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Abstract

In the Bayesian factor analysis model (Press & Shigemasu, 1989),
available knowledge regarding the model parameters is incorporated
in the form of prior distributions. This has the added consequence of
eliminating the ambiguity of rotation found in the traditional factor
analysis model. In the model presented by Press and Shigemasu, a
vague prior distribution was implicitly specified for the population
mean. The sample size was assumed to be large enough to estimate
the overall population mean by the sample mean. In this paper,
available prior knowledge regarding the population mean is incor-
porated into the inferences in the form of a prior distribution. The
population mean is estimated along with the other parameters by

both Gibbs sampling and Iterated Conditional Modes.

1 Introduction

A factor analysis is performed to explain the relationship among a set
of observed variables in terms of a smaller number of unobserved variables
or latent factors which underlie the observations. This smaller number
of variables can be used to find a meaningful structure in the observed

variables. This structure will aid in the interpretation and explanation of



the process that has generated the observations.

In the Bayesian factor analysis model first proposed by Press & Shige-
masu, 1989 (henceforth PS89) the classical normal sampling model was
assumed, but the disturbance covariance matrix was assumed to be a full
positive definite matrix. One of the prior assumptions, however, was that
the expected value of the disturbance covariance matrix was diagonal in
order to represent traditional views of the factor model containing “com-
mon” and “specific” factors. Natural conjugate prior distributions were

specified for the unknown matrices.

Bayesian statistical methods not only incorporate available prior infor-
mation either from substantive experts or previous data, but allow the the
knowledge regarding the parameter values to accumulate as subsequent
data is acquired. In the non-Bayesian Factor Analysis model, the factor
loading matrix is determinate up to an orthogonal rotation. Typically af-
ter a non-Bayesian Factor Analysis is performed, an orthogonal rotation is
performed on the factor loading matrix according to one of many subjective
criteria. This is not the case in Bayesian Factor Analysis. The rotation is

automatically found.

In PS89, the model parameters were estimated by marginalization and
conditional estimation with the use of a large sample approximation. The
need for this large sample approximation was alleviated in Rowe & Press,
1998 (henceforth RP98) by estimating the model parameters exactly by
both Gibbs sampling (Geman & Geman, 1984 and Gelfand & Smith, 1990)

and iterated conditional modes (Lindley & Smith, 1972 and O’Hagen,



1994).

The marginalization and conditional estimation procedure can not be
used when available prior information regarding the population mean is
incorporated into the inferences because none of the marginal posterior
distributions may be found in a convenient closed form. Thus, Gibbs sam-

pling and iterated conditional modal estimates are computed.

In this paper, the same model as in PS89 and RP98 is adopted, with
the explicit inclusion of the population mean. Parameters are estimated
exactly by Gibbs sampling and by Iterated Conditional Modes (ICM). For
both approaches conditional posterior distributions for each of the param-
eters given the other parameters and the data are needed. All four can be
found explicitly. Gibbs posterior marginal mean and ICM posterior joint
modal estimators may then readily be found from the conditional posterior

distributions.

The plan of the paper is to review the model and to adopt prior distri-
butions in Section 2. Present the conditional posterior distributions along
with the Gibbs sampling and ICM algorithms in Section 3. In Section
4 an example is detailed, and estimates from Gibbs sampling and ICM

estimation methods are presented.



2 Model

2.1 Likelihood Function

The Bayesian factor analysis model is:

(px1) (px1) (pxm) (mx1) (px1)
(2.1)
for j = 1,...,n, where x; is the 5 observation, y is the overall population

mean, A is a matrix of constants called the factor loading matrix; f; is the
factor score vector for subject j; and the ¢;’s are assumed to be mutually

uncorrelated and normally distributed N (0, ¥) variables.

In the traditional model, ¥ is taken to be a diagonal matrix so that com-
mon and specific factors can be readily distinguished. In the the current
model, ¥ is taken to be a general symmetric, positive definite covariance
matrix with the property of being diagonal on the average, i.e., E(¥) = a

diagonal matrix.

