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Abstract

This paper considers hypotheses tests for synergistic relationships in epidemiological

studies. Two hypotheses are considered. First, I develop tests of the additive hypothesis

which states that the combined risk from two sources of exposure is the sum of each risk

taken separately. I then develop tests for the hypothesis that a multiplicative relationship

exists for the risks, i.e., that the combined risk is consistent with the multiplication of

the individual risks. Following standard practice in epidemiological studies I consider

tests for both case-referent and cohort (standardized mortality rate) type studies.
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Statistical Analysis of the Additive and

Multiplicative Hypotheses of Multiple Exposure

Synergy for Cohort and Case-Control Studies

Je�rey A. Dubin

1 Introduction

In epidemiological studies, where there are multiple causes of a particular disease, the

issue arises as to whether the multiple causes have a synergistic relationship so that their

combined e�ect is both greater than that of either activity alone, and greater than what

one would expect by the sum of their individual risk contributions. Two hypotheses

are frequently tested. The �rst hypothesis states that when the sources of disease act

independently, the relative risk of disease, given exposure, is an additive relationship.

Thus, the relative risk of dying from cause A adds to the relative risk of dying from cause

B to determine the combined relative risk of dying when exposed to both A and B. A

second hypothesis states that the relationship between disease and the two causal factors

is multiplicative. In this case, the combined risk is the product of the individual risks.

Of course synergism is itself a concept that is model dependent. For instance, a lack of

synergism in a logit model of risk, as demonstrated by the statistical insigni�cance of an

interaction term, leads to a multiplicative model of relative risk. Consider the following

example.

Suppose that the probability of dying from a disease depends on two factors, A and

B. Let ÆA denote exposure to A, and ÆB denote exposure to B. Suppose further that the
probability of dying is logistic and given by:

P [DjÆA; ÆB] = 1=
�
1 + e�(X0�0+ÆAXA�A+ÆBXB�B+ÆAÆBXC)

�

where XA, XB, XC , and X0 are vectors of explanatory factors, and �j are true but

unknown coeÆcient vectors. The presence of the term ÆAÆB allows for synergism in this

model, and speci�es that the probability of disease may be di�erent when causal factors

A and B are both present.



Now, assume that �C is zero so that there is no synergistic relationship in the model.

The relative odds of dying when exposed to both agents are:

ROAB = P [DjÆA = 1; ÆB = 1]=P [ �DjÆA = 1; ÆB = 1]

= exp(X0�0 +XA�A +XB�B)

Similarly, the relative odds of dying when exposed to A alone are:

ROA = P [DjÆA = 1; ÆB = 0]=P [ �DjÆA = 1ÆB = 0]

= exp(X0�0 +XA�A)

and

ROB = P [DjÆA = 0; ÆB = 1]=P [ �DjÆA = 0; ÆB = 1]

= exp(X0�0 +XB�B)

and the relative odds of dying from background exposure is

RO0 = P [DjÆA = 0; ÆB = 0]=P [ �DjÆA = 0; ÆB = 0]

= exp(X0�0)

The relative risk is de�ned as the ratio of the relative odds between the exposure group

and the baseline:

RRAB =

 
P [DjÆA = 1; ÆB = 1]

P [ �DjÆA = 1; ÆB = 1]

!, 
P [DjÆA = 0; ÆB = 0]

P [ �DjÆA = 0; ÆB = 0]

!

=

 
P [DjÆA = 1; ÆB = 1]

P [DjÆA = 0; ÆB = 0]

!, 
P [ �DjÆA = 1; ÆB = 1]

P [ �DjÆA = 0; ÆB = 0]

!

which says that the relative risk from combined exposure is equal to the ratio of the

relative odds of dying in the exposed population to the relative odds of dying in the

un-exposed population.

Then RRAB = (ROAB=RO0)

= exp(XA�A +XB�B) and

RRA = (ROA=RO0) = exp(XA�A); RRB = (ROB=RO0) = exp(XB�B)

We see that RRAB = RRA �RRB even though the model exhibits synergism.

