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Electoral Competition with Entry�

Steven Callander

Abstract

By extending the established theoretical models of electoral competition

with entry (eg. Palfrey (1984)) to incorporate simultaneous competition for

multiple districts I produce a unique two party equilibrium under plurality

rule with non-centrist party platforms. This equilibrium also precludes entry

of additional parties. This result is used to provide a domain for which

Duverger's Law could be expected to apply. I also present new results under

the run-o� rule for both the single district and multiple district frameworks.

In the single district case I �nd that for the run-o� rule the model is more

consistent with empirical observation than it is for the plurality rule, but that

this performance is reversed when we consider multiple districts. The paper

also sheds some light on how the di�erent levels of elections in the U.S. and

other systems relate to each other.

�The �nancial support of the Division of the Humanities and Social Sciences at Caltech is gratefully

acknowledged. I would like to thank Je� Banks for advice and guidance, and Garret Glasgow, Richard

McKelvey, and Catherine Wilson for helpful comments.



1 Introduction

It is an overwhelming, and often cited, empirical fact that plurality rule elections involving

single member districts typically produce a two party competition structure, and that

these two parties choose non-centrist platforms.1 Simultaneously, theoretical models of

electoral competition under a plurality rule lead to either platform convergence or the

entry of more than two parties.2 It is important to resolve this paradox if we are to

understand party behavior in the process of electoral competition.

I propose to extend the theoretical models of electoral competition with entry by as-

suming that the parties are competing in multiple single member districts simultaneously

and that they are constrained to establishing a single party platform for all districts. I

then show that as long as the distributions of voters in these districts are not identical

an equilibrium under plurality rule which involves only two parties can exist in general

conditions and that it is non-centrist. Limits on the dispersion of the voter distribution

across districts can be calculated to establish boundaries within which Duverger's Law

could be expected to apply (that is, when the equilibrium involves at most two parties).

Such a restricted domain for Duverger's Law is appropriate because, as mentioned, em-

pirically the law does not hold everywhere. The performance of the model under the

run-o� rule will also be established.

2 The Basic Model

In this section I will be considering a model of electoral competition with entry in a single

district. There will be two incumbent parties who choose their platforms simultaneously.

A potential entrant then makes an entry decision, and if he chooses to enter he selects

a platform position. The entered parties then engage in the election. This is identical

to Palfrey (1984), except that the entrant may be allowed to choose whether to enter

the election at all. This structure is actually more general than it seems. It will be seen

that one party can never prevent the entry of a second party and so if we allow them to

choose sequentially then the �rst player will act as if there is a second player anyway and

choose the same platform as it would have if the parties had chosen simultaneously.3 ;4

Also, if the �rst potential entrant chooses to stay out then we can say that all potential

entrants (who similarly consider their entry decision in isolation) would stay out and so

1For support of Duverger's Law see the references in Riker's (1982) survey. In Riker's view, \There

are indeed counterexamples [to the law], but not, I believe, de�nitive ones..." (Riker 1982, p.760). For

support of the non-convergence assertion, at least for the case of the U.S., see Alesina and Rosenthal

(1995, chapter 2).
2For models predicting platform convergence see, for example, Downs (1957), or Fedderson, Sened

and Wright (1990). Examples of models involving the entry of more than two parties are Palfrey (1984),

and Cox (1987).
3This was shown formally in Weber (1992).
4In the single district case we would need to retain the assumption that indi�erent voters would

randomize over the �rst two parties. In the multiple districts case entry of a second party cannot be

deterred, even without this assumption, as long as the distribution of districts is not degenerate.
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we have solved for a model involving an arbitrary number of parties. I will denote the

two incumbents as I1 and I2, and the entrant as E.

The issue space is the real line, <. There is a continuum of voters with symmetric,

single peaked preferences over the issue space. The voters ideal points are distributed

according to a non-degenerate cumulative distribution function, F , de�ned on <. The

associated pdf is denoted f . F and f have the following properties:

Assumption 1 If F (�) > 0, and � < 0, then F is strictly increasing

on (�;��).

Assumption 2 F is continuous and twice di�erentiable on <.

Assumption 3 F (x) = 1� F (x) 8x 2 <:

Assumption 4 f 0(x) � 0 8x � 0; and f 0(x) � 0 8x � 0:

These assumptions specify that the distribution of ideal points for voters is symmetric

about zero, and that the mass at any point is at least as great as at any point further from

zero. This requires f to be quasi-concave. It can be seen that the uniform distribution is

one boundary of such distributions. Assumption 1 ensures that there are no gaps in the

distribution but without assuming that voter ideal points span all of < (that is, voter

ideal points can be contained in a bounded interval, for example [-1,1]).

Voters are assumed to be sincere and so vote for the party closest to their ideal point.

I will further assume that if a voter is indi�erent between the two incumbents then they

randomize, but if they are indi�erent between an incumbent and the entrant then they

vote for the incumbent.5 ;6 This assumption prevents entrants from wanting to locate on

top of an incumbent. It can be defended simply, by claiming that voters have a preference

for established parties if all else is the same. Any ties in the election are then decided

randomly. Denote voter i's ideal point v
i
and, in an abuse of notation, let I1; I2 and E

represent the parties electoral platforms.

Assumption 5 If jv
i
� Ej < jv

i
� I

j
j for j = 1; 2 then vote(i) = E: Otherwise, vote(i) =

I
j
if jv

i
� I

j
j < jv

i
� I

k
j where j; k = 1; 2 and j 6= k: If jv

i
� I1j = jv

i
� I2j then

prob[vote(i) = I
j
] = 1

2
for j = 1; 2:

It should be noted here that this assumption does not place any restrictions on the

voter's utility function other than that utility is decreasing in the distance from his

5This assumption is not needed for any of the plurality results. In fact, it was not made by Palfrey

(1984). However, it is crucial to the run-o� results, as otherwise entry prevention would not be possible

in any district (the entrant could locate on top of either incumbent and obtain a positive probability

of victory). I make the assumption for all models in order to facilitate comparisons between the two

electoral rules.
6Alternatively, we could assume that ties in the overall election between an incumbent and the entrant

are decided in favor of the incumbent, and that ties between incumbents are decided randomly.
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ideal point. More speci�cally, a quadratic loss utility function is allowable with this

assumption.

Parties are free to locate at any point in the policy space, <. I will assume that parties

have lexicographic preferences with probability of victory on the primary dimension and

vote share on a second dimension.7 So if a party has a set of points which maximize its

probability of winning then it chooses the point in this set that maximizes its vote share.

If there is more than one point that maximizes a party's utility then it is assumed that

the party randomizes equally over these points.8

A more substantial problem is that there may not exist a vote maximizing choice for

the entrant. This technicality arises when E attempts to maximize his vote share over

the set of points that maximizes his probability of winning. The probability of winning

for E can only take on a �nite set of values (as we have only three parties and voting

is deterministic) and so a set of maximizers over this dimension can always be found.

To deal with this existence problem I shall use the limit equilibrium concept introduced

by Palfrey (1984). I shall assume that if a maximum doesn't exist then the entrant

`almost' maximizes his vote share when choosing from the set of points which maximize

his probability of winning. A perturbed game is de�ned for each ", where " is how close

E comes to maximizing his vote share. An equilibrium is then de�ned as any pair of

strategies for I1 and I2 which are best responses to each other for an in�nite sequence of

the perturbed games, with the perturbation approaching zero in the limit.

Letting W denote the winner of the election, the set of points that maximize the

entrant's probability of victory is de�ned as follows.

X(I1; I2) = argmax
x2<

fprob(W = EjE = x)jI1; I2g

Letting V
E
denote the entrant's vote share, the set of points that E equally randomizes

over, for a given ", is given by C"

E
, where,

7Once again, the plurality results would not change if instead we assumed that parties simply vote

maximize. This was the approach of Palfrey (1984). However, when considering the entrant's decision

under the run-o� rule vote maximization and the maximization of probability of victory do not necessarily

coincide. As the probability of victory dictates the entry decision of this party it would then seem natural

to assume that this rule also dictates the location decision. As above, the assumption is made for both

models in order to facilitate comparison.
8We can refer to a party's utility level as even though they have lexicographic preferences their

preferences are representable by a utility function. This is because the �rst dimension of preferences,

probability of victory, can take on only a �nite number of values (0; 1
3
;

1

2
; 1), and the second dimension,

vote share, can be mapped into the interval [0,1]. An example of such an utility function is given by,

U =

8
>><
>>:

V

1 + V

2 + V

3 + V

if P = 0

if P = 1

3

if P = 1

2

if P = 1

9
>>=
>>;
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C"

E
(I1; I2) = fE 2 X(I1; I2)jVE(I1; I2; E) > V

E
(I1; I2; y)� "; 8y 2 X(I1; I2)g

Anticipating this entry decision the expected utility for the incumbents, given their own

locations, is the expectation over C"

E
(I1; I2). Denote their expected utilities by U "

1 (I1; I2)

and U "

2 (I1; I2).

De�nition 1 [Palfrey (1984)] A pair of locations, fI1; I2g, is a limit equilibrium if,

(a) for every y 6= I1, there is a number "(y), such that for all " 2 (0; "(y));

U "

1 (y; I2) < U "

1 (I1; I2): And,

(b) for every w 6= I2, there is a number "(w), such that for all " 2 (0; "(w));

U "

2 (I1; w) < U "

2 (I1; I2).

It is possible that if X(I1; I2) is not a singleton then E will randomize over one or

several intervals. The entrant will locate, if I1 � I2, in some subset of the intervals

(I1 � �; I1); (I2; I2 + �) and (x� �; x+ �), where x 2 (I1; I2) and � and � are determined

from ". As " ! 0 these intervals typically get smaller and � ! 0 and � ! 0. We

shall denote these types of intervals, as represented in this example, by I�1 ; I
+
2 and x�+,

respectively.

I will be considering the equilibria under two voting rules, and two di�erent assump-

tions on entrant behavior. The voting rules will be plurality and run-o�. Under plurality

the party that gains the most votes, regardless of whether this constitutes a majority,

wins the election. Under run-o� the party with the smallest number of votes is eliminated

from the ballot and the remaining parties compete again with the same platforms (e�ec-

tively preferences on votes for the eliminated candidate are distributed to the remaining

candidates). When we get down to two remaining parties it is the one with a majority

that wins the election. This process can be carried out with only one ballot and voters

ranking the candidates, or in a series of ballots. In this model of full information and

sincere voting the two techniques are equivalent. It will be seen that the two voting rules

produce vastly di�erent equilibria.

Under the run-o� rule I will assume that from the set of points that maximize a parties

probability of winning, the party will choose one of those that (almost) maximizes its

primary vote share. The primary vote share for a party is the proportion of voters whose

�rst preference is that party. This objective was chosen as, at least in Australia, the

results from run-o� elections report primary vote levels and which party is the winner.

They do not report which parties survived the rounds. This run-o� information can

be easily kept out of public view if, like Australia, the single ballot technique in which

voters rank the candidates is employed. Thus, as we would expect parties to be aiming

for public prominence then maximizing their primary vote share would seem the most

natural objective.

The assumptions on entrant behavior revolve around whether the party would enter

even if it knew it wasn't going to win. In the �rst treatment I will assume that one entrant
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(and only one entrant) will enter no matter what, even if its probability of winning is

zero. This is the assumption used by Palfrey (1984). The second treatment will assume

that the potential entrant will enter only if it has a strictly positive probability of victory.

This assumption is used by Fedderson, Sened and Wright (1990). It can be justi�ed in

many ways, such as through a cost of entry variable. It will be seen that these two

alternative assumptions also produce vastly di�erent results.

As the parties have no ideological motivation in the selection of their platforms it is

obvious that any equilibrium found will point to another equilibrium in which the two

incumbent parties simply switch positions. Any pair of such equilibria will be considered

to be the same, and so constitute just one equilibrium.

All proofs have been relegated to the appendix. Here I will just present the results and

an intuitive explanation. The equilibria themselves are very intuitive, the complication

is in proving that they are unique.

Before I present the equilibria I will present some intuition about the results.

Run-o� If the incumbents do not locate symmetrically then the entrant will locate just

outside the one closest to the center, thereby trapping this party in the middle

and eliminating it in the �rst round. By choosing close enough to this incumbent

the entrant will then be closer to the center than the other incumbent and so win

the second stage runo�. This is assuming that the gap in the middle isn't too

big. If this is the case then the entrant can locate just inside the incumbent party

closest to the center and squeeze it on the outside and then win the run o� with the

incumbent on the other side. So to prevent the entrant winning, the incumbents

will locate symmetrically and not too far from the center.9 So incumbents do not

have incentive to move from a symmetric location pair as this will incite the entrant

to enter and win.

Plurality If the incumbents are on the same side of the center then the entrant can

locate in the middle and win the election with a majority. So this can't constitute

an equilibrium, and the incumbents must locate on opposite sides of the center (the

median voter). They can't locate too far apart either, as then the entrant could

locate between them and win the election. Likewise if the incumbents are located

too asymmetrically around the center (eg. I1 t 0 and I2 � �I1, then an entrant

with E = I�1 would win the election). If these requirements are not violated then an

entrant who locates on the outside of an incumbent steals all of its votes from this

incumbent, but the other incumbent still has too many votes to enable its defeat

9For some distributions there may exist unique asymmetric incumbent platforms that preclude entry.

However, these will not constitute equilibria as the widest party will always lose and so will have incentive

to deviate towards the center. These points require one incumbent to be relatively far from the center.

Consequently these points cannot be reached by a single pro�table deviation if the incumbents are close

enough to the center. Thus, if the incumbents choose symmetric positions close enough to the center they

will be in equilibrium. The limit of this dispersion will be seen in the characterization of the equilibria

in the next section.
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as well. The entrant can't simultaneously punish both incumbents su�ciently.

If the entrant has positive cost then he will never enter and so the incumbents

have a two party game and their unbridled incentive to move inwards leads to

convergence. This intuition is the basis of the convergence result in Fedderson,

Sened and Wright (1990). If the entrant will enter no matter what then by moving

to the center an incumbent provides more space on its 
ank and encourages the

entrant to enter there, which is bad for that incumbent. Thus we have a countering

force to convergence and so, potentially, a non-centrist equilibrium. This is the

intuition of the non-centrist equilibrium result of Palfrey (1984).

