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Abstract

We introduce and characterize axiomatically a general model of static choice under
uncertainty, which is possibly the weakest model in which a separation of cardinal utility
and a representation of beliefs is achieved. Most of the popular non-expected utility
models in the literature are special cases of it.

To prove its usefulness, we show that the model can be used to generalize several well
known results on the characterization of risk aversion. Elsewhere [15] we have shown
that it can be fruitfully applied to the problem of characterizing a notion of ambiguity
aversion, as the separation of utility and beliefs that we achieve can be used to identify
and remove aspects of risk attitude from the decision maker’s behavior.
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Risk, Ambiguity, and the Separation of Utility and

Beliefs∗

Paolo Ghirardato Massimo Marinacci

Introduction

In this paper, we introduce and characterize axiomatically a general model of static choice
under uncertainty, whose main interest lies in being the weakest known model in which the
separation between cardinal utility and a representation of beliefs is achieved. Though
very general, the model has enough structure to prove some interesting results. We
illustrate this by showing some characterizations of risk aversion. In a companion paper
[15], we show how the model can also be used to provide a very general characterization
of a notion of ambiguity aversion.

The motivation for looking at models of choice under uncertainty that generalize the
classical subjective expected utility (SEU) model of Savage [27] and Anscombe and Au-
mann [2] is well known. There is a wealth of evidence as to the descriptive limitations of
the SEU model. The two most popular problems are the so-called Allais paradox, first
observed by Allais [1], and the so-called Ellsberg paradox, first observed by Ellsberg [12].
Besides showing that the strong separability enjoyed by expected utility is not descrip-
tively accurate, these ‘paradoxes’ raise the issue of whether it is normatively compelling.
A large number of extensions of SEU have been developed that weaken separability and
rationalize some of these violations. There are models that rationalize the ‘ambiguity
averse’ behavior of the Ellsberg paradox, like the Choquet expected utility (CEU) model
of Schmeidler [28], or the maxmin expected utility (MEU) model of Gilboa and Schmei-
dler [18].1 There are models that rationalize the choices in the Allais paradox, like the
subjective rank-dependent expected utility (RDEU) model (based on Quiggin [25] and
Yaari [32]), or the more general model of probabilistically sophisticated (PS) preferences

∗ We are grateful to Kim Border, Peter Wakker and especially Fabio Maccheroni for helpful com-
ments and discussion. This paper was mostly written while Marinacci was with the Università di
Bologna. Marinacci gratefully acknowledges the financial support of MURST. Ghirardato’s E-mail:
paolo@hss.caltech.edu; URL: www.hss.caltech.edu/∼paolo/ghiro.html. Marinacci’s address: Di-
partimento di Statistica e Matematica Applicata, Università di Torino, Piazza Arbarello 8, 10122 Torino,
ITALY; E-mail: massimo@econ.unito.it; URL: www.dse.unibo.it/marinacc/page1.htm.

1 See Appendix A for references to axiomatizations of CEU and MEU in a subjective framework à la
Savage.



of Machina and Schmeidler [21]. Finally, there are models that rationalize additional
features of observed behavior, like the cumulative prospect theory (CPT) of Tversky and
Kahneman [29].

Though most of these models share some features, such are the differences between
them that so far very few papers have attempted to find which nontrivial results can be
proved for most, if not all, of them. Doing so requires finding a ‘common denominator’
model with very little structure, yet enough structure for defining some key mathematical
aspects of the representation, and proving results about them. Here, we present one such
model, called the ‘biseparable preferences’ model, that generalizes almost all the models
mentioned above. A preference relation is biseparable (short for ‘binary separable’) if it
can be represented by a functional V which is monotonic with respect to state-by-state
dominance, and which on binary acts has an ‘expected utility’ form, but with respect to
a not necessarily additive measure. Precisely, if we denote by u the restriction of V to
constant acts, there is a capacity (a monotonic set-function) ρ such that

V (f) = u(x) ρ(A) + u(y) (1 − ρ(A)), (1)

where f is the act which pays x if event A obtains and y otherwise, with x preferred to
y. Under standard continuity assumptions, such V is cardinal whenever there is at least
an event with nontrivial ρ weight. This implies that u is cardinal, and that ρ is unique.
Thus, a decision maker (DM) whose preferences are biseparable evaluates consequences
by a cardinal state-independent utility index, and evaluates bets by a unique capacity,
that we call his willingness to bet. No restrictions (beyond monotonicity) are imposed
on how the DM evaluates the more complex nonbinary acts. This is why the biseparable
preferences model encompasses all the models listed above, with the exception of the PS
and CPT models, which are anyway not more general than it (see the discussion below):
As observed earlier, we are not aware of any other model which is more general and
yields a separation of the DM’s cardinal utility index from the unique representation of
his willingness to bet.2

Using the special horse races-lottery wheels setting of the Anscombe-Aumann paper
[2], we also provide a variant of the biseparable preference model in which the DM’s utility
function is linear on lotteries. We call this variant the c-linear biseparable preference
model. To the best of our knowledge, it provides the weakest model which separates
willingness to bet from a cardinal and affine utility function.

Thanks to the cardinality of utility, biseparable preferences provide a general model
to which we are able to extend several results on the characterization of risk aversion
for SEU preferences: (1) a natural ‘more risk averse than’ relation between preferences
is characterized by the existence of a concave transformation between utilities; (2) the
classical notion of risk aversion as preference for the expected value (duly transposed to
a purely subjective framework) is characterized by concavity of the utility; (3) a notion

2 In general, there may be multiple representations of the DM’s ‘likelihood ordering’ over bets, but
the capacity which satisfies Eq. (1) is unique.
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of preference for diversification in the choice among bets is again characterized by the
concavity of utility.

However, some care has to be taken in the interpretation of these results. Since we are
in an environment of pure uncertainty, and since biseparable preferences have very little
structure, the notion of ‘risk aversion’ needs definition. The most popular definition
of risk aversion for non-SEU preferences is aversion to mean-preserving spreads. Its
interpretation hinges crucially on the existence of a sufficiently rich set of events on which
the DM has probabilistic beliefs, and on the assumption that the DM only cares about
the ‘distribution’ that an act induces on the set of consequences (part of what Machina
and Schmeidler term ‘probabilistic sophistication’). Absent those preconditions, aversion
to mean-preserving spreads is meaningless. A more general definition of risk aversion
(based on Yaari [31]) is the following: define a comparative relation among preferences
to be interpreted as ‘more risk averse than’, conventionally define a set of preferences
to represent ‘risk neutrality’, and then call ‘risk averse’ any preferences which is more
risk averse than a risk neutral one. This is quite compelling, but as we observed in [15],
the comparative relation has to be carefully devised if we are to distinguish risk aversion
from other behavioral features, like ambiguity aversion. In particular, we need to avoid
confusing differences in beliefs with differences in risk aversion. In the SEU framework,
this is easily solved by assuming that the preferences which are compared have identical
beliefs (possibly because they reflect an ‘objective’ probability). When dealing with a
model as general as biseparable preferences, this is not as straightforward: What do
we mean by ‘same beliefs’? Here we take the simple route of comparing preferences
with the same willingness to bet. Some readers may be concerned that the willingness
to bet contains information on the risk attitude of the DM that we are thus omitting
from consideration. For this reason, we prefer to say that what is characterized in our
results is just an aspect of the DM’s risk attitude, that we call the DM’s cardinal risk
attitude. Intuitively, cardinal risk attitude is what explains a DM’s willingness to trade
off the payoff in case of a win with the tradeoff in case of a loss in bets on some fixed
event, which for SEU preferences is characterized by the behavior of the utility function.3

Intuitively, we attribute such behavior to the DM’s risk attitude because we think that
it cannot provide us any information as to the ambiguity the DM perceives about that
event, and how he reacts to such ambiguity.

As observed earlier, another example of the potential of the biseparable preferences
model is our study of ambiguity and ambiguity attitudes in [15]. In that paper we propose
a notion of ambiguity aversion and then notions of ambiguity for acts and events. We
then provide their characterizations for any biseparable preference. For instance, we
show that if a biseparable preference is ambiguity averse in the sense we propose, then
its willingness to bet ρ is dominated by a probability, and also that the set of events
which are unambiguous for an ambiguity averse (or loving) biseparable preference is the
collection of all the A’s such that ρ(A) + ρ(Ac) = 1. Biseparable preferences play a key
role in this analysis because they provide the most general model for which it is possible

3 In saying a bet ‘on’ an event, we imply that a better payoff (‘win’) is the result of the event
obtaining.
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to cleanly separate cardinal risk and ambiguity attitudes.4

Besides their generality and potential,5 biseparable preferences can be useful in ob-
taining a new (non-SEU) choice-theoretic derivation of subjective probability, which is
quite different from the one presented by Machina and Schmeidler [21]. In fact, we show
that a simple and natural reinforcement of the axioms that characterize biseparable pref-
erences yields a DM with probabilistic beliefs : His willingness to bet ρ is a probability
measure (i.e., it is additive). Such DM is not necessarily a SEU maximizer, and may not
even be ‘probabilistically sophisticated’ in the sense of Machina and Schmeidler. Thus,
the class of preferences with probabilistic beliefs that we characterize is different from
the class of PS preferences (clearly, with a common element given by SEU preferences).
The model we present does not necessarily feature what many consider a natural ratio-
nality requirement, but it has the advantage of allowing results like those on cardinal risk
aversion described earlier.

The Related Literature

In terms of the preference model, there are few papers that offer a model as general as
the biseparable preference model. As mentioned earlier, Machina and Schmeidler [21]
and Tversky and Kahneman [29] provide alternative models which are not encompassed
by it.

The PS model has different scope from the biseparable preference model: The two
models really embody different rationality restricitions on preferences.6 They are some-
what symmetric in their final objective: Machina and Schmeidler are interested in ob-
taining a unique probabilistic belief which is used in a PS fashion, so as to provide a
fully subjective foundation to all the non-EU models of choice under risk. In contrast,
our objective is obtaining a cardinal utility, so that cardinal risk and ambiguity attitude
can be clearly separated. For this reason, the PS model provides a little structure on
the ‘functional’ representation of preferences over all acts, whereas we are very precise
on the functional representation, but only over the binary acts. Because of its functional
generality, the results on the characterization of risk aversion that one can obtain with
PS preferences are limited.

On the other hand, CPT is a model with a very specific functional structure. The
main reason why the preferences they describe are not biseparable is that they establish

4 The reader who thinks that risk aversion is not fully captured by cardinal risk aversion should be
warned that the notion of ambiguity aversion in [15] comprises also the mentioned residual aspects of
risk aversion.

5 Other applications of biseparability are the following: In [16], we show that a seemingly harmless
technical condition (range convexity of the willingness to bet) can force ambiguity averse biseparable
preferences to have probabilistic beliefs. Ozdenoren [23] shows that some results on auctions that he
proves for MEU preferences can be extended to biseparable preferences.

6 However, it should be remarked that the intersection between biseparable preferences and proba-
bilistically sophisticated preferences is nontrivial, including for instance the RDEU preferences.
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a reference point, and allow the DM’s willingness to bet to be different depending on
whether he considers bets with ‘gains’ (consequences preferred to the reference point), or
bets with ‘losses’ (consequences to which the reference point is preferred). It would be
straightforward to generalize the model we present to allow such behavior, thus obtaining
what could be called the cumulative biseparable preferences model. Needless to say, all
the results we prove here are true if we focus our attention to gains or losses only (so
that CPT collapses to CEU).

Two other axiomatic papers that are close to this paper are Casadesus-Masanell,
Klibanoff and Ozdenoren [4] and Nakamura [22]. As a technical lemma in their axiomatic
characterizations of respectively MEU and CEU preferences both papers present a bisep-
arable representation of preferences like that in Eq. (1). However, their representation
holds only for bets on a specific event A, rather than for bets on any event.

Finally, there are some papers which address the characterization of behavioral fea-
tures, like risk aversion, for large classes of preferences.7 In his seminal paper on risk
aversion [31], Yaari presents a comparatively based notion of risk aversion (like the one
described earlier), and provides a characterization for a very general class of preferences.
However his characterization requires differentiability assumptions that are not easy to
characterize behaviorally. Thus, his result is quite different from our result on cardinal
risk aversion that we listed earlier as (1). Epstein [13] also uses a comparative approach
to define ambiguity aversion, obtaining a notion which is quite different from the one
in our [15] (which contains a detailed comparison of the two notions). He provides a
characterization of his notion for CEU, MEU and a class of preferences which satisfies
an eventwise differentiability condition. He does not address the characterization of risk
aversion for any of these models.

Organization

The paper is organized as follows. Section 1 introduces some required notation and termi-
nology. Section 2 introduces formally the class of the biseparable and c-linear biseparable
preferences, it shows some properties that they possess, and provides some examples.
Section 3 contains the results on cardinal risk aversion. Section 4 provides the axiom-
atizations of the two preference models, and shows how to obtain probabilistic beliefs.
Section 5 closes by looking at a smaller class of preferences which satisfies a natural
invariance property. The appendices contain some additional definitions (App. A), a
technical remark (App. B), and the proofs for all the results in the paper (App. C).

7 Clearly, many other papers have tackled the problem of characterizing behavioral features in the
context of specific decision models. Here we only focus on those which deal with several different models.
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1 Set-Up and Preliminaries

The Savage-style setting we use consists of a set S of states of the world, an algebra Σ
of subsets of S called events, and a set X of consequences. We denote by F the set of all
the simple acts : finite-valued functions f : S → X which are measurable with respect to
Σ. In contrast, let B(Σ) denote the set of all real-valued Σ-measurable simple functions.
We say that a functional I : B(Σ) → R is monotone if φ ≥ ψ implies I(φ) ≥ I(ψ) for all
φ, ψ ∈ B(Σ).