This paper considers several methods for determining the relative odds ratio, including

the case-control method and the cohort method. The case-control method begins with a

group of individuals who have an observed attribute (such as a given disease or death).

To the cases are matched a set of control individuals. The matching typically is done

at the individual level. For cases and controls, a retrospective determination is made

of exposure to one or more contaminants. From the retrospective exposure, prospective

odds of becoming a case given exposure are determined.
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Cohort studies, by contrast, derive mortality and morbidity rates with reference to

an external reference group. The method is based on the idea of comparing the incidence

of disease in an exposed cohort to the number expected in a \normal" reference group.

Finally, relative risks are sometimes determined using the prevalence method. In

prevalence studies it is common to analyze populations that all have a common exposure

level to some contaminant. In asbestosis studies, it is necessary that all subjects, by

de�nition, have the same exposure to asbestos. In such cases, the issues of additivity

and multiplicativity are not germane because one can consider the separate e�ect of

each causal agent. A similar situation occurs in a cohort setting where a companion

population is not used as a reference group. These situations are nevertheless illuminating

in discerning the relative contribution of a second contaminant as it a�ects the probability

of contracting or dying from a disease. Another example is the analysis of the prevalence

of a disease attribute (such as pleural plaques) in an exposed population.

A prevalence model may be �tted with a logistic functional form. The outcome vari-

able is usually the presence or absence of a disease characteristic where the explanatory

factors will include control variables and an indicator for the level of contaminant. If the

cohort provides some level of variance in the level of exposure of both contaminants, an

interactive term can be used to test for synergy, even if this does not provide a test of

additivity or multiplicativity.

This paper focuses on testing the statistical hypotheses of additivity and multiplica-

tivity for the relative risk measures. While other papers have considered the con�dence

intervals for relative risk measures, no systematic study has been made of the additivity

and multiplicativity hypotheses as a matter of statistics. Therefore, while practice in epi-

demiology has been to say that one or more studies appear to support the multiplicative

model, these studies have not, in general, been statistical statements; i.e., statements

made with attendant levels of con�dence.

This paper is divided into six sections. In Section 2, we discuss the case-control

method and Wald type tests for the multiplicative and additive hypotheses, derive and

discuss Woolf's method for determining the variance of log-odds ratios (Woolf (1955)),

and discuss maximum likelihood methods for optimization subject to constraints follow-

ing the methods of Gardner and Munford (1980). In Section 3, we discuss other ap-

proaches for determining con�dence intervals, including Bonferroni Intervals and Monte

Carlo simulation. In Section 4, we describe various synergy indices and how they relate

to tests of hypotheses for additive and multiplicative statistics. In Section 5, we discuss

cohort studies and derive hypothesis tests for the additive and multiplicative statistics.

In Section 6, we discuss prevalence studies and their relationship to cohort studies. In

Section 7, we present our conclusions.
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2 Case-Control Studies

We begin with a table of case-control outcomes at di�ering exposure levels:

Exposure

None A B A&B TOTAL

cases h1 h2 h3 h4 h

controls k1 k2 k3 k4 k

We next express the row counts as fractions:

Exposure

None A B A&B TOTAL

cases �1 �2 �3 �4 1

controls �1 �2 �3 �4 1

where �̂j = hj=h and �̂j = kj=k are consistent estimates of the true cell probabilities.

First, we demonstrate that the retrospective odds-ratio from a case control method

provides an approximate estimate of the relative risk of being a \case," given exposure. To

prove this, we examine the odds ratio �4 ��1=�1 ��4, although the result clearly generalizes
to other cases. We show that, given exposure level A&B, the odds-ratio approximates

the relative risk of being a case.

We denote cases as D (death from lung cancer for instance) and �D a control (death

from other causes for instance). The combined exposure A&B is referred to as E (expo-

sure). A case with no exposure is denoted �E (no exposure).