3 Results I

3.1 Enter no matter what

3.1.1 Run-o�

(a) There exists an in�nite number of equilibria, fI1; I2g = fx;�xg 8x 2 [W �; 0]; where
W � solves 1�2F (W

�

2
) = F (W �): If x = W � then E 2 fI�1 ; I

+
2 ; 0

�+
g for all F .10 If

x 6= W � then E 2 fI�1 ; I
+
2 ; g. For all equilibria, prob(W = I1) = prob(W = I2) =

1
2
; prob(W = E) = 0:

(b) Depending on F , there may exist additional equilibria which satisfy the following
necessary, but not su�cient conditions, fI1; I2g = fy;�yg where y 2 [F�1(1

4
);W �)

and F (y
2
) � 1

3
: E 2 0�+ for all such equilibria. prob(W = I1) = prob(W = I2) =

1
2
; prob(W = E) = 0:

**Insert �gure 1 here**

Entry will a�ect each incumbent equally, and so each will still have equal chance of

winning the election. The entrant has zero probability of winning the election. Except in

the case of x = W � the entrant randomizes over entering on the two 
anks. The entrant

squeezes one of the incumbents out in the �rst round but is then defeated by the other

incumbent in the runo�. If x = W � then the entrant will randomize over the 
anks and

zero for all F other than the uniform. When F is uniform the entrant can randomize over

the center interval as well as the 
anks. As described in the previous section, deviation

by the incumbents provides scope for the entrant to win, so neither moves and we have

many equilibria. Notice that if x < F�1(1
4
) then this violates the `too far apart' intuition

and the entrant could choose E = x + � (� > 0) and crowd I1 on the 
ank and then

defeat I2 in the runo� as it is closer to the center. It should be noted that of the equilibria

in (a), x = W � is the only one in which the entrant is defeated in the �rst round.

10If F is uniform then 0�+ � (I1; I2), and so as "! 0 the interval doesn't collapse.
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The second group of equilibria presented above are di�cult to characterize as they

depend critically on the particular distribution of voters in the electorate. The �rst group

of equilibria are independent of the particular F , as long as F satis�es the assumptions of

the model. Thus, under the run-o� rule we have, at the least, a continuum of equilibria in

which the entrant never wins the election. And, independent of F , all equilibria require

the incumbents to be located symmetrically about the middle, and on all but a set of

measure zero involve non-centrist platforms.

The group of candidate equilibria in (b) may not be equilibria as even though in the

limit E 2 I+1 may not lead to E having a positive probability of winning, there could

still exist a point E = I1 + �; � > 0, such that E has a strictly positive chance of

winning the election. Whether such a point exists will depend on F and the locations

of the incumbents. The incumbent locations in (a) prevent the existence of such points,

which can be seen from the de�nition of W �. If a pair of incumbent locations are not in

the domain of (a) or (b) then such a point must exist and so they cannot constitute an

equilibrium.

3.1.2 Plurality

There exists a unique equilibrium, fI1; I2g = fy;�yg where 1 � 2F (y
2
) = F (y); E 2

fI�1 ; I
+
2 ; 0

�+
g for all F . prob(W = I1) = prob(W = I2) =

1
2
; prob(W = E) = 0:

The entrant never wins and the two incumbents each have a 1
2
probability of winning

the election as the location of the entrant a�ects both parties equally. The incentive for

an incumbent to deviate towards the center is tempered by the resultant added incentive

for the entrant to enter on that 
ank. The equilibrium is the exact point where further

deviation inwards will ensure that the entrant locates on the deviating incumbent's 
ank.

This is the same equilibrium found by Palfrey (1984), but on a more general policy

space, and with slightly di�erent assumptions on parties objective functions and voter

behavior. The non-centrist equilibrium found here relies critically on the assumption

that the entrant will enter despite having zero probability of victory.

3.2 Enter only if have a positive probability of victory

3.2.1 Run-o�

(a) There exists an in�nite number of equilibria, fI1; I2g = fx;�xg 8x 2 [W �; 0]; where
W � solves 1 � 2F (W

�

2
) = F (W �): E = � (doesn't enter). For all equilibria,

prob(W = I1) = prob(W = I2) =
1
2
; prob(W = E) = 0:

(b) Depending on F , there may exist additional equilibria which satisfy the following nec-
essary, but not su�cient conditions, fI1; I2g = fy;�yg where y 2 [F�1(1

4
);W �) and

F (y
2
) � 1

3
: E = � (doesn't enter). prob(W = I1) = prob(W = I2) =

1
2
; prob(W =

E) = 0:
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The entrant stays out. If an incumbent deviates then, as above, the entrant could win

the election. So if the incumbent deviated we would see the reaction by the entrant to

enter and win the election. Thus, we have the same incentives as when facing compulsory

entry and so the same incumbent equilibria.

3.2.2 Plurality

A pure strategy equilibrium does not exist.

We can see that for any symmetric location of the incumbent parties an inward

deviation can always be found that is small enough so that even though entering on this

party's 
ank will uniquely maximize the entrant's vote share it will still have zero chance

of winning the election. This can be seen through the intuition that entry on a 
ank will

only steal votes from one candidate and so give the election to the candidate on the other

side of the median. Consequently, under this assumption of entrant behavior such a party

will not enter, and so the disincentive for incumbent parties to shift inwards disappears.

This then rules out the non-centrist equilibrium of section 3.1.2. Asymmetric equilibria

are also eliminated as the incumbent furthest from the center has positive incentive to

at least shift to a symmetric position.

Fedderson, Sened and Wright (1990) extract an equilibrium from a framework similar

to this by assuming that voters are able to vote strategically. By this they mean that

groups of voters are able to coordinate and ensure that a preferred candidate wins the

election. Their unique equilibrium is fI1; I2g = f0; 0g. In the model presented here an

entrant could locate at E = �, where � is small, and win the election with less than a

majority as the incumbents would split the rest of the vote. In this situation the entrant

is able to steal votes o� both incumbents, and thus punish both su�ciently to win the

election. However, if � > 0 then Fedderson et. al. assume that all voters with ideal

points less than zero are able to coordinate on one of the incumbents and ensure that

the chosen incumbent wins the election (and vice versa for � < 0). In anticipation of this

ability the potential entrant does not enter. This assumption removes the ability of the

entrant to punish both incumbents with its entry and so removes its ability to win the

election. Consequently this produces an equilibrium as the incumbent parties are now

happy to locate at the median voter.

The various results of the preceding sections are summarized in the following table.

Enter no matter what Enter only if have a

positive probability of victory

Run-o� Continuum of Continuum of

non-centrist equilibria non-centrist equilibria

Plurality Unique non-centrist No pure strategy

equilibrium equilibria
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Remark

It is hard to say which assumption of entrant behavior is the more appropriate. In

a repeated model we can certainly imagine an entrant who enters despite having zero

probability of victory in the current period. They may have aspirations for future electoral

success and need to start building a support base at the expense of other parties, or they

may simply want to have a voice and feel that the cost of entry is outweighed by the

value of the audience that electoral participation brings.11 Though, we must then ask

why there is only one such party, and not many of them? Consequently, in this one

shot model that we are presenting here it would seem inappropriate. If we manage to

represent a dynamic model then hopefully these considerations could be accounted for.

However, there is one further criticism of the assumption of `entry no matter what'

that is far more concerning. The assumption implies that the �nal outcome should consist

of three competing parties (at least), as the entrant will always contest the election.

However, the empirical fact that we are attempting to explain is that we only observe

two parties. This leads to the conclusion that either the assumption of compulsory entry

is misguided, or that the framework of two incumbents facing a potential entrant is

inaccurate. Either way the power of the model under this assumption to explain the

phenomena at hand is questionable. An additional problem with this assumption is

the lack of justi�cation for why there is only one potential entrant, particularly if the

probability of victory is of no concern to their entry decision. We are left wondering why,

if there exists one, there isn't more parties poised to enter, and what this would mean

for the equilibria.

The run-o� results presented here are, to the best of my knowledge, new. In fact,

formal modeling of the run-o� rule is very sparse indeed. In what appears to be the only

formal study of the run-o� rule, Osborne and Slivinski (1996) study a model of citizen

candidates under both the plurality and run-o� rules. The primary di�erence between

the models is that Osborne and Slivinski assume that candidates are policy oriented and

thus, most importantly, policy restricted. That is, a candidate is restricted to select

as his campaign platform his true ideal point. For certain parameter values for cost

of entry and bene�t of o�ce they �nd that two party, non-centrist equilibria occur. A

similar model was also used in a study of the plurality rule only by Besley and Coate

(1997). A weakness of these models is that they rely too heavily on the de�nition of a

Nash equilibrium. It may be the case that a candidate would prefer a di�erent candidate

to run in his stead, and that this alternative candidate would also prefer this option

(for example, someone fractionally closer to the center who could guarantee electoral

success). However, such deviations are not allowed when determining Nash equilibria

11The assumption that parties immediately receive the support of all voters for whom they are the

closest party implies a more long term view is captured by this one shot model as di�culties of party

establishment, such as name recognition, are assumed away. That is, assuming voters always vote

sincerely implies that if an entrant can't win in the one shot model it won't be able to win no matter

how many periods we model the competition over (unless, of course, its entry incites additional entry).

For a dynamic model to di�er from and extend what is presented here we would need to consider

additional party competition for characteristics such as name recognition or platform credibility.
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as they involve the simultaneous deviations of two players. Thus, these models extends

the analysis by adding policy preferences to a candidates objective function but it would

seem that the equilibria produced may not be coalition proof. This extension is the

basis of a broad literature in which candidates are policy motivated and, consequently,

restricted in the platforms and policies they can select. These restrictions are used to

obtain non-centrist platform choices that are signi�cantly di�erent in intuition from the

voluntary choices of the purely Downsian candidates modelled here.12

In contrast, the results presented here for the plurality rule are known, at least in ap-

proximate form. However, the predictions of the model fail to coincide with the empirical

phenomena that we are trying to explain. The model either predicts a three party out-

come, or the absence of an equilibrium altogether. But as was pointed out earlier, under

the plurality rule we most commonly observe two party competition with non-centrist

platforms. The only way to extract a two party outcome is if we make the further as-

sumption of Fedderson, Sened and Wright (1990) as to voter sophistication, but even

then the competing parties will both locate at the median voter. These shortcomings

highlight the absence of a theoretical model that predicts the two party, non-centrist

electoral outcomes we observe when the plurality rule is used.

The predictions of the model under the run-o� rule, however, do coincide with em-

pirical observation. The unique use of the run-o� rule in federal elections has been in

Australia, and there we have seen the emergence of an e�ective two party electoral system

with non-centrist platforms.13 And as we have seen, the model here produces a continuum

of two party equilibria which, on all but a set of measure zero, are non-centrist.

Despite this agreement of the model and empirical fact, these predictions stand in

con
ict with established theoretical predictions for the run-o� rule. These arguments are

encapsulated in what Riker (1982) refers to as `Duverger's Hypothesis', which covers the

class of electoral rules that were expected to favor multi-partism. This class incorporates

the run-o� and proportional representation rules as it was believed that they do not

encourage parties to maximize their vote count and so the incentive to rationalize into

only two parties was absent. However, the results presented here indicate that the ability

of two parties to prevent successful competition from additional parties limits the number

of competing parties to two, in contrast to the prediction of Duverger.

The results of this section for the plurality rule are concerning. The lack of a rea-

sonable theoretic justi�cation for two party, non-centrist outcomes makes it di�cult to

conclude that we understand the process of platform selection by competing parties. It

is in pursuit of this understanding that we now turn to the extended model.

12See Wittman (1983) and Calvert (1985).
13Riker (1992).
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4 The Extended Model

We are left with the problem of explaining why, under plurality rule, parties choose non-

centrist platforms. If we look closer at the empirical phenomena that we are trying to

explain we notice that the assumption of a single district is not appropriate. Political

parties compete in many districts simultaneously. For example, in the U.S. there are

435 congressional districts that elect a representative simultaneously, and the two main

parties compete in most, if not all, of these districts at every election. The candidates in

each district are associated with their nominating party and so all candidates from the

one party e�ectively compete with the same platform.

When we expand the framework under consideration in this way by extending the

analysis to simultaneous competition for multiple districts we reverse the �ndings of the

previous sections and �nd that a stable, non-centrist equilibrium exists under plural-

ity rule, and that run-o� results in entry and instability. This result serves to �ll the

hole in our understanding of electoral competition under the plurality rule, and brings

the prediction for the run-o� rule into line with the prediction of Duverger (and Riker).

However, this also means that our prediction is no longer consistent with the electoral

situation in Australia. This discrepancy in theoretical prediction and empirical observa-

tion for the run-o� rule now becomes the open question in this area. However, with only

one data point as the basis of this discrepancy its importance should not be overstated.

To incorporate these extensions into the model I will make the following further

assumptions.

Assumption 6 There exists a continuum of districts where district i has the median

voter's ideal point being Z
i
. Z

i
is distributed symmetrically about 0 (the mean of

the original district) on the support [Z;Z], where Z = �Z: The distribution of Z 0
i
s

is represented by the cdf G, where G(Z) = 0 and G(Z) = 1. The associated pdf is

g, which is continuous and can be either strictly quasi-concave or quasi-convex.14

The distribution of voters ideal points in district i is given by the cdf F (x�Z
i
) for

all x 2 <:

Assumption 7 Each of the two incumbent parties must choose a single platform on

which they will compete in every electorate.

Without the constraint of assumption 7 the additional districts would not constitute

a di�erent approach as the single district results would apply in each district separately.

The assumption of a continuum of districts is, of course, not realistic. However, it has

been employed as it captures the e�ect and intuition of the multiple district scenario

whilst avoiding the complexity of calculation associated with a lumpy distribution of

14Note that this permits uniform distributions as they are quasi-convex. The restriction to strict

quasi-concavity is to rule out particular 
at spots in the distribution that may produce multiple weak

Nash equilibria.
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district median voters. It is in the same spirit as the assumption of a continuum of

voters in the single district case.

