound of beliefs and utilities on another level of analysis. We say that M ′

i refines
Mi exactly if M ′

i is more detailed than Mi, Mi and M ′
i agree on their probabilities for

coarse–grained states and Mi and M ′
i agree on their expected utilities for coarse–grained

acts. All this will be made precise in what follows. We will argue that social choice

1As the number I of individuals increases beyond 2, this conclusion becomes less severe because
the probabilities and utilities of I > 2 individuals can be linearly or affinely dependent while not being
identical. Note, however, that linear/affine independence of individual probabilities/utilities is a sufficient
but not a necessary condition for the impossibility of Pareto optimal aggregation into Bayesian group
preferences. Using the proof strategy of Seidenfeld/Kadane/Schervish (1989), Goodman (1988) discusses
a case involving N = 3 individuals with linearly/affinely dependent probabilities/utilities and provides
a necessary and sufficient condition for the impossibility of Pareto optimal Bayesian aggregation in this
case.

2The required Pareto condition is: If f �i g for all 1 ≤ i ≤ I but f �j g for some 1 ≤ j ≤ I, then
f �0 g. The non–triviality condition is: There are consequences c, c′ such that ui(c) > ui(c′) for all
0 ≤ i ≤ I.
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rules should be stable under decision–theoretic refinements in the following sense: If the
individual models M ′

1, . . . ,M
′
I refine M1, . . . ,MI respectively, then the group’s resulting

choice functions C ′ and C should be consistent with each other.

Our first set of findings is the following: Any robust social choice rule that is stable
under refinements collapses back into ex ante aggregation. Moreover, we identify sufficient
conditions, such as Pareto optimality, under which robust aggregation leads to repetitive
violations of stability and an infinite oscillation of the group’s choice. The existence of an
infinite sequence of group choice reversal shows that instabilities are not guaranteed to
disappear as we continue to refine the individuals’ decision–theoretic models. We prove
these results in a framework that follows Savage (1954) in representing acts as functions
from states to consequences.3 Since we make meek assumptions about the decision theory
used to describe individual preferences or about the existence of group preferences, we
are reassured that group choice reversals are not the artifact of a particular decision
theory or a narrow class of aggregation rules but a troubling feature of the robust mode
itself. Our second finding reaffirms this conclusion by demonstrating an attraction of
ex ante aggregation. We adapt the condition of independence of irrelevant alternatives
to the current framework with a variable set of possible, distinguishable, options. We
find not only that stability under refinements follows from independence of irrelevant
alternatives, but also that stability is ubiquitous (cf. Hild, 2001a). This result has a
twofold significance. Firstly, it proves the feasibility of stable aggregation and, secondly,
it provides new reasons for adopting independence of irrelevant alternatives as a desired
property of ex ante social choice rules.

The literature distinguishes a third, ex post mode of aggregation that splits indi-
viduals’ expected utilities into probabilities and utilities before aggregation takes place
(cf. Hammond, 1981). The present instability results for robust aggregation have been
replicated for the ex post mode. We find that there are no non–exceptional ex post social
choice rules that are stable under refinements. What is more, we can show that, under
some weak assumptions, ex post aggregation will also lead to an infinite series of group
choice reversals (Hild, 2001a). In short, the combination of the Ex Ante Homogeneity
Theorem and our instability theorems presents us with yet another difficulty in social
choice theory: On the one hand, ex ante aggregation is troubled by the Homogeneity
Theorem. On the other hand, ex ante aggregation seems to be the only reasonable way
of satisfying stability under refinements.

3Our technical report Hild (2001c) discusses modifications of our definitions and theorems in a frame-
work that does not presuppose the separation of states and consequences and which contains no explicit
representation of the underlying (causal) structure of acts. This framework allows us to simplify our
notation and proofs in return for some stronger postulates.
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2 Decision–Theoretic Refinements

Fine–graining

Let Ω be a non–empty set, called a frame of reference for states and let Γ be a non–empty
set, called a frame of reference for consequences. It is relative to such frames of reference
that we will compare the degrees of detail with which different decision–theoretic models
describe the same decision situation. A frame of reference can be chosen arbitrarily as
long as it is fine–grained enough to capture all the parameters of the most detailed model
that we wish to consider. As far as consequences are concerned, we represent a model’s
degree of detail by some partition C of Γ, our frame of reference for consequences. The
elements of this partition take the place of consequences in a conventional framework.
Analogously, we will replace the worlds of a conventional model with the elements of a
partition W (Savage’s ‘small worlds’).

Illustration: Adapting Savage’s (1954) example, let the frame of reference consist of
the points in the real plane, i.e. pairs 〈x, y〉 of real numbers. The most fine–grained
model relative to this frame of reference represents consequences as points in the real
plane. A coarser model may ignore the second parameter y and represent consequences
as lines in the real plane parallel to the y–axis.

Illustration: Consider the decision problem of a group of directors who consider build-
ing a production plant in Europe. We start with a model that accounts only for the
individuals’ preferences for building or not building the production plant. A second more
detailed model accounts, in addition, for the individuals’ beliefs and utilities concerning
an upward or downward change in the Euro/USD exchange rate. The second model
thus distinguishes the outcome of owning a production plant in Europe in a climate of
an increasing exchange rate and the outcome of owning a production plant in Europe
in a climate of a non–increasing exchange rate. A third yet more detailed model may
account for the individuals’ preferences over additional features, such as the magnitude
of changes in the exchange rate or the future of the European stock market index.

Since we evaluate actions by their potential consequences, the degree of detail with
which we describe consequence also affects how we individuate actions. Choosing, for ex-
ample, a coarse–grained consequence C with certainty amounts to an uncertain prospects
of more fine–grained descriptions of C. More generally, an action induces a certain
prospect of coarse–grained consequences and another prospect of fine–grained conse-
quences.

Illustration: We return to our managerial decision problem. In the first model, the
agents can choose (at least) between building and not building the production plant.
From the viewpoint of the second model, building the production plant amounts to
choosing an uncertain prospect depending on the rise or fall of the exchange rate. In
addition to the actions available in the first model, the second model allows the agent to
make choices that were not available in the first model. For instance, the second model
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allows the agent to choose a hedging strategy for the risk of a rising exchange rate. In a
more detailed model, the number of possible acts therefore increases.

We now give these ideas a formal expression. We assume that both Ω and Γ are
at least countably infinite. Throughout, we will only construct models with a finite
number of states W ∈ W and consequences C ∈ C.4 With this presupposition, we say
that W is a (finite) Ω–partition if and only if W is a finite collection of non–empty and
mutually disjoint sets the union of which is Ω. We use the analogous definition of a
Γ–partition. We say that 〈W , C〉 is a graining if and only if W is an Ω–partition and
C is a Γ–partition. Let [W ] := {

⋃
X|X ⊆ W} be the set of all events expressible in

W . Analogously, let [C] := {
⋃
X|X ⊆ C}. A graining 〈W ′, C ′〉 details a graining 〈W , C〉

exactly when W ⊆ [W ′] and C ⊆ [C ′]. For any Γ–partition C, let C(c) be the partition
cell of C that contains c ∈ Γ. We thus take the liberty to identify a partition C with a
particular function from Γ onto C.

The objects of our primary interest are 〈W , C〉–grained acts represented as functions
F : W → C that map W–grained states into C–grained consequences. We then want
to consider more finely grained representations of these acts. We note that the number
of possible 〈W , C〉–grained acts increases as the graining 〈W , C〉 is replaced by a more
detailed graining 〈W ′, C ′〉 (i.e., |CW | ≤ |(C ′)(W ′)|). What is more, that there are generally
several alternative ways of adding details to the coarse description of an act. In other
words, if a graining 〈W ′, C ′〉 details a graining 〈W , C〉, there are several 〈W ′, C ′〉–grained
acts F ′ : W ′ → C ′ that we could consider as a more detailed description of a coarse–
grained act F : W → C. Thus, we need a means of identifying those fine–grained acts
that count as refined descriptions of a given coarse–grained act. To achieve this end, we
define a reference act as a function f : Ω → Γ from the frame of reference for states to
the frame of reference for consequences and then define the family of 〈W , C〉–grained acts
induced by f .5 Let Φ := ΓΩ be the frame of reference for acts. For any graining 〈W , C〉,
we say that an act f : Ω→ Γ is compatible with 〈W , C〉 if and only if C(f(ω)) = C(f(ω′))
for all W ∈ W and all ω, ω′ ∈ W . Hence, points ω, ω′ ∈ Ω in the same partition cell of
W must lead to points c = f(ω), c′ = f(ω′) in the same partition cell of C. Let ΦW,C
be the set of acts that are compatible with 〈W , C〉. For any act f ∈ ΦW,C, we can then
define the 〈W , C〉–graining of f as the function F : W → C such that F (W ) := C(f(ω))
for any ω ∈ W . A decision–theoretic model with a graining 〈W , C〉 will contain only acts

4From the axiomatic viewpoint of Savage’s approach, our restriction to models with a finite number of
small worlds is not without problems (cf. Savage’s postulate (P6)). Note, however, that all our definitions
and proofs go through for partitions W with infinitely many partition cells and only finitely additive
probability measures on W. Infinite partitions W lead to complications, however, once we consider
σ–additive probability measures defined on some σ–algebra. We then have to ensure the measurability
of the acts which we construct. Although this can be done, restrictions of the sort we would lead to a
loss of generality in other places. Finally, we can allow C to contain infinitely many partition cells as
long as we are prepared to use the axiom of choice.

