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Abstract

A Bayesian factor analysis model is outlined in which prior
knowledge regarding the model parameters is quantified using prior
distributions and incorporated into the inferences along with the
data. Recent work (Rowe, 2000a; Rowe, 2000b; and Rowe, 2000c)
has focused on the population mean and considered vague, conju-
gate and generalized conjugate distributions when it was taken to be
independent of the factor loadings. More recent work (Rowe, 2001)
has taken the population mean and factor loadings to be jointly
distributed and used a conjugate prior distribution. In this paper,
the population mean vector and the factor loadings are taken to be
jointly distributed and a generalized conjugate distribution is used.
As mentioned in Press (1982), Rothenburg (1963) pointed out that
with a conjugate prior distribution, the elements in the covariance
matrices are constrained and may not be rich enough to permit com-
plete freedom of assessment. The generalized conjugate distribution
permits complete freedom of assessment. Parameters are estimated

by Gibbs sampling and iterated conditional modes algorithms.
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1 Introduction

The Bayesian approach to statistics quantifies available prior knowledge
regarding the model parameters in the form of prior distributions. Infor-
mation as to how likely parameter values are is contained in the prior dis-
tributions. This is true in Bayesian factor analysis. The prior information
regarding the parameters in the form of prior distributions is incorporated

into the inferences along with the data.

Recent Bayesian factor analysis work has focused on quantifying and in-
corporating available prior knowledge regarding the population mean. This
recent work (Rowe, 2000a; Rowe, 2000b; and Rowe, 2000¢) has considered
vague, conjugate normal and generalized conjugate normal distributions
for the population mean when it was taken to be independent of the fac-
tor loadings. More recent work (Rowe, 2001) has taken the population
mean and factor loadings to be jointly distributed and quantified available

knowledge regarding their values using a conjugate normal distribution.

As is mentioned in Press (1982), Rothenburg (1963) pointed out that
with a conjugate normal prior distribution, the elements in the covari-
ance matrices are constrained and thus may not be rich enough to permit
complete freedom of assessment. This is the motivation for the current
Bayesian factor analysis model. In this paper, the population mean vector
and the factor loading matrix are taken to be jointly distributed and avail-
able prior knowledge regarding their values is quantified using a generalized
conjugate distribution. The generalized conjugate normal distribution per-

mits complete freedom of assessment.



2 Model

2.1 Likelihood Function

The Bayesian factor analysis model is:

(‘Tj|M7A:fj) = H + A fj + €; , m<p,
(px1) (px1) (pxm) (mx1) (px1)
(2.1)
for j = 1,...,n, where z; is the j™ observation for subject j , u is the

overall population mean , A is a matrix of constants “common” to all sub-
jects called the factor loading matrix; f; is the factor score vector “specific”
to each subject j; and the ¢;’s are observation errors assumed to be mu-
tually uncorrelated and normally distributed N (0, ) variables as in the

traditional model.

In order to incorporate jointly distributed prior knowledge regarding the

mean vector and factor loading matrix, the model is rewritten as:

(x]'|C’ f]) = C 9j + €5 m < p, (2 2)
(px1) px(m+1) (m+1)x1 px1 '
where C' = (u1,A) and g; = (1, f}).

It is assumed that C, the f;’s, and ¥ are unobservable and that the

distribution of each z; can be written as
P(a|C, f5, W) = (2m) 3|¥| 2e 3l CorV @ Co) o (2.3)

The observation vectors can be arranged into a matrix and the model

written as

(X|C,F) = G o + E,

(nXp) nxXp (m—{—l)Xp nxp (2'4)
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where the p-variate observation vectors on n subjects are X' = (x1, ..., Zy),
the factor scores are contained in G' = (g¢1,...,¢s), and the errors of ob-

servation are E' = (ey,...,€,).

If proportionality is denoted by “o” then the likelihood for (C, F, ¥) is
p(X|C, F,T) oc [Q| B3t (X-GCY(X-6C" (2.5)

where the notation p(-) will generically denote a probability distribution
which is distinguished by its argument whose proportionality constant does

not depend on its argument.