With an extended structure the objective function of the parties also has to be ex-

tended. In the multiple district case I shall once again assume that parties have lexico-

graphic preferences. The primary dimension is the expected share of districts that the

party wins in the election, and the second dimension is their total vote share.15;16 As we

have a continuum of districts it is only natural to talk of `share of districts' rather than

number of districts. This is analogous to the single district case where parties seek to

maximize their vote share over the continuum of voters.

As I am attempting to explain the two party phenomena, from now on I will make

the assumption that parties will enter only if they have a strictly positive probability of

electoral success. This implies a natural modelling of party entry that if a party enters,

though it may enter in many districts simultaneously, it will enter and compete only in

those districts in which it has a positive probability of victory.

To incorporate this assumption about entry I will relax the assumption of only one

potential entrant and instead assume there are many potential entrants, but that only

one will enter in each district, and only if it has a positive probability of victory in that

district. This is assumed in order to simplify the analysis. If there are many potential

entrants for a single district then the entry decisions of these parties are interrelated and

would require a more complicated stage game to be speci�ed. The intention, which is

maintained by the assumption, is that if a single party could enter and win a district

then the incumbents lose that district. This will not require as many entrants as may

be thought. In most instances one entrant, with one platform, will be able to win many

districts from the incumbents. Indeed, for the only equilibrium result specifying entry,

Proposition 3, only two entrants are required to secure all but an arbitrarily small number

of the districts lost by the incumbents.17 This modeling technique is not as restrictive

as it may seem. In fact, if we assumed that the potential entrants were strategic and

conscious of further entry in districts they attack then as long as the incumbents are on

either side of the median and entry is possible it can be shown that one entrant can secure

victory in a district and prevent further entry.18;19 This framework is rather general and

15As governments can be formed with a minority of seats, or by forming a coalition of parties, a

complex model of government formation would need to be incorporated if it were to be assumed that

parties were attempting to maximize their probability of winning government. Consequently, the more

tractable assumption of seat maximization has been made.
16The second dimension is only required in order to rule out potential equilibria in which neither of

the incumbent parties win any of the districts and are unable to move their platforms anywhere such

that they do. Without the second dimension such locations pairs would constitute an equilibrium even

though we may ask why the incumbents themselves would enter given they have a zero probability of

winning any districts.
17This is achieved by the entrants locating at points arbitrarily close to each incumbent.
18For example, if jI1j > jI2j relative to the district median, and successful entry on the right 
ank is

possible, then E = I2 + �; where 1� F ( I2+E
2

) > F ( I1+I2
2

) but 1� F (E) < F ( I1+I2
2

); secures victory for

the entrant but prevents further entry.
19The assumption of only one entrant in each district allows me to deal with problematic situations
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is consistent with several types of political entrant. It can be seen as covering the entry

of multiple independents into the legislature, or the creation of regional or issue based

parties which pick o� certain sections of the electorate.

The Literature

There have been several papers which have considered the issue of multiple districts.

However, they are infrequent in the political theory literature and so the signi�cance

of the extension has not been fully investigated. The �rst investigation of multiple dis-

tricts was by Hinich and Ordeshook (1974) in a study of the electoral college. Hinich

and Ordeshook were interested in distortionary e�ects of the electoral college in com-

parison to a direct vote for the President. They proved the extension of the single

district case, that with two candidate competition both candidates would converge to

the median of the median district. This result makes two candidate competition in the

multiple district case look almost identical to that in the single district case (though

maybe with a di�erent convergent point). This question was examined further in Hinich,

Mickelsen and Ordeshook (1975) where they attempted to assess the potential magnitude

of such distortions through simulations. Further work has been done by Austen-Smith

(1981,1984,1986,1987,1989) in a series of papers. The �rst paper is the most similar to

the model presented here as parties are assumed to choose a unique platform which is

applicable for candidates in all districts (assumption 7 here). The question of entry and

entry deterrence is not considered. Austen-Smith investigates the existence of equilibria

when parties compete not only in policy space but in distributive dimensions as well.

Parties are assumed to have a �xed campaign budget which has to be allocated to the

districts individually. He shows that under certain conditions an equilibrium will exist.

He also points out that if parties are asymmetrically endowed then this equilibrium will

involve di�erent policy platforms. This result is signi�cantly di�erent from that pre-

sented here as it requires an assumption of asymmetric parties and the incorporation of

distributive dimensions to get the non-convergence of party platforms, whereas the result

of this paper does not. In the second paper Austen-Smith takes an alternative approach.

He considers that the �nal party platform is some function of the individual choices of

candidates, who are free to choose their positions, and so studies the optimal choice for

individual candidates. This framework is then used in the third and fourth papers to

consider bargaining games in the elected legislature and what this means for individual

vote choice. His �nal paper surveys the literature on electing legislatures (which also

includes work on proportional representation and multiple member districts).

in which the incumbents are on the same side of the median, and so wouldn't be expected to win the

district, but where one entrant can't prevent subsequent entry.
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5 Results II

Run-o� Suppose Z 6= Z: Then if an equilibrium exists it must involve the entry of more
than two parties.

Notice that in order to prevent entry in the central district the incumbents must be

located symmetrically and no further from the center than [W �;�W �]; or in a possible

asymmetric position: Now consider an arbitrary district, r, with median voter other than

at 0. Let the median of this district be Z
r
= ", where " > 0. If the incumbents are located

symmetrically in the central district then they can't be located symmetrically in district

r. Thus, entry will be possible. The entrant can locate at E = I2+
"

4
. So the entrant beats

I2, who is eliminated in the �rst round. The entrant is then closer to the median voter of

r and so wins the runo�. As " could be arbitrarily small we can see that if the support

of median voters across all districts is non-degenerate then entry cannot be prevented by

the two incumbents in all districts simultaneously. A similar analysis shows that if the

incumbents are located asymmetrically in the central district and are preventing entry,

then these locations can't prevent entry in districts with di�erent medians.

So under a run-o� rule the two party, entry excluding, equilibria of the single district

case are not robust to simultaneous competition in many districts. The positive results

for this decision rule which were obtained for the single district fall apart under even the

smallest heterogeneity of districts.

For the case of plurality we will need to de�ne the following condition.

Condition 1 g(Z) � 2
3
g(0):20

This condition ensures that the weight of districts with median voters at the boundary

of the distribution is enough so that the incumbents do not have the incentive to abandon

them to entrants by deviating inwards in order to win more districts at the center of the

distribution. Recall that g is assumed to be symmetric, so that Z = �Z; and the same

condition holds for Z: De�ne M(j); j = I1; I2; E; to be the share of the districts won by

party j:

Proposition 1 Suppose 0 > Z � Z�; where Z� satis�es F (Z�) = 1
3
:21 Then if condition

1 is satis�ed the unique equilibrium is given by, fI1; I2g = f2Z;�2Zg; E
i
= � 8i

(do not enter). M(I1) = M(I2) =
1
2
; M(E

i
) = 0 8i:

In the one district case the incumbents had an incentive to deviate towards the center

and win the election. This incentive still exists in the multiple district case. However,

20Note that this condition only restricts strictly quasi-concave distributions and places no restrictions

on quasi-convex distributions of districts.
21I should point out that if we were to drop assumption 5 and if Z = Z

�, an entrant would be able to

locate at E = I1 and tie in the district with median at Z; but lose in all other districts. As the district

won has a measure zero then this possibility still wouldn't incite entry. Likewise for entry at I2:
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the incumbents reach a point where further deviation in order to win central districts

will allow entry in the districts with the most extreme median voter as in those districts

the `too asymmetric' intuition is violated, and condition 1 ensures that the amount of

districts lost on the edge by deviating inwards outweighs the amount won in the center.

The incumbents win half of the districts each. They tie in the central district, which

is then decided by randomizing. However, as we have a continuum of districts, this

central district has a weight of zero and so doesn't a�ect the proportion of districts won

by each of the incumbents. If we consider the continuum of districts as the limit of a

�nite distribution of districts, then it is only in the limit that the winner of the central

district does not achieve a majority and win government outright.22

Only occasionally do we observe legislatures where the seats are evenly divided be-

tween the two major parties, or where they are separated by only one seat. It is quite

normal for us to observe legislatures where one party holds a signi�cant majority. Con-

sequently, it would be desirable if our theoretical model could produce such uneven seat

allocations as an equilibrium. Obviously the equal proportion of seats for the incumbents

predicted by this model is a direct consequence of the symmetry of the set up and so we

would want to relax the symmetry to produce an asymmetric outcome. This is possible

in the multiple district framework presented here as Proposition 1 does not necessarily

rely on the symmetry of g (the statement and use of Condition 1 certainly does, but the

logic of the proof does not). Indeed, as long as an analog of Condition 1 holds (Condi-

tion 1A below) then the equilibrium depends solely upon the width of the distribution

of districts and not on the shape of the distribution (e.g. the mean or the median).

This is an interesting result as it is not automatic that asymmetric distributions pro-

duce asymmetric outcomes for the parties. For example, if we incorporate asymmetric

distributions in models that predict party convergence then the parties still converge to

the median (of the median district in the multiple district case), though this may no

longer be in the geographic center of the distribution. So we may have a di�erent set of

platform choices by the parties but they still receive symmetric outcomes. If we consider

the Palfrey model (result 3.1.2 here) then for rather special distributions it is possible to

produce asymmetric outcomes for the incumbents. However, we are left to wonder why

the losing incumbent would itself enter if it had no chance of victory. To produce such a

result we are required to lean even harder on the assumption that parties are willing to

enter an election regardless of their chances of victory. Consequently an interpretation

of asymmetric outcomes in the single district framework is di�cult to develop. However,

in the multiple district framework presented here such asymmetric outcomes are easily

conceptualized. Even though the minor incumbent party has no chance of winning a

majority it still wins some districts contested and thus secures a voice in the legislature.

We could also justify entry in this instance as some members of the losing party still gain

personally by winning their own district and this may justify the existence of the party.

To characterize the equilibria for an asymmetric distribution of districts we shall

22Of course, that the result of plurality 1 still constitutes an equilibrium with only a �nite number of

districts remains to be proven.
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need to generalize and strengthen condition 1. To maintain tractability I shall continue

to assume that Z = �Z, though this too could be relaxed.

Condition 1A g(x) > 2
3
g(y) 8x; y 2 [Z;Z]:

The tightening of this condition is required to rule out certain 
at spots in quasi-

convex distributions. Such an additional restriction was not required in the statement

of Condition 1 as symmetry ensured that even if such 
at spots existed they would not

cause a problem. This tightening is overly strong. Consequently, whereas Condition

1 was su�cient and necessary for the result of Proposition 1 to hold, this condition is

su�cient for the following result but not necessary.23 This leads to a generalization of

Proposition 1.

Proposition 1A Suppose 0 > Z � Z�; where Z� satis�es F (Z�) = 1
3
; and relax the

assumption that g is symmetric. Then if condition 1A is satis�ed the unique equi-
librium is given by, fI1; I2g = f2Z;�2Zg; E

i
= � 8i (do not enter). M(I1) =R 0

Z

g(x)dx;M(I2) =
R
Z

0
g(x)dx; M(E

i
) = 0 8i:

We can see immediately that unless G(0) = 1
2
then M(I1) 6= M(I2) and one of the

incumbent parties will hold an outright majority. Thus we can produce an equilibrium

selection of party platforms such that one party is guaranteed of winning a majority of

the districts. The existence of such equilibria could be used to explain elections where one

party is predicted to win a clear majority and does so, and where the losing party does

not seem to have a platform that could win a majority of the seats.24 This is consistent

with a common analyst observation that a party has `captured the middle ground.' A

distribution of districts which is skewed to one side would produce such an outcome.

Proposition 2 Suppose Z < Z�. Then if an equilibrium exists it must involve the entry
of more than two parties.

In this situation the dispersion of districts is too broad for the incumbents to compete

successfully in all of them. To satisfy the constraint preventing successful entry at a

point between the incumbents in the central district, the incumbents must leave open

the possibility for successful entry in the extreme districts by violating the `too far apart'

intuition. The result here is, in fact, stronger than what is stated; we could say that

it is impossible for the two incumbents to prevent entry whether they are, or are not,

in equilibrium. As it is equilibria we are interested in the result has been stated in its

weaker form.

23This di�culty is a consequence of the dropping of symmetry. To develop a statement that was also

necessary would require excessive complication which would only cloud the result. Even with this simple

condition we can see that there are many distributions that would produce asymmetric outcomes. An

alternative tightening would have been to rule out weakly quasi-convex distributions.
24Potentially we could also explain such an outcome if we considered a dynamic model in which the

distribution of districts changed from election to election but parties were restricted in changes to their

platforms. The purpose of the result here is to show that such an uneven outcome is also possible in a

single election model with parties completely free to select their platforms.
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Proposition 3 Assume that condition 1 is not satis�ed ( g must be strictly quasi-
concave). Then if an equilibrium exists it is unique and is given by, fI1; I2g =

f2Z#;�2Z#
g; where Z# < 0 and satis�es g(Z#) = 2

3
g(0): Entrants enter and win

districts with median voter's ideal points in the intervals, [Z;Z#) and (�Z#; Z]: If
g is concave then such an equilibrium always exists.

With condition 1 violated the incumbents have positive incentive to deviate inwards

to win districts in the center o� the other incumbent, even though this involves giving

up the extreme districts to entrants. We notice that as compared to the equilibrium in

Proposition 1 the incumbents still have equal shares of expected district wins, but now

neither party will hold a majority. The equilibrium is given by the point where further

inward deviation involves more districts lost on the edges than gained in the center. The

continuity of the pdf g ensures that such a point exists. This is very similar to the

equilibrium when condition 1 was satis�ed. Condition 1 simply ensured that the critical

point was reached before any entry occurred. Therefore, condition 1 can be seen as a

necessary condition for an equilibrium to involve only two parties. Though the districts

abandoned on the edges by the incumbents could be won by a di�erent party entering

in each district (e�ectively independents), we could have as few as two parties entering

and winning arbitrarily close to one half of these districts each. To determine the �nal

party structure in this instance we would need to formalize a more extensive model of

entry. As I am primarily concerned with two party outcome structures this issue will not

be explored any further here.