5Savage takes ‘small–world acts’ to be functions from W to the set ΓΩ, i.e. function from small
worlds to what are acts in the basic framework. Given one model with small worlds and another with
bigger worlds, it is therefore always clear which bigger–world act is detailed by a smaller–world act. I
differ from Savage by introducing the notion of ‘small consequences’ and by considering sequences of
increasingly fine–grained descriptions of an act.
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that are compatible with 〈W , C〉. Moreover, we repeat that our primary interest is not
in reference acts but in the 〈W , C〉–graining of reference acts. The purpose of a reference
act f : Ω → Γ is to perform as an identifier of those fine–grained acts that count as
more detailed descriptions of a coarse–grained act. We therefore require the choice set
of a decision–theoretic model to contain at most one reference act f : Ω → Γ for each
possible 〈W , C〉–grained act F : W → C. For any graining 〈W , C〉, we say that a set
F ⊆ ΦW,C is unambiguous w.r.t. 〈W , C〉 if and only if no two reference acts in F have
the same 〈W , C〉–graining. Using these terms, we will require that the choice set in a
decision–theoretic model is unambiguous.

Generalized decision–theory

We now remove the introduction’s narrow assumptions about the types of decision mod-
els used to describe the individuals. The discussion in this subsection will, therefore, be
considerably more abstract. The reader may wish to consult the applications at the end
of this section in order to appreciate the purpose of studying this generalized framework.
As far as decision theory is concerned, we will mainly assume that individual utilities
depend only on consequences and that acts are evaluated by the utilities of their con-
sequences and by beliefs about the states in which the consequences are achieved. We
allow utilities to take values on some arbitrary scale and thus subsume real–valued one–
dimensional utilities, real–valued multi–dimensional utilities and any ordinal preference
relation over consequences, including relations that are not orderings. We also make
a generalized notion of a decision rule available that subsumes decision rules based on
monadic evaluations (e.g., expected utility maximization), decision rules based on binary
evaluations (e.g., regret theory) and any ordinal decision rule under which the relative
ranking of any two acts depends only on those acts and on no other act, i.e., any ordinal
decision rule that is independent of irrelevant alternatives (e.g., decision–theoretic lex-
imin or leximax). Thus, the only types of decision theories not covered by our framework
are decision theories in which the utilities of consequences do not depend on consequences
alone (e.g., Becker/Sarin’s (1987) lottery–dependent utility theory where the utility of
consequences depends on the gamble in which they occur)6 and decision theories in which
the relative ranking of two acts may depend on other acts in the choice set.

We say that p is a belief type if and only if (a) for every p ∈ p there is some Ω–partition
W such that [W ] is the domain of p, (b) for all Ω–partitions W , W ′, every 1–1 mapping
φ :W ′ →W and every p with domain [W ], if p ∈ p, then p ◦ φ̄ ∈ p (where the extended
mapping φ̄ : [W ′] → [W ] is defined by φ̄(A) :=

⋃
{φ(W )|W ∈ W ′,W ⊆ A} for all

A ∈ [W ′]). We refer to property (b) by saying that p is closed under relabelling. For any
Ω–partitionW , we define p(W) as the set of all p ∈ p that have domain [W ]. We call any
p ∈ p(W) a (p–)belief measure onW . We make no assumptions about the range of belief
measures and, for the sake of notational economy and without loss of generality, we choose
[W ] rather than 2W as the domain of belief measures. Examples of a belief type are set

6We can, however, allow state–dependent utilities; cf. our technical report Hild (2001c).
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of all real valued set functions p : [W ]→ R, the set of all capacities on any Ω–partitions,7

or the set of all probabilities on any Ω–partitions.8 Another example of a belief measure
is a characteristic function k representing a possibility set K ⊆ W that dichotomizes the
states inW into those considered subjectively possible and those considered subjectively
impossible.9 Suppose we have Ω–partitions W , W ′ with W ⊆ [W ′] and p ∈ p(W),
p′ ∈ p(W ′). We then say that p′ refines p if and only if p(A) = p′(A) for all A ∈ [W ].
We say that a belief type is closed under cross–products if, for any two marginal belief
measures, we can find a belief measure on a suitable two–dimensional partition with these
marginal measures. Formally, a belief type p is closed under cross–products if and only if
for all Ω–partitions W , W∗ and W ′ and for all p ∈ p(W), p∗ ∈ p(W∗), if W ∩W ∗ ∈ W ′
for all W ∈ W , W ∗ ∈ W∗,10 then there exists a q ∈ p(W ′) that refines both p and
p∗. We note that probabilities, capacities (cf. Ghirardato, 1997) as well as characteristic
functions of possibility sets are cross–product refinable.

u is a utility type if and only if there is some (non–empty) set Z such that u ∈ u iff
there is some Γ–partition C with u : C → Z. u(C) is the set of all functions in u with
domain C; we call any u ∈ u(C) a u–utility on C. A particular example of a utility type
is the class of real–valued one–dimensional utilities u : C → R with the canonical binary
relation ≥ on R. Since we make no assumptions about the set Z, our general definition
also admits real–valued multi–dimensional utilities u : C → R

L (for some L ∈ N+) and
thus allows us to accommodate models like that of Machina (1982). Moreover, since we
do not assume that the scale relation defined on Z is an ordering, we can represent any
binary preference relation on consequences, even relations that are not orderings, as a
utility in our general sense. In particular, we can identify the set r of all r such that
there is some Γ–partition C on which r is a binary relation with a utility type.

Our concept of a decision rule requires mainly that acts are evaluated by the utilities
of their consequences and by beliefs about the states in which the consequences are
achieved (properties (b) and (c)). For any belief type p and any utility type u, 〈G,�〉 is
a (binary) decision rule for 〈p,u〉 if and only if

(a) G is a function such that, for any graining 〈W , C〉, any p ∈ p(W), any u ∈ u(C)
and any f1, f2 ∈ ΦW,C, the quadruple 〈p, u, f1, f2〉 is in the domain of G and � is a
reflexive binary relation on the range of G;

(b) for any grainings 〈W , C〉 and 〈W ′, C ′〉 with W ⊆ [W ′] and C ⊆ [C ′], any p ∈ p(W),
any p′ ∈ p(W ′), any u ∈ u(C), any u′ ∈ u(C ′), any f1, f2 ∈ ΦW,C ∩ ΦW ′,C′ : If p′

refines p and u◦C◦fk = u′◦C ′◦fk (k = 1, 2),11 then G(p, u, f1, f2) = G(p′, u′, f1, f2);

7p is a capacity on W iff p : [W]→ R, p(∅) = 0, p(Ω) = 1 and p is monotonic w.r.t. set inclusion.
8p is a probability on W if and only if p : [W] → [0, 1] p(A) =

∑
W⊆A p(W ) for any A ∈ [W] and

p(Ω) = 1.
9k : [W] → {0, 1} represents K ⊆ W if and only if, for any A ∈ [W], k(A) = 0 if A ⊆ −

⋃
K and

k(A) = 1 else.
10By the definition of a partition (p. 5), this implies that W ∩W ∗ 6= ∅ for any W ∈ W and W ∗ ∈ W∗.
11Recall that we write C(c) for the partition element of C containing c ∈ Γ and that we can identify a

partition with a particular type of function with domain Γ (for any Γ–partition C).
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(c) for any grainings 〈W , C〉 and 〈W ′, C ′〉, any 1–1 mappings φ : W → W ′ and ψ :
C → C ′, any p ∈ p(W), any p′ ∈ p(W ′), any u ∈ u(C), any u′ ∈ u(C ′), any
f1, f2 ∈ ΦW,C and any f ′1, f

′
2 ∈ ΦW ′,C′ : If p = p′ ◦ φ̄, if u = u′ ◦ψ, if Fk is the 〈W , C〉–

graining of fk, and if [ψ ◦Fk ◦φ−1] is the 〈W ′, C ′〉–graining of f ′k (for k = 1, 2), then
G(p, u, f1, f2) = G(p′, u′, f ′1, f

′
2);

(d) for any graining 〈W , C〉, any p ∈ p(W), any f1, f2 ∈ ΦW,C and any C,D ∈ C with
C 6= D, [C ◦ f1](.) = C and [C ◦ f2](.) = D, there are u, u′ ∈ u(C) such that
G(p, u, f1, f2) � G(p, u, f2, f1) but G(p, u′, f2, f1) � G(p, u′, f1, f2).