For x ∈ X we define x ∈ F to be the constant act x(s) = x for all s ∈ S. So, with
the usual slight abuse of notation, we identify X with the subset of the constant acts in
F . Moreover, xAy denotes the binary act f such that f(s) = x for s ∈ A, and f(s) = y
for s /∈ A, where A ∈ Σ.

We model the DM’s preferences on F by a binary relation �. To rule out uninteresting
cases, throughout the paper we require that � be nontrivial : There are f, g ∈ F such
that f � g. Therefore, we henceforth call preference relation any non-trivial binary
relation on F . A functional V : F → R represents � if V (f) ≥ V (g) if and only if f � g.
Clearly, a necessary condition for � to have a representation is that it be a complete and
transitive relation, so that, as customary, we can denote by ∼ and � its symmetric and
asymmetric components, respectively. A representation V is monotonic if V (f) ≥ V (g)
whenever f, g ∈ F are such that f(s) � g(s) for all s ∈ S.

Given a preference relation �, acts f, g ∈ F are called comonotonic if there are no
s, s′ ∈ S such that f(s) � f(s′) and g(s′) � g(s). Finally, an event A ∈ Σ is null (resp.
universal) for a preference relation � if y ∼ xAy (resp. x ∼ xAy) for all x, y ∈ X such
that x � y, while A is essential for � if for some x, y ∈ X we have x � xAy � y.

1.1 Capacities and Choquet Integrals

A set-function ρ on (S,Σ) is called a capacity if it is monotone and normalized, that is:
if for A,B ∈ Σ, A ⊆ B, then ρ(A) ≤ ρ(B); ρ(∅) = 0 and ν(S) = 1. A capacity is called
a probability measure if it is (finitely) additive: For all A,B ∈ Σ such that A ∩ B = ∅,
ρ(A ∪B) = ρ(A) + ρ(B).

The notion of integral used for capacities is the Choquet integral, due to Choquet [8].
For a given function ϕ ∈ B(Σ), the Choquet integral of ϕ with respect to a capacity ρ is
defined as follows:∫

S

ϕdρ =

∫ +∞

0

ρ({s ∈ S : ϕ(s) ≥ α}) dα +

∫ 0

−∞
[ρ({s ∈ S : ϕ(s) ≥ α}) − 1] dα, (2)

where the integrals are taken in the sense of Riemann. When ρ is additive, (2) is equal to
a standard (additive) integral. In general, Choquet integrals are seen to be monotonic,
positive homogeneous and comonotonic additive: If ϕ, ψ ∈ B(Σ) are comonotonic, then∫

(ϕ + ψ) dρ =
∫
ϕdρ +

∫
ψ dρ.
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2 Biseparable Preferences

The following definition is central to the paper. Given a representable preference relation,
it singles out a subset of its representations. We call these representations canonical, since
they are the ones which are looked at because of their separability properties:

Definition 1 Let � be a preference relation. We say that a representation V : F → R

of � is canonical if it is monotonic and there is a set-function ρV : Σ → [0, 1] such that,
if we let u(x) ≡ V (x) for all x ∈ X, for all consequences x � y and all A ∈ Σ we have:

V (xAy) = u(x) ρV (A) + u(y) (1 − ρV (A)). (3)

The next result clarifies the roles of the functions u and ρV .

Proposition 1 Let � be a preference relation with a canonical representation. For all
its canonical representations V and all x, y ∈ X,

x � y ⇐⇒ u(x) ≥ u(y). (4)

Moreover, for all x � y and all A,B ∈ Σ we have

xAy � xB y ⇐⇒ ρV (A) ≥ ρV (B). (5)

That is, the index u given by the restriction of V to X can be interpreted as the DM’s
(state-independent) utility function, so that we call it the canonical utility index of �.
The set-function ρV is a numerical representation of the DM’s ‘likelihood’ relation, that
we call the DM’s willingness to bet.8 It is the unique set-function that satisfies Eq. (3)
for a given V . The next simple result presents some simple properties of the willingness
to bet function ρV . In particular, it is worth noting that ρV is a monotone set-function,
i.e., a capacity.

Proposition 2 Let V be a canonical representation of a preference relation �. The
set-function ρV has the following properties:

(i) An event A ∈ Σ is essential iff ρV (A) ∈ (0, 1).

(ii) An event A ∈ Σ is not essential iff ρV (A) ∈ {0, 1}. In particular, ρV (A) = 0 iff A
is null, and ρV (A) = 1 iff A is universal.

(iii) If A,B ∈ Σ are such that A ⊆ B, then ρV (A) ≤ ρV (B).

Remark 1 The proposition also shows that an event must be either null, universal, or
essential. Moreover, it shows that for a preference relation with a canonical representa-
tion, A is essential if and only if x � xAy � y for every x � y.

8 Notice that, in the presence of a canonical representation, this likelihood relation is independent of
the stakes x and y (as long as x � y). See Axiom B4 below.
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In light of these results we can say that a DM whose preference � has a canonical
representation chooses among binary acts as if he was maximizing the (Choquet) ‘ex-
pectation’ of the canonical utility u with respect to the willingness to bet ρV . But his
preferences over non-binary acts are not constrained to a specific functional form.

So far, we have not said anything about the uniqueness properties of canonical rep-
resentations V , and hence of the canonical utilities u and willingness to bet functions
ρV . That is, given two canonical representations V and V ′ of the same preference re-
lation �, are they related by more than just an increasing transformation? Clearly, if
V ′ is a positive affine transformation of V (i.e., there are α > 0 and β ∈ R such that
V ′ = αV +β), it is a canonical representation. So canonical representations can at most
be cardinal scales. In general, though, there is no reason to expect that they be cardinal.
First of all, if � has no essential events, then Definition 1 does not impose any restriction
on the structure of V beyond monotonicity: Any increasing transformation of V is also
canonical (see also Proposition 6 below). Second, it is very simple to construct examples
with finite S and X sets where V and V ′ are canonical representations of � which are not
related by an affine transformation (and they might even be expected utility functionals).

On the other hand, for interpretational purposes it is important that, when � has
an essential event, its canonical representations be cardinal scales. First of all, because
this implies that the utility index is a cardinal scale itself, so that for instance it makes
sense to discuss its concavity (but see Theorem 2 below). Second, because this implies
that the willingness to bet function is univocally determined, as we presently show in
Proposition 3. Moreover, the class of preferences with a canonical representation which
is not cardinal does not seem to contain many examples of interest. Indeed, we show
later (Proposition 7) that such cardinality of the canonical representation (when it exists,
and when there are essential events) is guaranteed for any preference satisfying a weak
continuity condition.

We thus restrict our attention to the following subclass of preferences:

Definition 2 A preference relation � is called biseparable if it admits a canonical rep-
resentation, and moreover such representation is unique up to positive affine transforma-
tions when � has at least one essential event.

As announced, biseparable preference relations have a unique willingness to bet:

Proposition 3 Let � be a biseparable preference relation. Then ρ is unique: ρV = ρV ′

for all canonical representations V and V ′ of �.

Because of this result, we shall henceforth write ρ instead of ρV to denote the willing-
ness to bet of a biseparable preference relation. We can thus conclude that biseparable
preferences feature two important uniqueness properties: uniqueness up to positive affine
transformations of V (hence of u), and uniqueness of the willingness to bet function ρ.

8



Remark 2 A converse question to the one about the uniqueness of u and ρ is the fol-
lowing: Often in applications it will be easier to identify these two functions than the
overall preference functional V . Clearly, the same pair (u, ρ) corresponds to a set of pos-
sible canonical representations. It is simple to see that this set can be formally described
but, as the question is somewhat tangential to our focus here, we relegate this result to
Appendix B.

Before showing that most of the decision models mentioned in the Introduction de-
scribe biseparable preferences, we look at a more special but popular decision setting,
and present a variant of biseparability for that setting.

2.1 Constant Linearity and the Anscombe-Aumann Setting

An important special case of the decision setting we use is the one in which X has a
vector structure; precisely, it is a convex subset of a vector space. For instance, this is
the case if X is the set of all the lotteries on a set of prizes, as it happens in the classical
setting of Anscombe and Aumann [2].

In this framework, it is natural and useful to consider the preferences satisfying the
following condition:9

Definition 3 Let X be a convex subset of a vector space. A canonical representation V
of a preference relation � is constant linear ( c-linear, for short) if for all binary f ∈ F ,
x ∈ X, and α ∈ [0, 1],

V (α f + (1 − α)x) = αV (f) + (1 − α)V (x).

A preference is called c-linear biseparable if it admits a c-linear canonical representation.

It is easy to verify that if a preference relation has a c-linear canonical representation,
such representation is unique up to positive affine transformations. Therefore, for this
class of preferences we do not have to specifically add a uniqueness requirement. It is
important to observe that, their name notwithstanding, c-linear biseparable preference
relations are not necessarily biseparable in the sense of Definition 2: They may have two
canonical representations which are not related by a positive affine transformation (of
course only one of them can be c-linear).

2.2 Examples

We claimed earlier that the class of biseparable preference relations contains a number
of preference models with state-independent preferences. Here we partially substantiate

9 As usual, for every f, g ∈ F and α ∈ [0, 1], αf+(1−α)g is the act which pays αf(s)+(1−α)g(s) ∈ X
for every s ∈ S.

9



this claim by showing that all these models induce a canonical representation. Later
we show that when the consequence space X is a connected and separable topological
space and the u function is continuous, they are all biseparable (Proposition 7). In the
Anscombe-Aumann setting, they are all c-linear biseparable if the u function is affine on
X.

(i) Let � be a CEU ordering represented by the functional V (f) =
∫
u(f) dν, where ν

is a capacity, and the integral is taken in the sense of Choquet. It is immediate to
check that V is a canonical representation of �, and u is a canonical utility index
of �. In fact, monotonicity is well known, and Eq. (3) holds with ρ(A) = ν(A) for
all A ∈ Σ.

A special type of CEU preferences are the rank-dependent EU (RDEU) preferences,
for which the capacity ρ is a ‘distortion’ g(P ) of some probability P . SEU orderings
correspond to the special case of RDEU in which g is the identity. Clearly, both
have a canonical representation.

(ii) A popular generalization of CEU is the cumulative prospect theory (CPT) of Tver-
sky and Kahneman [29]. In CPT some consequence is established to be the DM’s
reference point. The consequences which are better than the reference point are
called gains, and those which are worse are called losses. The preferences over F are
represented as follows: Given a utility function u, normalized so that the reference
point has utility 0, every act f is split into its ‘gain’ part f+ (of the payoffs with
positive utility) and its ‘loss’ part f− (of the payoffs with negative utility). V (f)
is the sum of the Choquet integral of u(f+) w.r.t. a capacity ν+ and the Choquet
integral of u(f−) w.r.t. another capacity ν−. (CEU corresponds to the special case
in which ν− = ν+.) A CPT preference relation has a canonical representation only
if it is also CEU. However, a CPT preference has a canonical representation on the
sets of acts which only yield gains (or only losses).

(iii) Let � be a preference relation represented by a MEU preference functional V (f) =
minP∈C

∫
u(f) dP , with C a closed and convex set of probability measures. It is

easy to check that V is a canonical representation of �, and u is a canonical utility
index of �. In fact, monotonicity is immediate, and Eq. (3) is seen to hold with
ρ(A) = minP∈C P (A) for all A ∈ Σ.

More generally, consider a preference � which may not be as ‘conservative’ as MEU
predicts. That is, there is α ∈ [0, 1], such that � is represented by the following
preference functional,10

V (f) =

[
αmin

P∈C

∫
S

u(f(s))P (ds) + (1 − α) max
P∈C

∫
S

u(f(s))P (ds)

]
.

V is a canonical representation of �: Eq. (3) holds with ρ defined for every A ∈ Σ
by

ρ(A) = αmin
P∈C

P (A) + (1 − α) max
P∈C

P (A).

10 This includes the case of a ‘maximax’ DM, who has α = 0.
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(iv) Consider a DM who behaves as if he was maximizing SEU when choosing among
binary acts, but not when comparing more complex acts. Formally, there is a utility
u, a probability P and a number β ∈ [0, 1] such that the DM’s preference relation
� is represented by

V (f) ≡ (1 − β)

∫
S

u(f(s))P (ds) + β ϕ∗(u(f)),

where for every φ ∈ B(Σ),

ϕ∗(φ) = sup

{∫
φ′dP : φ′ ∈ B(Σ) is two-valued, φ′(s) ≤ φ(s) for all s ∈ S

}
. (6)

V is a canonical representation of �: Monotonicity is straightforward, and Eq. (3)
holds with ρ = P (i.e., P represents �’s willingness to bet).

More generally, let N : B(Σ) → R be a functional which is non-negative, monotonic,
and continuous when B(Σ) is endowed with the sup-norm topology. Let β : B(Σ) →
R be defined as follows: β(φ) = 1/(1 + N(φ)). Consider a preference � which is
represented as above, where β(u(f)) replaces the constant β. It can be seen that
V is a canonical representation of � (see Example 1 for details).

2.3 First Behavioral Properties

Preferences with a canonical representation satisfy some simple behavioral properties
that for convenience we now list as axioms. First of all, biseparable preferences are weak
orders, i.e., complete and transitive relations.

B1 (Weak order) (a) For all f, g ∈ F , f � g or g � f . (b) For all f, g, h ∈ F , if
f � g and g � h, then f � h.