Just like with Proposition 1, the symmetry of g could be relaxed here to produce

an equilibrium involving entry and asymmetric seat shares for the incumbent parties.

Indeed particular g functions could be found to produce any variety of multiple party

equilibria, for example involving entry only on one 
ank.

This location pair may not constitute an equilibrium for non-concave g functions if

there is too much district share that is lost to entrants. That is, the district share of

the incumbents is so small that they each have incentive to deviate from the prospective

equilibrium to the outside of the other incumbent as they can win a greater share of the

districts on the 
ank. If g is concave then the density on the 
anks is small enough such

that these deviations are not pro�table and so we have an equilibrium.

The result Proposition 2 provides another necessary condition for an equilibrium to

involve only two parties, that the dispersion of Z 0
i
s isn't too wide. This can be expressed

with the following condition.
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Condition 2 [Z;Z] � [Z�;�Z�]:

We can see that Conditions 1 and 2 together form a necessary and su�cient condition

for an equilibrium to involve at most two parties. As such, these two conditions can be

interpreted as the limit of Duverger's Law. If both conditions are satis�ed then we

would expect electoral competition amongst no more than two parties and the law to be

satis�ed. If either condition isn't satis�ed then there would be entry and the law would

not apply. This gives the following theorem.

Theorem 1 Under assumptions 1-7, Conditions 1 and 2 are necessary and su�cient

conditions for Duverger's Law to hold.

As such, the requirement for cumulative density functions G to satisfy conditions

1 and 2 can be seen as characterizing the domain of Duverger's Law. Outside of this

domain the law would not be expected to hold. This is an appropriate result because

to explain a law such as Duverger's that doesn't hold universally we would expect, and

indeed desire, a theory that predicts a restricted domain of applicability. Hopefully a

recourse to empirics will inform us as to whether this is the correct restriction.

6 Discussion

One thing that we notice when comparing the two batches of results is the discontinuity

in the predictions of the model for both electoral rules. In the single district frame-

work under the run-o� rule the model produced a continuum of pure strategy two party

equilibria. With probability one we would have an equilibrium with non-centrist party

platforms. In contrast under the plurality rule the model failed to have an equilibrium

unless we made the somewhat worrisome assumption that the entrant entered even if its

chance of electoral success was zero. However, when we expanded the model to incorpo-

rate multiple districts the predictions of the model under these rules reversed completely.

With even the smallest degree of district heterogeneity the two party equilibria for the

run-o� rule no longer existed. At the same time, for the plurality rule we not only guar-

antee an equilibrium exists but produce a unique, non-centrist two party equilibrium.

These discontinuities in prediction are quite startling.

The results of the extended model can also provide some insight into the relationship

between U.S. Congressional elections and Presidential elections. To maximize perfor-

mance in the House elections and to preclude entry of a third party each of the two

incumbent parties must choose a non-centrist platform. However, the Presidential can-

didate of each party competes in only one district, the grand district (with mean zero in

this symmetric framework), and so would like to move towards this center to maximize

his vote in the Presidential race. However, his party is constrained to its non-centrist

platform. So to achieve any centripetal movement a Presidential candidate must try and

detach himself from his party so that he can move towards the center without disrupting
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the equilibrium for the House elections. One obvious way to achieve this objective would

be on non-policy issues (as they are party platform constrained on policy issues). This

can be seen to lead to the cult of personality phenomena in Presidential races. Per-

sonality traits are one way for a candidate to make himself seem more central without

dragging his party with him. In fact these incentives for detachment from the party base

are applicable to all candidates, including Senators and district candidates, who want

to move towards the median in their given district. It is primarily because Presidential

and Senatorial candidates are more visible that they can achieve this detachment more

e�ectively than the district candidates. To be pedantic here, the Presidential candidates

would not attempt to move completely to the center as they are really the sole candidate

in a multiple district election with each district representing each state that the candidate

carries. As Hinich and Ordeshook (1974) pointed out, the candidates would attempt to

move to the median of the state that contained the median electoral college vote.

This explanation for the cult of personality campaigns so evident in U.S. elections can

also be used to explain why such campaigns are not as evident in other single member

district elections, such as in Britain and Australia.25 In those countries the Prime Minister

is elected indirectly by voting for his candidate in your local district. Thus leaders of

the incumbent parties, the Prime Ministerial candidates, maximize their probability of

success by maximizing the number of electorates that their party wins. And this is

achieved by sticking �rmly to the non-centrist party platform.26

We can also use this analysis to consider the phenomena of third party candidates

in Presidential elections. For a wide dispersion of median voter points we have the

prediction that the two incumbent parties are also widely spaced. If the Presidential

candidates cannot achieve detachment from their party platform, or cannot do it very

well, then there will exist a large gap between the positions of the two incumbent party

Presidential candidates. It is potentially this hole that the third party candidates have

tried to exploit. However, the model also predicts that if we have an entry precluding

equilibria then the two incumbents are located no further apart than [2Z�;�2Z�]. And

we know that this isn't wide enough for an entrant to steal the central district, and so

it isn't wide enough for a third candidate to steal the Presidential election. The third

candidate will, however, potentially receive a large share of the votes even though they

have no chance of victory. This prediction is also consistent with history where third

party candidates have received a surprisingly large vote but have never been victorious.27

This thinking leads to the question of why doesn't one of the incumbent parties enter

25For a discussion and review of this topic, with particular reference to these three countries, see Crewe

and King (1994).
26Israel is an interesting example of how direct versus indirect election of the leader of the Government

can have a signi�cant e�ect on the political landscape. Electoral changes introduced for the 1996

elections added an additional ballot to the Knesset elections in order to directly elect the Prime Minister.

Previously the Prime Minister had been elected indirectly as in other parliamentary systems. This

apparently innocuous change has had a dramatic impact on Israeli politics. As the Knesset elections

employ proportional representation the results of the model presented here are not directly applicable.

For a full account of the e�ects of this change on Israel see Arian (1998).
27Smallwood (1983, p.13).
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a stooge near the other incumbent's platform to break up the oppositions vote and so

ensure victory for themselves? Staying strictly within the framework presented here it

would be hard to answer that they wouldn't. The constraint would be �nding a credible

independent candidate, and those that exist would be unlikely to stoop to such behavior

to aid a party that they, by de�nition of being an independent, have little a�liation

with. Consequently, such behavior has been ruled out as unachievable (not to mention

unethical).

Another empirical fact is that district members in the U.S. House express far greater

vote independence than do the equivalent members in, for example, Britain's House of

Commons.28 It could be conjectured that this greater independence is re
ective of the

ability of the individual members to detach themselves to some degree from the party

platform. Of course, if complete detachment was possible we would have the centrist

equilibrium result for each district that we had in the single district analysis. Maybe this

extra ability allows the U.S. incumbent parties to support a wider dispersion of median

voter points whilst still precluding entry. It could be that the greater dispersion of median

voters in the U.S. necessitates such 
exibility if entry is to be precluded. That is, maybe

U.S. dispersion is beyond the bounds speci�ed in our equilibrium and increased 
exibility

for candidates is what is needed to preclude entry of a third party. Unfortunately, these

are only conjectures, and would need further study for us to be able to comment on them

con�dently.

A further point which the model predicts that is consistent with the data is that the

dispersion of median points produces some districts that are safely in the hands of one

party, others safely in the hands of the other party, and some districts that are fought for

�ercely. This is a direct consequence of the constraint that the parties are constrained

to choose one platform which they must use in every district regardless of its particular

distribution of voters. This result can be seen as a formalization and explanation of what

Robertson (1977) categorized as marginal and safe seats.

7 Empirical Prediction

We have seen that the predictions of the model under the plurality rule are consistent

with the two fundamental empirical phenomena: Duverger's Law and non-centrist plat-

forms. In addition the model requires certain conditions to hold and makes further

predictions as to the actual platform choice of the parties. To test that the structure of

the model presented here is in fact what is underlying the main empirical phenomena

these additional requirements and predictions should be investigated. The model places

restrictions on both the support and the distribution itself of the district median voters.

These restrictions are conditions 2 and 1, respectively. The model also predicts what

the equilibrium party platforms will be for a given distribution of median voters. These

conditions and predictions should, in principle, be empirically testable. We could test

28Cain, Ferejohn, and Fiorina (1987, p.43).
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the null hypothesis that the dispersion of median voter points across districts is strictly

contained in the interval bounded by the two incumbent party platforms, and that the

distribution of median voters has su�cient density at the edges.

8 Conclusion

By extending the theoretical model of electoral competition with entry to incorporate

simultaneous competition for multiple districts I produce a unique two party equilibrium

under plurality rule with non-centrist party platforms. This equilibrium also precludes

entry of additional parties. This result is used to provide a domain for which Duverger's

Law could be expected to apply. I also investigated the equilibrium characteristics of

the model under the run-o� rule and the plurality rule in both the single and multiple

district frameworks. The paper has also shed some light on how the di�erent levels of

elections in the U.S. and other systems relate to each other.

9 Appendix

Let tilde (eg. ~I1) denote a deviation by an incumbent.

We note that E will never locate at the same point as either incumbent. At such a

point V
E
= 0 and P (W = E) = 0 by assumption 4. As F is non-degenerate and strictly

increasing such a point is strictly dominated.

For simplicity some arguments of functions have been omitted. This occurs when

they are I1; I2; or E (these typically represent party positions prior to any deviations).

WOLOG assume that if I1 6= I2 then I1 < I2.

9.1 Single District

9.1.1 Plurality: enter no matter what

Case 1 I1; I2 � 0:

� I1 = I2 < 0:

Then C"

E
(I1; I2) = I+2 and P (W = EjE 2 C"

E
(I1; I2)) = 1:

For I1; P (W = I1) = 0 and as "! 0; V
I1
!

1
2
F (I1):

If F (I1) 6= 0 then as F is atomless, � small enough can be found s.t. ~I1 = I1 � � =)

V
I1
(~I1) = F (I1 �

�

2
) > 1

2
F (I1) and so I1 is better o�.
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If F (I1) = 0 then as F is non-degenerate a 
 small enough can be found s.t. 0 <

F (I2+
) < 1
2
: Then ~I2 = I2+
 =) C"

E
(I1; I2) = I+2 and V

I2
(~I2) = F (~I2)�F ( I1+

~
I2

2
) > 0;

as F is strictly increasing once F > 0: No equilibrium.

� I1 6= I2:

Then C"

E
(I1; I2) = I+2 and P (W = EjE 2 C"

E
(I1; I2)) = 1:

For I1; P (W = I1) = 0; V
I1
= F ( I1+I2

2
):

If F (I2) 6= 0 then as F is atomless there exists an � small enough such that ~I1 =

I2 � � =) V
I1
(~I1; I2; E) > V

I1
: If F (I2) = 0 then consider the same deviation as in the

subcase above.

� I1 = I2 = 0:

Then C"

E
(I1; I2) = fI�1 ; I

+
2 g and P (W = EjE 2 C"

E
(I1; I2)) = 1:

For I1; P (W = I1) = 0 and V
I1
!

1
4
as "! 0:

~I1 = I1 � �; � > 0 =) V
I1
(~I1) = F (��

2
) > 1

4
for � small enough. No equilibrium.

There is no equilibrium when I1; I2 � 0, and so by symmetry when I1; I2 � 0:

Therefore any equilibrium must involve the two incumbents locating on opposite sides of

the median voter.

De�ne y where 1� 2F (y
2
) = F (y) and Y = (y;�y):

Case 2 I1; I2 =2 Y [ fy;�yg: (So I1 < y; I2 > �y)

� jI1j 6= jI2j :

Let jI1j < jI2j : i.e. I1 is closer to the center.

If E = 0; V
E
= F ( I2

2
)� F ( I1

2
) > F (�y

2
)� F (y

2
) = 1� 2F (y

2
)

If E = I+2 ; VE ! 1� F (I2) < 1� F (�y) = F (y) =) P (W = EjE 2 C"

E
(I1; I2)) = 0:

If E = I�1 ; VE ! F (I1) < F (y)) P (W = EjE 2 C"

E
(I1; I2)) = 0 as F (y) < 1

3
:

So for " small enough, I�1 ; I
+
2 =2 C"

E
: i.e. E locates in the center.

To optimize E will choose a point x s.t. V
I1
= V

I2
: If such a point does not exist then

E 2 I+1 with E ! I1 as " ! 0: This is optimal as if V
I1
> V

I2
then V

E
will increase if

the entrant deviates to ~E = E � �; where � > 0 and V
I1
(I1; I2; ~E) > V

I2
(I1; I2; ~E): So E

continues to deviate until V
I1
= V

I2
; or E ! I+1 :
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- Assume E = x s.t. V11 = V
I2
:

Then consider ~I2 = �I1; C
"

E
= 0�+, as I1; ~I2 =2 Y [ fy;�yg; and V

I1
= V~

I2
: As

[I1; ~I2] � [I1; I2] =) V
E
(I1; ~I2) < V

E
(I1; I2) and so V

I2
(~I2) > V

I2
: As no other candidate's

vote share increased relative to that of I2's then P (W = I2 j I1; ~I2) � P (W = I2) and I2
will deviate. No equilibrium.

- Assume E 2 I+1 and V
I1
> V

I2
; so P (W = I2) = 0:

Consider ~I2 = �I1: Then again C"

E
= 0�+; V

E
(I1; ~I2) < V

E
(I1; I2) and V

I1
= V

I2
(~I2):

Thus, V
I2
(~I2) > V

I2
: So I2 is better o�. No equilibrium.

� jI1j = jI2j :

Then C"

E
= 0�+ and V

I1
= V

I2
:

Consider, ~I1 = I1 + �; where � is small such that ~I1 < y; i.e. � <
�� I1
2

�� :

Then E will still choose a point such that V
I1
(~I1) = V

I2
:

As [~I1; I2] � [I1; I2]; VE(~I1; I2) < V
E
(I1; I2):

And so V
I1
(~I1) > V

I1
and P (W = I1 j ~I1; I2) � P (W = I1 j I1; I2):

So I1 will deviate. No equilibrium.