In a situation described by the antecedents of clause (b), the refined description
of the decision situation is in a sense empty since the fine–grained descriptions of any
consequences of f1, f2 do not differ from their coarse grained–descriptions in terms of
utility. We therefore refer to property (b) by saying that G is invariant under empty
refinements. We refer to property (c) by saying that G is invariant under relabelling.
We interpret G(p, u, f1, f2) � G(p, u, f2, f1) to mean that f1 is weakly preferred to f2 by
individuals with decision rule G, beliefs p and utilities u. We therefore refer to property
(d) by saying the G is non–trivial. We say that a decision rule G is monadic if and only if
G(p, u, f, g) = G(p, u, f, h) for any 〈p, u, f, g〉, 〈p, u, f, h〉 in the domain of G. For monadic
decision rules, we define G(p, u, f) := G(p, u, f, f) for any 〈p, u, f, f〉 in the domain of
G. In the following examples, we keep p, u fixed and write V (f, g) := G(p, u, f, g) and
V (f) := G(p, u, f, f). Expected utility maximization is an example of a monadic decision
rule in which a preference f � g may be defined by V (f) > V (g) or by V (f)−V (g) > α
for some threshold α ∈ R+ (cf. Fishburn, 1988). Loomes/Sugden’s (1982) regret theory
provides an example of a genuinely binary decision rule in which a preference f � g
is defined by V (f, g) > V (g, f). Finally, any ordinal decision rules, such as leximin or
leximax, in which the relative ranking R of any two acts depends only on those two acts
can also be represented by a binary decision rule VR(f, g) defined as the characteristic
function of the rule’s ordinal preference R over f, g (i.e., VR : F2 → {0, 1} is defined by
VR(f, g) := 1 if 〈f, g〉 ∈ R and VR(f, g) := 0 else).

We define a set of consequences to be null relative to a belief measure and a decision
rule exactly when the utility assignments to the consequences in the set have no influence
on the evaluation of acts. For any Ω–partition W , any belief type p, any utility type u,
any binary decision rule G for 〈p,u〉, any p ∈ p(W) and any A ∈ [W ], we say that A
is p,G–null if and only if for any Γ–partition C, any u, u′ ∈ u(C) and any f1, f2, f

′
1, f

′
2 ∈

ΦW,C: If [u◦C ◦fk](ω) = [u′ ◦C ◦f ′k](ω) for all ω ∈ −A and k = 1, 2, then G(p, u, f1, f2) =
G(p, u, f ′1, f

′
2). Any A is p,G–one if and only if −A is p,G–null.

Finally, M = 〈W ,p, p, C,u, u,F , G,�〉 is a (generalized) decision–theoretic model if
and only if W is an Ω–partition, p is a belief type, p ∈ p(W), C is a Γ–partition, u
is a utility type, u ∈ u(C) , F ⊆ ΦW,C is unambiguous w.r.t. 〈W , C〉, and 〈G,�〉 is
a decision rule for 〈p,u〉. We define WM , pM , pM , CM , uM , uM , FM , GM and �M
to be the entities such that M = 〈WM ,pM , pM , CM ,uM , uM ,FM , GM ,�M〉. The binary
evaluation function associated with M is the function VM : F2

M → range(G) such that
VM(f, g) := GM(pM , uM , f, g) for all f, g ∈ FM . If GM is monadic, then the monadic

8



evaluation function associated with M is the function VM : FM → range(G) such that
VM(f) := VM(f, f) for all f ∈ FM . The preference relation associated with M is the
binary relation �M ⊆ F2

M such that f �M g if and only if VM(f, g) �M VM(g, f) (for
all f, g ∈ FM). We say that M allows strong beliefs if and only if there exists some
Ω–partition W = {W1,W2} and some p ∈ pM(W) such that W1 is p,GM–one.

We will have to assume that all individuals are described by the same decision–
theoretic model because robust aggregation forms empathetic evaluations by mixing
different individuals’ beliefs and utilities. Let I ≥ 2 (I ∈ N) be a fixed number of
individuals. Let G(I) be the set of all vectors 〈Mi〉 of decision–theoretic models such
that WMi

= WMj
, pMi

= pMj
, CMi

= CMj
, uMi

= uMj
, FMi

= FMj
, GMi

= GMj
and

�Mi
=�Mj

(for all 1 ≤ i, j ≤ I). For any 〈Mi〉 ∈ G(I), let W〈Mi〉 := WM1 , C〈Mi〉 := CM1 ,
and F〈Mi〉 := FM1 . To simplify our notation, we henceforth hold the individuals’ belief
type, utility type and decision rule fixed and assume that, for any 〈Mi〉 ∈ G(I), we have
p = pMi

, u = uMi
, G = GMi

and � = �Mi
(for each 1 ≤ i ≤ I). In what follows, we

therefore drop any reference to these components when we specify a vector of models in
G(I).

Applications: Decision theory

We list several examples of decision–theoretic models in the sense of our definition. All
of these models allow strong beliefs and possess belief types that are cross–product re-
finable. Some of the following models have originally been proposed for agents’ choices
among roulette lotteries with fixed objective probabilities (especially, weighted utility
and Machina). To explore the generality of our result, we extend this interpretation and
allow individuals to use their own subjective probabilities. In what follows, we hold the
graining 〈W , C〉 fixed and assume that F, F1, F2 : W → C are the 〈W , C〉–grainings of
f, f1, f2 ∈ ΦW,C. Under any of the following decision rules using probabilities, an event
A ∈ [W ] is null w.r.t. a probability p and the decision rule in question if and only if
p(A) = 0.

Expected utility. Beliefs are represented by probabilities pi on W and agents possess
real–valued one–dimensional utilities ui on C. Agents maximize the expectation of ui ◦F
w.r.t. pi defined by E(pi, ui◦F ) :=

∑
W∈W pi(W ) · [ui◦F ](W ). Since our proofs construct

only models with finite partitions of states, we avoid the issue of merely finitely vs.
countably additive probabilities.12

Expected utility with threshold. Beliefs are represented by probabilities pi on W and
agents possess real–valued one–dimensional utilities ui on C and a threshold αi ∈ R.
Agents’ strongly prefer f1 to f2 exactly when E(pi, ui◦F1)−E(pi, ui◦F2) > αi (Fishburn,
1988).

12We can modify the proofs for state partitions with infinitely many partition cells by introducing a
suitable σ–algebra on which σ–additive probabilities are defined in a way that makes the acts constructed
in the proof measurable.
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Choquet–expected utility. Beliefs are represented by capacities pi on W and agents
are endowed with real–valued one–dimensional utilities ui on C. Agents maximize the
Choquet–expectation of u ◦ F w.r.t. p defined by C(p, u ◦ F ) :=

∫∞
0
p(u ◦ F ≥ x) dx +∫ 0

−∞[p(u ◦ F ≥ x) − 1] dx (Gilboa, 1987, Schmeidler, 1989; cf. footnote 7). In the
present setting, Choquet–expected utility theory subsumes Quiggin’s (1982) rank depen-
dent utility theory. In rank dependent utility theory, an event A ∈ [W ] is null w.r.t. p
if and only if p(A) = 0. In contrast, an event A ∈ [W ] is null w.r.t. a capacity p and
Choquet–expectation if and only if p(B) = p(B ∩ A) for all B ∈ [W ].

Probability transforms. Beliefs are represented by probabilities pi on W , agents pos-
sess real–valued one–dimensional utilities ui on C and, in addition, a probability trans-
formation function πi : [0, 1]→ [0, 1] that is normalized to πi(0) = 0 and πi(1) = 1. This
transformation function may differ across agents. Agents maximize E(πi ◦pi, ui ◦F ) (Ed-
wards, 1955, Kahneman/Tversky, 1979) or E(πi◦pi, ui◦F )/E(πi◦pi,1) where 1 : C 7→ 1,
1 : C → R (Karmarkar, 1978).

Weighted utility theory. Agents posses subjective probabilities pi onW and two real–
valued one–dimensional utilities ui, vi on C. Agents maximize the function E(pi, [ui ◦
F ])/E(pi, [vi ◦ F ]) (Chew 1983, Fishburn, 1983).

Machina. Beliefs are represented by probabilities pi on W and agents are endowed
with a two–dimensional utility or, equivalently, with two one–dimensional utilities ui, vi :
C → R. Agents maximize Machina’s (1982) functional defined by Vi(f) := E(pi, ui ◦F )+
1
2
E(pi, vi ◦ F )2.

Regret. Agents are characterized by subjective probabilities pi on W , real–valued
one–dimensional utilities ui on C and a ‘modification function’ Mi : R2 → R. Define the
regret functional by Vi(f1, f2) := E(pi,Mi(ui ◦F1, ui ◦F2 (Loomes/Sugden, 1982). Agents
hold preferences such that f1 �i f2 iff Vi(f1, f2) ≥ Vi(f2, f1).

Leximin or leximax. Agents are equipped with real–valued one–dimensional utilities
ui or orderings ri on C. Beliefs are represented by a non–empty ‘possibility set’ Ki ⊆ W
(e.g., the support of a probability measure pi onW) which dichotomizes states into those
considered possible and those considered impossible by the agent’s lights. Decision–
theoretic leximin w.r.t. all consequences in the possibility set Ki maximizes the worst–
case outcome in {F (W )|W ∈ Ki} and, in case of a tie, the second–worst outcome etc.
Decision–theoretic leximax w.r.t. all consequences in the possibility set Ki maximizes the
best–case outcome in {F (W )|W ∈ Ki} and, in case of a tie, the second–best outcome
etc.13 Any A ∈ [W ] is null w.r.t. a possibility set K and decision–theoretic leximin
(leximax) if and only if A ⊆ −

⋃
K.