The odds-ratio �4 � �1=�1 � �4 is equal to
P [EjD] � P [ �Ej �D]

P [ �EjD] � P [Ej �D]
(1)

since �4 = P [EjD], �1 = P [ �EjD], �4 = P [Ej �D], and �1 = P [ �Ej �D]

As the notation implies, the probabilities � and � are conditional probabilities indi-

cating the respective likelihood of having been exposed, given an individual's case-control

status. Of interest is the prospective probability of being a case (i.e., dying) given expo-

sure status.1

1Some research studies have used logit analysis to model the conditional probabilities shown above.
This allows the introduction of covariates to provide additional controls in the analysis. For example a
logit model may be used to specify the conditional probabilities: P [AjD], P [ �AjD], P [Aj �D], and P [ �Aj �D.
A speci�cation of such a model was illustrated in the introduction. The presence of additional covariates
complicates the analysis presented below as the variances and covariances become dependent on the
assumed probability model and on the precision of the parameter estimation.
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Under a simplifying assumption, the odds-ratio approximates the prospective odds:

P [EjD] � P [ �Ej �D]

P [ �EjD] � P [Ej �D]
=

P [E;D]=P [D]

P [E; �D]=P [ �D]
� P [

�E; �D]=P [ �D]

P [ �E;D]=P [D]

=
P [DjE] � P [E]
P [Dj �E] � P [ �E] �

P [ �Dj �E] � P [ �E]
P [ �DjE] � P [E]

=
P [DjE]
P [Dj �E] �

P [ �Dj �E]
P [ �DjE]

:
=

P [DjE]
P [Dj �E] (2)

where the approximation results from the observation that P [ �Dj �E]=P [ �DjE] is close to

one. Case control studies are useful as they provide estimates of the odds P [E]=P [ �E]; i.e.,

the relative odds of exposure. The relative odds of being a case P [D]=P [ �D] are irrelevant

as they are set by the researcher in the design. They do, however, have an inuence on

the con�dence of the results.

2.1 Hypothesis Tests for Case-Control Studies|Multiplicative

Case

The relative risk (prospective) of dying given exposure to contaminant A is �2�1=�1�2.

The relative risk of dying given exposure to contaminant B is �3�1=�1�3. The relative

risk of dying if exposed to both contaminants is �4�1=�1�4. The multiplicative hypothesis
states that RRA&B = RRA �RRB so that:

�4�1=�1�4 = (�2�1=�1�2) � (�3�1=�1�3)
Taking logarithms, this becomes:

log �4+log �1�log �1�log �4�log �2�log �1+log �1+log �2�log �3�log �1+log�1+log �3 = 0

This may be rewritten as

log (�4�2�3�1)� log (�4�2�3�1) = 0

or

M = (log�1 � log�2 � log �3 + log�4)� (log �1 � log �2 � log �3 + log �4) = 0

A consistent estimate of this statistic is obtained by replacing �j and �j with �̂j and �̂j.

Deriving the variance of the resulting statistic is complicated by the fact that h1,
h2, h3, and h4 form a multinomial probability distribution. Similarly k1, k2, k3, and k4
form a multinomial probability distribution, but one which is independent of the joint

distribution of the hjkj assumption.

To derive the joint distribution of the log�j and log �j, we begin with results for the

joint distribution of the hj. Similar results hold for the outcome of the kj. For notational

simplicity we present the results using a common symbol nj where n1+n2+n3+n4 = n.
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Lemma 1 Let Æjt = 1 if outcome j is realized in observation t. The probability that

Æjt = 1 is denoted �j. Let nj denote the total number of outcome j's that are observed in

the sample of n independent draws, with

�1 + �2 + �3 + �4 = 1, n1 + n2 + n3 + n4 = n,

nj =
nX
t=1

Æjt, n =
nX
t=1

(Æ1t + Æ2t + Æ3t + Æ4t) =
nX
t=1

1:

Then E(nj) = n�j; V (nj) = n�j(1� �j), and cov(nj; nk) = �n�j�k for j 6= k.