Biseparable preferences also satisfy the next two mild monotonicity axioms. Both
axioms are widely used in the literature, and imply a form of state independence. Notice
that B3, which is a very weak version of Savage’s P3 [27], is a converse to B2 for some
binary acts.

B2 (Statewise Dominance) For every f, g ∈ F , if f(s) � g(s) for every s ∈ S, then
f � g.

B3 (Eventwise Monotonicity) For every non-null A ∈ Σ and every x, y � z ∈ X,

x � y ⇐⇒ xA z � y A z.

For every non-universal A ∈ Σ and every x, y � z ∈ X,

x � y ⇐⇒ z Ax � z A y.
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Recalling Remark 1, axiom B1 is immediately seen to be responsible for the fact that an
event is either one of null, essential or universal. In contrast, axiom B3 can be used to
show directly that an event A is essential if and only if x � xAy � y for all x � y.

As to ‘betting’ behavior, biseparable preferences also satisfy the following standard
comparative probability axiom. This is not used in the axiomatizations later, since it
is implied by the other axioms, but it is a well understood property (it is Savage ’s P4
axiom [27]).

B4 (Comparative Probability) For every A,B ∈ Σ and all x, x′, y, y′ ∈ X such that
x � y and x′ � y′,

xAy � xB y ⇐⇒ x′ Ay′ � x′ B y′.

Axiom B4 owes its name to the fact that it implies that the DM’s preferences over
‘bets’ are independent of the relative size of the stakes, so that we can define the DM’s
‘likelihood’ (comparative probability) ordering by looking at his willingness to bet.

Remark 3 In the presence of axiom B4, it is equivalent to define an event A null (resp.
universal) if y ∼ xAy for some x � y. This does make axiom B3 weaker (in isolation).
However, in the context of our axiomatizations, requiring B1–B4 with this weak notion
of null/universal is equivalent to requiring B1–B3 with the strong notion that we use.

3 Risk Aversion and the Canonical Utility Function

In this section, we show that some well-known characterizations of risk aversion — that
have been proved for SEU or some other preference models that belong to the biseparable
class — can be extended to biseparable preference relations.11 We present three different
approaches. We start with a general comparative approach, in an arbitrary consequence
space. Then, we restrict our attention to the important case of monetary consequences,
and analyse risk attitude by looking at preference for diversification and mean-preserving
spreads.

In reading these results, it is important to keep in mind that we provide here dif-
ferent characterizations of what in the Introduction we called ‘cardinal’ risk aversion.
The latter is narrower than the ‘risk aversion’ notion used in the literature on non-SEU
preferences, even though the two notions coincide for SEU preferences. In the SEU
case, many manifestations of risk aversion are equivalent to the concavity of the von
Neumann-Morgenstern utility index. We show that analogous results are true for bisep-
arable preferences. Interestingly, these results are generalizations of the corresponding
results for SEU preferences, showing that concavity follows from weaker conditions than
commonly assumed.

11 Needless to say, symmetric results could be proved about cardinal risk loving.
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3.1 The Comparative Approach

In the comparative approach, we depart from a comparison of the relative cardinal risk
aversion of two DMs. Consider the following notion, that we introduced in [15]:

Definition 4 Let �1 and �2 be two weak orders. We say that �2 is more uncertainty
averse than �1 if: For all x ∈ X and f ∈ F , both

x �1 f =⇒ x �2 f

and
x �1 f =⇒ x �2 f.

Though compelling and natural, this comparative notion does not distinguish between
ambiguity and cardinal risk attitudes. In [15] we proposed a way to coarsen this ranking
so as to make sure that we are only comparing the DMs’ ambiguity attitude. In contrast,
here we need to coarsen the relative uncertainty aversion ranking so as to avoid that
differences in the DMs’ ambiguity attitude (in the wide sense discussed in footnote 4)
intrude in the comparison. A natural way to do this is suggested by the traditional
treatment of risk aversion in the EU setting: Compare DMs who have identical beliefs,
i.e., a common willingness to bet ρ (cf. Yaari [31, Remark 1]).

Definition 5 Let �1 and �2 be two biseparable preference relations. We say that �2 is
more cardinal risk averse than �1 whenever both the following conditions hold:

1. �2 is more uncertainty averse than �1;

2. �1 and �2 have a common willingness to bet ρ.

Given this relative notion, it is now theoretically straightforward to provide an absolute
notion of cardinal risk aversion: Establish arbitrarily that certain benchmark preferences
are to be classified as ‘cardinal risk neutral’, and then say that a preference is cardinal
risk averse if it is more cardinal risk averse than some cardinal risk neutral preference.
Practically, though, there is no ‘obvious’ choice of benchmark preferences until we say
something more about X (as we shall do in the next subsection).

However, the next result shows that the relative notion can be characterized immedi-
ately: ‘More cardinal risk averse’ in this sense implies ‘more concave’, as in the standard
SEU case. Here we say that two utility indices are commonly normalized on a pair of
points in X, if they are set to be equal to the same values (0 and 1) on those two points.

Theorem 1 Suppose that X is a connected topological space, and let �1 and �2 be
two biseparable preference relations, with continuous canonical utility indexes u1 and u2

respectively.12 Consider the following statements:

12 For example, this is the case if X is also separable and �1 and �2 satisfy axiom S1 below, or if
they are c-linear biseparable in an Anscombe-Aumann setting.
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(i) �2 is more cardinal risk averse than �1;

(ii) �1 and �2 are ordinally equivalent, and for any pair x � y, if we commonly
normalize on x and y, we have for every z ∈ X such that x � z � y, u2(z) ≥ u1(z);

(iii) u2 is an increasing concave transformation of u1.

They are related as follows: (i) ⇒ (ii) ⇔ (iii).

Remark 4 Notice that differently from the standard result for SEU preferences, we
do not assume any order or metric structure on X, or differentiability of the utility
functions. It is well-known (de Finetti [9], Arrow [3], Pratt [24]) that in the case in which
X ⊆ R and the utility functions have differentiability properties, (iii) is also equivalent to
pointwise dominance of the Arrow-Pratt coefficients of absolute risk aversion. Yaari [31]
uses differentiability assumptions to prove a result different from ours, but in the same
spirit: For a class of preferences which roughly contains the biseparable ones, he shows
that the relative cardinal risk aversion ranking is characterized by a natural measure of
local risk aversion (which in the SEU case is equivalent to the Arrow-Pratt measure).

We now look at the converse of Theorem 1, and ask when ‘more concavity’ means
‘more cardinal risk aversion’. Answering this question requires adding structure to the
DMs’ preferences over non-binary acts, as described by the following definition. First,
we state a simple and general result:

Lemma 1 Let � be a representable preference relation. Then V : F → R is a monotonic
representation of � if and only if there exists a monotone functional IV : B(Σ) → R such
that V (f) = IV (u(f)), where u(x) ≡ V (x) for all x ∈ X.

In particular, the lemma implies that for any canonical representation V of a biseparable
preference relation, we can find a functional IV which ‘generates’ V from u. For instance,
if � is a CEU preference with utility u and capacity ν, for the canonical representation
V (f) =

∫
u(f) d(ν) we have IV (φ) =

∫
φ dν. In light of this, we can now state a key

property that relates two biseparable preferences.

Definition 6 Two biseparable preferences �1 and �2 have a common canonical func-
tional if we can find two canonical representations V1 and V2, of �1 and �2 respectively,
such that u1(X) ∩ u2(X) �= ∅ and V1 = I∗(u1) and V2 = I∗(u2) for the same monotone
functional I∗ : B(Σ) → R.

Two biseparable preferences that have a common canonical functional share the same
willingness to bet, and also belong to the same ‘class’; e.g., they are both SEU, CEU,
or MEU. Conversely, if �1 and �2 are either both CEU (or both MEU), then they have
a common canonical functional, and they can be shown to satisfy the condition on the
ranges as well.
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Proposition 4 Under the hypotheses of Theorem 1, (iii) implies (i) if the two preference
relations �1 and �2 have a common canonical functional I∗ : B(Σ) → R that satisfies
the following (Jensen) property

ψ(I∗(φ)) ≥ I∗(ψ(φ)) (7)

for all φ ∈ B(Σ) and all increasing concave ψ ∈ B(Σ).

The Jensen property of Eq. (7) is satisfied by a number of preference functionals of
interest; for instance, the CEU integrals and the MEU representation functionals. We
therefore have that if two preferences are both CEU (or both MEU) and the assumptions
of Theorem 1 are satisfied, all the statements in that theorem are equivalent.

3.2 Monetary Payoffs

Turn now to the case in which consequences are monetary; i.e., X is an interval of R. In
this case, there is an ‘obvious’ way to obtain the absolute notion of cardinal risk aversion
discussed in the previous subsection: Define ‘cardinal risk neutral’ any preference for
which u is affine (so that on binary acts, it maximizes Choquet expected value). It
then follows from Theorem 1 that a biseparable preference is cardinal risk averse only
if its canonical utility index is increasing and concave (which becomes an ‘if’ under
the assumptions of Proposition 4). Indeed, in this case we can also obtain some other
interesting characterizations of cardinal risk aversion, that we describe in the rest of this
subsection.

3.2.1 Preference for Diversification

We start with the extension of an interesting result of Chateauneuf and Tallon [6, The-
orem 3.3] to preference relations with a canonical representation (they prove it for CEU
preferences). The following is a weak version of a property studied by Dekel [11], which
enjoys the conceptual advantage over the other notions presented in this section of be-
ing defined only in terms of primitives. It is implied by the notion of preference for
comonotone diversification that is used in [6].

Definition 7 A preference relation exhibits preference for bet diversification if, for every
essential event A ∈ Σ and x, x′, y, y′ ∈ X, with x � y and x′ � y′, we have for every
α ∈ [0, 1],

xAy ∼ x′ Ay′ =⇒ [αx + (1 − α)x′]A [αy + (1 − α)y′] � xAy.

A DM exhibiting preference for bet diversification prefers bets with a smoother payoff
profile, when betting on the same essential event. Intuitively, this is a feature that we
would relate to the DM’s risk aversion. It is seen to correspond to the concavity of u:
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Theorem 2 Suppose that X is an interval of R, and let � be a preference relation with
a canonical representation whose canonical utility function u is continuous. Then, �
exhibits preference for bet diversification if and only if u is concave.

3.2.2 ‘Subjective’ Expected Values and Mean Preserving Spreads

The two most popular definitions of risk aversion in the literature hinge crucially on the
existence of an external notion of ‘objective’ probability. The first one is the traditional
‘internal’ definition, that says that a preference is risk averse if it prefers the expected
value of a lottery to the lottery itself. The second definition, which can also be applied
to non-EU preferences, is that which defines risk averse a preference which between any
pairs of lotteries, such that one of the two is a mean-preserving spread of the other,
prefers the less disperse one. Clearly, in general the latter is more demanding than the
former. In the EU case, they are both characterized by concavity of u.

In the Anscombe-Aumann framework, where we interpret the convexity of X as arising
from the existence of an external randomizing device, similar results hold for c-linear
biseparable preferences, with identical definitions and characterization. Formulating such
notions in a purely subjective setting is not as straightforward, since it is not clear how
to obtain expected values and mean-preserving spreads. However, when dealing with
biseparable preferences, we can use the DM’s subjective beliefs to obtain ‘subjective’
expected values and mean-preserving spreads for binary acts. (Clearly, we do not have
any basis for calculating the subjective expected value or mean-preserving spreads of
nonbinary acts.)

We thus have the following version of the first definition of risk aversion, where for
any biseparable preference with willingness to bet ρ and act f = xAy with x � y, we
let EV (f) ≡ x ρ(A) + y(1 − ρ(A)) ∈ X, the subjective expected value of f .

Definition 8 Given a biseparable preference � with willingness to bet ρ, we say that �
has a preference for the subjective expected value if for every binary act f = xAy, we
have that

EV (f) � f.

To introduce a version of the mean-preserving definition of risk aversion, we first need
to define a (binary) subjective mean-preserving spread of a given binary act.

Definition 9 Given a biseparable preference relation � with willingness to bet ρ, and a
bet xAy with x � y, we say that f ∈ F is a binary subjective mean-preserving spread
(SMPS) of xAy (for �) if there are x′, y′ ∈ X with x′ � x and y � y′, and B ∈ Σ with
ρ(A) = ρ(B), such that f = x′ Ay′ and

x′ρ(B) + y′(1 − ρ(B)) = xρ(A) + y(1 − ρ(A)). (8)
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Clearly, both the subjective notions of expected value and MPS coincide with their
traditional counterparts when there is an external probability, and ρ coincides with it.
We can now reinforce Definition 8 as follows:

Definition 10 A biseparable preference relation � is averse to binary SMPSs if it weakly
prefers xAy (with x � y) to every one of its binary SMPSs.

The following straightforward result shows that under a weak assumption both these
behavioral features are equivalent to the concavity of the canonical utility index:

Proposition 5 Suppose that X is an interval of R, and let � be a biseparable preference
relation. Consider the following statements:

(i) The canonical utility index u is concave;

(ii) � is averse to binary SMPSs;

(iii) � has a preference for the subjective expected value.

We have (i) ⇒ (ii) ⇒ (iii), while (iii) ⇒ (i) holds whenever ρ(Σ) = [0, 1].

4 Axiomatization

We now turn to the critical issue of the axiomatic characterization of biseparable pref-
erences. We begin with the characterization of c-linear biseparable preferences in the
‘Anscombe-Aumann’ setting in which X is a convex subset of a vector space, and then
provide a characterization of biseparable preferences in the more general Savage setting.