13We assume that W has M ∈ N+ elements. Agents following decision–theoretic leximin hold pref-
erences such that (1) f1 �i f2 iff there are bijections σ, τ : {1, . . . ,M} → W with [ui ◦ F1](σ(1)) ≤
. . . ≤ [ui ◦ F1](σ(M)) and [ui ◦ F2](τ(1)) ≤ . . . ≤ [ui ◦ F2](τ(M)) and there exists 1 ≤ m ≤ M such
that [ui ◦ F1](σ(m)) > [ui ◦ F2](σ(m)) while, for all 1 ≤ l < m, [ui ◦ F1](σ(l)) = [ui ◦ F2](σ(l)); and (2)
f1 ∼i f2 iff there are bijections σ, τ : {1, . . . ,M} → W with [ui ◦ F1](σ(1)) ≤ . . . ≤ [ui ◦ F1](σ(M)) and
[ui ◦ F2](τ(1)) ≤ . . . ≤ [ui ◦ F2](τ(M)) such that [ui ◦ F1](σ(m)) = [ui ◦ F2](σ(m)) for all 1 ≤ m ≤M .
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3 Ex Ante Aggregation

Ex ante aggregation rules

A social choice rule yields a social choice function based on the individuals’ decision–
theoretic models. Any F ⊆ Φ is called a set of possible distinguishable acts. In our
framework, the set F represents the degree of detail with which the model describes
the decision situation at hand. The set F corresponds to Arrow’s (1951) set of ‘possible
alternatives’. While Arrow kept this set fixed, we will study the behaviour of social choice
rules under variations of the set of possible distinguishable acts F (cf. Laslier (2000) for
a related approach). For any F ⊆ Φ, we call V a (binary) evaluation function on F if and
only if there is some non–empty set Z such that V : F ×F → Z. Commonly, we choose
Z = R. We choose to work with the concept of binary evaluation functions because of
its generality. Loomes/Sugden’s (1982) regret theory provides an example of a genuinely
binary evaluation function in which a preference f � g is defined by V (f, g) > V (g, f).
Moreover, any binary relation R on F can be represented by a binary decision rule
VR defined as the characteristic function of R (i.e., VR : F2 → {0, 1} is defined by
VR(f, g) := 1 if 〈f, g〉 ∈ R and VR(f, g) := 0 else). Finally, binary evaluation functions
allow monadic evaluations as a special case. An evaluation function V on F is monadic if
and only if V (f, g) = V (f, f) for all f, g ∈ F . For a monadic evaluation function V on F ,
we define V (f) := V (f, f) (for all f ∈ F). Expected utility maximization is an example
of a monadic decision rule in which a preference f � g may be defined by V (f) > V (g)
or by V (f) − V (g) > α for some threshold α ∈ R+ (cf. Fishburn, 1988). M = 〈F , V 〉
is an evaluation model if and only if F ⊆ Φ and V is an evaluation function on F . We
define FM and VM as the entities such that M = 〈FM , VM〉. A set X ⊆ F is a choice set
for F and corresponds to what Arrow (1951) calls an ‘environment’. For any F ⊆ Φ, C
is a choice function for F if and only if C : (2F − {∅}) → (2F − {∅}) and C(X) ⊆ X
for any X ⊆ F . M = 〈F , C〉 is a choice model if and only if F ⊆ Φ and C is a choice
function on F . We define FM and CM as the entities such that M = 〈FM , CM〉.

Let I ≥ 2 (I ∈ N) be a fixed number of individuals. Let V be the set of all evaluation
models. Let V(I) be the set of all vectors 〈Fi, Vi〉 of evaluation models with Fi = Fj
(1 ≤ i, j ≤ I). For 〈Mi〉 ∈ R(I) or 〈Mi〉 ∈ V(I), let F〈Mi〉 := FM1 . Let C be the set of all
choice models. A social choice rule yields a choice function for the group as a function
of individual evaluation models. Avoiding the assumption of an unrestricted domain, we
say that S is an ex ante social choice rule if and only if there is some non–empty set
V ⊆ V(I) such that S : V → C and FS(〈Mi〉) = F〈Mi〉 for any 〈Mi〉 ∈ V . As special
cases, we mention rules that yield a social choice function for any vector of individual
preference orderings (cf. Arrow, 1951) and rules that yield a social choice function for
any vector of individual monadic evaluations (cf. Sen, 1970).
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Refinements

Consider an evaluation model M . Recall from our discussion of coarse–grained acts
(p. 5) that fine–grained models can distinguish at least as many acts as coarse–grained
models. In a refined model M ′ we therefore require that FM ⊆ FM ′ and that evaluations
of coarse–grained acts remain unaffected by the refinement. For any evaluation function
V : F → Z and any X ⊆ F , let V |X := V ∩ (X × X × Z) be the restriction of R to
X. For arbitrary evaluation models M = 〈F , V 〉 and M ′ = 〈F ′, V ′〉, we say that M ′

refines M if and only if (i) F ⊆ F ′ and (ii) V = V ′|F . For arbitrary choice models
M = 〈F , C〉 and M ′ = 〈F ′, C ′〉, we say that M ′ refines M if and only if (i) F ⊆ F ′ and
(ii) C(X) = C ′(X) for all X ⊆ F .

We now introduce the central notion of stability for social choice rules. Stability
under refinements guarantees that social preferences based on refined individual models
are compatible with coarser social preferences based on coarser individual models. We
say that the vector 〈M ′

i〉 refines the vector 〈Mi〉 if and only if M ′
i refines Mi for all

1 ≤ i ≤ I.

Definition 3.1 A social choice rule S is stable under refinements if and only if, for all
〈Mi〉, 〈M ′

i〉 in the domain of S, S(〈M ′
i〉) refines S(〈Mi〉) whenever 〈M ′

i〉 refines 〈Mi〉.

Illustration 1: Stability is the property that makes opinion polls useful and feasible.
If we use a stable social choice rule, opinion polls only need to elicit relatively coarse
preferences about the options at stake. It then becomes unnecessary — as it is in practice
impossible — to include all conceivable details in a poll’s questionnaire.

Illustration 2: A CEO (taking the place of the group) commissions expert reports
(taking the place of individuals). What information may a secretary neglect when sum-
marizing the reports without manipulating the CEO’s decision? What degree of detail in
the expert reports is relevant? If the CEO’s aggregation rule is stable, the secretary may
choose any level of detail on which to summarize the expert reports. If, however, the
CEO’s aggregation rule is not stable, it becomes crucial for the outcome of his decision
which details the secretary’s summary includes.

Is stability a desirable and important property of social choice rules? We offer four
reasons for an affirmative answer. These reasons concern the existence of a buffering
partition, i.e., a partition of consequences in whose refinements no changes in the group’s
preferences occur. First, metaphysical, reason: There is no reason to believe that an
ultimate, maximally fine–grained, partition of reality exists. There is furthermore no
reason to believe that a buffering partition exists. Second, epistemic, reason: Even
if a buffering partition existed, we could never know when it has been reached. Third,
pragmatic, reason: Even if we knew how to construct a buffering partition, the complexity
of this partition would exceed our computational and other capacities. Fourth, political
reason: Since the choice of the partition to be used in the analysis can significantly
influence the recommendation of an unstable social choice rule, there is room for political
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manipulation through a clever choice of a favourable partition. This problem is mitigated
only by the difficulty to foresee what level of detail will yield which social choice. Among
the first three reasons, the pragmatic reason makes the least contentious philosophical
assumption. Yet we believe it is strong enough to motivate the desire for stability in view
of our illustrations.

Isaac Levi (in private correspondence) suggests that the choice of an appropriate
partition could be an ethico–political judgement and, therefore, an additional parameter
in the modelling of a social decision problem. We would then add a new factor to the
framework of social choice theory, namely the partition that is judged to be relevant.
Our illustrations sketch scenarios in which it would be desirable to avoid ethico–political
judgments of relevance all together. On the one hand, the addition of this new factor
would subvert the initial project of a theory of consensus formation among disagreeing
individuals since the choice of a graining would itself become a topic of disagreement.
On the other hand, it is not clear how an explicit theory of social welfare could decide
which details are relevant for determining the optimal social welfare and thus, implicitly,
the appropriate tradeoffs between different individuals’ welfare. The appeal of stability
derives from the difficulty of choosing a reference partition. It is as coherent to choose
the coarsest partition that allows to distinguish all feasible acts as it is to choose the
most fine–grained partition available. No choice of a reference partition can claim to be
self–evident.14

Independence of irrelevant alternatives

Arrow’s (1951) formulation of independence of irrelevant alternatives keeps the set F of
possible distinguishable actions fixed and does not make it explicit in the notation. Since
we are concerned with changes in the set F , we formulate a version of the independence
condition with explicit reference to the set F . Arrow’s condition requires that, for fixed
F , social choice among the acts in a choice set X ⊆ F , must not depend on individual
preferences for acts outside of X.15 Allowing F to vary, we require, in addition, that
social choice must not depend on the choice of the set F of distinguishable possible acts.
An ex ante social choice rule S : V → C is independent of irrelevant alternatives (IIA)
if and only if, for all 〈F , Vi〉, 〈F ′, V ′i 〉 ∈ V and all X ⊆ F ∩ F ′, if Vi|X = V ′i |X for all
1 ≤ i ≤ I, then CS(〈Mi〉)(X) = CS(〈M ′i〉)(X). Clearly, we obtain Arrow’s version of the
condition if we keep F fixed. Note that we do not presuppose the existence of a group
preference or any rationality axioms like the weak axiom of revealed preference theory.

14Levi (in private correspondence) suggests to define the relevant level of detail as the coarsest common
refinement of the individuals’ ‘basic partitions’ (cf. Levi, 1986). Even if we agreed (which we do not)
that there were some privileged ‘basic partition’ for each individual, the choice of the coarsest common
refinement is itself a value judgement far from self–evident. Moreover, the individuals may have reasons,
including economic incentives, to disagree with this value judgement.