It is assumed that the distribution of each z; can be written as
plasli, A, f3,0) = (2m)E|@| 3¢ 3 @mm IV GRS, (2.9)
If proportionality is denoted by “o” and the Kroneker product by ®
then, the likelihood for (u, A, F, V) is
p(X |, A, F, ) o |\Il|f%ef%tr\I!*1(Xfen®u’7FA’)’(Xfen®u’fFA’) (2.3)
where the p-variate observation vectors on n subjects are X' = (x4, ..., z,),

the factor scores are F' = (f1,..., fn), and the errors of observation are

E' = (€1,...,€,). The notation p(-) will generically denote a distribution
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which is distinguished by its argument. The proportionality constant in

(2.3) depends only on (p,n) and not on (u, A, F, ).

2.2 Priors

The same prior distributions are adopted as in PS89 and again in RP98
with the exception of an additional natural conjugate normal distribution

for the mean. The joint prior distribution is:

p(p, A, F, ) o p(p)p(A[¥)p(¥)p(F), (2.4)
where
p(p) ‘\p|*%6*%(u7uo)’(wo‘1’)’l(u7uo)’ (2.5)
p(A|®) o [B|"F 3ty (Ao H(A—Ro) (2.6)
p(T) o [T Fe 2tV B, (2.7)
p(F) g3t F'E (2.8)

with H, B,V > 0 and B a diagonal matrix. A natural conjugate normal
distribution is specified to quantify prior knowledgeregarding the popula-
tion mean where yy and 1)y are hyperparameters to be assessed. The matrix
A conditional on ¥ has elements which are jointly normally distributed,
and hyperparameters (Ao, H) are to be assesssed. The matrix ¥ follows
an Inverted Wishart distribution, with hyperparameters (v, B) which are
to be assessed. It is specified that E(¥) is diagonal, in order to represent
traditional views of the factor model containing “common” and “specific”

factors.



The joint normal distribution for (A|¥) comes from writing A’ = (A4, .. .,
Ap), as X = vec(A') = (M,..., A})'; then var(A|¥) = ¥ ® H ', which can
be written as a matrix normal distribution (Kotz and Johnson, 1985, p.
326-333). Also, as in PS89 and RP98, H = hyl, for some preassigned

scalar hy to simplify hyperparameter assessment.

2.3 Joint Posterior

Using Bayes rule, combine (2.3)—(2.8), to get the joint posterior density

of the parameters

(n+m+v+1) 1 -1
—_— 6_5”11’ U

p(u, F A, U|X) oc e 2F'F|g| (2.9)

where

U = (= ho)ty (= po) + (X —en@p' — FN) (X — e, @ pf' — FA') +

(A= Ag)H(A — Ao)' + B.

3 Estimation

As stated earlier, marginal mean and joint modal posterior estimates are
found by the Gibbs sampling and iterated conditional modes algorithms.

For both the conditional posterior distributions are needed.

3.1 Conditional Posterior Densities

The four posterior conditional distributions are as follows.

p(plA, F, X, X) o< p(p)p(X|u, F,A,P)

x || —3 ¢~ 5 (—H0) (Yo®)~* (1—po)
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ly.gp—1
‘\If‘ _%6_5”\1’ (X—en®@u' —FAN ) (X—en®u'—FA")

—1
1 ~\ na, -
;30 (%) (3.1)

where i = [muo + lﬁzfpo ( — Af)).

p(Alp, F,9,X) o< p(A|)p(X|u, F, A, )
x |W|"Feztr¥ T (A-A0)H(A-AoY
([~ 5 (X —enton' ~FA'Y (X —en@ ~FN)

o U A-R)(HAFF)(A-RY (3:2)

where A = [(X — e, ® i//)'F + AH|(H + F'F)~".

p(¥lp, F,A, X)) oo p(¥)p(A[Y)p(X|u, F, A, ¥)
x |\I;|—%e—%(u—uo)'(wo‘l’)fl(u—uo)
‘qj|—§e—%tr\11—1B|\I]|—%e—%tr‘ll—l(A—Ao)H(A—Ao)’

L.gp—1
|\I,|—%e—§tr‘ll (X—en®u' —FAN) (X —en@u —FA')

_ (ndm4v41) 1 -1
x |\I’| — e Str¥— U

(3.3)

U = (n—po)ty (= po) + (X —en@p' — FN) (X — e, @ pf' — FA') +
(A — Ag)H(A — Ao)' + B.

P(F|p, A, ¥, X) o p(F)p(X|p, F, A, T)
1

x e 3trF'F | \I,‘fg e 3tV (X —en®p/ ~FN') (X —en@u' ~FA')

. e—%tr(F—F)(Im-i-A"Il—lA)(F—ﬁ‘)’

(3.4)

where F' = (X — e, ® /) U~ 'A(I,,, + A'TTA)~1.