Case 3 I1; I2 2 Y:

If E 2 (I1; I2) then V
E
< 1� 2F

�
y

2

�
) P (W = E) = 0:

If E = I+2 then V
E
> 1� F (�y) = F (y) :

If E = I�1 then V
E
> F (y) : So E will locate on a 
ank.

We note that if jI1j = jI2j then C"

E
= fI�1 ; I

+
2 g; P (W = E) = 0; and P (W =

I1) = P (W = I2) =
1
2
: So if for I1; I2; P (W = E) > 0 then either P (W = I1) <

1
2
or

P (W = I2) <
1
2
: If P (W = I1) <

1
2
then ~I1 = �I2 =) P (W = I1 j ~I1; I2) =

1
2
: So this

can't be an equilibrium. Likewise for P (W = I2) <
1
2
:

So in an equilibrium E must be solely vote maximizing (as it can't win the election).

� jI1j < jI2j :

For small enough "; C"

E
= I�1 :VE > F (y) =) V

I1
< 1� 2F

�
y

2

�
< V

E
: And as we only

need consider P (W = E) = 0 then P (W = I2) = 1; P (W = I1) = 0:

So ~I1 = �I2 and P (W = I1 j ~I1; I2) =
1
2
=) I1is strictly better o�. No equilibrium.
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� jI1j = jI2j :

C"

E
=

�
I�1 ; I

+
2

	
: Consider ~I1 = I1 � �; where � < 2I1; ~I1 � y:

Then C"

E
= I+2 =) V

I1

�
~I1; I2; E

�
> V

E

�
~I1; I2; E

�
and V

I1

�
~I1; I2; E

�
> V

I2

�
~I1; I2; E

�
:

So P
�
W = I1 j ~I1; I2; E

�
= 1: No equilibrium.

Case 4 I1 2 Y; I2 =2 Y: (So I1 2 (y; 0) ; I2 > �y) :

E = I+2 is dominated by E = I�1 : So I
+
2 =2 C"

E
:

V
I2
is bounded by F

�
I1+I2
2

�
(when E = I�1 ).

Consider ~I2 = �I1 + �; where � is small (0 > ��

2
> I1 such that ~I2 2 Y ). For small

enough "; C"

E
= I�1 : So VE

�
I1; ~I2; E

�
= F (I1) > V

I1

�
I1; ~I2; E

�
:

V
I2

�
I1; ~I2; E

�
= 1 � F

�
�

2

�
> F (I1) : So P

�
W = I2 j I1; ~I2; E

�
= 1 and vote share

has increased.

Therefore, regardless of P (W = I2 j I1; I2; E) ; I2 has incentive to deviate. No equi-

librium.

Case 5 I1 = y: Need to show that I2 = �y is a strict best response.

If I2 = �y =) P (W = I2) =
1
2
:

Consider ~I2 < �y: For ~I2 � 0 we know that P
�
W = I2 j I1; ~I2; E

�
= 0: I2 is strictly

worse o�. So consider ~I2 2 (0;�y): Then E = ~I+2 and P
�
W = I2 j I1; ~I2; E

�
= 0: I2 is

strictly worse o�.

Consider ~I2 > �y: For small enough "; I�1 ;
~I+2 =2 C"

E
: E optimizes with a point s.t.

- V
I1

�
I1; ~I2; E

�
= V

I2

�
I1; ~I2; E

�
:

In this case we must have P (W = I2 j I1; ~I2; E) �
1
2
: As [I1; I2] �

h
I1; ~I2

i
then

V
E

�
I1; ~I2; E

�
> V

E
(I1; I2; E) ; so V

I2

�
I1; ~I2; E

�
< V

I2
(I1; I2; E) and P (W = I2 j

I1; I2; E) � P (W = I2 j I1; ~I2; E):

Therefore I2 is strictly worse o�.
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- V
I1

�
I1; ~I2; E

�
> V

I2

�
I1; ~I2; E

�
:

P (W = I2 j I1; ~I2; E) = 0: I2 is strictly worse o�.

So I2 = �y is I2's strict best response to I1 = y:

Thus fy;�yg is an equilibrium, and the only equilibrium involving I1 = y or I2 = �y:

9.1.2 Plurality: Enter only if have a positive probability of victory

Case 1 I1; I2 � 0:

The entrant always wins in this case. So the proof is the same as for the `enter no

matter what' result.

De�ne !; where 1� 2F (!
2
) = F (!

2
): That is F (!

2
) = 1

3
: And set 
 = (!;�!) with 
̂

being the closure of 
:

Case 2 I1; I2 2 
= f0g :

Note that if ~I2 = �I1 then E = � and P (W = I1 j I1; ~I2) = P (W = I2 j I1; ~I2) =
1
2
:

So in equilibrium P (W = I
j
) � 1

2
for j = 1; 2: Therefore P (W = E j I1;I2) = 0 and

so E = �:

� jI1j > jI2j :

Then P (W = I2) = 1 for E = �: Can't be an equilibrium.

� I1 = �I2:

Consider ~I1 = I1+�; where � 2 (0; 2
3
jI1j): E 2 (~I1; I2) still gives P (W = E j ~I1;I2) = 0:

So E =2 (~I1; I2):

For E = ~I�1 ; VE(
~I1; I2; E) is bounded by F (~I1): And F (~I1) < 1 � F (

~
I1+I2
2

) =

V
I2
(~I1; I2; E): So E =2 ~I�1 : Likewise for E = I+2 : Therefore E = �: So we must have

V
I1
(~I1; I2; E) > V

I2
(~I1; I2; E) and P (W = I1 j ~I1; I2; E) = 1: I1 is strictly better o�. No

equilibrium.

Case 3 I1; I2 =2 
̂:

The entrant always wins in this case (e.g. by locating at 0). So the proof is the same

as the analogous case under the `enter no matter what' assumption.
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Case 4 I1 2 
̂=f0g; I2 =2 
̂:

If E = �; then P (W = I1) = 1: And ~I2 = �I1 =) P (W = I1 j I1; ~I2) = P (W = I2 j

I1; ~I2) =
1
2
, making I2 better o�.

So for this to be an equilibrium E must enter. Therefore P (W = E) > 0 and

P (W = I2) �
1
2
must hold in equilibrium.

This requires P (W = I1) = 0. So we must have V
E
= V

I2
> V

I1
:

- Assume E 2 (I1; I2):

Let E = t be the point at which V
E
= V

I2
> V

I1
holds. By the continuity of F this

point is unique. Then, also by the continuity of F and that V
I2
> V

I1
, there exists a small

enough � such that ~E = t + � =) V
E
> V

I2
> V

E1
and so P (W = E j I1; I2; ~E) = 1:

Therefore E is strictly better o� and so can't be optimizing by playing E = t: No

equilibrium.

- Assume E 2 C"

E
= I�1 :

If for "0; V
E
= V

I2
then by the continuity of F , there must exist a point r, where

r < I1, such that E = r =) V
E
= V

I2
: For small enough " I�1 � (r; I1) and so V

E
>

V
I2
=) P (W = I2) = 0: So for E in this interval there cannot be a tie between E and

I2: No equilibrium.

- Assume E 2 C"

E
= I+2 :

Then V
I1
> 1

2
and so P (W = I1) = 1: No equilibrium.

Case 5 I1 = !; I2 2 
̂:

- Assume I2 = �!.

Then E = 0 and P (W = I1 j I1; I2; E) = P (W = I2 j I1; I2; E) = P (W = E j

I1; I2; E) =
1
3
:

Consider ~I1 = ! + �; where � 2 (0; 2
3
jwj): E 2 (~I1; I2) gives P (W = E j ~I1;I2; E) = 0:

So E =2 (~I1; I2):

For E = ~I�1 ; VE(
~I1; I2; E) is bounded by F (~I1): And F (~I1) < 1 � F (

~
I1+I2
2

) =

V
I2
(~I1; I2; E): So E =2 ~I�1 : Likewise for E = I+2 : Therefore E = �: And so we must

have V
I1
(~I1; I2; E) > V

I2
(~I1; I2; E) and P (W = I1 j ~I1; I2; E) = 1: I1 is strictly better o�.

No equilibrium.

- Assume I2 2 (0;�!):

Note that ~I1 = �I2 =) E = � and P (W = I1 j ~I1; I2; E) = P (W = I2 j ~I1; I2; E) =
1
2
:

And ~I2 = �I1 =) E = 0 and P (W = I1 j I1; ~I2; E) = P (W = I2 j I1; ~I2; E) = P (W =

E j I1; I2; E) =
1
3
: So in equilibrium P (W = I1) �

1
2
and P (W = I2) �

1
3
: So E = �: But

then P (W = I2) = 1 and P (W = I1) = 0: No equilibrium.
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9.1.3 Run-O�: enter no matter what

Firstly I shall prove a lemma which is valid for both assumptions on entry. Vote share

refers to primary vote share.

Lemma 1 If jI1j < jI2j then if E is (almost) maximizing P (W = I2) = 0: That is, the
incumbent furthest from the center never wins.

Proof. If E = � then we have two candidate plurality and as jI1j < jI2j then

P (W = I1) = 1 and so P (W = I2) = 0: So consider E 6= �: If E 2 I+2 then V
I1
> 1

2
and

so P (W = I1) = 1: But V
E
(E 2 I�1 ) > V

E
(E 2 I+2 ) and so E =2 I+2 : So if P (W = E) = 0

then to maximize vote share E 2 fI�1 ; (I1; I2)g; in which case jEj < jI2j which implies

P (W = I2) = 0 (as no matter who I2 faces in the run-o� it will lose). So if P (W = I2) > 0

we must have P (W = E) > 0: For both of these conditions to hold we must have jEj = jI2j

and V
I1
� V

I2
; V

E
. So E = �I2: But if such a point exists then by the continuity of F

there exists another point that makes E strictly better o� and so this original point can't

constitute an optimizer for E. Consider ~E = E+I1
2

; then V
E
(I1; I2; ~E) > V

I1
(I1; I2; ~E) and��� ~E

��� < jI2j so P (W = Ej ~E) = 1: So there doesn't exist an almost maximizing location in

which P (W = I2) > 0 and P (W = E) > 0: And as P (W = E) = 0 =) P (W = I2) = 0

then if E is almost optimizing P (W = I2) = 0:

De�ne W 0 = [W �;�W �]; where W � solves F (W �) = 1� 2F (W
�

2
):

Case 1 I1; I2 2 W 0:

Consider symmetric locations, jI1j = jI2j : If E 2 (I1; I2) then V
E
< 1 � 2F (W

�

2
)

and V
I1
; V

I2
> F (W �); which imply that E loses in the �rst round. If E 2 I�1 ; I

+
2 then

jEj < jI1j ; jI2j and so E will never win the run-o�. So P (W = E) = 0: If x 6= W � then

C"

E
= fI�1 ; I

+
2 g: If x = W � and F isn't uniform then C"

E
= fI�1 ; I

+
2 ; 0

�+
g: If x = W �

and F is uniform then C"

E
= fI�1 ; I

+
2 ; (I1; I2)g: In all circumstances the incumbents are

a�ected equally and we have P (W = I1) = P (W = I2) =
1
2
:

So any equilibrium in this range must satisfy P (W = I1) �
1
2
; P (W = I2) �

1
2
; as

either incumbent could deviate to symmetry.

Consider deviations from symmetry. If an incumbent deviates outwards then by

Lemma 1 their probability of victory is zero and they are strictly worse o�. Now consider

a deviation inwards, let ~I1 2 (I1; 0]: E = ~I�1 then implies V~
I1
< 1�2F (W

�

2
) as E; I2 2 W 0:

As V
E
= F (~I1) > F (W �) and V

I2
= 1 � F (

~
I1+I2
2

) > F (W �) then V
E
; V

I2
> V~

I1
and so

P (W = ~I1) = 0 and I1 is strictly worse o� (we also note that as for small enough ";

jEj < jI2j then P (W = Ej~I1; I2; E) = 1). Thus, fI1; I2g = fy;�yg where y 2 W 0 is a

strict Nash equilibrium.

Now consider asymmetric positions, say jI1j < jI2j : From the lemma if E is almost

maximizing P (W = I2) = 0: So this can't be an equilibrium as ~I2 = �I1 =) P (W =

I1) =
1
2
: No asymmetric equilibria.
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Case 2 I1 2 W 0; I2 =2 W 0:

This implies that jI2j > jI1j ; and so P (W = I2) = 0: If ~I2 = �I1 then I1; ~I2 2 W 0 and

so, by Case 1, P (W = I2) =
1
2
: So I2 is strictly better o�. No equilibrium.

De�ne W = [F�1(1
4
); F�1(3

4
)]:

Case 3 I1; I2 =2 W:

This case provides examples of situations where an entrant does not maximize its

utility my maximizing its primary vote share.

� If I1; I2 < F�1(1
4
):

We notice that E 2 I+2 =) P (W = E) = 1: The proof that this cannot constitute an

equilibrium uses the same deviations and analysis as for Case 1 from `Plurality: enter no

matter what' (of course we only need consider the �rst two subcases from that proof).

� I1 < F�1(1
4
); I2 > F�1(3

4
):

E can win the election. E = F�1(1
4
) =) V

I1
= F [

I1+F
�1( 1

4
)

2
] < 1

4
and V

E
=

F [
I2+F

�1( 1
4
)

2
] � F [

I1+F
�1( 1

4
)

2
] > 1

4
: And so E isn't eliminated in the �rst round. Then

as jEj < jI1j ; jI2j E will win the run-o� against whoever survives. So P (W = E) = 1:

There exists many points whereby E wins. We have to establish which point (ap-

proximately) maximizes its primary vote share, and so where it will locate.

Let jI1j � jI2j : Using the arguments of Case 2 from `Plurality: enter no matter what'

we can say the E will maximize its vote share by approaching I1 until VI1 = V
I2
; if such

a point exists, else E 2 I+1 and V
I1

> V
I2
: In the latter case V

I1
< 1

4
and V

E
> 1

4
;

so P (W = E) = 1: And we have C"

E
= I+1 : If E is chosen such that V

I1
= V

I2
; and

V
I1
= V

I2
< 1

3
then P (W = E) = 1 and so this is optimal for E. If V

I1
= V

I2
�

1
3
then

P (W = E) � 1
3
and so this isn't optimal for E: E must move towards an incumbent.