15In the more general terms of evaluation functions, Arrow’s condition requires that, for any evaluation
functions Vi, V ′i on F (1 ≤ i ≤ I) and any X ⊆ F , if Vi|X = V ′i |X for all 1 ≤ i ≤ I, then CS(〈Vi〉)(X) =
CS(〈V ′i 〉)(X).
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As Plott (1976) emphasizes, IIA for choice functions is an extremely weak condition that
is satisfied by any implementable social choice rules, including the following examples:

• utilitarian rules with weights λi that do not depend on F

• allocative leximin and leximax

• de Borda count

• Nash equilibrium

• auctioning

We now formulate a closure condition on the domain of social choice rules. It requires
that if a social choice rule can be applied to some vector 〈Mi〉 of individual models,
then it can also be applied to the restrictions of these models to any set of actions
X ⊆ F〈Mi〉. Formally, any set V ⊆ V(I) is closed under restrictions if and only if, for
any 〈F , Vi〉 ∈ V and any X ∈ F , we also have 〈X,Vi|X〉 ∈ V . This condition is trivially
satisfied by social choice rules with an unrestricted domain. An easy theorem now records
the close connection between stability under refinements and the more familiar condition
of independence of irrelevant alternatives.

Theorem 3.2 (1) If an ex ante social choice rule is IIA, then it is also stable under
refinements.

(2) If an ex ante social choice rule is stable under refinements and its domain is closed
under restrictions, then it is also IIA.

All proofs are collected in the appendix.

As a first consequence of this theorem, we find that stability is a ubiquitous property
of ex ante social choice rules, even weaker than IIA. By asking for stability, we are
clearly not asking for too much. In the next section where we will find that the situation
is very different for robust social choice rules. Any non–trivial robust social choice rules
is instable under refinements. Instabilities can therefore be counted as a defect of the
robust mode that is easily avoided by the ex ante mode. As a second consequence of
the theorem, we obtain additional reasons why we should require social choice rules to
be IIA. These are the same three reasons that we have offered for requiring social choice
rules to be stable under refinements. If the domain of social choice rules is closed under
restrictions, the theorem shows that we have to require IIA if we desire stability under
refinements.
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4 Robust Aggregation

Robust social choice rules

The idea behind robust aggregation is to consider not only the individuals’ actual evalua-
tions but also what we have called their ‘empathetic’ evaluations. Empathetic evaluations
are the evaluations that real individuals would have if they were to keep their own utilities
but adopted another individual’s beliefs. For 1 ≤ k, l ≤ I and 〈Mi〉 ∈ G(I) we define Mij

as the evaluation model such that FMij
= F〈Mi〉 and VMij

(f, g) = G(pMi
, uMj

, f, g) for
all f, g ∈ F〈Mi〉. Note that Mi denotes a decision–theoretic model while Mii denotes the
evaluation model with the evaluation function of a hypothetical individual with i’s beliefs
and j’s utilities. There are I2 such hypothetical individuals. For any 〈Mi〉 ∈ G(I), we
write f �Mij

g if and only if VMij
(f, g) � VMij

(g, f) (for all 1 ≤ i, j ≤ I and f, g ∈ F〈Mi〉).

Definition 4.1 S is a robust social choice rule if and only if there is some non–empty
set G ⊆ G(I) such that S : G → C and there exists some ex ante social choice rule
S ′ : V(I2)→ C such that S(〈Mi〉) = S ′(〈Mij〉) for all 〈Mi〉 ∈ G.

Any S ′ satisfying the above condition is an ex ante rule associated with S.16 We
now formulate several additional properties of a robust social choice rule S. We start
with a non–triviality condition that requires a robust rule not collapse back into ex
ante aggregation. S is non–trivial if and only if there are 〈Mi〉, 〈M∗

i 〉 in the domain
of S such that W〈Mi〉 = W〈M∗i 〉, C〈Mi〉 = C〈M∗i 〉, F〈Mi〉 = F〈M∗i 〉, 〈VMi

〉 = 〈VM∗i 〉 but
S(〈Mi〉) 6= S(〈M∗

i 〉). S is independent of irrelevant alternatives (IIA) if and only if there
exists an ex ante social choice rule associated with S that is IIA. S is Pareto optimal
if and only if, for all 〈Mi〉 in the domain of S and all f, g ∈ F〈Mi〉, if f �Mij

g for all
1 ≤ i, j ≤ I but f �Mkl

g for some 1 ≤ k, l ≤ I, then CS(〈Mi〉)({f, g}) = {f}. Clearly,
if S is Pareto optimal, then it is non–trivial. S has a wide domain if and only if, for
any graining 〈W , C〉, any 〈pi〉 ∈ p(W)I , any 〈ui〉 ∈ u(C)I and any F ⊆ ΦW,C, there
exists some 〈Mi〉 in the domain of S such that W〈Mi〉 = W , 〈pMi

〉 = 〈pi〉, C〈Mi〉 = C,
〈uMi
〉 = 〈ui〉 and (*) F ⊆ F〈Mi〉. Our definition of a ‘wide domain’ is in an important

sense not a condition of a ‘universal domain’. The final clause (*) of the definition allows
the underlying structure of acts to force the inclusion of certain acts into the choice set
F〈Mi〉. A robust social choice rule S with a wide domain may, for example, be restricted
to only those vectors 〈Mi〉 in which F〈Mi〉 contains (a reference act for) each possible
coarse–grained act F : W〈Mi〉 → C〈Mi〉. Domains thus restricted introduce considerable
technical complications during the proofs. Replacing condition (*) with (**) F〈Mi〉 = F ,
we say that S has an unrestricted domain if and only if G(I) is the domain of S. Finally,
we ensure that S is invariant under relabelling the components of the individuals’ decision
theoretic models. So far, our definition of robust rules allows group preferences to depend
not only on the values of the hypothetical individuals’ evaluations of acts, but also on
the acts themselves. We will assume that a simple relabelling, or renaming, of acts
should not yield different social preferences. For any 〈Mi〉, 〈M ′

i〉 ∈ G(I), we say that

16There are generally several ex ante rule associated with S when S has a restricted domain.
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〈M ′
i〉 is the φ, ψ, χ–relabelling of 〈Mi〉 if and only if φ, ψ and χ are 1–1 mappings with

φ : W〈Mi〉 → W〈M ′i〉, ψ : C〈Mi〉 → C〈M ′i〉, χ : F〈Mi〉 → F〈M ′i〉 such that 〈pMi
〉 = 〈pM ′i ◦ φ̄〉,

〈uMi
〉 = 〈uM ′i ◦ ψ〉, VMij

(f, g) = VM ′ij(χ(f), χ(g)) for all f, g ∈ F〈Mi〉 and all 1 ≤ i, j ≤ I,

and, for any f1, f2 ∈ F〈Mi〉 and any f ′1, f
′
2 ∈ F〈M ′i〉, if Fk is the 〈W〈Mi〉, C〈Mi〉〉–graining of

fk, and F ′k is the 〈W〈M ′i〉, C〈Mi〉〉–graining of χ(fk), then F ′k = ψ ◦ Fk ◦ φ−1 (for k = 1, 2).
S is invariant under relabelling if and only if, for any 〈Mi〉, 〈M ′

i〉 ∈ G(I), if 〈M ′
i〉 is the

φ, ψ, χ–relabelling of 〈Mi〉 for some φ, ψ, χ, then 〈Mi〉 is in the domain of S iff 〈M ′
i〉 is

in the domain of S and f ∈ [S(〈Mi〉)](X) iff χ(f) ∈ [S(〈M ′
i〉)]({χ(g)|g ∈ X}) for any

f ∈ F〈Mi〉 and X ⊆ F〈Mi〉.

Instability

For the sake of a strong instability result, we now define a demanding notion of a refine-
ment for individual models. For the group preference model, we use the same notion as
in Section 3. If it were not for our interest in group preference reversals, we might wish to
speak of an individual refinement already when individual preferences are left unchanged.
To indulge robust aggregation, we ask moreover that both individual evaluation functions
and beliefs remain unchanged in a refinement. For any vectors of decision–theoretic mod-
els 〈Mi〉, 〈M ′

i〉 ∈ G(I), we say that 〈M ′
i〉 refines 〈Mi〉 if and only if, for each 1 ≤ i ≤ I,

(1) W〈Mi〉 ⊆ [W〈M ′i〉], (2) C〈Mi〉 ⊆ [C〈M ′i〉], (3) F〈Mi〉 ⊆ F〈M ′i〉, (4) pM ′i refines pMi
and (5)

VMi
(f, g) = VM ′i(f, g) for all f, g ∈ F〈Mi〉. Condition (5) implies that the individuals’

preferences over acts in F〈Mi〉 remain the same.17 A robust social choice rule S is stable
under refinements if and only if, for all 〈Mi〉, 〈M ′

i〉 in the domain of S, S(〈M ′
i〉) refines

S(〈Mi〉) whenever 〈M ′
i〉 refines 〈Mi〉.

Theorem 4.2 Suppose that S is a robust social choice rule that is invariant under re-
labelling and has a wide domain and suppose that the belief types of the models in its
domain are closed under cross–products.