Proof : nj =
Pn

t=1 Æjt implies E(nj) =
Pn

t=1E(Æjt) = n�j since E(Æj) = 1 ��j+0 � (1��j).
Next V (nj) =

Pn
t=1 V (Æjt). But V (Æjt) = E(Æjt)�E(Æjt)

2 = �j � �2j = �j(1� �j). Hence

V (nj) = n�j(1��j). Finally cov(nj; nk) = E[(nj�n�j)(nk�n�k)] = E(njnk)�n�jn�k�
n�kn�j + n2�j�k = E(njnk)� n2�j�k. Now

E(njnk) = E
h
(
X
t

Æjt)(
X
t

Ækt)
i
= E

hX
t

ÆjtÆkt +
X
t6=s

ÆjtÆks
i
.

But ÆjtÆkt = 0 if j 6= k in observation t (only one unique outcome is realized in each trial)

so that the �rst sum is exactly zero. The second sum consists of (n2�n) terms, which are

the products of independent random variables (since Æjt and Æks are independent when

t 6= s). The expectation of each term in the second sum is E(ÆjtÆks) = �j�k.

Hence E(njnk) = (n2 � n)�j�k. Combining these results we obtain

cov(nj; nk) = (n2 � n)�j�k � n2�j�k

= �n�j�k (3)

Combining these results into the variance covariance matrix for nj we obtain:

E

0
BBB@
n1
n2
n3
n4

1
CCCA = n

0
BBB@
�1
�2
�3
�4

1
CCCA

and

V

0
BBB@
n1
n2
n3
n4

1
CCCA = n

0
BBB@
�1(1� �1) ��1�2 ��1�3 ��1�4
��2�1 �2(1� �2) ��2�3 ��2�4
��3�1 ��3�2 �3(1� �3) ��3�4
��4�1 ��4�2 ��4�3 �4(1� �4)

1
CCCA = n(I � ��0)

where � =
� p

�1
p
�2

p
�3

p
�4

�
0

.
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To derive the variance-covariance matrix for log �̂j = log (nj=n), we use a Taylor's series

expansion to �rst-order for the logarithm. Then

log �̂j
:
= log �j +

1

�j
(�̂j � �j)

where we have evaluated the Taylor's expansion around the true but unknown �j. Then

log

0
BBB@
�̂1
�̂2
�̂3
�̂4

1
CCCA =

0
BBB@

log �1
log �2
log �3
log �4

1
CCCA+

0
BBB@

1=�1 0

1=�2
0 1=�3

1=�4

1
CCCA
0
BBB@

(�̂1 � �1)

(�̂2 � �2)

(�̂3 � �3)
(�̂4 � �4)

1
CCCA

Hence

V (log �̂j) =

0
BBB@

1=�1 0

1=�2
0 1=�3

1=�4

1
CCCAV ar(�̂j � �j)

0
BBB@

1=�1
1=�2

1=�3
1=�4

1
CCCA

0

= 1
n

0
BBB@

1=�1 0

1=�2
0 1=�3

1=�4

1
CCCA
0
BBB@
�1(1� �1) ��1�2 ��1�3 ��1�4
��2�1 �2(1� �2) ��2�3 ��2�4
��3�1 ��3�2 �3(1� �3) ��3�4
��4�1 ��4�2 ��4�3 �4(1� �4)

1
CCCA �

0
BBB@

1=�1 0

1=�2
0 1=�3

1=�4

1
CCCA

0

since V ar(�̂j) =
1

n2
V ar(nj) =

1

n

0
BBB@
�1(1� �1) ��1�2 ��1�3 ��1�4
��2�1 �2(1� �2) ��2�3 ��2�4
��3�1 ��3�2 �3(1� �3) ��3�4
��4�1 ��4�2 ��4�3 �4(1� �4)

1
CCCA .

Next nV (log �̂j)