4.1 The Anscombe-Aumann Case

Consider the following axioms, some of which exploit the vector structure of X:

A1 (Certainty Equivalents) For all f ∈ F , there is x ∈ X such that x ∼ f .

A2 (Weak Certainty Independence) For all binary f, g ∈ F and all x ∈ X, if α ∈
(0, 1) then

f � g ⇐⇒ αf + (1 − α)x � αg + (1 − α)x.

A3 (Archimedean Axiom) For all x, y, z ∈ X, if x � y � z then there exist α, β ∈
(0, 1) such that

αx + (1 − α)z � y � βy + (1 − β)z.
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All these axioms are mild behavioral assumptions. Axioms A1 and A3 are standard
and play mostly a technical role. Axiom A2 is a very weak and compelling version
of the independence axiom: It only requires that independence holds whenever we are
comparing binary acts, and we are ‘mixing’ them with a constant act. It is a weaken-
ing of the ‘certainty independence’ axiom introduced by Gilboa and Schmeidler [18] as
the cornerstone of their axiomatization of MEU in the Anscombe-Aumann framework.
As it turns out, alongside B1–B3, these three axioms characterize c-linear biseparable
preference relations.

Theorem 3 Suppose that X is a convex subset of a vector space, and let � be a preference
relation on F . Then the following statements are equivalent:

(i) � satisfies axioms B1–B3 and A1–A3.

(ii) There exist a monotonic representation V : F → R of � and a capacity ρ : Σ →
[0, 1] such that:

• for all x � y in X, all A ∈ Σ, letting u(x) ≡ V (x) for all x ∈ X, we have

V (xAy) = u(x) ρ(A) + u(y) (1 − ρ(A));

• for all binary f ∈ F and x ∈ X, and all α ∈ [0, 1],

V (α f + (1 − α)x) = αV (f) + (1 − α)V (x).

Moreover, the representation V is unique up to positive affine transformations and the
capacity ρ : Σ → [0, 1] is unique.

4.2 The Savage Case

The characterization of biseparable preference relations is less straightforward in the more
general Savage setting. Here it is useful to distinguish between the cases of preferences
with and without essential events.

4.2.1 Without Essential Events

Starting with the latter case, we have a very general result: Under axioms B1–B3, if �
has no essential events, every representation is canonical. Therefore, every preference
relation satisfying these axioms is biseparable provided it admits a representation (which
is the case, e.g., if it satisfies axiom S1 below).

Proposition 6 Let � be a preference relation satisfying axioms B1–B3. If � has no
essential events, every functional V : F → R representing � has the following (Choquet)
integral representation: for every f ∈ F ,

V (f) =

∫
S

u(f(s)) ρ(ds), (9)
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where ρ is the dichotomous capacity on Σ defined by ρ(A) = 0 if A is null, ρ(A) = 1 if
A is universal, and u : X → R is defined by u(x) ≡ V (x) for every x ∈ X.

Observe that Eq. (9) reduces to (3) for binary acts xAy, with x � y. Hence, every V
representing � is canonical: With no essential events the canonical representations of
preferences satisfying B2 and B3 are only unique up to normalizable increasing transfor-
mations.

Quite surprisingly, Eq. (9) shows that under the assumptions of the proposition, the
preference relation has a Choquet integral representation for all, rather than just the
binary, acts. Hence, any representable preference relation � which satisfies statewise
dominance, eventwise monotonicity and does not have essential events has a CEU repre-
sentation.

4.2.2 With Essential Events

In the case in which � has some essential events, we begin by endowing X with a topology
τ . In turn, τ induces the product topology on the set XS of all functions from S into X.
In this topology, a net {fα}α∈D ⊆ XS converges to f ∈ XS if and only if fα(s)

τ−→ f(s)
for all s ∈ S (remember that S is arbitrary). For this reason it also called the topology of
pointwise convergence (nets are needed since the topology might not be first countable).
We now have:

S1 (Continuity) Let {fα}α∈D ⊆ F be a net that pointwise converges to f ∈ F , and such
that all fα’s and f are measurable with respect to the same finite partition. If fα � g
(resp. g � fα) for all α ∈ D, then f � g (resp. g � f).

S1 is a standard continuity axiom. It is very weak, as the clause that all acts in the
net used in the axiom are measurable w.r.t. the same partition significantly limits its
demands. In particular, it is substantially weaker than requiring continuity w.r.t. to the
product topology.

It is easy to see (Lemma 4 in Appendix C.1) that any preference relation satisfying
B1, B2 and S1 on a connected X has certainty equivalents. That is, it satisfies axiom
A1 above. Granted this, we henceforth denote by cf an arbitrarily chosen certainty
equivalent of f ∈ F .

Another consequence of S1 is the following result, that was anticipated in Section 2.

Proposition 7 Suppose that X is a connected and separable space, and let � be a pref-
erence relation with a canonical representation. Then if � satisfies S1, it is biseparable.

That is, when continuity holds, canonical representations are unique up to normalizable
positive affine transformations (in the presence of an essential event). This result can be
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used to show that all the preferences in examples (i)–(iv) of subsection 2.2 are bisepara-
ble: Just assume that X is a connected and separable topological space, and that u is
continuous in this topology.

The characterization of biseparable preferences requires two more axioms with more
substantial empirical content. The first one is a separability property. We write {x, y} �
z as a short-hand for x � z and y � z (and similarly later for � and ≺).

S2 (Binary Comonotonic Act Independence) For every essential A ∈ Σ, every
B ∈ {A,Ac}, and for all f, g, h ∈ F such that f = xAy, g = x′ Ay′ and h = x′′ Ay′′. If
f, g, h are pairwise comonotonic, and {x, x′} � x′′ and {y, y′} � y′′ (or x′′ � {x, x′} and
y′′ � {y, y′}), then

xAy � x′ Ay′ =⇒ [c(xBx′′) Ac(yBy′′)] � [c(x′Bx′′) Ac(y′By′′)].

S2 is a weak subjective version of the well known independence axiom of EU, and of
Schmeidler’s ‘comonotonic independence’ [28] axiom:13 First of all, notice that it only
applies to binary acts measurable with respect to the algebra ΣA ≡ {∅, A,Ac, S}, with
A an essential event. To have a better intuition of what the axiom says, notice that
even if we do not have access to a randomizing device, we can still construct a subjective
‘mixture’ of two acts f and g as follows: Fix some essential event A, and then construct
state by state the act which for every state s yields the certainty equivalent of the
bet f(s)Ag(s). If g is statewise dominated by f , the constructed act’s payoffs are all
indifferent to bets on the event A, so that it is analogous to a mixture in the Anscombe-
Aumann framework. In the spirit of comonotonic independence, S2 requires that ‘mixing’
in this fashion with a comonotonic act h does not affect the ranking of the two acts f
and g. The additional requirement that h be either state by state better, or worse, than
the other two acts guarantees that the ‘mixing’ operation is performed correctly, i.e.,
without involving bets on different events (B and Bc).

The last axiom guarantees that when evaluating bets, the DM’s cardinal risk attitude
(as defined in the Introduction) is independent of the event he is betting on.

S3 (Cardinal State Independence) For every essential A ∈ Σ and for all x, y, x′, y′ ∈
X, if there are m′

1 ≺ m′′
1 ≺ {x, x′} and m′

2 ≺ m′′
2 ≺ {x, x′} and essential B ∈ Σ such that

xAm′′
1 ∼ y Am′

1 and xB m′′
2 ∼ y B m′

2, (10)

then
x′ Am′′

1 ∼ y′ Am′
1 if and only if x′ B m′′

2 ∼ y′ B m′
2. (11)

If, instead, there are m′
1 � m′′

1 � {x, x′} and m′
2 � m′′

2 � {x, x′} and essential B such that
(10) holds with (Ac, Bc) in place of (A,B), then (11) holds with the same substitution.

13 Indeed, it is a weakening of the ‘comonotonic act-independence’ axiom of Chew and Karni [7], based
on earlier work of Gul [19] and Nakamura [22].
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Like axiom S2, axiom S3 only applies to binary acts.14 In the presence of axiom B3, all
these acts are comonotonic, since they are bets ‘on’ the events A or B: the payoff to A
(or B) obtaining is higher than that to Ac (or Bc) obtaining.

To understand the role of this axiom, assume for concreteness that consequences are
monetary payoffs, and that the DM likes more money to less. Suppose that, when betting
on events A and B respectively, (10) holds for some ‘win’ payoffs x and y and ‘loss’ payoffs
m′′

1 � m′
1 and m′′

2 � m′
2 respectively. This says that a reduction in the ‘loss’ payoffs from

m′′
1 to m′

1, and from m′′
2 to m′

2, can be traded off in both cases with a reduction in ‘win’
from x to y.15 Suppose that when the initial win is x′ < x, for bets on A the DM is willing
to trade off the decrease of the ‘loss’ with an increase of the ‘win’ to y′, but for bets on B,
the DM requires increasing the ‘win’ to y′′ > y′ (that is, x′ B m′′

2 � y′ B m′
2, in violation

of (11)). That is, the DM is more sensible to differences in payoffs when betting on B
than when betting on A. Such ‘inconsistency’ of the DM’s cardinal risk attitude is ruled
out by cardinal state independence, which requires that the DM consistently evaluates
the acceptable tradeoff for improving his ‘win’ payoff, and similarly for the ‘loss’ payoff.

We can now state the result for the essential case. In this result, we say that the
preference functional V : F → R is sub-continuous if limα V (fα) = V (f) whenever
{fα}α∈D ⊆ F is a net that pointwise converges to f ∈ F , and such that all fα’s and f
are measurable with respect to the same finite partition. Notice that this implies that u
is τ -continuous.

Theorem 4 Let � be a preference relation with some essential event. If X is a connected
and separable topological space, the following conditions are equivalent:

(i) � satisfies B1–B3 and S1–S3.

(ii) There exist a sub-continuous monotonic representation V : F → R of � and a
capacity ρ : Σ → [0, 1] such that: for all f ∈ F , all x � y in X, all A ∈ Σ, letting
u(x) ≡ V (x) for all x ∈ X,

V (xAy) = u(x) ρ(A) + u(y) (1 − ρ(A)).

Moreover, the representation V is unique up to positive affine transformations and the
capacity ρ : Σ → [0, 1] is unique.

Summing up, axioms B1–B3 and S1–S3 are sufficient for showing that a preference
relation is biseparable when the space of consequences has some topological structure
(whether or not there is an essential event). In general, axioms B1–B3 and S2–S3 are
necessary; axiom S1 is also necessary if one of the canonical representations is sub-
continuous.

14 Axiom S3 is inspired by the techniques of additive conjoint measurement (see Krantz et al. [20]
and Wakker [30]).

15 We stress that the following discussion makes sense only when the DM is faced with nontrivial uncer-
tainty (i.e., he is betting on essential events). Thus, we use ‘trade-off’ not to mean certain substitution,
but substitution in the context of an uncertain prospect.
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4.3 Probabilistic Beliefs

We conclude our characterization section with a brief observation on how to axiomat-
ically derive probabilistic beliefs. That is, we want to find conditions that deliver a
biseparable preference whose representing capacity ρ is a probability measure. It would
be straighforward to obtain finite additivity of ρ by adding a preference version of the
classical necessary and sufficient condition for representability of a qualitative probability
of, e.g., Chateauneuf [5]. For the sake of brevity, here we take a different route which
we find more estethically appealing: We derive axiomatically a weak additivity property,
and we also assume that the preference in question is either ambiguity averse or loving,
according to the behavioral notion that we proposed in [15].

Recall from the Introduction that if a biseparable preference � with willingness to
bet ρ is ambiguity averse (resp. loving) in that sense, then [15, Theorem 3] there is a
probability measure P on Σ such that P (A) ≥ ρ(A) (resp. such that ρ(A) ≥ P (A)) for all
A ∈ Σ. Now, say that a capacity ρ is complement additive if for all A ∈ Σ, ρ(A)+ρ(Ac) =
1. It is easy to show that a complement symmetric capacity that setwise dominates (or is
dominated by) a probability must be identical to that probability. Thus, if we can show
that a biseparable preference � induces a complement symmetric willingness to bet, then
adding the assumption that � is ambiguity averse or loving is sufficient to show that it
has probabilistic beliefs.

Consider the following strengthening of axiom S2:

S2∗ (Binary Act Independence) For every essential A ∈ Σ, every B ∈ {A,Ac}, and
for all f, g, h ∈ F such that f = xAy, g = x′ Ay′ and h = x′′ Ay′′. We have

xAy � x′ Ay′ =⇒ [c(xBx′′) Ac(yBy′′)] � [c(x′Bx′′) Ac(y′By′′)].

This is stronger than S2, as it removes all the conditions for its application, except that on
the measurability of the acts. It is thus more in the spirit of the traditional independence
axiom of EU. When substituted for S2, it gives a biseparable preference whose capacity
is complement additive over all essential events. To obtain full complement additivity we
only need to add an obvious necessary condition on preferences (beliefs, really):

S4 For all A ∈ Σ, if A is null (resp. universal), then Ac is non-null (resp. non-
universal).