2.2 Priors

Prior distributions are specified for the unknown parameters to quantify

available prior information. The joint prior distribution for the parameters

is:
p(c, F,¥) oc p(c)p(F)p(¥), (2.6)
where
plc) |A‘f§ef%(cfc0)lAfl(c—co)’ (2.7)
p(F) e 3t F'F (2.8)
p(l) o [UTEeTHVTIC > 9, (2.9)

with A, @, and ¥ positive definite matrices. A generalized conjugate

normal distribution is specified for the joint distribution of the population



mean and factor loadings. The vector ¢ = wvec(C") is specified to have
the generalized conjugate normal distribution with mean and covariance
hyperparameters ¢y = vec(Cj) and A. The factor score vectors, the f;’s
have been specified to be normally distributed with mean zero and identity
covariance matrix as in the traditional model. The matrix ¥ follows an
inverted Wishart distribution, with hyperparameters (v, Q) which are to
be assessed. It is assumed that E(¥) is a priori diagonal and thus @ is
diagonal, in order to represent traditional psychometric views of the factor

model containing “common” and “specific” factors.

2.3 Joint Posterior

Using Bayes rule, Equations (2.5)—(2.9) are combined to obtain the joint

posterior distribution of the parameters

p(ci F:\II|X) XX e*%tTF’F|A|*%e*%(0*00)’A71(0700)

| b oGOy x-Gal (5,10

where the variables are as previously defined. Posterior estimates of the
population mean, factor loading matrix, the factor score matrix, and the
disturbance covariance are to be determined.

3 Estimation

3.1 Conditional Posterior Densities

Both the Gibbs sampling and ICM procedures of determining values

for the model parameters require the posterior conditional distributions.



Gibbs sampling requires the conditionals for the generation of random vari-
ates for stochastic integration in order to compute marginal mean esti-
mates, while ICM requires them for the determining of modes in order to

compute maximum a posteriori estimates.

The conditional posterior distribution of the vector containing the pop-

ulation mean/factor loadings is

p(C‘F, ‘II’X) X p(c)p(X\F,C, ‘Ij)

[ @[~ e B (X =GO (X=GC) (3.1)

which after some algebra becomes

p(c|F, ¥, X) e~ 3(c=0)[AT VT RG! G (c~0) (3.2)
where
E=[AT"+ UGG A I+ (T @ G'G)¢ (3.3)
and
¢ = vec[(G'G)'G'X]. (3.4)

The conditional posterior distribution of the population mean/factor
loading vector given the factor scores, the disturbance covariance matrix,

and the data is normally distributed.

The conditional posterior distribution of the disturbance covariance ma-

trix is

p(¥|F,C,X) o p(¥)p(X|F,C,¥)

. |\Il|fgef%tr\11*1Q‘\I]‘7%ef%tr\I/*I(XfGC’)’(XfG’C’) (3.5)
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o [ W]~ T (X =GO (X-GE)4Q] (3.6)

That is, the conditional distribution of the disturbance covariance matrix
given the factor scores, the population mean/factor loadings, and the data

follows an inverted Wishart distribution.

The conditional posterior distribution of the factor scores is:

p(Flp, A, ¥, X) o< p(F)p(X|p, F, A, ¥)

x e—%trF’F|\I,|—%e—%tr\ll_l(X—enu’—FA’)’(X—enu’—FA’)

oc 6—§trF’F€—%tr(X—enu'—FA')\I/—l(X—en,/—FA')'

which after some algebra can be written as
p(Flu A, ¥, X) o e 2RIy mAE-EY (3.7)

where F' = (X — e ) U 'A(L, + ANT~1A)~.
That is, the factor scores given the population mean/factor loadings, the

disturbance covariance matrix, and the data is normally distributed.

The modes of these conditional distributions are F, & (as defined above),
and

. (x- GC’);L()j - GC)+Q (3.8)

!

3.2 The Gibbs Sampling Algorithm

In order to estimate the parameters of the model from the posterior
distribution by Gibbs sampling, start with initial values for F' and ¥ say
F(O) and \Tl(o). Then cycle through

¢u+1) = arandom variate from p(c|F), Uy, X)
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\if(lﬂ) = a random variate from p(\If|F(l), Cat1), X)

Fui1y = arandom variate from p(F'|cgt1), ¥t1), X)-

After the first random variates called the “burn in” are discarded compute

from the next L samples

which are the sampling based marginal posterior mean estimates of the

parameters.