=

0
BBB@

1=�1 0

1=�2
0 1=�3

1=�4

1
CCCA
0
BBB@

(1� �1) ��1 ��1 ��1
��2 (1� �2) ��2 ��2
��3 ��3 (1� �3) ��3
��4 ��4 ��4 (1� �4)

1
CCCA

=

0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA (4)
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Theorem 2 For the multiplicative hypothesis,

V ar(M) =

�
1

h1
+

1

h2
+

1

h3
+

1

h4

�
+

�
1

k1
+

1

k2
+

1

k3
+

1

k4

�

Proof : The multiplicative hypothesis may be written as

M =
�
1 �1 �1 1

�
0
BBB@

log �̂1
log �̂2
log �̂3
log �̂4

1
CCCA�

�
1 �1 �1 1

�
0
BBBB@

log �̂1
log �̂2
log �̂3
log �̂4

1
CCCCA

Hence

V ar(M) =
1

h

�
1 �1 �1 1

�
0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA
0
BBB@

1

�1
�1
1

1
CCCA

+
1

k

�
1 �1 �1 1

�
0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA
0
BBB@

1

�1
�1
1

1
CCCA

=

1
h

"
(1) [(1� �1)=�1 + 1 + 1� 1] +

(�1) [�1� (1� �2)=�2 + 1� 1] +

(�1) [�1 + 1� (1� �3)=�3 � 1] +

(1) [�1 + 1 + 1 + (1� �4)=�4]

#
+ similar terms in �

=
1

h

"
(1� �1)

�1
+ 1 +

(1� �2)

�2
+ 1 +

(1� �3)

�3
+ 1 +

(1� �4)

�4
+ 1

#
+

similar terms in �

=
1

h

�
1

�1
+

1

�2
+

1

�3
+

1

�4

�
+ similar terms in � (5)

Hence

V ar(M) =

�
(
1

h�1
+

1

h�2
+

1

h�3
+

1

h�4
) + (

1

k�1
+

1

k�2
+

1

k�3
+

1

k�4
)

�

=

�
1

h1
+

1

h2
+

1

h3
+

1

h4

�
+

�
1

k1
+

1

k2
+

1

k3
+

1

k4

�
. (6)
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2.2 Woolf's Method

A similar result for the variance of a log odds-ratio itself is derived as follows. Consider

log (�4�1=�1�4), the log-odds ratio for the relative risk at the combined exposure level in

a case control study. We have

logRRA&B = log (�4�1=�1�4) = log (�4=�1)� log (�4=�1)

Next, without loss of generality, assume that �1 and �4 have been normalized so that

�1+�4 = 1 (This may be accomplished by setting �01 = �1=(�1+�4) and �
0

4 = �4=(�1+�4).

Now �01 + �04 = 1 and the log odds-ratio remains unchanged since

logRRA&B = log (�04�
0

1=�
0

1�
0

4) = log (�4�1=�1�4).

The expression for log (�4=�1) is in the form log
�

�
1��

�
where � = �4 and (1� �) = �1. A

Taylor's series expansion of log
�

�
1��

�
demonstrates that:

log
�

1� �
= log

�0

1� �0
+

1� �

�

"
(1� �) + �

(1� �)2

# �����
�0

� (�� �0)

= log
�0

1� �0
+

�� �0

�0(1� �0)
. (7)

Next

V ar

 
log

�̂

(1� �̂)

!
=

 
1

�̂(1� �̂)

!2
�̂(1� �̂)

N

=
1

N�̂(1� �̂)
(8)

where �̂ = 1
N

PN
t=1 Æt is the unbiased estimator of �, E(�̂) = � and V ar(�̂) = �̂(1 �

�̂)=N and N is the number of independent trials resulting in
PN

t=1 Æt exposure cases (as
compared to non-exposure cases). Similar expressions follow for the theta distribution.