If S is non–trivial, then S cannot be stable under refinements.

In our view, this is a detrimental result for robust aggregation. We recall that we
return to the ex ante mode of aggregation if our robust social choice rule is trivial.
Hence, any stable robust social choice rule must collapse back into the ex ante mode.
Ex ante social choice rules are stable whenever they are IIA. We can therefore conclude
from Theorem 3.2 and Theorem 4.2 that the robust mode of aggregation cannot yield
a normative theory of fairness or of consensus formation. The only way to avoid this
conclusion is to challenge the importance of stability or to accept the choice of a graining
for the individual models as an additional factor in social choice.

Theorem 4.3 Suppose that S is a robust social choice rule that is invariant under rela-
belling and

17In case Gi is monadic, clause (5) reduces to VMi
(f) = VM ′i (f) for all f ∈ F〈Mi〉. In case Gi is an

ordinal decision rule, this clause reduces to f RMi
g iff f RM ′i g for all f, g ∈ F〈Mi〉.
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(1) S is non–trivial and IIA, has a wide domain and the models in its domain have a
monadic decision rule and a belief types closed under cross–products, or

(2) S is Pareto optimal and has a wide domain and the models its domain allow strong
beliefs.

Then there is an infinite sequence 〈Mn
i 〉n∈N of vectors of decision–theoretic models in

the domain of S such that 〈Mn+1
i 〉 refines 〈Mn

i 〉 (for each n ∈ N) and S leads to a sequence
of group models 〈S(〈Mn

i 〉)〉n∈N that, for some f ∈ F〈M0
i 〉, oscillates between choosing and

not choosing f from some choice set X ⊆ F〈M0
i 〉 (i.e., there is some X ⊆ F〈M0

i 〉 and
f ∈ X with f ∈ CS(〈M2n

i 〉)(X) and f /∈ CS(〈M2n+1
i 〉)(X) for all n ∈ N).

The infinite sequence of group preference reversals in Theorem 4.3 is particularly
disturbing. We are confronted with the possibility of pervasive instabilities that refuse to
disappear as we build increasingly fine–grained individual models. In the robust mode,
instabilities are there to stay. We emphasize that instabilities are not the artifact of a
narrow class of decision theories. All decision–theoretic models listed above allow strong
beliefs and have belief types closed under cross–products and therefore satisfy all the
decision–theoretic conditions of Theorem 4.2 and Theorem 4.3.1–2. Regret theory and
decision–theoretic leximin/leximax are the only decision theories on our list that have
a non–monadic decision rule. Hence, Theorem 4.3.3 applies to all our examples except
regret theory and decision–theoretic leximin/leximax. The current version of Theorem
4.3.1 uses strong beliefs that make some worlds inW null. We can work with beliefs that
are less strong if, instead, we make more assumptions about the decision rule used.
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Appendix A Proofs of Theorems

Theorem 3.2 Proof: 1.) Trivial. 2.) Suppose S is an ex ante social choice rule that is IIA. Suppose,
moreover, that V is the domain of S and 〈F , Vi〉, 〈F ′, V ′i 〉 ∈ V. Suppose that X ⊆ F ∩F ′. If V is closed
under restrictions, then 〈X,Vi|X〉 ∈ V. Moreover, 〈X,Vi|X〉 refines both 〈F , Vi〉 and 〈F ′, V ′i 〉. If S is
stable under refinements, we then obtain CS(〈F,Vi〉)(X) = CS(〈X,Vi|X〉)(X) = CS(〈F ′,V ′i 〉)(X). �

Recall in what follows that we have fixed the individuals’ belief type p, utility type u and decision
rule 〈G,�〉.

Theorem 4.2 and Theorem 4.3.1 Preparation: Suppose that S is a robust social choice rule
that is invariant under relabelling and the belief types of all models in its domain are closed under
cross–products. Suppose S is non–trivial. Hence, there are 〈M∗i 〉, 〈M

†
i 〉 in the domain of S such that

W :=W〈M∗i 〉 =W〈M†i 〉, C := C〈M∗i 〉 = C〈M†i 〉, F := F〈M∗i 〉 = F〈M†i 〉, 〈VM∗i 〉 = 〈VM†i 〉, and for some X ⊆ F
and some g ∈ X, (+) g ∈ CS(〈M∗i 〉)(X) but g /∈ CS(〈M†i 〉)

(X). Let L := |W| and M := |C|. Then there is
an Ω–partition W ′ with |W ′| = L2 each of whose elements is at least countably infinite. We enumerate
the elements of W and W ′ such that W = {Wl|1 ≤ l ≤ L} and W ′ = {Wl1,l2 |1 ≤ l1, l2 ≤ L}. We define
W∗ := {

⋃
{Wl,1, . . . ,Wl,L}|1 ≤ l ≤ L} and W† := {

⋃
{W1,l, . . . ,WL,l}|1 ≤ l ≤ L}. Obviously, W∗ and

W† are Ω–partitions and subsets of [W ′]. We define φ∗ :W →W∗ by φ∗(Wl) :=
⋃
{Wl,1, . . . ,Wl,L} and

φ† : W → W† by φ†(Wl) :=
⋃
{W1,l, . . . ,WL,l} (1 ≤ l ≤ L). Obviously, φ∗ and φ† are 1–1. There also

exists a Γ–partition C′ with |C′| = M2 each of whose elements is at least countably infinite. We enumerate
the elements of C and C′ such that C = {Cm|1 ≤ m ≤ M} and C′ = {Cm1,m2 |1 ≤ m1,m2 ≤ M}.
We define C∗ := {

⋃
{Cm,1, . . . , Cm,M}|1 ≤ m ≤ M} and C† := {

⋃
{C1,m, . . . , CM,m}|1 ≤ m ≤ M}.

Obviously, C∗ and C† are Γ–partitions and subsets of [C′]. We define ψ∗ : C → C∗ by ψ∗(Cm) :=⋃
{Cm,1, . . . , Cm,M} and ψ† : C → C† by ψ†(Cm) :=

⋃
{C1,m, . . . , CM,m} (1 ≤ m ≤ M). Obviously, ψ∗

and ψ† are 1–1. Trivially, W ∗ ∩W † ∈ W ′ for every W ∗ ∈ W∗, W † ∈ W† and C∗ ∩ C† ∈ C′ for every
C∗ ∈ C∗, C† ∈ C†. We recall that every Cm1,m2 ∈ C′ is at least countably infinite (1 ≤ m1,m2 ≤ M).
We can hence enumerate the elements of some countably infinite subset of Cm1,m2 (1 ≤ m1,m2 ≤ M)
in a sequence c0m1,m2

, c1m1,m2
, . . . , cnm1,m2

, . . . (where cnm1,m2
6= cn

′

m1,m2
for any n, n′ ∈ N with n 6= n′).

Let χ : F → ΦW′,C′ be the function such that, for any f ∈ F , f ′ = χ(f) is the act defined by: For
any 1 ≤ l1, l2 ≤ L and any 1 ≤ m1,m2 ≤ M , if f(ω) ∈ Cm1 for all ω ∈ Wl1 and f(ω) ∈ Cm2 for all
ω ∈Wl2 , then f ′(ω) := c0m1,m2

for all ω ∈Wl1,l2 Let F ′ := χ(F) be the image of F under χ. Since F is
unambiguous w.r.t. 〈W, C〉, χ : F → F ′ is a 1–1 mapping. Note that F ′ ⊆ ΦW∗,C∗ and F ′ ⊆ ΦW†,C† .
Moreover, for any f ∈ F with a 〈W, C〉–graining F , we find that [ψ∗◦F ◦(φ∗)−1] is the 〈W∗, C∗〉–graining
of χ(f) and [ψ† ◦ F ◦ (φ†)−1] is the 〈W†, C†〉–graining of χ(f).

Since p is closed under relabelling, p∗∗i := pM∗i ◦
¯(φ∗)
−1 ∈ p(W∗) and p††i := pM†i

◦ ¯(φ†)
−1 ∈ p(W†)

(where we use the definition of the extended mappings ¯(φ∗) and ¯(φ†) on p. 6). Let u∗∗i := uM∗i ◦ (ψ∗)−1

and u††i := uM†i
◦ (ψ†)−1. We write M∗∗i := 〈W∗, p∗∗i , C∗, u∗∗i ,F ′〉 and M††i := 〈W†, p††i , C†, u

††
i ,F ′〉

(1 ≤ i ≤ I). We write V ∗ij(f1, f2) := G(p∗i , u
∗
j , f1, f2), V †ij(f1, f2) := G(p†i , u

†
j , f1, f2) and V ∗∗ij (f ′1, f

′
2) :=

G(p∗∗i , u
∗∗
j , f

′
1, f
′
2), V ††ij (f ′1, f

′
2) := G(p††i , u

††
j , f

′
1, f
′
2) for all f1, f2 ∈ F , f ′1, f

′
2 ∈ F ′ and all 1 ≤ i, j ≤ I.