3.3 The ICM Algorithm

In order to estimate the parameters of the model from the posterior
distribution by ICM, start with initial values for F, and ¥ say F(O), and

¥ gy, form G(g) = (en, Floy), then cycle through
¢y = vec[(@'(l)é(l))flé'(l)X]
Caty = [A_l + \i’(_l)l ® é'(l)é(l)]_l[A_lco + (\il(_l)l ® él(l)é(l))é(l)]

- (X — Gy Clun)) (X = Gy Clrn) + @
Vi =

n—+v

F(l+1) = (X- enﬂ2l+1))i’(ii1)1~\(l+l)(lm + /~\'(l+1)‘i’(fzjlq)[\(lﬂ))f1
where é(l) = (en, F(l)), until convergence is reached with the joint modal

(maximum a posteriori) estimator for the unknown parameters (¢, F, ¥).

4 Example

In this section the Gibbs sampling and the ICM procedures for estimat-

ing the parameters of the Bayesian factor analysis model are implemented
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and the resulting estimators are presented. The data is extracted from an
example in Kendall 1980, p.53. The problem as originally stated (Press &
Shigemasu, 1989) and in subsequent Bayesian factor analysis papers is the

following.

There are 48 applicants for a certain job, and they have been

scored on 15 variables regarding their acceptability. They are:

(1) Form of letter application  (9) Experience

(2) Appearance (10) Drive

(3) Academic ability (11) Ambition

(4) Likeabiliy (12) Grasp

(5) Self-confidence (13) Potential

(6) Lucidity (14) Keenness to join
(7) Honesty (15) Suitability

(8) Salesmanship

The raw scores of the applicants on these 15 variables, measured on the
same scale, are presented in Table 1. The question is, Is there an underlying
subset of factors that explain the variation observed in the scores? If so,

then the applicants could be compared more easily.

The underlying structure is postulated (Press & Shigemasu, 1989) as in
previous work, a model with 4 factors. This choice is based upon a princi-
pal components analysis which found that 4 factors accounted for 81.5% of

the variance. Based upon underlying theory the prior factor loading matrix

Ay =

oo o
coc oo
co~No
No oo
oo o
coc o
No oo
coc o
o~No o
oo o
oo o N
coc o
==
coc oo
o ~No o

was assessed.



Table 1: Raw scores of 48 applicants scaled on 15 variables.

0o OO COO0O OO~V OWOORNFHRNRWVWOVXLOFTOIODOMMANANMNMANNOOOOOI F OO
[ o~ oo i o
A |- 00 o0 WVONXVONOHOLO OO NRXOODNDHO~NOONMNMEOMMIODENDOOMOMONEDOO
Ll i Ll - o
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Ll —~ — Ll i i
|0 O b~ WOV WODNDROFNNDDOFTFTOWOWOODCOMAWLOOMNMMMM AONIIDNINOOODODOMOANMNMOO
— — — o~ —
I~|o0 O O S WV MNMIEEDNDVOVVOINDOOCDONDNVOIOOOCDOXVDNMDVOIECDONO OO O OO
— — ~ o - — R B B ] — R B ]
00 O W OODNMWODODOI OIWVDOXVWDADNO FIDWXVIWDMDOIDEMMOODION N~
—~ R B —
<O 00 © OOV NODFHFOOIIINF HOVOVODDO~ODNIMMONSINFTMIOFTOCOODODO0ODIO M
— — — —~
NN 0 0 OO OOV O~ 0N O~ FHIO F0L O FID O ODNDDNOXODII-O OO
R B Rl e ]
— O™ O~V O A ANMFIO O~ T ANNFWOOI-0ONO AN FHIDOEE0DO =AM IO O 0
oA A A A A A A A A NN ANANANANANANANNOOOOOHOMHMMHON IS F

Person

dol7s where

7.5615, A =

The hyperparameters were assessed as g

1/100, @ = 0.2];5, and v = 33. The 15 dimensional unit vector has

do

been denoted by e;5. The population mean, factor loadings, factor scores,
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and disturbance covariance matrix may now be estimated. It was found
that a burn in period of 5, 000 samples worked well, so then the next 25,000

samples were taken for the Gibbs estimates.

Table 2 displays the Gibbs sampling and ICM estimates of the population

mean along with the prior and sample means.