We now have the sought result:

Proposition 8 Suppose that � is an ambiguity averse (or loving) biseparable preference
relation which satisfies S1, and that X is connected and separable. Then it satisfies
axioms S2∗ and S4 if and only if ρ is a probability measure.
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This proposition provides the axiomatic characterization of the model of biseparable
preferences with probabilistic beliefs. To see that the latter is strictly weaker than SEU,
recall the preferences in example (iv) in subsection 2.2: There ρ = P , but if β > 0 the DM
does not behave as a SEU maximizer (indeed, the larger β is, the more ambiguity averse
the DM’s behavior is). The version of that model with variable β(·) also shows that
having probabilistic beliefs is strictly weaker than being ‘probabilistically sophisticated’
in the sense of Machina and Schmeidler [21, who have a similar example]: Such � is
probabilistically sophisticated only if the functional N(·) is increasing with respect to
first-order stochastic dominance of the probability distributions that acts induce via P .

5 Invariant Biseparable Preferences

We now briefly consider a subset of the biseparable preferences which seems to be of
some interest, even though it is strictly smaller than is needed for our characterization
results. Recall that from Lemma 1 it follows that for any canonical representation V of a
biseparable preference relation �, we can find a functional IV such that V (f) = IV (u(f))
for all f ∈ F . A natural question that this result poses is the following: Is the functional
IV really dependent on the canonical representation? That is, if V ′ is another canonical
representation of �, is IV ′ going to be equal to IV ? As we show presently, in general the
anser to this question is: No.16 Thus, requiring that such uniqueness holds provides a
smaller class of preferences, that we define as follows:

Definition 11 A biseparable preference relation � is invariant if there exists a monotone
functional I : B(Σ) → R such that V (·) = I(u(·)) for all canonical representations V of
�. Such functional I : B(Σ) → R is then called the canonical functional of �.

By their definition and Proposition 3, invariant biseparable preferences feature uniqueness
properties of all their basic components: V is unique up to positive affine tranformations,
ρ is unique, and I is unique.

The next simple result shows a property of the functional IV associated with a canon-
ical representation V that characterizes the invariant biseparable preference relations.

Proposition 9 A biseparable preference relation � is invariant if and only if there exists
a canonical representation V of � such that IV is constant-affine; that is,

IV (aφ + b) = aIV (φ) + b (12)

for all a > 0, b ∈ R, and φ ∈ B(Σ). Moreover, such IV is the canonical functional of �.

16 However, by Proposition 3 the functional IV : B(Σ) → R is uniquely defined on binary functions
of the form u(f): That is, given canonical representations V and V ′ of �, IV (φ) = IV ′(φ) for all binary
functions φ ∈ B(Σ) such that there are f, f ′ ∈ F for which u(f) = φ = u′(f ′).
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Hence, all the preferences presented in Subsection 2.2 are invariant if they are biseparable.
In fact, all those preference functionals are seen to be constant-affine. The following
example shows a non-invariant biseparable preference.

Example 1 Let S be a finite state space, with Σ = 2S, and X = [0, 1] (with the
Euclidean topology). Consider a preference defined as in the second part of example (iv)
of subsection 2.2, with utility u∗ equal to the identity, and P : Σ → R a nondegenerate
probability measure on (S,Σ). The preference � is represented by the functional V ∗(f) =
I∗(u∗(f)) = I∗(f), with I∗ : B(Σ) → R defined as follows:

I∗(φ) = (1 − β(φ))

∫
φ dP + β(φ)ϕ∗(φ),

where ϕ∗ is defined as in Eq. (6), and β(φ) = 1/(1 + N(φ)) for a monotonic, sup-
norm continuous functional N taking values in [0,1]. Such � is biseparable. In fact,
the separability property on binary acts follows immediately by construction (with ρ =
P ). The monotonicity of V ∗ is guaranteed by the separability and the monotonicity
assumption on N . This shows that V ∗ is a canonical representation of �. Moreover, �
is easily verified to satisfy S1. Hence, biseparability follows from Proposition 7.

However, the functional I∗ is not necessarily constant-affine. Suppose that N satisfies
the additional monotonicity condition: for any b > 0, φ(s) ≥ ψ(s)+b for all s ∈ S implies
N(φ) > N(ψ).17 Then, when a = 1 and b > 0, for any f it follows that N(u∗(f)) �=
N(a u∗(f) + b), so that we have

I∗(a u∗(f) + b) �= aI∗(u∗(f)) + b. (13)

This implies that � is not invariant biseparable. In fact, suppose there exists I such that
V (f) = I(u(f)) for all cardinal representations V (and relative canonical utility u) of �.
Then, V ∗(f) = I(u∗(f)), so that, using u∗(x) = x, I∗(φ) = I(φ) for all φ ∈ B(Σ) such
that Range(φ) ⊆ [0, 1]. But this contradicts (13), because by Proposition 9, I has to be
constant-affine. �

While most of the well known examples of biseparable preferences are invariant, the
results on risk attitude of Section 3 (as well as those on ambiguity attitude in [15]) do not
require it. Since our focus here is on the most general preference model for which results
of this sort (as well as the uniqueness of utility and beliefs) can be proved, we leave the
axiomatic characterization of invariant biseparable preferences to future work.18

17 For an example of an N with all the necessary requisites, consider N(φ) =
∫

S
eφ(s) Q(ds) for some

nondegenerate probability measure Q on (S, Σ).
18 In view of Proposition 9, the characterization is straightforward in the Anscombe-Aumann setting:

one only needs to strengthen axiom A2 to non-binary acts, thus obtaining Gilboa and Schmeidler’s
‘certainty independence’ [18] axiom.
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Appendix A Ceu and MEU Orderings

A preference � is a CEU ordering if there exist a utility index u on X and a capacity ν
on (S,Σ) such that, for all f, g ∈ F ,

f � g ⇐⇒
∫

S

u(f(·)) dν ≥
∫

S

u(g(·)) dν, (14)

where the integrals are taken in the sense of Choquet (notice that they are finite because
each act in F is finite-valued). � is a SEU ordering in the special case in which ν is a
probability measure. An axiomatization of CEU (and SEU) preferences in the Anscombe-
Aumann setting is found in Schmeidler [28]; one in the Savage setting is found, e.g., in
Gilboa [17] and Chew and Karni [7].

Suppose that C is a (weak∗-) compact and convex set of probability measures on
(S,Σ). For a given real-valued Σ-measurable function ϕ, define IC(ϕ) as follows

IC(ϕ) = min
P∈C

∫
S

ϕ(s)P (ds).

Clearly, the operator IC is monotonic and positively homogenous. As for its additivity,
say that two functions ϕ, ψ : S → R are affinely related if either of the following holds: (i)
there exist α > 0 and β ∈ R such that ϕ(s) = αψ(s)+β for all s ∈ S, (ii) either function
is constant. Ghirardato, Klibanoff and Marinacci [14] show that for every compact and
convex C, IC is affine additive: If ϕ, ψ : S → R are affinely related, then IC(ϕ + ψ) =
IC(ϕ) + IC(ψ). Thus, affine-relatedness is the counterpart of comonotonicity for the
functionals of the type IC . We remark that if two functions are affinely related, they are
comonotonic, but the converse is generally false.

� is a MEU ordering if there exist a utility index u and a unique non-empty, compact
and convex set C of probabilities on (S,Σ), such that, for all f, g ∈ F ,

f � g ⇐⇒ min
P∈C

∫
S

u(f(·)) dP ≥ min
P∈C

∫
S

u(g(·)) dP. (15)

(IC [u(f(·))] is finite for every f ∈ F , since F only contains simple acts.) As above, SEU
corresponds to the special case of MEU in which C = {P} for some probability measure
P . An axiomatization of MEU preferences in the Anscombe-Aumann setting is in Gilboa
and Schmeidler [18]; one in the Savage setting is in Casadesus-Masanell et al. [4].

Appendix B Retrieving V from given u and ρ

Here we characterize the set of the canonical representations which are compatible with
a given utility function u and a capacity ρ, under the assumption that the preference
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relation is biseparable. To provide such a characterization we need a piece of notation:
given ρ : Σ → [0, 1], define the functionals ϕ∗ : B(Σ) → R and ϕ∗ : B(Σ) → R as follows:

ϕ∗(φ) = sup

{∫
φ′ dρ : φ′ ∈ B(Σ) is two-valued, and φ′ ≤ φ

}
,

ϕ∗(φ) = inf

{∫
φ′ dρ : φ′ ∈ B(Σ) is two-valued, and φ′ ≥ φ

}
.

The integrals
∫
φ′ dρ are Choquet integrals, which are well defined since ρ is a capacity.

Notice that ϕ∗(φ) = −ϕ∗(−φ) for all φ ∈ B(Σ).

Proposition 10 A canonical representation V of a biseparable preference relation �
induces the pair (u, ρ) if and only if V (f) = IV (u(f)) for some monotone functional
IV : B(Σ) → R such that, for all φ ∈ B(Σ),

ϕ∗(φ) ≤ IV (φ) ≤ ϕ∗(φ). (16)

Proof : Suppose V : F → R is such that V (f) = IV (u(f)) for some monotone IV :
B(Σ) → R satisfying (16). For a binary act f = xAy, with x � y, we have IV (u(f)) =
ϕ∗(u(f)) = ϕ∗(u(f)), and so

V (xAy) = IV (u(f)) =

∫
u(f) dρ = u(x) ρ(A) + u(y) (1 − ρ(A)).

Conversely, suppose that V is a canonical representation of � inducing (u, ρ). Since IV

is monotone, given any φ ∈ B(Σ), for all two-valued φ′ ∈ B(Σ) such that φ′ ≥ φ we have
ϕ∗(φ′) = IV (φ′) ≥ IV (φ), and so ϕ∗(φ) = inf ϕ∗(φ′) ≥ IV (φ). A similar argument shows
that ϕ∗(φ) ≤ IV (φ). Hence, IV satisfies (16).

Appendix C Proofs

This appendix contains the proof of all the results in the main text of the paper. For
expositional reasons that will become clear as we proceed, the proofs are not presented
in the same order as the statements in the paper. Precisely, we prove the main repre-
sentation results of Section 4 (Theorems 3 and 4) before all the other results, which are
then proved in the order in which they appear in the paper.

C.1 Proofs of The Representation Theorems

C.1.1 Theorem 3

We start by proving two lemmas, in which � is a preference relation satisfying B1–B3,
A1–A3.
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Lemma 2 There exists V : F → R, unique up to a positive affine transformation, such
that for all f, g ∈ F ,

f � g if and only if V (f) ≥ V (g)

and for all binary f ∈ F , x ∈ X, and α ∈ (0, 1),

V (αf + (1 − α)x) = αV (f) + (1 − α)V (x). (17)

Proof : By axioms B1 and A2–A3 and the von Neumann-Morgenstern theorem, there
exists u : X → R, unique up to positive affine transformations, such that for every
x, y ∈ X, and every α ∈ [0, 1],

u(αx + (1 − α) y) = αu(x) + (1 − α)u(y).

Given an act f ∈ F , let cf ∈ X be one of its certainty equivalents (which exist by axiom
A1). Define V : F → R by V (f) = u(cf ). By A2, f ∼ cf ∈ X implies α f + (1 − α)x ∼
α cf + (1 − α)x, for all x ∈ X and all binary f ∈ F . Then, for all binary f ∈ F and
x ∈ X,

V (α f + (1 − α)x) = V (α cf + (1 − α)x)

= αV (f) + (1 − α)V (x).

Moreover, let V ′ be another representation satisfying (17). Since u′ is a positive affine
transformation of u there exist α > 0 and β ∈ R such that:

V ′(f) = u′(cf ) = αu(cf ) + β

= αV (f) + β,

as wanted.

Lemma 3 Let V be the functional provided by Lemma 2. Then, for every x∗ � x∗ and
essential A ∈ Σ, if we normalize V so that V (x∗) = 1, V (x∗) = 0, we have for all
x, y ∈ X such that x � y,

V (xAy) = V (y) + (V (x) − V (y))V (x∗ Ax∗).

Proof : First notice that B2 and B3 imply that for all essential events A ∈ Σ, and all
x, y, z ∈ X such that x, y � z,

x � y ⇐⇒ xA z � y A z. (18)

or all x, y, z ∈ X such that x, y � z,

x � y ⇐⇒ z Ax � z A y. (19)

We first consider the case x∗ � x � y � x∗. Let α ∈ (0, 1] and β ∈ [0, 1) be such that

x ∼ αx∗ + (1 − α)y and y ∼ βx∗ + (1 − β)x∗.

27



W.l.o.g., set V (x∗) = 0 and V (x∗) = 1. Hence, V (y) = β, while V (x) = α + (1− α)V (y)
implies that

V (x) − V (y) = α[1 − V (y)] = α(1 − β).

Therefore, using (17) and (18) we obtain:

V (xAy) = V ((αx∗ + (1 − α)y)Ay) = V (α(x∗ Ay) + (1 − α)y)

= αV (x∗ Ay) + (1 − α)V (y)

= αV (x∗ A (βx∗ + (1 − β)x∗)) + (1 − α)V (y)

= αV (βx∗ + (1 − β)(x∗ Ax∗)) + (1 − α)V (y)

= α [βV (x∗) + (1 − β)V (x∗ Ax∗)] + (1 − α)V (y)

= αβV (x∗) + α(1 − β)V (x∗ Ax∗) + (1 − α)V (y)

= αV (y) + α(1 − β)V (x∗ Ax∗) + (1 − α)V (y)

= V (y) + α(1 − β)V (x∗ Ax∗)

= V (y) + (V (x) − V (y))V (x∗ Ax∗)

as wanted. To conclude the proof, we have to show the result in the remaining three
cases: (i) x � x∗, y � x∗; (ii) x∗ � x, x∗ � y; (iii) x � x∗, x∗ � y. As the proof for each
case is analogous to the one above, we omit it.