Now

V ar(log (�̂4=�̂1)) =
1

h�̂4�̂1
=

h

(h�̂4)(h�̂1)

=
h1 + h4

h1h4

=
1

h4
+

1

h1
. (9)

Then

V ar(logRRA&B) =
1

h1
+

1

h4
+

1

k1
+

1

k4

9



Note that the repeated application of this result (assuming independence) to the

multiplicative hypothesis would not produce the correct result in a case control setting

because RRA&B, RRA and RRB are mutually correlated.

This result is also known as Woolf's method, and is sometimes written

V ar

�
log

AD

BC

�
=

1

A
+

1

B
+

1

C
+

1

D

where RR = AD=BC and A denotes the number of cases with exposure, B denotes cases

without exposure, C denotes controls with exposure, and D denotes controls without

exposure.

It is also possible to derive the covariances of the relative risk measures. Consider

RRA = �2�1=�1�2 and RRA&B = �4�1=�1�4. Then

logRRA = (log�2 � log�1)� (log �2 � log �1)

and

logRRA&B = (log�4 � log �1)� (log �4 � log �1).

Clearly, these are correlated because of the common components. Consider the � com-

ponents �rst (analogous results apply to the � components). Recall that

Var(log �̂) =
1

h

0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA

But log �2 � log �1 =
�
�1 1 0 0

�
2
6664
log �1
log �2
log �3
log �4

3
7775 so that

Var(log�2 � log�1) =�
1

h

� �
�1 1 0 0

�
0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA
0
BBB@
�1
1

0

0

1
CCCA

=

�
1

h

� �
�1 1 0 0

�
2
6664
�(1� �1)=�1 � 1

1 + (1� �2)=�2
0

0

3
7775

=
1

h

 
(1� �1)

�1
+ 1 +

(1� �2)

�2
+ 1

!

=

�
1

h

��
1

�1

�
+

�
1

h

��
1

�2

�
=

1

h1
+

1

h2
(10)
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Combining this with the analogous result for log �2 � log �1, we obtain:

Var(logRRA) =
1

h1
+

1

h2
+

1

k1
+

1

k2

This is exactly the Woolf result shown above. Similarly:

Var(logRRA&B) =
1

h1
+

1

h4
+

1

k1
+

1

k4

and

Var(logRRB) =
1

h1
+

1

h3
+

1

k1
+

1

k3

Next consider the covariance between logRRA and logRRA&B. Again, we consider

the � terms �rst. Using the fact that cov(t0x; s0x) = t0Var(x)s for conformable column

vectors, we have, (for the � terms only)

cov[logRRA; logRRB] =

�
1

h

��
�1 1 0 0

�
�

0
BBB@

(1� �1)=�1 �1 �1 �1
�1 (1� �2)=�2 �1 �1
�1 �1 (1� �3)=�3 �1
�1 �1 �1 (1� �4)=�4

1
CCCA
0
BBB@
�1
0

0

1

1
CCCA

=

�
1

h

��
�1 1 0 0

�
2
6664
�(1� �1)=�1 � 1

1� 1

1� 1

1 + (1� �4)=�4

3
7775

=

�
1

h

��
1

�1

�
=

1

h1
(11)

A similar covariance term can be derived for the � terms.

Thus cov[logRRA; logRRA&B] =
1
h1

+ 1
k1
.