Table 2: Gibbs Sampling and ICM estimates of the mean.

p | Gibbs Mean | ICM Mean | Sample Mean | Prior Mean
1 7.4428 7.5036 6.0000 7.5000
2 7.4227 7.4281 7.0833 7.5000
3 7.3676 7.3823 7.0833 7.5000
4 7.0546 7.0445 6.1458 7.5000
5 7.7018 7.6952 6.9375 7.5000
6 7.6340 7.6397 6.3333 7.5000
7 7.8716 7.8640 8.0417 7.5000
8 6.7194 6.7076 4.7917 7.5000
9 6.5418 6.6060 4.2292 7.5000
10 7.0916 7.0962 5.3125 7.5000
11 7.4439 7.4354 5.9792 7.5000
12 7.6207 7.6459 6.2500 7.5000
13 7.3572 7.3746 5.6875 7.5000
14 6.9244 6.9135 5.5625 7.5000
15 7.8685 7.9574 5.9583 7.5000

Table 3 displays the Gibbs sampling and ICM estimates of the factor
loadings. For enhanced interpretability, the rows of the factor loading
matrices have been rearranged. It is seen that factor 1 loads heavilly for
variables 5, 6, 8, 10, 11, 12, and 13; factor 2 heavily on variable 3; factor 3
heavily on variables 1, 9, and 15; while factor 4 loads heavily on variables
4 and 7. These four factors in terms of the original variables are factor 1:

Self-confidence, Lucidity, Salesmanship, Drive, Ambition, Grasp, Potential;
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Table 3: Gibbs (left) and ICM (right) Estimates of Factor Loadings.

1 2 3 4 1 2 3 4
7749 -.0474  -.1603 .0084 .8320 -.0651 -.1984 -.0119
7748 -.0059  -.0294 .0715 .8185 -.0006 -.0515 .0625
.7860  -.0436 .0867 -.0677 | .8323 -.0611 .0854  -.0971
7232 .0131 1875 .0120 7569  -.0043 1945 -.0035
11 | .7958 -.0354 .0095  -.0982 8533  -.0567 .0034  -.1255
12 | .7139 .0682 .0924 .0909 .7508 .0962 .0863 .0944
13 | .6754 .1602 .1438 .1892 .7043 .2000 .1446 .2048

3| .0971 .8536 .0726 .0102 .1085 .9838 .0612 .0201
.0489 -.0016 7593 -.0171 .0243  -.0628 .8284  -.0010
0725 .0930 .8645  -.0402 .0318 .1383 9349 -.0586
2291 -.0403 .7206 .0171 2082 -.0143 .7894 .0061
.1098 0177 .1407 7270 .0852 .0056 .1668 .8262
.0545 -.0043 -.1957 .7696 .0385 .0145  -.2202 .8705
1905 -.0013 .1001 1748 .2049 .0365 1273 2119
3259 -.2561 .2430 .3312 3262 -.3665 2793 .3842

—
S o o LT

—_

BN O

factor 2: Academic ability; factor 3: Form of letter application, Experience,
Suitability; and factor 4: Likeabiliy, Honesty. These factors may be loosely
interpreted as factor 1 being personality, factor 2 being academic ability,

factor 3 being position match, and factor 4 being charisma.

In Table 4, the Gibbs sampling and ICM estimates of the factor scores
are presented. Note the similarity of most of the values for the two es-
timation methods. Factor scores may now be interpreted. For example,
if an employer wished to choose a person for the position with a “good”
personality and academic ability but was not necessarily a “good” position
match or charismatic, person 10 could be selected.

Table 5 displays the Gibbs sampling and ICM estimates of the distur-
bance covariance matrix. Note the similarity between the two matrices.
The variances along the diagonal in the covariance matrix are uniformly
smaller for the ICM estimation procedure than for the Gibbs sampling

procedure.
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Table 4: Gibbs (left) and ICM (right) Estimates of the Factor Scores.

Person 1 2 3 4 1 2 3 4
0.1345 -2.9596 -0.4676 -0.5694 0.1072  -2.5971  -0.4669 -0.5542
0.7016  -1.4401 0.1724 0.3778 0.7095 -1.3008 0.1755 0.3918
0.3574  -2.4718 -0.2090 -0.0315 0.3423 -2.1888 -0.2228 -0.0210

