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Equilibrium Equivalence with J Candidates and N

Voters

John W. Patty�

Abstract

In this paper, we examine the incentives facing candidates in the spatial

voting model. We assume that voters' types are independent, but allow for

nonidentical distributions across voters. Examining candidate positional equi-

libria as a function of voter behavior, we �nd that what we term p-symmetric

strict p-local equilibria when candidates maximize expected plurality are also

strict p-local equilibris when candidates maximize probability of victory. This

result holds for arbitrary numbers of candidates and voters. We also show

that, for generic type distributions, interior p-asymmetric equilibria under

maximization of expected vote share are not equilibria under maximization

of probability of victory.

1 Introduction

The question, \What are political candidates' goals?" is an inherently empirical concern.

However, the question's importance is a theoretical matter. Politicians may have any of

several objectives when running for elected o�ce, but which one characterizes reality is an

important matter only if the di�erent objectives lead to di�erent behaviors in equilibrium.

Unfortunately, this is the case. This paper examines two such objective functions which

have been used in the theoretical literature on voting over the previous 50 years: expected

vote share and probability of victory. Our main question is straight-forward. When are

these objective functions equivalent? That is to say, when are predictions generated by

examination of one of these objective functions valid for the other?

Several authors have written on this question. Aranson, Hinich, and Ordeshook [1]

examine several candidate objective functions. The results they obtain are far from

heartening. In particular, the authors generally �nd no powerful equivalence results.
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Hinich [6] states a claim that, in 2 candidate elections without abstention, expected vote

share and probability of victory yield identical best response functions. Ledyard [9] makes

a similar claim for two candidate elections with abstention. Ledyard's claim was argued

at the limit, and thus it is not clear that it is true. Finally, Patty [12] examines both

Hinich's and Ledyard's claims and proves that the best response functions generated

by expected plurality, expected vote share, and probability of victory are identical in

two candidate elections, with or without abstention, with arbitrary numbers of voters.

However, Patty assumes that voters' types are independently and identically distributed

across voters and provides an example with two candidates showing that best response

equivalence does not hold with nonidentically distributed voter types.

In this paper, we extend the study of candidate objective functions to the question

of equilibrium equivalence. Best response equivalence is essentially a decision-theoretic

concern, as it is de�ned to hold regardless of the opponents' strategies. Equilibrium

equivalence, on the other hand, is a game-theoretic concern. Two objective functions are

said to be equilibrium equivalent if the sets of Nash equilibria under the two objective

functions are identical. In order to study probabilistic voting models in as general a

fashion as possible, we characterize candidate positions by the resulting voter behavior

rather than by a speci�c policy space. Thus, one may consider our method as examining

a game in which candidates are taking the voter behavior as given (i.e. they are backward

inducing along the extensive form game tree).

We prove our results in what we term p-space, theN -fold Cartesian product of the vot-

ers' J-dimensional simplexes. It is with respect to this space that we de�ne p-symmetry,

which essentially amounts to all voters mixing with equal probability between each of the

J candidates. By examining the game in p-space, we are able to provide results which

apply to a very general class of probabilistic voting models. In addition, the notion of

p-neighborhoods is a weaker version of locality than neighborhoods in a policy space

whenever the average behavior of each voter is a continuous function of the policies pro-

posed by each candidate. This type of continuity generally holds in most probabilistic

voting models in the literature. Nevertheless, we do not impose any such restriction.

An additional advantage of our framework is that our results can be applied to either

traditional probabilistic models of choice (see, for example, Luce [10] or Coughlin [2])or

models of incomplete information in which voters optimally choose based on privately

known preferences (see, for example, Ledyard [9] or McKelvey and Patty [11]).

Our �rst result is that p-symmetric strict p-local equilibria under maximization of

expected plurality and maximization of probability of victory are identical whenever

voters' types are independently distributed. In addition, we prove that, asymmetric

interior critical points generically do not coincide under the two objective functions.

That is, an asymmetric interior equilibrium under one objective function is generically

not an equilibrium under the other objective function.

These results are motivated by the results of several previous papers in probabilistic

voting models of candidate competition. For instance, Coughlin and Nitzan [3], [4] exam-
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ine local Nash equilibria for two candidate elections under a probabilistic voting model.

Similarly, McKelvey and Patty [11] examine a model of strategic probabilistic voting with

an arbitrary number of candidates seeking to maximize expected margin of victory. They

prove the existence of a p-symmetric strict Nash equilibrium at the point that maximizes

the sum of the voters' utility functions whenever the number of voters is large enough.