Recall that if E locates at any point between the incumbents then it wins an interval of

voters of constant length. Its choice of location is e�ectively a choice of where this interval

should be placed on (I1; I2). As E is moving towards an incumbent he is losing vote share

and so wants to move as little as possible. Noting that at E = F�1(1
4
); V

E
> V

I1
; then

by the continuity of F a point, call it K, will exist such that E = K =) V
I1
= V

E
: This

corresponds to a selection of location for the interval of voters that E wins. If E were to

re
ect this interval about zero then by the symmetry of f we would have V
I2
= V

E
: Let

the location of E that corresponds to this location of its interval be denoted K; and by

the symmetry of f such a point exists. Note that for jI1j 6= jI2j we will have K 6= �K:

As for E 2 K�; K
+
we have jEj < jI1j ; jI2j then C"

E
= fK�; K

+
g:

Now we know how E will react we can consider possible deviations for the incumbents.

It su�ces to consider only vote share with these deviations as prior to deviation P (W =

I1) = P (W = I2) = 0:
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� Assume jI1j < jI2j

Consider ~I2 = �I1. After this deviation E will maximize vote share by locating at

zero. With this deviation in mind consider the original subcases,

- Previously E was chosen such that V
I1
> V

I2
(i.e. E 2 I+1 ):

If E = 0 =) V
I1
= V

I2
< 1

3
then C"

E
= 0�+: As (I1; ~I2) � (I1; I2) then V

E
(I1; ~I2) < V

E
;

and so V
I2
(I1; ~I2) > V

I2
: I2 is strictly better o�. No equilibrium.

If E = 0 =) V
I1
= V

I2
�

1
3
then E will move towards an incumbent, and its vote

share will be even less than if it had located at zero (though now it will win the election).

So V
I1
(I1; ~I2) + V

I2
(I1; ~I2) > V

I1
+ V

I2
; and as the entrant will attack both incumbents

equally we have E[V
I1
(I1; ~I2)] = E[V

I2
(I1; ~I2)]; which implies that E[V

I2
(I1; ~I2)] > V

I2

(where the expectation is because E is randomizing over two distinct intervals): I2 is

strictly better o�. No equilibrium.

- Previously C"

E
= x�+ and V

I1
= V

I2
at E = x (not just equal in expectation).

If E = 0 =) V
I1
= V

I2
< 1

3
then C"

E
= 0�+: As above, I2 s then strictly better o�.

No equilibrium.

If E = 0 =) V
I1
= V

I2
�

1
3
then E will move towards an incumbent and, as above,

I2 will be strictly better o�. No equilibrium.

- Previously C"

E
= fK�; K

+
g so that V

I1
= V

I2
only in expectation (i.e. E attacked one

incumbent).

Thus E = 0 =) V
I1

= V
I2
�

1
3
and so C"

E
(I1; ~I2) = fK�

� ; K
+

� g: As (I1; ~I2) �

(I1; I2) then V
E
(I1; ~I2) < V

E
: As in expectation we still have V

I1
(I1; ~I2) = V

I2
(I1; ~I2) then

E[V
I2
(I1; ~I2)] > E[V

I2
]: So I2 is strictly better o�. No equilibrium.

� Assume jI1j = jI2j

Now it must be the case that V
I1
= V

I2
. This can result from C"

E
= 0�+ or C"

E
=

fK�; K
+
g; but not C"

E
= I�1 or C"

E
= I+2 :

- C"

E
= 0�+ implies that V

I1
= V

I2
< 1

3
:

Then there exists a 
 small enough such that ~I2 = I2 � 
 whereby C"

E
= (


2
)�+ and

V
I1
(~I1; I2) = V

I2
(~I1; I2) <

1
3
. And so this is the optimal choice for E: As (I1; ~I2) � (I1; I2)

then V
E
(I1; ~I2) < V

E
: This implies that V

I2
(~I1; I2) > V

I2
: And so I2 is strictly better o�.

No equilibrium.
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- C"

E
= fK�; K

+
g. This implies that E[V

I1
] = E[V

I2
] � 1

3
:

If ~I2 = I2 � � such that ~I2 =2 W then as (I1; ~I2) � (I1; I2) we have for small enough �

that E = �

2
=) V

I1
(~I1; I2) = V

I2
(~I1; I2) �

1
3
: So E will again optimize by moving towards

one of the incumbents. Also because (I1; ~I2) � (I1; I2) we have VE(~I1; I2) < V
E
and so as

E[V
I1
(~I1; I2)] = E[V

I2
(~I1; I2)] then E[V

I2
(~I1; I2)] > E[V

I2
]: Thus I2 is strictly better o�.

No equilibrium.

Case 4 I1; I2 2 W=W 0:

Note that the region W=W 0 may be empty. For example if f is uniform on [�1
2
; 1
2
];

this implies that W = W 0:

I need to show that if the condition on y isn't satis�ed, or the incumbents aren't

located symmetrically then they can't be in equilibrium.

� Firstly consider I1; I2 < W �:

The proof that this cannot constitute an equilibrium uses the same deviations and

analysis as for Case 1 from `Plurality: enter no matter what'. No equilibrium.

� Secondly consider when the incumbents are symmetric but the condition isn't sat-

is�ed. That is I2 = �I1 and F ( I1
2
) < 1

3
:

Then E = 0 =) V
I1
; V

I2
< 1

3
; V

E
> 1

3
; and as jEj < jI1j ; jI2j E wins the run-o�.

P (W = E) = 1: Consider ~I1 = I1 + 
 such that F (
~
I1

2
) < 1

3
: Then E = �




2
=) P (W =

E) = 1 but V
E
(~I1; I2) < V

E
and so V

I1
(~I1; I2) > V

I1
: Thus I1 is strictly better o�. No

equilibrium.

� Now consider asymmetric locations where the condition isn't satis�ed.

For I1 < W �; I2 > �W � let jI1j = jI2j � �; where � > 0: From Lemma 1 we have

in equilibrium P (W = I2) = 0: To maximize vote E 2 (I1; I2): If ~I2 = �I1 then E

maximizes his vote and wins the election at E 2 0�+: But as (I1; ~I2) � (I1; I2) then

V
E
(I1; ~I2) < V

E
: This implies that V

I2
(~I1; I2) > V

I2
: And so I2 is strictly better o�. No

equilibrium.

� Finally, consider asymmetric locations when the condition is satis�ed.
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Once again let jI1j = jI2j��; where � > 0; and so P (W = I2) = 0: Let ~I2 = �I1: For

E to win C"

E
= fK�; K

+
g; where K� and K

+
are as de�ned above. This is because if

E locates on the 
anks then jEj > jI1j ; jI2j so E couldn't win the run-o�. If such points

don't exist then E maximizes its vote at E = 0, by de�nition ofW �; and this implies that

P (W = I1jI1; ~I2) = P (W = I2jI1; ~I2) =
1
2
: So I2 is strictly better o�. No equilibrium.

So assume that such points exist. At E 2 K� we have V
E
(I1; ~I2) > V

I1
(I1; ~I2): Now

consider the original decision of E before any deviations (being careful to distinguish

between variables in terms of I2 and ~I2). If E 2 I�1 then V
E

< V
I1
(I1; ~I2): And if

E 2 K� then V
E
> V

E
(I1; ~I2): This implies that V

E
(E = K�) > V

E
(E = I�1 ): And as

E 2 K� =) P (W = E) = 1; then I�1 =2 C"

E
: So both before and after I2 deviates inwards

the entrant locates between the incumbents and attacks one of them in the �rst round.

As (I1; ~I2) � (I1; I2) then V
E
(I1; ~I2) < V

E
: This implies that E[V

I2
(~I1; I2)] > E[V

I2
]: And

so I2 is strictly better o�. No equilibrium.

Case 5 I1 =2 W; I2 2 W=W 0:

� If I1; I2 < 0 then E = I+2 =) V
E
> 1

2
and P (W = E) = 1: As f is atomless there

exists a � small enough such that ~I1 = I2 � � implies V
I1
(~I1; I2) > V

I1
: So I1 is

strictly better o�. No equilibrium.

� Let I1 < F�1(1
4
); I2 2 (W �; F�1(3

4
)]: So P (W = I1) = 0: Consider ~I1 = �I2 and

repeat the analysis of case 4 above. No equilibrium.

9.1.4 Run-O�: Enter only if have a positive probability of victory

Case 1 I1; I2 2 W 0:

Consider symmetric locations. Then P (W = E) = 0 which implies E = � and

P (W = I1) = P (W = I2) =
1
2
: So to have an equilibrium in this domain we must have

P (W = I1); P (W = I2) �
1
2
:

For inwards deviations, say ~I1 = I1 + �; � > 0; then from `Run-o�: enter no mat-

ter what' Case 1 we know that this implies P (W = Ej~I1; I2; E) = 1 =) P (W =
~I1j~I1; I2; E) = 0 and so I1 is strictly worse o� and wouldn't deviate. Considering devia-

tions outwards then from lemma 1 we have P (W = ~I1j~I1; I2; E) = 0 and so I1 is strictly

worse o�. Thus, fI1; I2g = fy;�yg where y 2 W 0 is a strict Nash equilibrium.

Consider asymmetric locations, jI1j < jI2j : By lemma 1 P (W = I2) = 0: So I2 could

deviate to ~I2 = �I1 and be strictly better o�. No equilibrium.

Case 2 I1 2 W 0; I2 =2 W 0:

By lemma 1 P (W = I2) = 0: So I2 could deviate to ~I2 = �I1 and be strictly better

o�. No equilibrium.
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Case 3 I1; I2 =2 W:

In Case 3 of `Run-o�: enter no matter what' E 6= � both before and after the

deviations considered. As such, the proof of Case 3 here is identical to that above. No

equilibrium.

Case 4 I1; I2 2 W=W 0:

Repeat Case 4 from `Run-o�: enter no matter what' with the following additions. If

the deviations mentioned cause the entrant to alter its strategy to E = � (which wasn't

allowed in `enter no matter what') then the vote share of the incumbents must be as least

as great as it was when the entrant had to enter the market. As the deviating incumbent's

vote share went up in that case, then it must also go up when the entrant chooses to not

enter. As for all deviators considered in the previous proof the probability of victory was

originally zero then the increased vote share alone implies that the deviator is strictly

better o�. No equilibrium.

So consider when E = � before any deviation. If the condition F (y
2
) � 1

3
isn't

satis�ed then E = 0 =) P (W = E) = 1; so E 6= �, a contradiction: So we need

only consider asymmetric incumbent locations when the condition of the equilibrium is

satis�ed (remember symmetric locations may in fact constitute an equilibrium). Let

jI1j < jI2j : Then P (W = I2) = 0, from lemma 1: This implies that E 2 (I1; I2) =) V
E
<

V
I1
; V

I2
(as otherwise E would enter): If ~I2 = �I1 then E still can't win by locating in

the center, and as the incumbent's are symmetric E can't win on the 
anks, so again

E = �: But now P (W = I2jI1; ~I2) =
1
2
: So I2 is strictly better o�. No equilibrium.

Case 5 I1 =2 W; I2 2 W=W 0:

Proceed as in Case 5 from `run-o�: enter no matter what', with the same additional

remarks as in Case 4 of this proof. No equilibrium.

9.2 Multiple Districts

9.2.1 Proposition 1

First I shall prove a lemma. De�ne Z 0 = [2Z�;�2Z�]:

Lemma 2 For I1; I2 2 Z 0 and I1 � I2 the districts won by both incumbents combined
are D = [3I1+I2

4
; I1+3I2

4
]:

Proof. Note that all of these districts may not actually exist for a given G (i.e.

existence requires g(:) > 0). This lemma is proven by showing that successful entry is

not possible in these districts, and only these districts.
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Consider entry between the incumbents. In a given district E can secure an interval

of voters of length ( I2�I1
2

) for itself. Ignoring for the moment the location of I1 and

I2, to maximize vote share with a given length interval on a symmetric, single peaked

distribution, such as F , it is weakly optimal to center the interval about the peak, the

median voter.

As I1; I2 2 Z 0 then I2 � I1 � 4Z� =) ( I2�I1
2

) � 2Z�: From the de�nition of Z� we

have V
E
�

1
3
: As for a �xed E; V

I1
and V

I2
are strictly monotone functions in z

r
(the

district median voter; as I1; I2 2 Z 0) then only on a set of measure zero (that is, at one

point) can V
I1
= V

I2
= V

E
= 1

3
and P (W = E) 6= 0: Thus E can't win in any measurable

set of districts by locating between I1 and I2.

Consider now entry on a 
ank. Let district l have median z
l
= 3I1+I2

4
� �; where

� 2 [ I1�I2
4

;1):

Let E = I�1 ; then V
E
(l) is bounded by F (I1 � z

l
) as " ! 0 (where V

E
(l) is E's vote

share in district l). This is the case as for the given range of � E = I+2 is dominated by

E = I�1 (as I1 is closer to the median in these districts).

V
E
(l) < F (I1�

3I1+I2
4

+ �) = F ( I1�I2
4

+ �):V
I2
(l) = 1�F ( I2�I1

4
+ �): As F is symmetric

F ( I1�I2
4

) = 1� F ( I2�I1
4

):

As F is a cdf then for � � 0; z
l
2 D;F ( I1�I2

4
+�) � 1�F ( I2�I1

4
+�) =) V

E
(l) < V

I2
(l)

and so P (W = E) = 0:

For � > 0; z
l
=2 D;F ( I1�I2

4
+ �) > 1� F ( I2�I1

4
+ �) =) V

E
(l) > V

I2
(l): Also, as "! 0;

V
I1
(l)! F ( I2�I1

4
+�)�F ( I1�I2

4
+�) < F ( I2�I1

4
)�F ( I1�I2

4
) = 1�F ( I1�I2

4
)�F ( I1�I2

4
) � 1

3
:

So for small enough " V
I1
(l) < 1

3
and then P (W = I1) = 0: Therefore for � > 0 P (W =

E) = 1:

So the incumbents win districts for � � 0 and lose districts when � > 0: Thus, as F

is symmetrical they win only districts in D:

It is obvious that I1 wins [3I1+I2
4

; I1+I2
2

] and I2 wins [ I1+I2
2

; 3I1+I2
4

]; with a tie in the

middle district. Call these intervals D(I1) and D(I2), respectively.