The modes of these conditional distributions are ji, F, A (as defined
above), and

~ U
U = 3.5
n+m+v+1’ (3.5)

respectively.

3.2 The Gibbs Sampling Algorithm

For Gibbs estimation of the posterior, we start with initial values for p,

F, and V¥ say fi), F'(O), and \Tl(o). Then cycle through

A i+1) = arandom sample from p(A|zg), F(i), \TI(Z-), X)
VUy1) = arandom sample from p(¥|gg), Fi), A1), X)
F(i—|—1) = arandom sample from p(F|fi, /_\(H—l)a ‘T’(H—l): X)

fii+1) = arandom sample from p(u|Fiii1), Agi1)s ¥gitn), X)-

The first s random samples are discarded and the remaining ¢ samples

are kept. The means of the remaining random samples

t to
D Hs+hy Z A(s+k)

=1

(‘Fll—\
H~|b—-\

t —
qus+k

ﬁ-lb—l
n*lr—l

t
Z (s+k)

are the marginal posterior mean estimates of the parameters.

3.3 The ICM Algorithm

For iterated conditional modes estimatiom of the posterior, start with

an initial value for /i and F, say fi(oy and F and then cycle through

>

ity = [(X —eq ®/~/(z)) F )+ AoH)(H + F(Ii)ﬁ(i))i1
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Uit = {{(X-en® lll(z)) - F(i)Al(i—H)]l[(X — € ® ﬂl(z)) - F(i)j\l(iﬂ)] +

(A(Hl) - AO)H(A(H—I) —No)' + B}/ (n+m+v)

!

~ 1 nmh % 7
Hie+) Trnge t Trnge e fen)

until convergence is reached with the joint posterior modal estimator

(i, F, A, \il) The mean of the factor score vectors has been denoted by J_F

4 Example

In this section the ICM and the Gibbs Sampler procedures for estimating
the parameters of the Bayesian factor analysis model are used and the
resulting estimators are presented. The data is extracted from an example
in Kendall 1980, p.53. The problem as stated in PS89 and again in RP98

is the following.

There are 48 applicants for a certain job, and they have been

scored on 15 variables regarding their acceptability. They are:

(1) Form of letter application  (9) Experience

(2) Appearance (10) Drive

(3) Academic ability (11) Ambition

(4) Likeabiliy (12) Grasp

(5) Self-confidence (13) Potential

(6) Lucidity (14) Keenness to join
(7) Honesty (15) Suitability

(8) Salesmanship

The raw scores of the applicants on these 15 variables, measured on the

same scale, are presented in Table 1. The question is, Is there an underlying



Table 1: Raw scores of 48 applicants scaled on 15 variables.
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Person

subset of factors that explain the variation observed in the scores? If so,

then the applicants could be compared more easily.

Note that the initial values for the ICM and Gibbs sampling estimation
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procedures have little effect on the final result, because for ICM there are
unimodal posterior conditional distributions so the algorithm is sure to
converge to the joint mode, and for Gibbs sampling, there is a burn-in
period. The initial values for i and F are chosen to be fy = T and
F(O) = F, the estimators of PS89. This choice of the initial values hastens

convergence.

The same underlying structure is postulated as in as PS89, a model with
4 factors. This choice is based upon PS89 having carried out a principal
components analysis and having found that 4 factors accounted for 81.5%
of the variance. Based upon underlying theory they constructed the prior

factor loading matrix

Ay =

o oo
coc oo
co~No
No oo
oo o
oo o~
No oo
oo o
o~No o
oo o
==k
oo o
==k
coc oo
o ~Noo

In PS89, the hyperparameter H was assessed as H = 104, B was as-
sessed as B = 0.215, and v was assessed as v = 33. The prior population
mean is assessed as o = 7.5e;5 and the hyperparameter determining prior
variability in the population mean as ¥y = 1/5. The 15 dimensional unit
vector has been denoted by e;5. The population mean, factor scores, factor
loadings, and disturbance covariance matrix may now be estimated. It was
found that a burn in period of 5, 000 samples worked well, so then the next

25,000 samples were taken for the Gibbs estimates.