Our �rst result, Theorem 4, implies that the p-symmetric equilibrium characterized by

McKelvey and Patty is also an equilibrium under maximization of probability of victory.

McKelvey and Patty show that the point which maximizes the sum of voters' utilities

is a local equilibrium which \becomes" global as the number of voters grows without

bound. The logic is that voters become approximately indi�erent to the policies chosen

by the candidates, implying that candidates are not able to alter the strategies of the

voters very much when the number of voters is large. In addition, McKelvey and Patty

show that this form of asymptotic indi�erence will occur in a large class of probabilistic

voting models. Thus, the applications of p-local equilibria may be more general than

appears at �rst glance.

2 The Model

Let J , with jJ j = J , denote the set of candidates and N , with jN j = N , denote the set

of voters. Each candidate simultaneously chooses a point in some policy space X. We

denote the space of all J-dimensional vectors of policy proposals by Y .

We will write the action of voter i, given y 2 Y , as si = �i(y), and denote the number

of votes received by candidate j by vj = jfi 2 Njsi = jgj. We will write s for the vector

of si for all voters i. We will denote the probability that voter i votes for candidate j at

y 2 Y by pij(y) and the vector of all pij(y), for some candidate j and all voters i, by pj(y).

We make no assumptions concerning pi except that it maps Y into the J-dimensional

simplex. We will say that p represents a voting strategy pro�le.

For any s 2 S, let W (s) 2 fj 2 J jvj � maxl2J vlg denote the winning candidate at

s. In the case of a tie, W (s) is assumed to be determined by a fair lottery between all

eligible candidates.1

When considering the probability of victory, let k�J denote the minimum number of

votes with which a candidate can tie for victory.2 For any x 2 Y , let Gj(i; y) denote the

probability candidate j wins, conditional on voter i voting for j (si = j) and let Hj(i; x)

denote the conditional probability that candidate j wins, conditional on si 6= j.

1That is, we will reduce the cases of ties into sets of winners. This is possible because we assume

that any tie-breaking lottery is fair, and hence independent of the identities of the candidates tied for

victory.
2This number is of course well-de�ned and equal to the smallest integer greater than or equal to N

K
.
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3 Equilibrium

We use the notation from Section 2 to express the probability of victory for candidate j,

given a candidate strategy pro�le x, as a sum over the voters. This sum is given in the

following lemma.

Lemma 1 Given a policy pro�le, y 2 Y , the probability of victory by candidate j is given

by

Rj(x) =
1

N

NX
i

[pij(x)Gj(i; x) + (1� pij(x))Hj(i; x)]: (3.1)

Proof : Consider any voter i and any candidate j. From the de�nition of conditional

probabilities and the assumption of independence,

Rj(x) = Pr[si = j \ W (s) = j] + Pr[si 6= j \ W (s) = j]

= Pr[si = j] Pr[W (s) = jjsi = j] + Pr[si 6= j] Pr[W (s) = jjsi 6= j]

= pijGj(i; x) + (1� pij)Hj(i; x):

The result then follows immediately by summing over i.

We now de�ne p-symmetry and p-locality.

De�nition 2 Given a voting strategy pro�le represented by p, a policy pro�le y 2 Y is

p-symmetric if, for all i 2 N and all j; k 2 J,

pij(y) = pik(y):

Any policy pro�le which is not p-symmetric is referred to as p-asymmetric.

De�nition 3 For some real number ", two policy pro�les, x; y 2 Y , are "-p-local if, for

each i 2 N and each j 2 J , jpij(x)� pij(y)j < ".

Let U denote a vector of payo� functions in the candidate game, let x 2 Y be a

candidate policy pro�le, and let x0j be any unilateral deviation by candidate j from x.

Then x is a strict p-local equilibrium under U if there exists "� > 0 satisfying the following.

For all j 2 J and for all x0j which are "�-p-local to x,

Uj(x) < Uj(x
0

j:

We can now prove our main result. A p-symmetric strategy pro�le by the candidates

is a strict p-local equilibrium under maximization of expected vote share if and only if it

is a strict p-local equilibrium under maximization of probability of victory.
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Theorem 4 An interior p-symmetric strategy pro�le x
�
is a strict p-local equilibrium

under maximization of expected vote share if and only if x
�
is a strict p-local equilibrium

under probability of victory maximization.