Proof of Theorem 3: The (ii) ⇒ (i) part is immediate. As to the (i) ⇒ (ii) part, let V
be the functional provided by Lemma 2. Fix x∗ � x∗ and, taking if necessary a positive
affine transformation of V , suppose that V (x∗) = 1 and V (x∗) = 0. For all essential
A ∈ Σ set ρ(A) = V (x∗ Ax∗), and for all null (resp. universal) A ∈ Σ, set ρ(A) = 0
(resp. ρ(A) = 1). By Lemma 3 and the definitions of null and universal, we then have
V (xAy) = u(x) ρ(A) + u(y) (1 − ρ(A)), so that V and ρ are the required functions.

As for the uniqueness statement, it is clear that any positive affine transformation of
V satisfies the representation with the ρ constructed above. Suppose that V ′ is another
representation and ρ′ is another capacity which represent �. From Lemma 2 it follows
that V ′ must be a positive affine transformation of V . This fact allows us to show that
ρ(A) = ρ′(A) for all A ∈ Σ along the same lines as the proof of Proposition 3. Thus, ρ
is unique and V is unique up to a positive affine transformation.

C.1.2 Theorem 4

The proof of Theorem 4 involves several lemmas. We start with a simple solvability
result, whose proof is given for completeness. Given any A ∈ Σ, x ∈ X and g ∈ F , xAg
denotes the act such that (xAg)(s) = x if s ∈ A, and (xAg)(s) = g(s) if s /∈ A.

Lemma 4 Let � be a preference relation satisfying B1, B2 and S1. If X is connected,
then
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(a) for every f ∈ F there exists x ∈ X such that f ∼ x.

(b) for every x, z ∈ X, A ∈ Σ, and f, g ∈ F , if xAf � g � y A f , there exists x′ ∈ X
such that x′ Af ∼ g.

Proof : We want to show that the set {x ∈ X : xAf � g} is τ -closed in X for all
f, g ∈ F . Let {xα}α∈D ⊆ {x ∈ X : xAf � g} be a net such that xα

τ−→ x0. Then
xα Af converges pointwise to x0 Af , and all acts are measurable to the same partition.
By S1, if xα Af � g for all α ∈ D, then x0 Af � g. Hence, x0 ∈ {x ∈ X : xAf � g},
which is therefore a τ -closed set in X. In particular, if A is universal, this implies that
the set {x ∈ X : x � g} is τ -closed in X. Symmetric arguments show that both sets
{x ∈ X : xAf � g} and {x ∈ X : x � g} are τ -closed in X. Both (a) and (b) now follow
from the connectedness of X.

Presenting the next lemma requires introducing some terminology and notation.
Given m′′ � m′ and an essential event A ∈ Σ, we define an increasing standard se-
quence with mesh (m′,m′′) and carrier A a sequence {x0, x1, x2, . . .} ⊆ X such that
x0 � m′′ and for every n ≥ 0, xn Am′ ∼ xn+1 Am′′ for all n such that xn is not the last
element of the sequence. Symmetrically, we define a emphdecreasing standard sequence
with mesh (m′,m′′) and carrier A a sequence {x0, x1, x2, . . .} ⊆ X such that m′ � x0

and for every n ≥ 0, m′′ Axn+1 ∼ m′ Axn for all n such that xn is not the last element
of the sequence. Finally, we say that {x0, x1, x2, . . .} is a standard sequence if there are
a mesh and a carrier which make it into an increasing or decreasing standard sequence
with respect to that mesh and carrier. A standard sequence {x0, x1, x2, . . .} is said to be
strictly bounded if there are x∗, x

∗ ∈ X such that x∗ � xn � x∗ for every n ≥ 0.

We can now state and prove:

Lemma 5 Let � be a preference relation satisfying B1–B3, and S1. If X is a connected
and separable topological space, every strictly bounded standard sequence is finite.

Proof : Since X is connected and separable, there exists a continuous representation
φ : X → R of the restriction of � to X. Moreover, B2 and B3 imply that for all essential
events A ∈ Σ, and all x, y, z ∈ X such that x, y � z,

x � y ⇐⇒ xA z � y A z. (20)

Define V : F → R by V (f) ≡ φ(cf ), where cf is the certainty equivalent of f . Clearly,
V (x) = φ(x) for all x ∈ X. Let x, y ∈ X be such that x � y � z, and let α ∈ R be such
that V (xA z) > α > V (xA z). Let c′ ∼ xA z and c′′ ∼ y A z. Then φ(c′) > α > φ(c′′).
Being φ continuous, φ(X) is an interval, and so there is c ∈ X such that φ(c) = α.
Hence, xA z � c � y A z, and so, by Lemma 4, there is x′ ∈ X such that x′ Az ∼ c,
which implies V (x′ Az) = α.

Next, let {xn}n≥1 be a decreasing sequence with xn � xn+1 � z for all n ≥ 1. If
limn→∞ φ(xn) = φ(x), then limn→∞ V (xn Az) = V (xA z). In fact, suppose per contra
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that limn→∞ V (xn Az) = α > V (xA z). By what we proved above, there exists x′ ∈ X
such that V (x′ Az) = α, so that V (xn Az) ≥ V (x′ Az) > V (xA z) for all n ≥ 1. By (20),
this implies that xn � x′ � x, which contradicts limn→∞ φ(xn) = φ(x). We conclude that
limn→∞ V (xn Az) = V (xA z).

Let {xn}n≥0 be an increasing standard sequence with the essential event A as carrier
and mesh (m′,m′′). By definition, xn � m′′ � m′ for all n ≥ 0. Suppose {xn}n≥0 is
strictly bounded by x∗, x

∗ ∈ X, i.e., x∗ � xn � x∗ for all n ≥ 0. For all n ≥ 0, we have

V (xn Am′′) = V (xn+1 Am′) ∈ [φ(y), φ(x)],

φ(xn) ∈ [φ(x∗), φ(x∗)].

Since [φ(x∗), φ(x∗)] is compact in R, w.l.o.g. (taking subsequences if needed) we can as-
sume that the sequence φ(xn) converges to some α ∈ [φ(x∗), φ(x∗)]. Since φ is continuous,
[φ(x∗), φ(x∗)] = {x ∈ X : x∗ � x � x∗}. Hence, there is x′ ∈ X such that φ(x′) = α, and
so limn→∞ φ(xn) = φ(x′). By what we proved above, if we take respectively z = m′ and
z = m′′, we get limn→∞ V (xn Am′) = V (x′ Am′) and limn→∞ V (xn Am′′) = V (x′ Am′′).
Since V (x′ Am′) < V (x′ Am′′), this contradicts V (xn Am′′) = V (xn+1 Am′) for n large
enough. A symmetric argument holds for decreasing standard sequences.

Next, we provide two useful results on the representation of a preference relation
satisfying axioms B1–B3, S1 and S2 when there are essential events. The first result
shows that such a preference has a ‘locally canonical’ representation, holding for every
act which is measurable w. r. t. the algebra generated by an essential event. Henceforth,
for any A ∈ Σ we let FA be the set of (binary) acts which are measurable with respect
to the algebra ΣA generated by A.

Lemma 6 Let � be a preference relation satisfying axioms B1–B3, S1, S2 with some
essential event. Then for any essential A ∈ Σ, there is a representation VA : F → R

of � which satisfies: There exist a unique capacity ρA : ΣA → [0, 1] and a τ -continuous
function uA : X → R, unique up to a positive affine transformation, such that, for all
x � y and all B ∈ ΣA,

VA(xB y) = uA(x)ρA(B) + uA(y)(1 − ρA(B)). (21)

Notice that the properties of ρA and uA and (21) imply that VA(x) = uA(x) for
all x ∈ X, and that VA is unique only up to positive affine transformations. Also,
ρA(A) ∈ (0, 1).

Proof : We first show that for any essential A, all hypotheses of Theorem 1 of Chew and
Karni [7, henceforth CK] are satisfied on the restriction � to the acts in FA. CK’s axioms
1’ and 5’ are obviously satisfied. Their axiom 3’ is also satisfied: It is easy to see that an
event A is ‘null’ in the CK-sense if and only if Ac is universal, while A is ‘universal’ in the
CK-sense if and only if Ac is null. Hence, our eventwise monotonicity axiom is equivalent
to their axiom 3’. Also, if A is essential, then Ac ∈ ΣA is neither null nor universal in
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the CK-sense. Axioms 2 and 6 are satisfied by Lemma 4. Axiom 7 by Lemma 5. We can
thus conclude that all of CK’s axioms are satisfied.

By Theorem 1 of CK, there is a unique ρA on ΣA and a τ -continuous function uA :
X → R, unique up to positive affine transformations, such that the functional VA : FA →
R defined by (21) represents � on FA. We extend VA to all of F by letting VA(f) = uA(cf )
for any f ∈ F . It is immediate to check that, thus defined, VA represents �.

Lemma 7 Let � satisfy the assumptions of Lemma 6, and for any essential A ∈ Σ, let
VA : F → R be the representation obtained there. There exists a representation V of �,
with a τ -continuous restriction u to X, and a capacity ρ : Σ → [0, 1] such that, for all
A ∈ Σ and all consequences x � y,

V (xAy) = u(x) ρ(A) + u(y) (1 − ρ(A)) (22)

if and only if for all essential A ∈ Σ, under a common normalization, VA(f) = V (f) for
all f ∈ F .

Proof : ‘If’ part: Given a common normalization of the VA’s, suppose that there exists
V : F → R such that VA(f) = V (f) for all f ∈ F and all essential A ∈ Σ. Clearly, V
represents �. Define u : X → R by u(x) = uA(x) for all x ∈ X, and ρ : Σ → [0, 1] by
ρ(B) = ρA(B) for all B ∈ ΣA and all essential A ∈ Σ.19 If A is null, set ρ(A) = 0, while
if A is universal, set ρ(A) = 1. Thus, for all B ∈ Σ such that B ∈ ΣA for an essential
A ∈ Σ and all x � y,

V (xB y) = VA(xB y) = uA(x) ρA(B) + uA(y) (1− ρA(B)) = u(x) ρ(B) + u(y) (1− ρ(B)).

If, instead B does not belong to any such ΣA, it is easy to check that (3) holds by
construction. This proves the ‘if’ part.

‘Only if’ part: Suppose that � admits V and ρ satisfying (22), and let A ∈ Σ be an
essential event. We can follow the steps of the proof of Lemma 6 to show that we can
apply Theorem 1 of CK to �A, the restriction of � to FA. Thus, �A admits a CEU
representation VA which is unique only up to positive affine transformations. Since also
the restriction of V to FA is a CEU representation of �A, on FA the functionals V and
VA are positive affine transformations of each other. Given x∗ � x∗, if we impose the
normalization u(x∗) = uA(x∗) = 0 and u(x∗) = uA(x∗) = 1, we thence have VA(f) = V (f)
for all f ∈ FA. In turn, this implies ρ(B) = ρA(B) for all B ∈ ΣA and u(x) = uA(x) for
all x ∈ X. Finally, for every f ∈ F ,

VA(f) = uA(cf ) = u(cf ) = V (f).

This shows that for all essential A ∈ Σ, VA = V after a common normalization.

19 Notice that if A and Ac are both essential then ρA = ρAc and (with the common normalization)
uA = uAc . This is due to the uniqueness properties of the representation in Lemma 6, and to the fact
that it is constructed for the algebra ΣA, rather than the single events A or Ac.
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Proof of Theorem 4: We prove existence first. The ‘only if’ part is immediate. As to
the ‘if’ part, fix an essential B ∈ Σ, and a representation VB obtained by Lemma 6.
Using axiom S3, it is straightforward to mimic our proof of Proposition 1 in [15] to show
that for any other essential A ∈ Σ, uA = uB under a common normalization. Hence
VA = VB for every essential A, so that by Lemma 7, V ≡ VB is such that V (xB y) =
u(x) ρ(B) + u(y) (1− ρ(B)). The cardinality of V follows immediately the cardinality of
the representations VA of Lemma 6 and Lemma 7. The uniqueness of ρ is then proved as
we did in the proof of Theorem 3.

As for continuity, we already know that u is τ -continuous. It remains to prove that
V : F → R is sub-continuous. Let {fα} ⊆ F be a net that pointwise converges to
f ∈ F such that all fα’s and f are measurable w.r.t. the same partition. Consider
first a monotone increasing subnet {fβ} ⊆ {fα} such that limβ V (fβ) = limαV (fα).
Being a subnet, we clearly have that {fβ} has the same properties as {fα}, so that
limβ u(fβ(s)) = u(f(s)) for all s ∈ S. Let x∗, x∗ ∈ X be such that u(x∗) = maxs∈S u(f(s))
and u(x∗) = mins∈S u(f(s)). Since f is finite valued, both x∗ and x∗ exist. Suppose
first that there exists x′ ∈ X such that x′ � x∗. Let ε = (u(x′) − u(x∗))/2. Since
f is a finite valued act, we can denote its range as {x1, ..., xN}. There exists a finite
partition {Ai}N

i=1 ⊆ Σ of S such that s ∈ Ai implies limβ u(fβ(s)) = u(xi). For each
i ∈ {1, ..., N} there exists βi

ε such that β ≥ βi
ε and s ∈ Ai implies |u(fβ(s))− u(xi)| ≤ ε.