Table 2 displays the Gibbs sampling and ICM estimates of the population

mean along with the prior and sample means.
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Table 2: Gibbs Sampling and ICM estimates of the mean.

p | Gibbs Mean | ICM Mean | Sample Mean | Prior Mean
1 6.1441 6.1397 6.0000 7.5000
2 7.1219 7.1223 7.0833 7.5000
3 7.1306 7.1343 7.0833 7.5000
4 6.2737 6.2731 6.1458 7.5000
5 6.9984 6.9891 6.9375 7.5000
6 6.4458 6.4424 6.3333 7.5000
7 7.9919 7.9905 8.0417 7.5000
8 5.0484 5.0456 4.7917 7.5000
9 4.5391 4.5386 4.2292 7.5000
10 5.5215 5.5179 5.3125 7.5000
11 6.1255 6.1210 5.9792 7.5000
12 6.3671 6.3679 6.2500 7.5000
13 5.8585 5.8595 5.6875 7.5000
14 5.7449 5.7407 5.5625 7.5000
15 6.1058 6.1026 5.9583 7.5000

Table 3 displays the Gibbs sampling and ICM estimates of the factor
loadings. For enhanced interpretability, the rows of the factor loading

matrices have been rearranged. It is seen that factor 1 loads heavily for

variables 5, 6, 8, 10, 11, 12, and 13; factor 2

Table 3: Gibbs (left) and ICM (right) Estimates of Factor Loadings.

P 1 2 3 1 1 2 3 1
5 | 0.7756  0.0041 -0.1428  0.0278 || 0.8033 -0.0860 -0.0772  0.0397
6 | 0.7420 -0.0470 -0.0075 0.1163 || 0.7284 -0.0571  0.0545  0.1271
8 | 0.7214 -0.0300 -0.0302 -0.0232 || 0.7292 -0.0937  0.0455 -0.0110
10 | 0.6169 -0.0170  0.0723  0.0554 || 0.6151 -0.0611  0.1288  0.0699
11 | 0.7465 -0.0411 -0.0393 -0.0211 || 0.7512 -0.0941  0.0264 -0.0194
12 | 0.6941 -0.0421 0.1305 0.1585 || 0.6657 -0.0034  0.1799  0.1698
13 | 0.6160 -0.0086 0.1547  0.2457 || 0.5814  0.0619  0.1779  0.2459
3| 0.0091 0.5782 0.2157 0.0515 | 0.0135 0.7225  0.0430  0.0343
1] -0.0031  0.0149 0.6896  0.1048 || -0.0359 -0.1283  0.8418  0.1140
9 | -0.0938 -0.0193  0.6986  0.0291 || -0.1160  0.0376  0.7165  0.0349
0.1695 -0.1107  0.6851  0.0865 || 0.1322 -0.0885  0.7722  0.1023
0.0381 -0.0587  0.0507  0.7379 || -0.0254 -0.0435  0.1065  0.7365
0.1040 -0.0049 -0.1157  0.7125 || 0.0791 -0.0101 -0.0867  0.7272
0.2002 -0.0755  0.1332  0.2032 || 0.2619 -0.0248  0.1801  0.2039
0.1882 -0.1238 -0.0365  0.3065 || 0.1693 -0.2881  0.1053  0.3486

1

IO CIER N3

[ay
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heavily on variable 3; factor 3 heavily on variables 1, 9, and 15; while factor

4 loads heavily on variables 4 and 7. These factors in terms of the original

Table 4: Gibbs (left) and ICM (right) Estimates of the Factor Scores.

Person 1 2 3 4 1 2 3 4
0.7118 -2.4892 0.2169 -0.5717 0.7386  -3.4983 0.3604  -0.4227
1.0629 -0.8825 0.5688 0.3767 1.0961 -1.6503 0.7898 0.5002
0.9115 -1.9654 0.5230 -0.1073 0.9591 -2.8608 0.6610 0.0954