Since G is invariant under relabelling, we have (*) V ∗ij(f1, f2) = V ∗∗ij (χ(f1), χ(f2)) and V †ij(f1, f2) =
V ††ij (χ(f1), χ(f2)) for all f1, f2 ∈ F and all 1 ≤ i, j ≤ I. Since the S is invariant under relabelling, we
then know that 〈M∗∗i 〉, 〈M

††
i 〉 are in the domain of S and there are X ′ ⊆ F ′ and g′ ∈ X ′ such that

(+’) g′ ∈ CS(〈M∗∗i 〉)(X
′) but g′ /∈ CS(〈M††i 〉)

(X ′) (from (+)). Since p is closed under cross–products,

there exist p′i ∈ p(W ′) such that p′i refines p∗∗i and p††i (for all 1 ≤ i ≤ I). For every 1 ≤ i ≤ I, let
the functions vi, wi ∈ u(C′) be defined by vi(Cm1,m2) := u∗∗i (

⋃
{Cm1,1, . . . , Cm1,M}) = uM∗i (Cm1) and

wi(Cm1,m2) := u††i (
⋃
{C1,m2 , . . . , CM,m2}) = uM†i

(Cm2) for all 1 ≤ m1,m2 ≤M . We write V ′ij(f1, f2) :=

G(p′i, vj , f1, f2) and V
′′

ij (f1, f2) := G(p′i, wj , f1, f2) (for f1, f2 ∈ F〈M ′i〉 and 1 ≤ i, j ≤ I). Recall that we
write C(c) for the partition element of C containing c ∈ Γ and that we can identify a partition C with a
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function from Γ onto C (for any Γ–partition C). Since vj ◦ C′ = u∗∗j ◦ C∗ and wj ◦ C′ = u††j ◦ C† and since
G is invariant under empty refinements, we find, for any f1, f2 ∈ F ′, (**) V ′ij(f1, f2) = V ∗∗ij (f1, f2) and
V
′′

ij (f1, f2) = V ††ij (f1, f2) (1 ≤ i, j ≤ I). We note that (***) V ′ii(f1, f2) =(by (**)) VM∗∗i (f1, f2) =(by (*))
VM∗i (χ−1(f1), χ−1(f2)) =(by assumption) VM†i

(χ−1(f1), χ−1(f2)) =(by (*)) VM††i
(f1, f2) =(by (**))

V
′′

ii (f1, f2) (for all 1 ≤ i ≤ I and all f1, f2 ∈ F ′). This completes our preparation and we now turn to
finishing the proofs for our two separate propositions.

Proof of Theorem 4.2: If S has a wide domain, there exists 〈M ′i〉 in the domain of S such that (for
all 1 ≤ i ≤ I)W〈M ′i〉 =W ′, pM ′i = p′i, C〈M ′i〉 = C′, uM ′i = vi and F ′ ⊆ F〈M ′i〉. By (***), 〈M ′i〉 refines both
〈M∗∗i 〉 and 〈M††i 〉. Suppose S were stable and non–trivial. This would require that g′ ∈ CS(〈M ′i〉)(X

′)
and g′ /∈ CS(〈M ′i〉)(X

′) (by (+’)). Contradiction! Hence, S is not stable if it is non–trivial. �

Proof of Theorem 4.3.1: Suppose that S has a wide domain and all models in its domain have a
monadic decision rule. We recall that we have enumerated the elements of some countably infinite subset
of Cm1,m2 (1 ≤ m1,m2 ≤ M) in a sequence c0m1,m2

, c1m1,m2
, . . . , cnm1,m2

, . . . (where cnm1,m2
6= cn

′

m1,m2
for

any n, n′ ∈ N with n 6= n′). We now define a sequence 〈Cnm1,m2
〉 of partitions of Cm1,m2 by Cnm1,m2

=
{{c1m1,m2

}, . . . , {cnm1,m2
}, Cm1,m2 − {c1m1,m2

, . . . , cnm1,m2
}} for all n ∈ N+. We write C0

m1,m2
:= Cm1,m2

and Cnm1,m2
:= Cm1,m2 − {c1m1,m2

, . . . , cnm1,m2
} for all n ∈ N+. Let C0 := C′ =

⋃
{Cm1,m2 |1 ≤ m1,m2 ≤

M} and Cn :=
⋃
{Cnm1,m2

|1 ≤ m1,m2 ≤ M} for all n ∈ N+. We note that c0m1,m2
∈ Cnm1,m2

(1 ≤
m1,m2 ≤ M , n ∈ N). For any n ∈ N, let ψn : Cn → Cn+1 be defined by ψn(Cnm1,m2

) := {cn+1
m1,m2

}
and by ψn({cn′m1,m2

}) := {cn′m1,m2
} for all 1 ≤ n′ ≤ n and all 1 ≤ m1,m2 ≤ M . For any n ∈ N, let

Fn† ⊆ ΦW′,Cn be the set of acts h such that for any W ∈ W ′ there exists some 1 ≤ m1,m2 ≤ M and
some 1 ≤ n′ ≤ n+ 1 such that h(ω) = cn

′

m1,m2
for all ω ∈ W . Since Fn† is unambiguous w.r.t. 〈W ′, Cn〉,

we know that, for every f ′ ∈ F ′, there is exactly one act fn† ∈ Fn† that has the same 〈W ′, Cn〉–graining
as f ′. Let Fn be the set that consists of all acts in F ′ and those acts in Fn† that do not have the
same 〈W ′, Cn〉–graining as some act in F ′ (for any n ∈ N). Note that Fn ⊆ ΦW′,Cn+1 for any n ∈ N.
Moreover, Fn is unambiguous w.r.t. 〈W ′, Cn〉 and there is no set F ′′ with Fn ⊆ F ′′ ⊆ ΦW′,Cn that is
unambiguous w.r.t. 〈W ′, Cn〉 (for any n ∈ N). We now define a sequence 〈un1 , . . . , unI 〉n∈N of vectors of
individual utility functions such that uni ∈ u(Cn) for each n ∈ N and 1 ≤ i ≤ I. For all even n ∈ N,
let uni (Cnm1,m2

) := vi(Cm1,m2) and, for all odd n ∈ N, let uni (Cnm1,m2
) := wi(Cm1,m2) (for all 1 ≤ i ≤ I,

1 ≤ m1,m2 ≤ M). For any n ∈ N+ and any 1 ≤ n′ ≤ n, if n′ is even, let uni ({cn′m1,m2
}) := wi(Cm1,m2)

and, if n′ is odd, let uni ({cn′m1,m2
}) := vi(Cm1,m2) (for all 1 ≤ i ≤ I, 1 ≤ m1,m2 ≤ M). Note that

uni = un+1
i ◦ ψn (1 ≤ i ≤ I, n ∈ N). Since S has a wide domain, there is a sequence 〈Mn

1 , . . . ,M
n
I 〉n∈N

of vectors of individual decision–theoretic models in the domain of S such that, for all n ∈ N and all
1 ≤ i ≤ I, W〈Mn

i 〉 = W ′, pMn
i

= p′i, C〈Mn
i 〉 = Cn, uMn

i
= uni and F〈Mn

i 〉 = Fn. Assuming that G is
monadic, we write V nij (f) := G(p′i, u

n
j , f, f) for all f ∈ Fn, 1 ≤ i, j ≤ I and n ∈ N.

Note that for any f ∈ F ′ and any ω ∈ Ω there exist 1 ≤ m1,m2 ≤ M such that f(ω) = c0m1,m2
.

Since u2n
j ◦ C2n ◦ f = vj ◦ C′ ◦ f and u2n+1

j ◦ C2n+1 ◦ f = wj ◦ C′ ◦ f , the fact that G is invariant under
empty refinements implies that (****) VM2n

ij
(f) = V ′ij(f, f) =(by (**)) VM∗∗ij (f, f) and VM2n+1

ij
(f) =

V
′′

ij (f, f) =(by (**)) VM††ij (f, f) (for any f ∈ F ′, 1 ≤ i, j ≤ I, n ∈ N). We now show that Mn+1
i refines

Mn
i , for all n ∈ N and 1 ≤ i ≤ I. Conditions 1–4 of the definition of a refinement (p. 16) are trivially

satisfied. We need to show that VMn
i

(f) = VMn+1
i

(f) for all f ∈ Fn, 1 ≤ i ≤ I, n ∈ N. We distinguish

two cases. Case 1: f ∈ F ′. By (****), VM2n
i

(f) = V ′ii(f, f) =(by (***)) V
′′

ii (f, f) = VM2n+1
i

(f) (for any

1 ≤ i ≤ I, n ∈ N). Case 2: f ∈ Fn −F ′. Then uni ◦ Cn ◦ f = un+1
i ◦ψn ◦ Cn ◦ f = un+1

i ◦ Cn+1 ◦ f which
yields the claim since G is invariant under empty refinements (for any 1 ≤ i, j ≤ I, n ∈ N). Hence,
all conditions for a refinement are satisfied. If S is IIA and non–trivial, we finally obtain (by (****))
CS(〈M2n

i 〉)(Y ) = CS(〈M∗∗i 〉)(Y ) and CS(〈M2n+1
i 〉)(Y ) = CS(〈M††i 〉)

(Y ) (for all Y ⊆ F ′ and n ∈ N). By (+’),
we then have g′ ∈ CS(〈M2n

i 〉(X
′) but g′ /∈ CS(〈M2n+1

i 〉(X
′) (for all n ∈ N). �
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Lemma A.1 Suppose 〈G,�〉 is a decision rule for a belief type p and a utility type u. Suppose 〈W, C〉
and 〈W, C′〉 are grainings with C ⊆ [C′], f1, f2 ∈ ΦW,C′ , u ∈ u(C), u′ ∈ u(C′), p ∈ p(W) and A ∈ [W].
Then
If A is p,G–one and [u ◦ C ◦ fk](ω) = [u′ ◦ C′ ◦ fk](ω) for all ω ∈ A and k = 1, 2, then G(p, u, f1, f2) =
G(p, u′, f1, f2).