-0.8883 0.5324  -0.3954 0.0500 -0.8795 0.6286 -0.4789 0.0181

-0.9955 0.4686 0.1153 0.7956 -0.9367 0.6020 0.0859 0.7458

-0.4176  -0.0950 0.0413 0.3413 -0.4210 0.0445 -0.0913 0.2596
0.3887 0.1789 0.8792 0.2187 0.4067 0.1965 0.8431 0.2176
0.6696 0.6234 0.8508 0.2581 0.6780 0.5145 0.8258 0.2853
0.1108 -0.3162 0.7929 0.2963 0.1401  -0.2358 0.7394 0.2988
10 1.1936 1.2864 -1.0712 -1.5635 1.1010 1.3768 -1.0191 -1.4631
11 0.9154 1.5635 -1.2729 -2.9267 0.8123 1.5756 -1.1982 -2.6725
12 0.8646 1.5032 -1.4568 -1.0106 0.7861 1.5336  -1.3927 -0.9282
13 | -1.2126 0.4158 -0.3338 1.1044 -1.1114 0.4443  -0.3058 0.9939
14 | -1.2786 0.5798  -0.1908 0.5709 -1.1733 0.5823 -0.2130 0.5459
15 | -1.3209 0.5503  -0.4894 0.7208 -1.2686 0.8233  -0.5487 0.5767
16 0.1947  -0.8481 0.1832 0.0308 0.1850  -0.5082 0.1612  -0.0393
17 | -0.2343  -0.2007 0.0108  -0.0550 -0.2140 -0.3107 -0.0401 -0.0694
18 | -0.6579 0.2725 -1.1198 -1.0603 -0.6284 0.1191 -1.1032 -0.8997
19 | -0.7011 0.3960 -0.9778 -1.3312 -0.6912 0.3210 -0.9760 -1.1749