Combining analogous results for all log-odds ratios we obtain:

Var

2
64 logRRA

logRRB

logRRA&B

3
75 =

2
64

1
h1
+ 1

h2
+ 1

k1
+ 1

k2

1
h1
+ 1

k1

1
h1

+ 1
k1

1
h1
+ 1

k1

1
h1
+ 1

h3
+ 1

k1
+ 1

k3

1
h1

+ 1
k1

1
h1
+ 1

k1

1
h1
+ 1

k1

1
h1

+ 1
h4
+ 1

k1
+ 1

k4

3
75

We now apply these results to derive the variance of the multiplicative statistic, M . We

have

M = logRRA&B � logRRA � logRRB

=
�
�1 �1 1

� 264 logRRA

logRRB

logRRA&B

3
75
:

11



Hence, V ar(M) =

�
�1 �1 1

� 264
1
h1

+ 1
h2
+ 1

k1
+ 1

k2

1
h1
+ 1

k1

1
h1
+ 1

k1
1
h1

+ 1
k1

1
h1
+ 1

h3
+ 1

k1
+ 1

k3

1
h1
+ 1

k1
1
h1

+ 1
k1

1
h1
+ 1

k1

1
h1
+ 1

h4
+ 1

k1
+ 1

k4

3
75
0
B@
�1
�1
1

1
CA

=
�
�1 �1 1

� 264
�( 1

h1
+ 1

h2
+ 1

k1
+ 1

k2
)

�( 1
h1

+ 1
h3
+ 1

k1
+ 1

k3
)

( 1
h1
+ 1

h4
+ 1

k1
+ 1

k4
)� ( 1

h1
+ 1

k1
)� ( 1

h1
+ 1

k1
)

3
75

=

�
1

h1
+

1

h2
+

1

h3
+

1

h4

�
+

�
1

k1
+

1

k2
+

1

k3
+

1

k4

�
(12)

Hence, this formula for V ar(logM) agrees with our previous derivation.

To test the multiplicative hypothesis, we note that logM should be zero if the mul-

tiplicative hypothesis is true. Therefore we can perform a Wald test using the ratio

of log(M) to its standard error
q
V ar(logM). This will have an asymptotic normal

distribution. (Rao, Linear Statistical Inference and its Applications).

2.3 Hypothesis Tests for Case-Control Studies � Additive Case

We next consider the additive hypothesis, which may be stated:

A = RRA&B � (RRA +RRB � 1) = 0

i.e., that the relative risk of dying from contaminants A&B is equal to the sum of the

relative risks from A and B separately less one. To derive a variance for the statistic A,

we note that

V ar(A) = V ar(RRA&B) + V ar(RRA) + V ar(RRB)

�2cov(RRA&B; RRA +RRB)

= V ar(RRA&B) + V ar(RRA) + V ar(RRB)

+2cov(RRA; RRB)� 2cov(RRA&B; RRA)

�2cov(RRA&B; RRB) (13)

In the derivations presented thus far, we have found expressions for the variances

and covariances of log relative risks. Clearly, the additive hypothesis requires variances

and covariances of the relative risks themselves. One approach is to develop con�dence

intervals for the log relative risks, and translate them into con�dence intervals for the

relative risks by exponentiating the terms in the con�dence interval inequality. In the

presence of correlation, however, the best one can achieve with this technique are broad

12



intervals based on the Bonferroni inequalities. A second approach uses the fact that if

the log relative risks are approximately normal, then the relative risks are approximately

log normally distributed. Again, the joint distribution of log normal random variables is

not straightforward. Consequently, this approach similarly becomes unworkable.

Instead, we follow Rothman (1976) and rely on a Taylor's series expansion. Speci�-

cally, we approximate the logarithm using:

log y
:
= log y0 +

1

y0
(y � y0) so that V ar(log y)

:
=

1

y20
V ar(y) . Hence:

V ar(y) = y20 V ar(log y)

The accuracy of the approximation improves for y close to y0, which we will achieve

by taking y to be a consistent estimate of y0.