-0.5177  -0.1194 0.2060 -0.0164 -0.4647 0.6155 0.0076 0.0387

-0.9215 -0.7615 0.1675 0.7036 -1.0261 0.3567 -0.0795 0.6712

-0.0208 -0.1685 0.6613 0.3878 0.0992 -0.0778 0.6247 0.4926
0.3003 0.1877 0.8164 0.1918 0.2878 0.3211 0.8012 0.1890
0.5029 0.9491 0.7432 0.0914 0.5244 1.0105 0.7535 0.1663
9 0.2968 -0.4315 1.1360 0.2556 0.2720 -0.3026 1.0959 0.2785
10 2.4248 1.4154 0.7934 -1.3036 2.4728 2.0816 0.7462 -1.2395
11 1.7095 1.1739 -0.0693 -2.6849 1.7562 2.0222 -0.2271 -2.8669
12 2.1232 1.1713 0.3322 -0.6580 2.1414 2.0767 0.2633 -0.6632
13 | -0.9458 -0.1660 -0.1732 1.2082 -1.0368 0.3823  -0.2421 1.1192
14 | -0.5658 -0.1231 0.6098 0.9378 -0.6606 0.4722 0.5439 0.7392
15 | -0.8618 -0.6758 0.1394 0.8358 -0.8589 0.5047 -0.1319 0.7978
16 0.2543 -1.2285 0.3074 -0.0612 0.2844  -0.9899 0.2669 -0.0209
17 0.1121 0.4814 0.4789 0.0591 0.1995 -0.0897 0.5699 0.0914
18 0.0915 1.1476  -0.2172 -1.1720 0.1242 0.6791 -0.0693 -1.1090
19 0.1061 0.6828 -0.0098 -1.2754 0.0723 0.6791 0.0464  -1.3217