De�ne D(I1) = D(I1)\ [Z;Z]; and likewise for D(I2 _). These are the districts won by

each incumbent that actually exist.

De�ne M(I1) =
R
D(I1)

g(z)dz; and likewise for M(I2): These are the shares of the

districts won by each incumbent.

De�ne H = (2Z; 2Z); and Ĥ = closure(H):

Case 1 I1; I2 2 H:
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If D(I1) = � then,

If I2 6= 0 set ~I1 = �I2: This implies D(I1) = [3I1+I2
2

; 0] and so M(~I1) > 0: No

equilibrium. Likewise for D(I2):

If I2 = 0 set ~I1 = Z: This implies D(I1) = [3Z
4
; Z
2
] and so M(~I1) > 0: No equilibrium.

So in equilibrium both M(I1);M(I2) > 0:

Therefore we must have I1+I2
2

2 (Z;Z):

If 3I1+I2
4

< Z then set ~I1 = I1 + �; where � is s.t. 3~I1+I2
4

= Z:

We haveD(I1) = [3I1+I2
4

; I1+I2
2

] =) D(I1) = [Z; I1+I2
2

]: NowD(~I1) = [3
~
I1+I2
4

;
~
I1+I2
2

] =)

D(I1) = [Z;
~
I1+I2
2

] = [Z; I1+I2
2

+ �

2
]:

And so D(I1) � D(~I1); making I1 strictly better o�. No equilibrium. Likewise for
I1+3I2

4
> Z:

So for an equilibrium we must have that [3I1+I2
4

; I1+3I2
4

] = D � [Z;Z]: Though 3I1+I2
4

6=

Z as this implies that I1 � 2Z; but then I1 =2 H: Likewise for I1+3I2
4

6= Z: So D � [Z;Z]:

Now, assuming jI1j � jI2j ; consider a deviation ~I1 = I1 � 
; where 
 > 0 and such

that ~I1 2 H:

D(I1) = D(I1) = [3I1+I2
4

; I1+I2
2

]: And D(~I1) = D(~I1) = [3
~
I1+I2
4

;
~
I1+I2
2

] = [3I1+I2
4

�
3


4
; I1+I2

2
�




2
]:

And so we get the relationship, D(~I1) = D(I1)� [ I1+I2
2
�




2
; I1+I2

2
]+[3I1+I2

4
�

3


4
; 3I1+I2

4
]:

If g is strictly quasi-concave then by condition 1 we see that M(~I1) > M(I1):

If g is quasi-convex then as for small enough 
; 3I1+I2
4

< I1+I2
2

�



2
< 0; then M(~I1) >

M(I1) (as there is more density at the extremes). No equilibrium.

Case 2 I1; I2 2 Z 0=Ĥ: Note that for Z = Z� this set is empty.

� I1; I2 < 2Z: Then E = I+2 wins all districts, M(I1) =M(I2) = 0:

Consider ~I2 = �I1: D(I2) = [0;
~
I2

2
] =) D(I2) = [0; Z] as I1 < 2Z. This implies

M(I2) > 0:

I2 is strictly better o�. No equilibrium.

� I1 < 2Z; I2 > �2Z: Let jI1j � jI2j :
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D(I1) = [3I1+I2
4

; I1+I2
2

] =) D(I1) = [Z; I1+I2
2

]: Consider a deviation, ~I1 = I1+�; where

� is s.t. ~I1 < 2Z:

D(~I1) = [3
~
I1+I2
4

;
~
I1+I2
2

] = [3I1+I2
4

+ 3�
4
; I1+I2

2
+ �

2
] =) D(~I1) = [Z; I1+I2

2
+ �

2
]: As

[ I1+I2
2

; I1+I2
2

+ �

2
] is measurable we have M(~I1) > M(I1): No equilibrium.

Case 3 I1 2 Z 0; I2 =2 Z 0:

I will use the D notation from lemma 2, though calling it D0 here because I2 =2 Z 0

means the lemma may not be applicable. What can be seen is that some of the arguments

from the lemma can be preserved. Entry on the 
ank is still precluded but there may be

entry in the center. So we see that D(I1) � D0(I1) and D(I2) � D0(I2): That is, the set

of districts that would be won (if they existed) is a subset of D0:

WOLOG let I1 � 0: If I2 < 2Z�; then D0(I2) = [3I2+I1
4

; I2+I1
2

]: As I2+I1
2

< Z�; D(I2) =

0:

If I1 < 0; the deviation of ~I2 = �I1 =) D(~I2) = [0; �I1
2
] (as now ~I2 2 Z 0) =)

M(~I2) > 0 as I1 6= 0:

If I1 = 0; the deviation of ~I2 = Z =) D(~I2) = [Z
2
; 3Z

4
] (as now ~I2 2 Z 0) =)M(~I2) > 0

as Z 6= 0:

So for I1 � 0 consider I2 > �2Z�: D(I2) � D0(I2) = [ I1+I2
2

; I1+3I2
4

] =) D(I2) �

D
0
(I2) = [ I1+I2

2
; Z]: If this set is empty then consider the deviations above.

Now consider D
0
(I2) 6= � (so I1+I2

2
< Z) and let ~I2 = �2Z�: D(~I2) = [ I1+

~
I2

2
; I1+3

~
I2

4
] =)

D(I2) = [ I1+
~
I2

2
; Z] as I1 � 2Z� (the lemma is now applicable):

As ~I2 < I2; and [ I1+
~
I2

2
; I1+I2

2
] is measurable then D

0
(I2) � D(~I2) and so it must be

that M(~I2) > M(I2): I2 is strictly better o�. No equilibrium.

Case 4 I1 = 2Z: Show that I2 = �2Z is a strict best response for I2:

� I2 = �2Z: We have D(I1) = [Z; 0]; D(I2) = [0;�Z] =)M(I2) =
1
2
:

� I2 � Z: E = fmax[I1; I2]g
+: If I1 � I2 then D(I2) � [I1; I2]; or if I1 > I2 then

D(I2) � [I2; I1]: Either way this implies that D(I2) = 0: And so M(I2) = 0:

� Z < I2 < �2Z: We have M(I2) � 0: For M(I2) = 0 we are done. For M(I2) > 0

consider ~I2 = I2+�; where � > 0; and such that ~I2 � 2Z: Then I2 will win districts

with measure 3�
4
but lose districts with, at most, measure �

2
: If g is strictly quasi-

concave then by Condition 1, M(~I2) > M(I2): So as ~I2 ! 2Z; M(~I2) is increasing

and approaching M(I2 = 2Z) = 1
2
: So for I2 < 2Z we have M(I2) <

1
2
:
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This is not necessarily true for g strictly quasi-convex. If I2 was to win districts in an

interval of length jZj on g; then it can be seen that the optimal location of this interval

is [Z; 0]; or [0; Z]; in which case M(I2) =
1
2
: For I2 < 2Z the measure of D(I2) is less

than 1
2
: As G is strictly increasing once G(:) > 0; we must have M(I2) <

1
2
for I2 < 2Z:

� I2 > �2Z: D0(I2) = [2Z+I2
2

; 2Z+3I2
4

] =) D(I2) = [2Z+I2
2

;�Z]:

And as 2Z + I2 > 0 we have M(I2) <
1
2
:

So I2 = �2Z is a strict best response for I2: Therefore fI1; I2g = f2Z;�2Zg is a strict

equilibrium, consequently it is the only equilibrium involving I1 = 2Z or I2 = �2Z:

Case 5 I1; I2 =2 Z 0:

There is entry in every district. For the case I1 < 2Z�; I2 > �2Z� the entrants locate

between the incumbents. This is because jI1�I2j

2
> 2Z�; and using the arguments of

lemma 2 an entrant centering its interval of voters won at the median in a district will

win that district. When I1; I2 < 2Z� entry at E = [maxfI1; I2g]
+ wins every district. So

we have that M(I1) = M(I2) = 0: Recall that it was assumed that if successful entry

was possible then only one new party would enter and win the district.

� I1; I2 < 2Z�:

- Let I1 < I2:

For a district with median z
l
2 [Z;Z], I2's vote share is given by F (I2�zl)�F (

I2+I1
2
�

z
l
): If ~I2 = 2Z� then E = ~I+2 and now V

I2
(ljI1; ~I2) = F (2Z�

� z
l
) � F (2Z

�+I1
2

� z
l
) >

F (I2 � z
l
)� F ( I2+I1

2
� z

l
) as I2; ~I2 < Z and f(2Z�

� z
l
) > 0: Consequently I2 is strictly

better o�. No equilibrium.

- Let I1 = I2:

Then, for a district with median z
l
, I1's vote share approaches

1
2
F (I1 � z

l
) as "! 0:

If F (I1 � z
l
) 6= 0 for any z

l
then as F is strictly increasing once F (:) > 0, � small

enough can be found s.t. ~I1 = I1� � =) V
I1
(lj~I1; I2) = F (I1�

�

2
� z

l
) > 1

2
F (I1� z

l
) and

so I1 is weakly better o� in every district and strictly better o� in some.

If F (I1) = 0 for all z
l
then consider ~I2 = 2Z�. As above this implies E = ~I+1

and V
I1
(lj~I1; I2) > 0 for all z

l
: And so I1's vote share increases in every district. No

equilibrium.

� I1 < 2Z�; I2 > �2Z�:
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Let jI1j � jI2j : Earlier it was shown that when an entrant locates between incumbents

it optimizes by choosing E such that V
I1
= V

I2
if it can, or by approaching the incumbent

closest to the median voter.

So we can see immediately that V
I1
(z

l
� 0) � V

I2
(z

l
� 0): For districts where z

l
> 0,

it may be the case that I2 is closer to the median. I wish to show that even in these

districts V
I1
(z

l
> 0) � V

I2
(z

l
> 0): Consider district l where z

l
> 0: For this result to not

hold we require that f( I1+I2
2
� z

l
) < f(I2�Z) so that there doesn't exist an E such that

V
I1
= V

I2
: But as jI1j � jI2j we get that I1+I2

2
� 0 =) I1+I2

2
� z

l
� Z: Also I2 > 2Z�

and so I2 � z
l
> Z: Therefore f( I1+I2

2
� z

l
) > f(I2 � Z) and so V

I1
(l) � V

I2
(l) for all

z
l
2 [Z;Z]:

Now consider a deviation by I2 to ~I2 = �2Z�: As jI1j >
���~I2

��� ; VI1(ljI1; ~I2; E) �
V
I2
(ljI1; ~I2; E) for all districts. In every district the entrant will still locate between the

incumbents. As
��� ~I2�I12

��� <
�� I2�I1

2

�� the vote share for the entrant in each district must

decline. And so V
I1
(ljI1; ~I2; E) + V

I2
(ljI1; ~I2; E) > V

I1
(l) + V

I2
(l) for every l: As V

I1
(l) �

V
I2
(l) and V

I1
(ljI1; ~I2; E) � V

I2
(ljI1; ~I2; E) we must have that VI2(ljI1;

~I2; E) > V
I2
(l) for

every l: And so I2 is strictly better o�. No equilibrium.

Case 6 I1 2 H; I2 2 Z 0=Ĥ:

If I1; I2 � 0 then I1 2 (2Z; 0]; I2 2 [2Z�; 2Z): D(I2) = [ I1+3I2
4

; I1+I2
2

] =) D(I2) = �

as I1+I2
2

< Z: Thus M(I2) = 0: If I1 < 0 then consider the deviation ~I2 = �I1: If I1 = 0

then consider the deviation ~I2 = Z: Both deviations imply, as shown previously, that

M(~I2) > 0: No equilibrium. Likewise for I1; I2 � 0:

So consider I1 < 0 and I2 2 (2Z; 2Z�]: Thus D(I2) = [ I1+I2
2

; I1+3I2
4

] =) D(I2) =

[ I1+I2
2

; Z]; as I1+3I2
4

> Z: Now consider the deviation, ~I2 = I2 � �; � > 0; such that
I1+3~I2

4
= Z: Then D(~I2) = [ I1+

~
I2

2
; I1+3

~
I2

4
] =) D(~I2) = [ I1+I2��

2
; Z]: And so D(I2) � D(~I2)

and I2 is strictly better o�. No equilibrium.

9.2.2 Proposition 1A

The proof is identical to that for Proposition 1, with Condition 1A substituted for Condi-

tion 1. The extra restriction in Condition 1A ensures that the arguments of Proposition

1 can also be used to prove Proposition 1A.

9.2.3 Proposition 2

Using the notation of the previous section, we can see that for I1 � I2 we have D0 =

[3I1+I2
4

; I1+3I2
4

]: As D � D0 to preclude entry we require 3I1+I2
4

� Z and I1+3I2
4

� Z:

Solving these two requirements simultaneously and recalling that Z = �Z; we have
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I1 � 2Z and I2 � �2Z: As Z < Z� this implies that I1 < 2Z� and I2 > �2Z�; but then

we will have entry between the incumbents in every district (see Proposition 1, case 5).

So there does not exist a pair of locations for the incumbents which are able to preclude

entry in every district. Thus, there does not exist an equilibrium which precludes entry

in all districts.

9.2.4 Proposition 3

This proof is very similar to that of Proposition 1, in many instances the only di�erence

being a change in the domain of a case.

De�ne H# = (2Z#;�2Z#); and Ĥ# = closure(H#):

Case 1 I1I2 2 H#:

Proceed as with Case 1 in Proposition 1. We can ignore quasi-convexity requirement.

No equilibrium.

Case 2 I1; I2 2 Z 0=Ĥ#:

� Consider �rstly 2Z#
� Z:

(a) I1; I2 < 2Z#

Then E = I+2 wins all districts, M(I1) = M(I2) = 0: Consider ~I2 = �I1: D(I2) =

[0;
~
I2

2
] =)M(I2) > 0: I2 is strictly better o�. No equilibrium.