Proof : ()) Suppose that x� is an interior p-symmetric strategy pro�le for the candidates

such that x� is a strict p-local Nash equilibrium given maximization of expected vote

share. That is, given x�j, each candidate j is maximizing

1

N

NX
i=1

pij(x): (3.2)

Now consider the probability of victory for any candidate j. Note that Gj(i; x
�) =

Gk(l; x
�) for all i; l 2 N and j; k 2 J at any p-symmetric candidate strategy pro�le x�.

Then

Rj(x) =
1

N

NX
i

[pij(x)Gj(i; x) + (1� pij(x))Hj(i; x)]:

We prove the result by showing that there exists no p-local unilateral deviation in

p that increases a candidate's probability of victory. We argue using a Taylor series

approach. Taking �rst derivatives of Rj(x), we obtain

@Rj

@pij(x)
=

1

N

"
Gj(i; x) +Hj(i; x) +

X
k 6=i

pkj(x)
@Gj(k; x)

@pij(x)
+ (1� pkj(x))

@Hj(k; x)

@pij(x)

#
:

(3.3)

Notice that the �rst term on the RHS of Equation (3.3) is weakly greater than zero

because it is simply a conditional probability. The second term on the RHS of Equation

(3.3) is strictly greater than zero as well. This follows because we can express Gj(k; x)

as the following for any i 6= k:

Gj(k; x) = pij Prfs 2 Sjj 2 W (s); si = sk = jg

+(1� pij) Prfs 2 Sjj 2 W (s); sk = j; si 6= jg: (3.4)

Note that for all s 2 S, simple plurality rule implies that

(j 2 W (s); sk = j; si 6= j)) (j 2 W (s); sk = si = j);

which implies that

Prfv 2 V jj 2 W (s); sk = si = jg > Prfv 2 V jj 2 W (s); sk = j; si 6= jg;

and since

@Gj(k; x)

@pij

= Prfs 2 Sjj 2 W (s); sk = si = jg � Prfs 2 Sjj 2 W (s)sk = j; si 6= jg;
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then

@Gj(k; x)

@pij

> 0

for all i; j; k, and x. Similar logic applies for the partial derivatives of Hj(i; x), for all i; j,

and x.3

Evaluating the �rst order Taylor series approximation of Rj(x) at x
�,

Rj(x) � Rj(x
�) +rRj(x

�)T � (pj(x)� p
�

j);

where p�j = ( 1
J
; : : : ;

1
J
). By the fact that x� is a strict p-local Nash equilibrium under

maximization of expected vote share and continuity of pij(x) for all i; j, and x, there

exists a neighborhood B(x�) such that for all x 2 B(x�), (pj(x) � p
�

j) � 1 < 0, where

1 represents a column vector of 1s. Finally, it follows from the p-symmetry of x� that

rRj(x
�) is a scalar multiple of 1. Therefore, for all x 2 B(x�),

Rj(x)� Rj(x
�) < 0;

which implies that a p-local unilateral deviation by one candidate from x
� strictly de-

creases her payo�. It follows, then, that if x� is a p-symmetric strict p-local Nash equi-

librium under maximization of expected vote, then x� is also a p-symmetric strict p-local

Nash equilibrium under maximization of probability of victory. The converse follows

similarly.

Theorem 5 Let x 2 Int(X) be an asymmetric Nash equilibrium under maximization

of expected vote share. Then, the set of type distributions, F , for which x is a Nash

equilibrium under maximization of probability of victory possesses Lebesgue measure zero.

Proof : In order to establish the theorem, it is su�cient to prove that, for any direction

! 2 X, satisfaction of the �rst order conditions for Nash equilibrium under expected vote

share imply that the �rst order conditions for Nash equilibrium under maximization of

probability of victory generically do not hold.

Let x be an asymmetric Nash equilibrium under maximization of expected vote and

let D denote the space of possible p. Note that, for �nite N , D is compact and convex.

Now choose, for each j 2 J , any vector dp(j; x) such that

NX
i=1

@pi(j; x)

@�
= 0; (3.5)

such that, for each j 2 J , there exists some i 2 N such that
@pi(j;x)

@�
6= 0, and for all

j 2 J ,

JX
j=1

@pi(j; x)

@�
= 0: (3.6)

3To see this, simply replace sk = j with sk 6= j in the above argument.

6



These are simply the �rst order conditions for a Nash equilibrium under maximization of

expected vote share, a condition restricting our attention to non-i:i:d: type distributions,

and the requirement that
PJ

j=1 pi(j; x) = 1 for all i 2 N and x 2 X.