Letting βε = max1≤i≤N βi
ε, we have that |u(fβ(s)) − u(xi)|1Ai

≤ ε for all β ≥ βε.
In particular, this implies that for all β ≥ βε we have V (fβ) − u(x∗) ≤ ε, so that
V (fβ) ≤ u(x′) − ε. In turn, this implies that limβ V (fβ) ≤ u(x′) − ε. Given β ≥ βε, let
xβ ∈ X be such that u(xβ) = mins∈S u(fβ(S)). Let us consider any such xβ. Clearly,
u(xβ) ≤ V (fβ) ≤ u(x′) − ε < u(x′), and so

u(xβ) ≤ lim
β

V (fβ) < u(x′). (23)

Since X is connected and u continuous, (23) implies that there exists x̂ ∈ X such that
u(x̂) = limβ V (fβ). Since fβ is a monotone increasing net, fβ � x̂ for all β, so by S1
f � x̂. Hence,

V (f) ≤ u(x̂) = lim
β

V (fβ) = limαV (fα). (24)

Now, suppose that such x′ does not exist, i.e., x � x∗ for all x ∈ X. This implies fβ � x∗

for all β, and so, by S1, f � x∗. If limβ V (fβ) = u(x∗), we again get V (f) ≤ limαV (fα).
If, in contrast, limβ V (fβ) < u(x∗), we have u(xβ) ≤ limβ V (fβ) < u(x∗) for all β, and so
there exists x̂ ∈ X such that u(x̂) = limβ V (fβ). By S1, V (f) ≤ limαV (fα). We conclude
that V (f) ≤ limαV (fα) holds in all cases.

Consider a monotone decreasing subnet {fγ} ⊆ {fα} such that limγ V (fγ) = limαV (fα).
Again, being a subnet {fγ} shares the properties of {fα}, so that limγ u(fγ(s)) = u(f(s))
for all s ∈ S. Suppose first that there exists x′′ ∈ X such that x′′ ≺ x∗. Let
ε = (u(x∗) − u(x′′))/2. Proceeding as above, we can show that there exists γε such that
for all γ ≥ γε we have u(x∗) − V (fγ) ≤ ε, so that V (fγ) ≥ u(x′′) + ε. This implies that
limγ V (fγ) ≥ u(x′′)+ε. Given γ ≥ γε, let xγ ∈ X be such that u(xγ) = maxs∈S u(fγ(S)).
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Let us consider any such xγ. Clearly, u(xγ) ≥ V (fγ) ≥ u(x′′) + ε > u(x′′), and so

u(xγ) ≥ lim
γ

V (fγ) > u(x′′). (25)

Since X is connected and u continuous, (25) implies that there exists a x̂ ∈ X such that
= limγ V (fγ). Again, fγ � x̂ for all γ, and by S1 f � x̂. Hence,

V (f) ≥ u(x̂) = lim
γ

V (fγ) = limαV (fα). (26)

Now suppose that such a x′′ does not exist, i.e., x � x∗ for all x ∈ X. This implies fγ � x∗
for all γ, and so, by S1, f � x∗. If limγ V (fγ) = u(x∗), we get V (f) ≥ limαV (fα). If
limγ V (fγ) > u(x∗), we have u(xγ) ≥ limγ V (fγ) > u(x∗) for all γ, and so there exists
x̂ ∈ X such that u(x̂) = limγ V (fγ). By S1, V (f) ≥ limαV (fα) holds again. We conclude
that V (f) ≥ limαV (fα) holds in all cases.

Summing up, we have that

limαV (fα) ≤ V (f) ≤ limαV (fα).

To complete the proof, we have to show that limαV (fα) = limαV (fα). Suppose, per
contra, that limαV (fα) < limαV (fα). We showed that there exist x̂1, x̂2 ∈ X such that
u(x̂1) = limαV (fα) and u(x̂2) = limαV (fα). Hence, being X connected, there exist
x′, x′′ ∈ X such that limαV (fα) < u(x′) < u(x′′) < limαV (fα). Let

ε = min
{
u(x′) − u(x̂1), limαV (fα) − u(x̂2)

}
.

There exist βε and γε such that, for all β ≥ βε and all γ ≥ γε,

u(x̂2) − V (fβ) ≤ ε and V (fγ) − u(x̂1) ≤ ε,

and so, for all β ≥ βε and all γ ≥ γε,

V (fβ) ≥ u(x′′) and V (fγ) ≤ u(x′).

By S1, this implies V (f) ≥ u(x′′) and V (f) ≤ u(x′), a contradiction. We conclude that
limαV (fα) = limαV (fα). That is, V is sub-continuous.

C.2 Proofs of the Other Results

C.2.1 Section 2

Proof of Proposition 1: Let V be a canonical representation of �. We have x � y iff
xAx � y A y iff u(x) ≥ u(y). Moreover, if x � y, we have

xAy � xB y ⇐⇒ V (xAy) ≥ V (xB y)

⇐⇒ u(x) ρV (A) + u(y) (1 − ρV (A)) ≥ u(x) ρV (B) + u(y) (1 − ρV (B))

⇐⇒ [u(x) − u(y)] ρV (A) ≥ [u(x) − u(y)] ρV (B)

⇐⇒ ρV (A) ≥ ρV (B),

as wanted.
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Proof of Proposition 2: Suppose that A ∈ Σ is essential. By definition, there exist x � y
such that x � xAy � y. Hence, u(x) > u(x) ρV (A) + u(y) [1 − ρV (A)] > u(y), which
implies u(x) (1−ρV (A)) > u(y) (1−ρV (A)) and u(x) ρV (A) > u(y) ρV (A). Hence, ρV (A) ∈
(0, 1). As to the converse, ρV (A) ∈ (0, 1) implies, for all x � y,

u(x) > u(x) ρV (A) + u(y) [1 − ρV (A)] > u(y),

and so x � xAy � y.

Next, suppose that A is null. By definition, there exist x, y ∈ X such that x � y and
y ∼ xAy. Then, for all canonical representation V of � we have u(y) = u(x) ρV (A) +
u(y) [1 − ρV (A)], and so ρV (A) = 0 since u(x) �= u(y). The converse holds. In fact,
suppose that ρV (A) = 0. For any x � y and any canonical representation V we have
V (xAy) = u(y), and so xAy ∼ y, which implies that A is null. A similar argument
shows that ρV (A) = 1 iff A is universal.

We conclude that (i) and (ii) hold. As to (iii), given any x � y, A ⊆ B implies
xAy ≤ xB y, and so, being V monotone,

ρV (A) =
V (xAy) − u(y)

u(x) − u(y)
≤ V (xB y) − u(y)

u(x) − u(y)
= ρV (B).

Proof of Proposition 3: Suppose that there exists some essential event. Then if V and V ′

are two canonical representations of � there are α > 0 and β ∈ R such that V = αV ′+β.
Let x � y. By Eq. (3), for every essential A ∈ Σ,

ρV (A) =
V (xAy) − u(y)

u(x) − u(y)
=

(αV (xAy) + β) − (αu(y) + β)

(αu(x) + β) − (αu(y) + β)
= ρV ′(A).

If A ∈ Σ is not essential, then ρV (A) = ρV ′(A) follows from part (ii) of Proposition 2.

C.2.2 Section 3

Proof of Theorem 1: We start by showing that (i) implies (ii). Ordinal equivalence fol-
lows immediately from the fact that �2 is more uncertainty averse than �1. As for the
second part of the statement, let x � y be any two consequences and take the common
normalization u1(x) = u2(x) = 1 and u1(y) = u2(y) = 0. If ρ1(A) ∈ {0, 1} for all A ∈ Σ,
it is w.l.o.g. to assume that u1 = u2, so there is nothing to prove. So assume that there
is one A ∈ Σ such that 0 < ρ1(A) = ρ2(A) < 1 (equality of the ρi’s follows from the
assumption that the two preferences have a common canonical functional).

Consider the subset of X thus defined:

I ≡ {z ∈ X : y �1 z �1 x} = {z ∈ X : y �2 z �2 x} ,
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where the equality again follows from ordinal equivalence. We now construct a ‘grid’ of
points on I, that we label G. Let G0 ≡ {y, x}. Find the certainty equivalent c1

(xAy) of

xAy for �1 and let G1 ≡ {y, c1
(xAy), x}. Inductively, define Gi ≡ {c1

(x′Ax′′) : x′, x′′ ∈ Gi−1}
for i = 2, 3, . . ., and let G ≡ limi→∞ Gi = ∪∞

i=0Gi (notice that Gi−1 ⊆ Gi).

We claim that u2(z) ≥ u1(z) for every z ∈ G. To prove this claim, we use induction
on i. Consider G1, and let z = c1

(xAy). By (i) we have that

z ∼1 xAy ⇒ z �2 xAy,

which, in terms of the representations, is written u2(z) ≥ ρ = u1(z). Suppose now that
the claim holds for every z ∈ Gj, for j ≤ i− 1. Consider z ∈ Gi. There are x′, x′′ ∈ Gi−1

such that z = c1
(x′Ax′′), and we know that u2(x

′) ≥ u1(x
′) and u2(x

′′) ≥ u1(x
′′). Hence,

u2(x
′) ρ + u2(x

′′) (1 − ρ) ≥ u1(x
′) ρ + u1(x

′′) (1 − ρ) = u1(z).

Since from (i) we also have z �2 x′ Ax′′, we thus find u2(z) ≥ u1(z), as required. This
concludes the induction step, and proves the claim.

Next, consider a z ∈ I. It is immediate to use the fact that ρ ∈ (0, 1) to show
that u1(G) is a dense subset of the interval [u1(y), u1(x)]. Hence, there is a sequence
{zn}∞n=1 ⊆ G for which limn→∞ u1(zn) = u1(z). We use ordinal equivalence to show that
limn→∞ u2(zn) = u2(z) as well. Start by observing that it is w.l.o.g. to assume that
either u1(zn) ↑ u1(z) or u1(zn) ↓ u1(z). By contradiction, suppose that limn→∞ u2(zn) =
α �= u2(z), in particular that α > u2(z). If u1(zn) ↑ u1(z), we immediately have a
contradiction, since eventually u2(zn) > u2(z). So, suppose that u1(zn) ↓ u1(z), implying
u2(zn) > u2(z) for all n. Since ρ ∈ (0, 1), there is N large enough so that

u2(zN) ρ + u2(z) (1 − ρ) < α.

Hence, letting f = zN Az, we have that cf is such that zn �2 cf for every n ≥ N and
cf �2 z. On the other hand, u1(zN) > u1(cf ) > u1(z), so that there is N ′ such that
u1(zn) < u1(cf ) for n ≥ N ′. Thus, for n ≥ max[N,N ′] we have zn �2 cf and zn ≺1 cf , a
contradiction. The case in which α < u2(z) is dealt with symmetrically.

This shows that for all z ∈ I, there is a sequence {zn} ⊆ G such that ui(zn) → ui(z)
for i = 1, 2. Since u2(zn) ≥ u1(zn) for all n ≥ 1, (ii) now follows by continuity of the ui’s
on X.

Next, we show that (ii) implies (iii). Let x, y ∈ X be as above. By ordinal equiva-
lence, there exists an increasing function φ : R → R such that u2(z) = φ(u1(z)) for all
z ∈ X. We want to show that φ is concave. For each α ∈ (0, 1) there exists a zα ∈ X
with x � z � y and such that u1(zα) = αu1(x) + (1 − α)u1(y). Then

φ(αu1(x) + (1 − α)u1(y)) = φ(u1(zα)) = u2(zα)

≥ u1(zα) = αu2(x) + (1 − α)u2(y)

= αφ(u1(x)) + (1 − α)φ(u1(y))

and so φ is concave. The implication (iii) ⇒ (ii) is straightforward.

35



Proof of Lemma 1: The ‘if’ part is obvious. As to the ‘only if’ part, let f, g ∈ F be
such that u(f(s)) = u(g(s)) for all s ∈ S. Then, f(s) ∼ g(s) for all s ∈ S, i.e., for all
s ∈ S we have both f(s) � g(s) and f(s) � g(s). By monotonicity, in turn this implies
that f � g and f � g, and so f ∼ g. Since V represents �, this implies V (f) = V (g).
Hence, there exists I ′ : u(F) → R such that V (f) = I ′(u(f)) for all f ∈ F , where
u(F) = {u(f) : f ∈ F}. We now show that I ′ is monotone on u(F). Suppose that
f, g ∈ F are such that u(f(s)) ≥ u(g(s)) for all s ∈ S. Then, f(s) � g(s) for all s ∈ S,
and so, by monotonicity, V (f) ≥ V (g), which proves that I ′ is monotone on u(F). We
now want to extend I ′ from u(F) to B(Σ).

Suppose that u(X) is bounded below: there exists a positive integer M such that
−M < u(x) for all x ∈ X. Set m = inf{I ′(ψ) : ψ ∈ u(F)}. Since all ψ ∈ u(F) are
finite-valued, we have m ≥ −M . Given φ ∈ B(Σ), let Lφ = {ψ ∈ u(F) : ψ ≤ φ}. Define
I : B(Σ) → R as follows:

I(φ) =

{
sup{I ′(ψ) : ψ ∈ Lφ} if Lφ �= ∅

m if Lφ = ∅.