20 0.7054 -0.4150 -0.1679 0.7158 0.7039 -0.1506 -0.1656 0.9484

21 0.7763 -1.4665 -0.0304 0.9502 0.7767 -0.7999 -0.1541 1.0241

22 1.0731 0.7744  -0.1638 0.5748 1.0872 -0.2114 0.1304 0.8161

23 0.8510 0.1328 -0.7256 0.7601 0.8436 -0.3711 -0.5334 0.9652

24 0.7597 0.5218 -0.4502 1.1360 0.7052 -0.2705 -0.1665 1.3109

25 | -0.8415 -0.2442 -0.5539 0.5583 -0.9449 -0.1766  -0.5408 0.4813

26 | -0.5011 -0.4622 0.2649 0.6505 -0.6210 -0.1442 0.2242 0.5177

27 0.4279 -1.0006 -0.7710 1.2120 0.4237 -0.1963 -0.8976 1.2136

28 | -1.3879 0.2809 -1.1130 -1.3723 -1.3537 -1.0852 -0.9699 -1.4632

29 | -2.2051 -1.1689 -2.2388 -2.6562 -2.3286  -1.9992 -2.2926 -2.9928

30 | -0.8779 0.1096  -1.1420 0.2445 -0.6340 -1.2144  -0.9348 0.4856

31 | -0.7858 -0.6550 -1.1889 0.5420 -0.6209 -1.9597 -1.0462 0.7136

32 0.1889 -1.0450 -0.8955 0.8578 0.2507 -1.1550 -0.9339 0.9648

33 | -0.1146 -0.9462 -1.0788 0.7934 -0.0191 -1.1266 -1.0871 0.9326

34 | -1.3932 -0.3138 -1.3336 -0.4273 -1.4112 -0.5686 -1.3885 -0.4289

35 | -1.6393 -1.3486 -0.2466 -0.4018 -1.6450 -1.9979 -0.1553 -0.3739

36 | -0.2604 -0.8560 0.2881 -0.1372 -0.3051  -1.3903 0.4503 -0.1532

37 1.2467 -0.1587 -0.8276 -0.5021 1.3349 -0.6570 -0.6548 -0.5308

38 0.9098 -0.2763 -1.4017 -0.3756 0.9033 -0.7818 -1.2231 -0.4233

39 0.5700 1.3850 0.6538 1.1015 0.6292 1.1159 0.7557 1.2655

40 0.7462 1.4721 0.6649 1.1149 0.7889 1.1237 0.7611 1.2498

41 | -1.6427 -0.3268 2.9197 -2.6276 -1.7645 0.6502 2.7348  -2.9693

42 | -2.1441 0.1538 2.6863 -3.0716 -2.2710 0.8198 2.5185 -3.4880

43 | -1.9302 -0.0159 -0.3647 -0.1285 -2.0652 1.2588 -0.6411 -0.3608

44 0.7434 -0.0751 0.2238 -0.0654 0.7971  -0.1032 0.1625 -0.1094

45 0.8373 1.8021 1.0493 1.6923 0.7500 2.1625 1.0969 1.5753

46 1.3061 1.3896 0.8043 1.9544 1.1330 2.0221 0.8323 1.7723

47 | -1.2781 1.7912 -1.2774 0.0682 -1.1442 2.2629 -1.4356 -0.0206

48 | -1.1482 2.0438 -1.1055  -0.4417 -0.9740 2.3570  -1.2440 -0.4703

OO U WN
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variables are factor 1: Self-confidence, Lucidity, Salesmanship, Drive, Am-
bition, Grasp, Potential; factor 2: Academic ability; factor 3: Form of
letter application, Experience, Suitability; and factor 4: Likeabiliy, Hon-
esty. These factors may be loosely interpreted as factor 1 being personality,
factor 2 being academic ability, factor 3 being position match, and factor

4 being charisma.

In Table 4, the Gibbs sampling and ICM estimates of the factor scores
are presented. Note the similarity of most of the values but there are some
differences. An employer may now decide on a criteria to select a person.
For example, if the employer wished to hire a person that is “very” hard
working with a “good” academic record and a “fair” match for the position,

person 10 might be selected.

Table 5: Gibbs (top) and ICM (bottom) Estimates of the Disturbance
Covariance Matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 |.4865 .0905 -.0888 .2558 .1106 .1796 -.1064 .3684 .3654 .3265 .2751 .1873 .2462 .4795 .2100
2 .5536 .0725 .0756 .0515 -.0012 .0140 .1544 .1164 .0527 .1656 .0769 .0932 .1017 1272
3 .3348 .0330 -.0603 .0168 -.0504 .0347 .1332 .0333 .0094 .0685 .1215 -.1068 .0349
4 .2752 .0734 .1815 -.1140 .3256 .3701 .2800 .2238 .1776 .2438 .3343 .2478
5 .1702  .0689 .0227 .1702 .2090 .1444 .1314 .0479 .0733 .1940 .1024
6 .2351 -.0704 .2780 .3460 .2121 .1379 .1800 .1823 .2711 .1904
7 .1696 -.0983 -.1160 -.0723 -.0798 -.0590 -.1017 -.0583 -.0619
8 .6753 .7040 .5236 .3779 .2740 .3832 .5188 .4425
9 .9918 .6222 .4567 .3826 .5131 .5737 .4591
10 .6228 .3394 .2373 .3857 .5070 .4084
11 .3526 .1832 .2651 .3745 2615
12 .2601  .2415 .2970 .2011
13 .3998 .3494 .2827
14 7282 .3909
15 .4286
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 [.3069 .0471 .0427 .1831 .0697 .1270 -.0941 .2699 .2574 .2393 .2008 .1358 .1969 .3140 .1039
2 4172 .0435 .0572 .0292 -.0049 .0004 .1158 .0809 .0321 .1296 .0592 .0751 .0602 .0915
3 .0174 .0458 .0133 .0330 -.0194 .0764 .0892 .0648 .0531 .0433 .0598 .0628 .0566
4 .2070 .0485 .1443 -.1199 .2565 .2831 .2133 .1812 .1410 .2001 .2269 .1816
5 .0978 .0303 -.0048 .1099 .1514 .0886 .0799 .0177 .0444 .1201 .0546
6 .1838 -.0782 .2112 .2657 .1540 .0995 .1407 .1445 .1941 .1386
7 .0925 -.0960 -.0999 -.0773 -.0750 -.0677 -.0976 -.0856 -.0689
8 .5321 .5534 .4058 .2887 .2105 .3053 .3864 .3389
9 .8100 .4914 .3547 .2974 .4067 .4369 .3671
10 .4891 .2568 .1782 .3060 .3746 .3181
11 .2706 .1416 .2144 .2731 .1939
12 .2072  .1929 .2227 .1534
13 .3227 .2784 .2299
14 .4848 .2625
15 .3334
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Table 5 displays the Gibbs sampling and ICM estimates of the distur-

bance covariance matrix.

5 Conclusion

A Bayesian statistical model was detailed in which available prior infor-
mation either from substantive experts or previous experiments is incor-
porated. An added feature of the Bayesian factor analysis model is that
the there is no need to rotate the factor loading matrix. The rotation is
automatically found. Available prior information regarding the popula-
tion mean was incorporated along with the other parameters through a
prior distribution. By incorporating prior knowledge regarding the mean,

estimation of it and the other parameters may be improved.
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