The �rst order conditions for a Nash equilibrium under maximization of probability

of victory are simply

@Rj

@p
�
@p

@�

�
�=0

= 0: (3.7)

By equation 3.5, the space of
@Rj

@p
satisfying equation 3.7 is spanned by an N � 1

dimensional subspace of D.4 However, the range of
@Rj

@p
: D ! [0; 1]N is N -dimensional.

Thus, the dimensionality of the space of solutions is strictly less than that of the space

of possible vectors. It follows that the set of vectors satisfying equation 3.7 possesses

Lebesgue measure zero.

4 Extensions and Examples

In this section we discuss the tightness of our assumptions. That is, how much more can

we obtain beyond Theorem 4? We discuss the possibility of a general equivalence result

in some detail, and touch upon several other possible extensions to our results, including

global equilibrium results and relaxing the assumption of independence.

4.1 Best Response Equivalence

One might hope for a general equivalence result, a result which states that, in elections

with arbitrary numbers of candidates and independent voter types, the best response

functions generated by maximization of expected vote share and maximization of prob-

ability of victory are identical. Unfortunately, this is not the case. Indeed, it is not even

the case that such equivalence is obtained asymptotically. This is shown in Patty [12]

through a replicated three voter example. An open question is the following, however. Is

there any objective function which is computationally simpler than probability of victory

which yields an equivalent best response function?

4.2 Other Directions

There are several other directions in which our results might be extended. First among

these are the question of equivalence among global Nash equilibria under the two objective

functions and the relaxation of the independence assumption.

4That is, given that Equations 3.7 and 3.5 are simultaneously satis�ed, (p1; : : : ; pN�1) uniquely

determine pN .
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Theorem 4 gives su�cient conditions only for p-local equilibria. The proof of Theorem

4 does not examine boundary conditions or second-order conditions. It turns out that

in many settings the maximum probability of victory for a candidate k does not fall in

the interior of the N -fold product of J � 1-dimensional simplices (i.e. the p-space). As

Patty [12] points out, this leads to the failure of general best response equivalence when

voters' types are nonidentically distributed.

Another obvious extension of our results would allow for type distributions in which

the realizations of voter types exhibit dependence across voters. The arguments for

Theorem 4 do not neccessarily work in such environments for several reasons. The �rst

of these is that we are no longer assured that Gj and Hj are nonnegative functions (in

the usual vector sense of nonnegativity). This is because the vote of one voter may a�ect

the vote of another, so that increasing one voter's probability of voting for candidate

j may decrease another voter's probability of voting for j. The second reason is that

the notion of p-locality becomes less sensible in such an environment. In particular, p-

locality is de�ned with respect to rectangles in p-space. Such a de�nition of locality is

not necessarily the most appropriate de�nition when independence fails to hold. Simply

put, a failure of independence may imply that Rj(p) is no longer linear with respect to

each pij.

On a positive note, however, the basic conclusion of Theorem 4 should continue to

hold even in the absence of independence. The logic is that independence encompasses

every possible vector of pij for any candidate j. Thus, so long as individual behavior

can be characterized as multinomial processes of some type, Theorem 4 should remain

true. The major di�culty is that it may mean nothing without imposing some sort of

additional structure on the nature of the dependence (such as the measure of vectors

of votes cast is absolutely continuous with respect to the product measure of votes cast

by each voter), as the set of policy pro�les which are p-local to any p-symmetric policy

pro�le may indeed be empty.

5 Conclusions

In this paper, we have provided general p-local equilibrium equivalence results for di�erent

candidate objectives in probabilistic voting models with independently distributed voter

types. Our �rst result, Theorem 4, states that p-symmetric strict p-local equilibria are

equivalent under the two objective functions, regardless of the number of candidates. The

second result, Theorem 5, states that asymmetric equilibria are generically not equivalent

under the objective functions. That is, with near certainty, a p-asymmetric equilibrium

under one objective function is not an equilibrium under the other. That this applies

to two candidate contests may be somewhat surprising, but recall that our de�nition of

p-symmetry may be satis�ed by candidate strategy pro�les which are asymmetric with

respect to candidate actions.

This result implies that the equilibrium found in McKelvey and Patty [11], for in-
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stance, is invariant to the authors' choice of objective functions. This follows because

McKelvey and Patty show that, as the number of voters increases, the amount any can-

didate can change any given voters' likelihood of voting for him or her vanishes. Hence,

the neighborhood of potential p vectors available to any candidate is shrinking, such that

eventually the p-symmetric strict local equilibrium becomes a global equilibrium.
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