Proof: Suppose that A is p,G–one and [u◦C ◦fk](ω) = [u′ ◦C′ ◦fk](ω) for all ω ∈ A and k = 1, 2. We
note that f1, f2 ∈ ΦW,C . Let v ∈ u(C′) be the function such that v(X) := u(C) for all C ∈ C and X ∈ C′
with X ⊆ C. Hence, [v ◦ C′ ◦ fk](ω) = [u ◦ C ◦ fk](ω) for all ω ∈ Ω and k = 1, 2. Since G is invariant
under empty refinements, we then have G(p, v, f1, f2) = G(p, u, f1, f2). Since A is p,G–one and since
[v ◦ C′ ◦ fk](ω) = [u′ ◦ C′ ◦ fk](ω) for all ω ∈ A (k = 1, 2), we also have G(p, v, f1, f2) = G(p, u′, f1, f2).
Hence, G(p, u, f1, f2) = G(p, u′, f1, f2). �

Theorem 4.3.2 Proof: Suppose that S is a robust social choice rule with a wide domain and that
the models in its domain allow strong beliefs. Suppose furthermore that S is Pareto optimal. Since
the models in the domain of S allow strong beliefs, there is some Ω–partition W = {W1,W2} and
some p ∈ p(W) such that W1 is p,G–one. Since p is closed under relabelling and G is invariant under
relabelling, there also exists some q ∈ p(W) such that W2 is q,G–one. Define 〈pi〉 ∈ p(W)I by p1 := p
and pj := q (2 ≤ j ≤ I). We partition Γ into two at least countably infinite sets Ck (k = 1, 2). For each
k = 1, 2, we enumerate the elements of some countably infinite subset of Ck in a sequence c0k, c

1
k, . . . , c

n
k , . . .

(where cnk 6= cn
′

k for any n, n′ ∈ N with n 6= n′). We then define a sequence 〈Cnk 〉 of partitions of Ck
by Cnk = {{c1k}, . . . , {c

n+1
k }, Ck − {c1k, . . . , c

n+1
k }} for all n ∈ N. We write Cnk := Ck − {c1k, . . . , c

n+1
k }

and Cn := Cn1 ∪ Cn2 for all n ∈ N. Note that c0k ∈ Cnk for all n ∈ N and k = 1, 2. For any n ∈ N,
let ψn : Cn → Cn+1 be defined by ψn(Cnk ) := {cn+2

k } and ψn({cn′k }) := {cn′k } for all 1 ≤ n′ ≤ n + 1
(k = 1, 2). Define f ∈ Φ as the act such that, for any ω ∈W1, f(ω) = c11 and, for any ω ∈W2, f(ω) = c01.
Define g ∈ Φ as the act such that, for any ω ∈ W1, g(ω) = c12 and, for any ω ∈ W2, g(ω) = c02. For any
n ∈ N, let Fn† ⊆ ΦW,Cn be the set of acts h such that for any l = 1, 2 there exists some k = 1, 2 and
some 1 ≤ m ≤ n + 2 such that h(ω) = cmk for all ω ∈ Wl. For any n ∈ N, since Fn† is unambiguous
w.r.t. 〈W, Cn〉, there is exactly one act hn1 ∈ Fn† that has the same 〈W, Cn〉–graining as f and there is
exactly one act hn2 ∈ Fn† that has the same 〈W, Cn〉–graining as g. Replacing hn1 , h

n
2 with f, g, we define

Fn := (Fn† − {hn1 , hn2}) ∪ {f, g} for any n ∈ N. Note that Fn ⊆ ΦW,Cn+1 (n ∈ N). Moreover, Fn is
unambiguous w.r.t. 〈W, Cn〉 and there is no set F ′ with Fn ⊆ F ′ ⊆ ΦW,Cn that is unambiguous w.r.t.
〈W, Cn〉.

Let C′ := {C1, C2}. We note that f, g ∈ ΦW,C′ and that [C′ ◦ f ](.) = C1 while [C′ ◦ g](.) = C2. Since
G is non–trivial, there are u, u′ ∈ u(C′) such that (*) G(q, u, f, g) � G(q, u, g, f) but G(q, u′, g, f) �
G(q, u′, f, g). Define a := u(C1), b := u(C2) and a′ := u′(C1), b′ := u′(C2). We now recursively define a
sequence 〈un1 , . . . , unI 〉n∈N of vectors of individual utility functions such that, for each n ∈ N and 1 ≤ i ≤ I,
uni ∈ u(Cn). Let unj (.) := a for all 2 ≤ j ≤ I, n ∈ N. For all even n ∈ N, let un1 (Cn1 ) := a and un1 (Cn2 ) := b.
For all odd n ∈ N+, let un1 (Cn1 ) := a′ and un1 (Cn2 ) := b′. Finally, let u0

1({c11}) := u0
1({c12}) := a and,

for any n, n′ ∈ N with 1 ≤ n′ ≤ n + 1, let un+1
1 ({cn′k }) := un1 ({cn′k }) and un+1

1 ({cn+2
k }) := un1 (Cnk ) (for

k = 1, 2). We have (**) uni = un+1
i ◦ψn for any n ∈ N and 1 ≤ i ≤ I. Since S has a wide domain, there is

a sequence 〈Mn
1 , . . . ,M

n
I 〉n∈N of vectors of individual decision–theoretic models in the domain of S such

that, for all n ∈ N and all 1 ≤ i ≤ I, W〈Mn
i 〉 =W, pMn

i
= pi, C〈Mn

i 〉 = Cn, uMn
i

= uni and F〈Mn
i 〉 = Fn.

We now show that 〈Mn+1
i 〉 refines 〈Mn

i 〉 (for all n ∈ N). Conditions 1–4 of the definition of a refinement
(p. 16) are trivially satisfied. On the one hand, (**) yields for any h ∈ Fn with h 6= f, g and for any
n ∈ N: uni ◦ Cn ◦ h = un+1

i ◦ ψn ◦ Cn ◦ h = un+1
i ◦ Cn+1 ◦ h for all 1 ≤ i ≤ I. On the other hand, we

have un1 ({c1k}) = un
′

1 ({c1k}) for any n, n′ ∈ N and k = 1, 2. Hence, [un1 ◦ Cn ◦ f ](ω) = [un+1
1 ◦ Cn+1 ◦ f ](ω)

for all ω ∈ W1 and all n ∈ N. Trivially, unj ◦ Cn ◦ f = un+1
j ◦ Cn+1 ◦ f for all 2 ≤ j ≤ I and all n ∈ N.

Similarly for g. Since W1 is p1, G–one, Lemma A.1 yields G(pi, uni , h1, h2) = G(pi, un+1
i , h1, h2) for all

h1, h2 ∈ Fn, 1 ≤ i ≤ I, n ∈ N. Hence, all conditions for a refinement are satisfied.

Recall that 〈G,�〉 is the individuals’ shared decision rule. We write f1 �nij f2 :iff G(pi, unj , f1, f2) �
G(pi, unj , f2, f1) (for all n ∈ N+, 1 ≤ i, j ≤ I and f1, f2 ∈ Fn). For all n ∈ N, 1 ≤ i ≤ I and 2 ≤ j ≤ I,
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we have G(pi, unj , f, g) = G(pi, unj , g, f) because G is invariant under relabelling. Define f ′ ∈ Φ as the act
such that f ′(ω) = c11 for any ω ∈ Ω and define g′ ∈ Φ as the act such that g′(ω) = c12 for any ω ∈ Ω. Since
G is invariant under relabelling, we have G(p1, u

n
1 , f
′, g′) = G(p1, u

n
1 , g
′, f ′) (n ∈ N). For any n ∈ N,

we also have [un1 ◦ Cn ◦ f ](ω) = [un1 ◦ Cn ◦ f ′](ω) and [un1 ◦ Cn ◦ g](ω) = [un1 ◦ Cn ◦ g′](ω) for all ω ∈ W1

because un1 ({c11}) = un1 ({c12}). Since W1 is p1, G–one, this implies G(p1, u
n
1 , f, g) = G(p1, u

n
1 , f
′, g′) =

G(p1, u
n
1 , g
′, f ′) = G(p1, u

n
1 , g, f) (for all n ∈ N). Since � is reflexive, we obtain f ∼nij g and f ∼n11 g for

all n ∈ N, 1 ≤ i ≤ I and 2 ≤ j ≤ I. Moreover, [u2n
1 ◦ C2n ◦ f ](ω) = a and [u2n

1 ◦ C2n ◦ g](ω) = b while
[u2n+1

1 ◦ C2n+1 ◦ f ](ω) = a′ and [u2n+1
1 ◦ C2n+1 ◦ f ](ω) = b′ for all ω ∈ W2 and all n ∈ N. By Lemma

A.1 and (*), we therefore obtain f �2n
j1 g and g �2n+1

j1 f for all n ∈ N and all 2 ≤ j ≤ I. If S is Pareto
optimal, it follows that CS(〈M2n

i 〉)({f, g}) = {f} but CS(〈M2n+1
i 〉)({f, g}) = {g} (for all n ∈ N). �
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