We show that I(φ) ∈ R for all φ ∈ B(Σ). Suppose that u(X) is bounded above, so
that there exists a positive constant M ′ such that M ′ > u(x) for all x ∈ X. Since u(F)
consists of simple functions, for each ψ ∈ u(F) there exists x ∈ X such that u(x) ≥ ψ.
Hence, M ′ > ψ for all ψ ∈ u(F), and so I(φ) ≤ M ′. Suppose that u(X) is not bounded
above. Let φ ∈ B(Σ). Since φ is finite-valued and u(X) is unbounded, there exists x ∈ X
such that u(x) > φ. Hence, u(F) � ψ ≤ φ implies ψ < u(x), and so I(φ) ≤ u(x). In
both cases, I(φ) ∈ R. Let φ, φ′ ∈ B(Σ) be such that φ ≥ φ′. Clearly, Lφ′ ⊆ Lφ. Suppose
that Lφ′ �= ∅. Then Lφ �= ∅, and it is easy to check that I(φ) ≥ I(φ′). Next suppose that
Lφ′ = ∅. By definition, I(φ′) = m. If Lφ = ∅, I(φ) = m as well. If Lφ �= ∅, then there is
some ψ ∈ u(F) such that I(φ) ≥ I ′(ψ) ≥ m. In both cases, I(φ) ≥ I(φ′), thus showing
that I is monotone.

Suppose now that u(X) is not bounded below. Then Lφ �= ∅ for all φ ∈ B(Σ). In
fact, since φ is finite-valued, there exists m′′ such that m′′ ≤ φ. But, for each such m′′

there exists x ∈ X with u(x) < m′′, so that u(x) ∈ Lφ. We can define I : B(Σ) → R by
sup{I ′(ψ) : ψ ∈ Lφ}. Proceeding as above, such I is shown to be a monotone functional
extending I ′. This completes the proof of the ‘only if’ part.

Proof of Proposition 4: For x ∈ X and f ∈ F , suppose that x �1 f . This implies
u1(x) ≥ I∗(u1(f)), and so, being φ increasing, φ(u1(x)) ≥ φ(I∗(u1(f))). But, by the
Jensen property (7), we have

u2(x) = φ(u1(x)) ≥ φ(I∗(u1(f))) ≥ I∗(φ(u1(f))) = I∗(u2(f)),

and so x �2 f . A similar argument shows that x �1 f =⇒ x �2 f . Now, observe that
by the assumption on the range and those of Theorem 1, there are x, y, x′, y′ ∈ X such
that u1(x) = u2(x

′) and u1(y) = u2(y
′). Hence, we can use the fact that I∗ is common

to show that ρ1 = ρ2. We can thus conclude that �2 is more risk averse than �1.
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Proof of Theorem 2: Suppose � exhibits preference for bet diversification. For every
z, z′ ∈ X and α ∈ [0, 1], let z α z′ ≡ αz + (1 − α)z′. We first show that for all α ∈ [0, 1]
and essential A ∈ Σ,20

xAy � x′ Ay′ =⇒ [xα x′]A [y α y′] � x ′Ay′. (27)

Per contra, suppose that for some α∗ ∈ [0, 1] we have xAy � x′ Ay′ and [xα∗ x′]A [y α∗ y′] ≺
x′Ay′. Let V be the canonical representation of � whose utility index u is continuous.
For all α ∈ [0, 1], set

G(α) ≡ V ([xα x′]A [y α y′]) = u(xα x′) ρV (A) + u(y α y′) (1 − ρV (A)).

Since u is continuous and ρV (A) ∈ (0, 1), G(·) is continuous, so that I ≡ {G(α) : α ∈
[α∗, 1]} is an interval. I contains V (xAy) (for α = 1) and V ([xα∗ x′]A [y α∗ y′]), and also
V (x′ Ay′) by the assumption. Thus, there exists α′ ∈ [α∗, 1] such that G(α′) = V (x′ Ay′),
so that [xα′ x′]A [y α′ y′] ∼ x′ Ay′. Choose β ∈ [0, 1] such that α′β = α∗. Then, by
preference for bet diversification,

β([xα′ x′]A [y α′ y′]) + (1 − β)(x′ Ay′) � x′ Ay′,

which contradicts the assumption and proves (27).

Following [6], we now apply a result of Debreu [10]. Let Xo = (x∗, x
∗) be the interior

of the interval X. For α ∈ Xo, set Xα ≡ {x ∈ Xo : x < α} and Xα ≡ {x ∈ Xo : x > α}.
Define F : Xα ×Xα → R by F (x, y) = V (xAy). By (27), F is quasi-concave. Moreover,
F is separable since F (x, y) = u(x) ρV (A)+u(y) (1− ρV (A)). It follows that u is concave
on Xα or Xα. Now, let

X∗ ≡
⋃

{α∈Xo: u is concave on Xα}
Xα and X∗ ≡

⋃
{α∈Xo: u is concave on Xα}

Xα.

Since for each α ∈ Xo, u is either concave on Xα or on Xα, we have Xo ⊆ X∗ ∪ X∗.
As Xo is connected and X∗ and X∗ are open, X∗ ∩X∗ is non-empty and open, so there
are z, z′ ∈ X∗ ∩X∗ with z < z′. It follows that u is concave on both (x∗, z

′) and (z, x∗).
Hence, D+u is non-increasing on both (x∗, z

′) and (z, x∗), so that it is non-increasing on
Xo. Since u is continuous on Xo, this implies that u is concave on Xo (see, e.g., Royden
[26, p. 114]). Being u continuous on X, in turn this implies the concavity of u on X.

As for the converse, suppose that u is concave on X. For essential A ∈ Σ and
x, x′, y, y′ ∈ X such that x � y and x′ � y′, suppose that xAy ∼ x′ Ay′. Then,

V ([xα x′]A [y α y′]) = u(xα x′)ρV (A) + u(yα y′)(1 − ρV (A))

≥ α [u(x) ρV (A) + u(y) (1 − ρV (A))]

+(1 − α) [u(x′) ρV (A) + u(y′)(1 − ρV (A))]

= αV (xA y) + (1 − α)V (x′ Ay′) = V (x′ Ay′),

as wanted.
20 For u increasing, this is proved in Proposition 3.1 of Chateauneuf and Tallon [6].
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Proof of Proposition 5: (i) ⇒ (ii): Suppose that u is concave on X, and set ρ(A) =
ρ(B) = p ∈ (0, 1). Since px + (1 − p)y = px′ + (1 − p)y′, we have

y′ − y =
p

1 − p
(x− x′). (28)

We have y′ ≤ y ≤ x ≤ x′. Suppose that both x′ �= x and y �= y′. By concavity,

u(x′) − u(x)

x′ − x
≤ u(y) − u(y′)

y − y′
,

and so

u(y′) ≤ u(y) +
u(x′) − u(x)

x′ − x
(y′ − y). (29)

Using (28) and (29), we can write:

pu(x′) + (1 − p)u(y′) ≤ pu(x′) + (1 − p)

[
u(y) +

u(x′) − u(x)

x′ − x
(y′ − y)

]

= pu(x′) + (1 − p)u(y) + (1 − p)
u(x′) − u(x)

x′ − x
(y′ − y)

= pu(x′) + (1 − p)u(y) + (1 − p)
u(x′) − u(x)

x′ − x
(

p

1 − p
)(x− x′)

= pu(x′) + (1 − p)u(y) + p(u(x) − u(x′))

= pu(x) + (1 − p)u(y),

so that xAy � x′ B y′. If x = x′, then xAy � x′ B y′ follows by B2. The same if y = y′.

The (ii) ⇒ (iii) statement is immediate. As for the (iii) ⇒ (i) statement, we prove
the contrapositive. Assume that u is not concave. Then there are x, y ∈ X and α ∈ (0, 1)
such that

u(αx + (1 − α)y) < αu(x) + (1 − α)u(y).

W.l.o.g., assume that u(x) > u(y). Since ρ(Σ) = [0, 1], there is A ∈ Σ such that ρ(A) = α.
Consider the act f = xAy and the constant act EV (f) = αx + (1 − α) y. Then

u(EV (f)) = u(αx + (1 − α)y) < αu(x) + (1 − α)u(y) = V (f).

This proves that � has a preference for the subjective expected value.

C.2.3 Section 4

Proof of Proposition 6: Let V be a functional representing �, and let ρ be defined as in
the proposition’s statement. For f ∈ F , suppose that f =

∑n
k=1 xk1Ak

, with x1 � x2 �
· · · � xn and {A1, A2, . . . , An} a measurable partition of Σ (by axiom B2, it is w.l.o.g.
to restrict our attention to this case). Define Bi = ∪i

k=1Ak and let j be the smallest i
such that Bi is universal. It is easy to check that

∫
u(f) dρ = V (xj). We now show that

f ∼ xj.
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Start by observing that by B2, if A is universal, then x ∼ xAg for any g such that
x � g(s) for all s ∈ S, and x � g(s) for some s. For, let y ∈ X be the (�)minimal
consequence that g yields, so that x � y by assumption. Since A is universal, we have
that

x ∼ xAy � xAg � x,

where the second and third preferences follow from B2 and the definition of y. Hence
x ∼ xAg. Similarly, one shows that if A is null, then y ∼ g A y for any g such that
g(s) � x for all s ∈ S, and g(s) � x for some s.

Now, let j be the smallest i such that Bi is universal, so that Bj−1 is null. By the
fact we just showed, we have

f Bj−1 xj ∼ xj ∼ xj Bj f.

It also follows from B2 and the choice of j that

f � f Bj−1 xj and xj Bj f � f,

from which we conclude that f ∼ xj, as wanted. Thus, every V can be represented as in
(9), which clearly implies that V is canonical (monotonicity follows from the properties
of Choquet integrals).

Proof of Proposition 7: Suppose that � is a preference with a canonical representation
which satisfies S1. In the case in which � has no essential event, there is nothing to prove,
so assume that there is an essential event A. It is easy to verify that since it has a canonical
representation V , � satisfies axioms B1–B3 and S2–S3. Given that by assumption � also
satisfies S1, we can then mimic the proof of the ‘only if’ part of Lemma 7 to show that
V = VA, one of the CEU representations on FA, after a common normalization. Since
this is true for every canonical representation V , they are all normalizable positive affine
transformations of each other. Hence � is biseparable.

The proof of Proposition 8 requires the following lemma, which is of some independent
interest:

Lemma 8 Suppose that X is connected and separable, and that � is a biseparable pref-
erence satisfying axiom S1. Then � satisfies S2∗ and S4 if and only if ρ is complement
additive.

Proof : We prove the ‘only if’ first. As in the proof of Proposition 7 above, it is immediate
to show that � satisfies axioms B1–B3 and S3. Given that it satisfies also axioms S1 and
S2∗, we can now repeat the proof of Lemmas 6 to show that for every essential A ∈ Σ there
is ρA and uA which represent the restriction of � to FA. However, it also follows from
Theorem 1 of CK that ρA is additive; that is, ρA(A) + ρA(Ac) = 1. Since ρ was defined
as ρ(A) = ρA(A) for every A ∈ Σ (recall footnote 19), it follows that ρ is complement
additive on all essential events. The fact that ρ is complement additive on the inessential
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events follows immediately from axiom S4 and Proposition 2. In fact, suppose that A is
null, so that ρ(A) = 0. S4 implies that Ac is non-null. If Ac was essential, it would follow
from the discussion above that ρ(A) = 1−ρ(Ac) > 0, a contradiction. Hence, Ac must be
universal, so that ρ(Ac) = ρ(A) + ρ(Ac) = 1. The case of A universal is proved similarly.
This concludes the proof of the ‘only if’ part. The proof of the ‘if’ part is immediate.

Proof of Proposition 8: It follows from Lemma 8 that under the stated assumptions ρ is
complement additive iff S2∗ and S4 hold. From the discussion in the main text, we know
that a biseparable preference which is ambiguity averse (resp. loving) has a willingness
to bet which is dominated (resp. dominates) a probability. To conclude the proof we
just have to observe (for the simple proof, see [16, Lemma 2]) that a capacity which is
dominated or dominates a probability is complement additive iff it is additive.

C.2.4 Section 5

Proof of Proposition 9: ‘Only if’ part: Suppose that I is the canonical functional of �.
Let φ ∈ u(F). By definition, there exists f ∈ F such that φ = u(f). Given any a > 0
and b ∈ R, let V ′ be such that V ′ = aV + b. Then

I(aφ + b) = I(u′(f)) = V ′(f) = aV (f) + b = aI(u(f)) + b = aI(φ) + b.

Now, let φ ∈ B(Σ). Since u(X) is an interval, there exist φV ∈ u(F), a′ > 0, and b′ ∈ R

such that φ = a′φV + b′. Then, for all a > 0 and b ∈ R,

I(aφ + b) = I(a(a′φV + b′) + b) = I(aa′φV + ab′ + b)

= aa′I(φV ) + ab′ + b = a [a′I(φV ) + b′] + b

= aI(a′φV + b′) + b = aI(φ) + b.

‘If’ part: suppose there exists IV : B(Σ) → R such that

IV (aφ + b) = aIV (φ) + b (30)

for all φ ∈ B(Σ), a > 0, and b ∈ R. Let Bu = {aψ+b : ψ ∈ u(F), a > 0, b ∈ R}. For each
φ ∈ Bu, let I(φ) = aIV (ψ)+b, where φ = aψ+b for some ψ ∈ u(F), a > 0, and b ∈ R. We
first show that I is well defined on Bu. Suppose that there exist ψ′ ∈ u(F), a′ > 0, and
b′ ∈ R such that φ = a′ψ′ + b′. Simple algebra shows that IV (ψ) = (a′/a)ψ′ + (b′ − b)/a
because IV has property (30). Rearranging, we have aIV (ψ) + b = a′IV (ψ′) + b′, and so I
is well defined.

Let V ′ be any another canonical representation of �. There exist a > 0 and b ∈ R

such that V ′ = aV + b. Hence, being u′(f) ∈ Bu, we have:

I(u′(f)) = I(au(f) + b) = aIV (u(f)) + b = aV (f) + b = V ′(f).
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