(b) I1 < 2Z#; I2 > �2Z#:

Let jI1j�
 = jI2j ; where 
 > 0: Now D(I1) = [�I2
2
�

3


4
; �


2
] and D(I2) = [�


2
; I2
2
�




4
]:

If 3I1+I2
4

< Z then the deviation ~I1 = I1+�; such that 3~I1+I2
4

= Z; makes I1 strictly better

o� (see Proposition 1, case 2). For 3I1+I2
4

� Z we shall consider two deviations. Consider
~I1 = �I2; and ~I2 = �I1: When I1 deviates with ~I1 = �I2 we �nd D(~I1) = [�I2

2
; 0] =)

M(~I1) =M(I1)+ [G(0)�G(�

2
)]� [G(�I2

2
)�G(�I2

2
�

3


4
)]: If [G(0)�G(�


2
)] > [G(�I2

2
)�

G(�I2
2
�

3


4
)] then I1 will deviate. No equilibrium. Otherwise consider the deviation by I2:

In this case we �nd D(~I2) = [0; I2+

2

] =)M(~I2) = M(I2)+[G( I2+

2
)�G( I2

2
�




4
)]�[G(0)�

G(�

2
)]: By the symmetry of g; G( I2+


2
)�G( I2

2
�




4
) > G(�I2

2
)�G(�I2

2
�

3


4
): And so if it

isn't pro�table for I1 to deviate then we have [G( I2+

2

)�G( I2
2
�




4
)] > [G(0)�G(�


2
)] =)

M(~I2) > M(I2); and so it is then pro�table for I2 to deviate. So no equilibrium.

Now for I1 < 2Z#; I2 > �2Z#; let jI1j = jI2j : And so D(I1) = [ I1
2
; 0]: If I1 deviates

inwards, ~I1 = I1+�; and so D(~I1) = [ I1
2
+ 3�

4
; �
2
]: As we know that I1

2
< Z# then we have

g( I1
2
) < 2

3
g(0): Because g is continuous there exists a � small enough such that 8�0 < �;

g( I1
2
+ 3�0

4
) < 2

3
g(�

0

2
); which implies that M(~I1) > M(I1) as then I1 gains more districts

in the center than it loses on the fringe. No equilibrium.

39



� Now consider Z < 2Z#:

For I1 < 0; I2 > 0 this is the same as for Z � 2Z#: So from now assume that

I1; I2 < 2Z#: We recall that by setting ~I1 = �I2, M(I1) > 0; and likewise for I2;

so in equilibrium we require that M(I1);M(I2) > 0: Considering positions such that

M(I1);M(I2) > 0 and noting that I1 = I2 =) M(I1) = M(I2) = 0 we need only

consider I1 < I2 < 2Z#: Consider now the deviation ~I2 = I2 + �; such that ~I2 < 2Z#:

Then D(~I2) = D(I2)+[ I1+3I2
4

; I1+3I2
4

+ 3�
4
]� [ I1+I2

2
; I1+I2

2
+ �

2
]: As ~I2 < 0 then as M(I2) > 0

and g is strictly increasing on this domain it implies thatM(~I2) > M(I2): No equilibrium.

Case 3 I1 2 Z 0; I2 =2 Z 0:

Proceed as with Case 3 in Proposition 1. No equilibrium.

Case 4 I1 = 2Z#: Show that I2 = �2Z# is a strict best response for I2; given that g

is concave, and show that when g is not concave I2 6= �2Z# cannot constitute an

equilibrium.

� I2 = �2Z#: We have D(I1) = [Z#; 0]; D(I2) = [0;�Z#] =)M(I2) =
1
2
�G(Z#):

The rest of the locations for I2 are shown to produce M(I2) < 1
2
� G(Z#) with

the same techniques as in Proposition 1 and thus can't constitute equilibria. The only

addition to the proof is for I1 < I2 when 2Z# > Z (when there are districts to the left

of I1).

For g concave we need to make sure that there isn't more density on the 
anks that

would make I2 better o�. We have that g(Z#) < 2
3
g(0); and so by the concavity of g;

we also have g(2Z#) < 1
3
g(0); and g(3Z#) = 0: So for I2 < I1; D(I2) � [I2; I1] and its

measure is bounded by
jZ#j

4
: And so M(I2) is bounded by G(Z#)�G(Z#

�
jZ#j

4
) which

by the concavity of g implies M(I2) <
1
2
�G(Z#): So I2 = �2Z# is a strict best response

for I2 when g is concave: So fI1; I2g = f2Z#;�2Z#
g is a strict equilibrium, and therefore

is the only equilibrium involving I1 = 2Z# or I2 = �2Z#:

If g is not concave then I2 may wish to locate at some point such that I2 < I1: In

this case we need to show that I1 would have incentive to deviate, thus precluding an

equilibrium. Consider ~I1 = I1 + �; then D(~I1) = [
~
I1+I2
2

; 3
~
I1+I2
4

] = D(I) + [3I1+I2
4

; 3I1+I2
4

+
3
4
�]�[ I1+I2

2
; I1+I2

2
+ 1

2
�]: As,for small enough �; g is strictly increasing over this range then I1

is strictly better o�. So for quasi-concave g functions I2 6= �2Z# can't be an equilibrium.

Thus if an equilibrium exists in this domain then it must be fI1; I2g = f2Z#;�2Z#
g:

Case 5 I1; I2 =2 Z 0:

Proceed as with Case 5 in Proposition 1. No equilibrium.
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Case 6 I1 2 H#; I2 2 Z 0=Ĥ#:

If I1; I2 � 0 and I1+I2
2

� Z then we proceed as in Proposition 1. Likewise for I1; I2 � 0:

No equilibrium. So consider Z# > I1+I2
2

> Z; where D(I1) = D(I1) = [ I1+I2
2

; I2+3I1
4

]: For

I1 < 0 let ~I1 =
I1

2
: Then D(~I1) = D(~I1) = [

~
I1+I2
2

; I2+3
~
I1

4
] = [ I1+I2

2
�

I1

4
; I2+3I1

4
�

3I1
8
]: As

I1

2
< 0 then the strict quasi-concavity and symmetry of g imply thatM(I1) < M(~I1); and

so I1 is strictly better o�. No equilibrium. Consider now I1 = 0: Let ~I1 = �; where � > 0

is such that
�� I2+3�

4

�� < 0: And thenD(~I1) = D(~I1) = [
~
I1+I2
2

; I2+3
~
I1

4
] = [ I1+I2

2
+�

2
; I2+3I1

4
+ 3�

4
],

and once again by the strict quasi-concavity and symmetry of g, M(I1) < M(~I1); and so

I1 is strictly better o�. No equilibrium.

So consider I1 2 (2Z#; 0) and I2 2 (�2Z#;�2Z�]: As jI1j < jI2j we have that
I1+I2
2

> 0. If I1+3I2
4

> Z then set ~I2 = I2 � �; such that I1+3~I2
4

= Z (as in Proposition 1).

And so D(I1) � D(~I1) and I1 is strictly better o�. No equilibrium. So consider where
I1+3I2

4
� Z: Now analyze dual deviations by the incumbents as done in Case 2 of this

result. At least one incumbent has incentive to deviate. No equilibrium.

9.2.5 Run-O�

I will proceed by showing that the two incumbents cannot choose platforms such that

entry is prevented in all districts. Thus, in any potential equilibrium there must be entry

of third parties.

Consider the central district with the incumbents located asymmetrically. Let jI1j =

jI2j � �; � > 0: Now, if I1,I2 < 0 then E = 0 =) P (W = E) = 1 and so entry occurs:

we are done. Therefore consider I1 < 0; I2 > 0:

If E 2 I+1 then V
E
! F ( I1+I2

2
)�F (I1) = F (�

2
)�F (I1); VI1 ! F (I1); VI2 ! 1�F (�

2
):

As jEj < jI1j ; jI2j to prevent entry we require at least that 1�F (�
2
) � F (�

2
)�F (I1) =)

F (�
2
) � 1

2
(1 + F (I1)); and F (I1) � F (�

2
)� F (I1) =) F (�

2
) � 2F (I1):

If E 2 I�1 then V
E
! F (I1); VI1 ! F (�

2
) � F (I1); VI2 = 1 � F (�

2
): As jEj > jI1j to

prevent entry we may require V
I1
> V

E
=) F (�

2
) � F (I1) � F (I1) =) F (�

2
) � 2F (I1):

Combined with the �rst necessary conditions this implies that F (�
2
) = 2F (I1): That this

requirement must hold with equality means that we must also ensure that if E 2 I+1 then

E doesn't beat or tie with I1 for strictly positive values of " (that is E loses in the limit

but wins at points on the convergent path). A su�cient condition for this to happen is

that there exists a � such that f(�
2
+�) � 2f(I1+ �): If this is true then E = I1+2� =)

V
E
= F (�

2
+�)�F (I1+�) � F (�

2
)�F (I1)+F (I1+�)�F (I1) = F (I1+�) = V

I1
: Which

implies P (W = E) > 0 and so entry occurs.

Alternatively, if V
I1
� V

E
then we require V

I1
> V

I2
which implies F (�

2
) � 1

2
(1+F (I1)):

Combining this with the above conditions implies F (�
2
) = 1

2
(1 + F (I1)):

So one or both of these two identities must hold for the central district.
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� Assume both conditions hold. That is, F (�
2
) = 2F (I1) and F (�

2
) = 1

2
(1 + F (I1)):

This implies that F (I1) =
1
3
and F (�

2
) = 2

3
: Therefore �

2
= �I1: Consider E = I1+�:

Then V
E
= F (�

2
+ �

2
)� F (I1 +

�
2
) < 1

3
< V

I1
and V

I2
= 1� F (�

2
+ �

2
):

V
E
� V

I2
= 2F (�

2
+ �

2
)� F (I1 +

�
2
)� 1:

lim
�!0

(V
E
� V

I2
) = 2F (�

2
)� F (I1)� 1 = 2:2

3
�

1
3
� 1 = 0:

d(VE�VI2 )

d�
= f(�

2
+ �

2
)� 1

2
f(I1 +

�
2
):

By the continuity and symmetry of f (recall �I1 = �

2
) then 9�� such that 8� 2

(0;��); f(�
2
+ �

2
) > 1

2
f(I1 +

�
2
): Thus 9� such that jEj < jI1j ; jI2j and V

E
> V

I1
=)

P (W = E) = 1 and so entry must still occur.

Thus if both conditions are satis�ed for the central district then entry must still occur

and we are done. So I shall now consider when each condition is satis�ed alone. If one

of these conditions doesn't hold for the central district then by the continuity of F there

exists an interval, [�; 0), of district medians in which this condition can't hold either.

Thus when we consider these districts in the following cases the sole condition that held

for the central district is the only one that can hold in these districts as well. Thus if I

can show that the condition that held in the central district can't simultaneously hold

in these other districts and prevent entry, then I will have shown that third party entry

will occur. This is the method of the following cases.

� Considering F (�
2
) = 2F (I1) �rstly.

Consider districts [�; 0] where j�j < jI1j : This implies that �

2
� � > 0 (as � < 0): To

preclude entry in each district we need F (�
2
� 
) = 2F (I1 � 
) 8
 2 [�; 0]: Therefore as


 changes @

@


F (�
2
� 
) = @

@


2F (I1� 
) =) �f(�
2
� 
) = �2f(I1� 
): As I1� 
 < 0 and

�

2
� 
 > 0 this can only be true if f(I1 � 
) = 1

2
f(�

2
� 
) = constant, for all 
 2 [�; 0];

otherwise the condition is violated and entry occurs. If f(I1�
) =
1
2
f(�

2
�
) = constant,

for all 
 2 [�; 0]; then the additional su�cient condition for entry above (where E wins

on the convergent path) holds and E = I1 + 2
 for any 
 2 [�; 0]; implies V
E
� V

I1
and

E enters.

� Consider F (�
2
) = 1

2
(1 + F (I1)):

Similarly to the case above, by considering districts [�; 0] where j�j < jI1j we can

establish that if entry is to be prevented f(I1 � �) = 2f(�
2
� �) 8� 2 [�; 0]: But as

V
I1
> V

I2
this leads to (as � < 0) E = I1 � � =) V

E
= F (�

2
�

�
2
) � F (I1 �

�
2
) =

F (�
2
) � F (I1) � [F (�

2
�

�
2
) � F (�

2
)] = 1 � F (�

2
�

�
2
) = V

I2
, by the condition on f

and the identity F (�
2
) = 1

2
(1 + F (I1)): And so V

E
= V

I2
; combined with the fact that

jEj < jI1j ; jI2j this implies that P (W = E) > 0 and so E will enter.
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Thus, for 0 6= jI1j < jI2j the incumbents are unable to preclude entry in all districts.

So consider where jI1j = jI2j : For any � 2 (0; Z) the incumbents are asymmetric in that

district and so the analysis from above holds for any � if we consider districts � 2 [�
2
; Z].

Also consider jI1j = 0 < jI2j : Then 8zr 2 [Z; 0) which is measurable as Z 6= 0; we have

I1 � z
r
; I2 � z

r
> 0 and so E = I�1 =) P (W = E) = 1: Therefore there is successful

entry in these districts.

9.2.6 Theorem 1

This result is merely a combination of the previous results. It is stated in order to give a

clear representation of what has been established. Its proof simply refers to the previous

results.

Su�cient=) then we have the conditions for Proposition 1. No entry happens. Final

outcome involves two parties. Duverger's Law holds.

Necessary=) Without Condition 2 we satisfy the requirements for Proposition 2.

There is entry in every district. Final outcome involves three or more parties. Duverger's

Law fails. Without Condition 1 we satisfy the conditions for Proposition 3. There is entry

in intervals of districts on the edges of the distribution of district median voters. Final

outcome involves three or more parties. Duverger's Law fails.
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       Figure 1

Depending on F, symmetric equilibria
may exist in these
intervals

             The pdf f

   F-1(1/4)      W*      F-1(1/3)    0    F-1(2/3)   -W*        F-1(3/4)

         Symmetric equilibria exist in this interval with certainty
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