20 0.1042 -0.3394 -0.9983 0.9042 0.1125 -0.2212 -0.9310 0.8582

21 | -0.0505 -0.6726 -1.1644 0.7482 -0.0577 -0.3015 -1.1239 0.6196

22 0.8388 -0.3434 -0.2551 0.6908 0.8235 -0.5886  -0.2228 0.7523

23 0.8393 -0.4134 -0.5336 0.9815 0.8521 -0.5018 -0.4231 1.0283

24 0.6065 -0.2651 -0.3124 1.1806 0.6082  -0.5252 -0.2565 1.1957

25 | -1.4653 0.0061 -1.0224 0.3990 -1.3770 0.0170  -0.9954 0.4007

26 | -1.2933 0.0347  -0.5533 0.3259 -1.2148 0.0533 -0.5586 0.3148

27 | -0.2851 -0.1433 -1.6354 0.9624 -0.2651 0.2101  -1.5518 0.8242

28 | -2.1007 -0.7934 -1.6819 -1.5453 -2.0787 -1.1363 -1.7300 -1.4301

29 | -2.2565 -1.2764 -1.7700 -2.7212 -2.2377 -1.5408 -1.6920 -2.4859

30 | -1.3667 -1.1555  -1.6845 0.4291 -1.3243  -1.2473  -1.7217 0.3418

31 | -1.0563 -1.5698 -1.3601 0.5805 -1.0395 -1.6706 -1.3927 0.4943

32 | -0.6625 -0.8294 -1.8608 0.5092 -0.7343  -0.7275 -1.9126 0.3594

33 | -0.9335 -0.9113 -2.0361 0.5417 -0.9896 -0.7722 -2.0851 0.3620

34 | -1.9457 -0.3723 -1.7604 -0.4894 -1.9205 -0.4368 -1.7633 -0.4920

35 | -2.5630 -1.4780 -1.1591 -0.3648 -2.4511  -1.3480 -1.2242 -0.3084

36 | -1.2528 -0.9264 -0.7561 -0.2182 -1.1899  -0.9295 -0.8103 -0.0960

37 0.1237 -0.6028 -2.1257 -0.9224 0.1033  -0.4238 -2.0469 -0.8441

38 0.1841 -0.6838 -2.0511 -0.6680 0.1735 -0.5999 -1.9136 -0.5639

39 0.8560 0.7530 1.0114 1.1256 0.8184 0.4856 0.9195 1.0281

40 0.9891 0.7317 0.9656 1.0394 0.9505 0.4498 0.8914 0.9506

41 | -2.7503 0.5554 1.3567 -2.7862 -2.6501 0.8159 1.1073  -2.6441

42 | -3.0832 0.6785 1.3810 -3.3277 -3.0185 0.7472 1.0952  -3.2206

43 | -2.0790 1.0863 -0.4081 -0.3189 -2.0421 1.1542 -0.4480 -0.4829

44 0.3683 -0.0517 -0.3039 -0.3576 0.3287 -0.0239 -0.3416 -0.3410

45 | -0.7102 1.8317  -0.8250 0.8932 -0.6754 1.4975 -0.8816 0.8355

46 | -0.2473 1.8050 -0.9863 1.0544 -0.2121 1.5549  -0.9756 1.0402

47 | -2.4612 1.7657 -2.7212 -0.3284 -2.3767 1.7224 -2.7069 -0.4288

48 | -2.4342 1.7660 -2.7512 -0.7582 -2.3687 1.7010 -2.7645 -0.8235

OO0 W

5 Conclusion

A Bayesian factor analysis model was detailed in which available prior

information either from substantive experts or previous experiments can
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Table 5: Gibbs (top) and ICM (bottom) Estimates of the Disturbance
Covariance Matrix.

1 P 3 1 5 6 7 B 9 10 11 12 13 14 i5
T [.2079 0189 -.0180 .0284 .0185 .0105 -.0116 -.0139 -.0973 -.0255 .0227 .0081 -.0010 .0602 -.0694
2 4561 .0290 -.0174 .0214 -.0461 .0232 .0309 -.0324 -.0628 .0834 .0233 .0091 -.0689 .0466
3 0515 -.0090 .0003 -.0055 .0027 .0074 .0073 -.0024 .0001 -.0005 -.0048 -.0148 .0145
4 1101 -.0284 .0193 -.0674 .0050 -.0233 -.0130 .0177 -.0075 .0137 .0359 -.0109
5 1010 -.0097 .0370 .0011 .0135 -.0138 .0125 -.0265 -.0273 -.0087 -.0192
6 1070 -.0178 -.0050 -.0021 -.0500 -.0438 .0446 -.0085 -.0210 -.0044
7 .1086 -.0001 .0171 .0129 -.0116 .0025 -.0132 -.0309 .0098
8 .0887 -.0047 .0031 .0003 -.0320 -.0254 .0043 .0245
9 1521 -.0082 -.0025 -.0010 -.0049 -.0219 -.0184

10 1410 -.0063 -.0521 .0042 .0321 .0236

11 0951 -.0127 .0056 .0200 -.0203

12 1062 .0203 -.0172 -.0011

13 0841 -.0211 .0046

11 .1821 -.0599

15 .1449

i P 3 1 5 5 7 3 9 10 11 12 13 14 15
T [.1761 0047 .0208 0059 .0190 .0110 -.0156 -.0194 -.0803 -.0207 0142 0089 .0005 .0218 -.0751
2 4072 -.0114 -.0377 .0148 -.0550 .0094 .0198 -.0436 -.0723 .0673 .0021 -.0169 -.0719 .0311
3 .0218 .0030 .0055 -.0087 -.0083 .0092 -.0165 .0080 .0058 -.0151 -.0182 .0364 -.0118
4 0810 -.0225 .0202 -.0711 .0052 -.0176 -.0122 .0117 -.0106 .0087 .0082 -.0124
5 0814 -.0138 .0334 -.0049 .0248 -.0146 .0030 -.0270 -.0253 -.0100 -.0112
6 0968 -.0174 -.0073 .0048 -.0454 -.0458 .0387 -.0093 -.0162 -.0017
7 0859 .0059 .0317 .0173 -.0108 -.0037 -.0172 -.0323 .0220
8 .0722 -.0027 -.0023 -.0100 -.0321 -.0256 -.0027 .0201
9 1274 -.0046 -.0022 -.0007 -.0085 -.0047 -.0272

10 1277 -.0138 -.0487 .0045 .0227 .0184

11 0750 -.0171 .0001 .0073 -.0238

12 .0896 .0103 -.0107 -.0050

13 .0669 -.0118 -.0039

14 .1095 -.0519

15 1219

be quantified and incorporated into the inferences along with current data.
An added feature of the Bayesian factor analysis model is that the there is
no need to rotate the factor loading matrix. The rotation is automatically
found. In addition, knowledge regarding the parameter values is allowed
to accumulate as subsequent data is acquired. Available prior information
regarding parameters was incorporated with a joint distribution for the
population mean and factor loadings through a generalized conjugate prior
distribution which permits complete freedom of assessment and does not

suffer from the possible limitation of whether it is sufficiently rich.
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