Collecting the terms required for the variance of the additive statistic, V ar(A), we

have:

V ar(RRA&B)
:
= (RRA&B)

2 �
h 1
h1

+
1

h4
+

1

k1
+

1

k4

i

V ar(RRA)
:
= (RRB)

2 �
h 1
h1

+
1

h2
+

1

k1
+

1

k2

i

V ar(RRB)
:
= (RRb)

2 �
h 1
h1

+
1

h3
+

1

k1
+

1

k3

i

For the covariance terms we employ similar Taylor's expansions. Speci�cally let:

log y
:
= log y0 +

1

y0
(y � y0) and

log z
:
= log z0 +

1

z0
(z � z0) . Then

cov(log y; logz)
:
=

1

y0z0
cov(y � y0; z � z0) so that

cov(y; z)
:
= (y0z0) � cov(log y; log z). Then:

cov(RRA; RRB) = (RRA �RRB) � ( 1
h1

+
1

k1
)

cov(RRA&B; RRA) = (RRA&B �RRA) � ( 1
h1

+
1

k1
)

cov(RRA&B; RRB) = (RRA&B �RRB) � ( 1
h1

+
1

k1
)

13



Then we have:

V ar(A)
:
= (RRA&B)

2 �
h 1
h1

+
1

h4
+

1

k1
+

1

k4

i

+(RRA)
2 �
h 1
h1

+
1

h2
+

1

k1
+

1

k2

i

+(RRB)
2 �
h 1
h1

+
1

h3
+

1

k1
+

1

k3

i

+2(RRA �RRb) � ( 1
h1

+
1

k1
)

�2(RRA&B �RRA) � ( 1
h1

+
1

k1
)

�2(RRA&B �RRB) � ( 1
h1

+
1

k1
) (14)

A Wald test may be conducted using the ratio of A to its standard error
q
V ar(A).

Asymptotically, this will be standard normal, given the limiting distribution of the joint

multinomial probabilities for � and �.

Since the Wald tests are valid only asymptotically we also consider a likelihood ratio

approach.

2.4 Maximum Likelihood

The likelihood function for the case control study is
Q4
i=1 �

hi
i �

ki
i and is maximized subject

to the constraint
P
�i � 1 =

P
�i � 1 = 0. The log likelihood function is

F =
X

hi log �i +
X

ki log �i .

This is maximized subject to the constraints:

F1 =
X

�i � 1 = 0 (15)

F2 =
X

�i � 1 = 0 (16)

and F3 =
�4�1

�1�4
� �2�1

�1�2
� �3�1

�1�3
+ 1 = 0 \additivity" or

F4 = log (�1�2�3�4)� log (�1�2�3�4) = 0 \multiplicativity"

Note that F3 may be rewritten:

F3 =
�4

�4
� �2

�2
� �3

�3
+
�1

�1

=
�1

�1
� �2

�2
� �3

�3
+
�4

�4
= 0 (17)
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2.4.1 Additive Constraint

For the additive model, we maximize the Lagrangian

FA = F + �1F1 + �2F2 + �3F3

where �1, �2, and �3 are Lagrange multipliers. The �rst order conditions are:

@FA

@�i
=

hi

�i
+ �1 +

Æi�3

�i
= 0 (18)

@FA

@�ii
=

ki

�i
+ �2 � Æi�i�3

�2i
= 0 and (19)

@FA

@�i
= Fi = 0 i = 1; 2; 3 (20)

where Æ1 = �Æ2 = �Æ3 = Æ4 = 1.

It follows that:

X
�i
@FA
@�i

= h+ �1 = 0 and
X

�i
@FA
@�i

= k + �2 = 0

Hence, �̂1 = �h and �̂2 = �k and the remaining conditions may be written:

(hi � h�̂i)�̂i + Æi�̂i�̂3 = 0

(ki � k�̂i)�̂i � Æi�̂i�̂3 = 0

and
X

Æi
�̂i

�̂i
= 0

Writing xi = �̂i=�̂i and solving the �rst order conditions implies:

xi =
(Æikih� k�̂3)�

q
(Æikih� k�̂3)2 � 4Æihihk�̂3

2�̂3h
(21)

Since
P

i Æixi = 0, it follows that:

0 =
X
i

�
(kih� k�̂3Æi)� Æi

q
(Æikih� k�̂3)2 � 4Æihihk�̂3

�

= kh+
X
i

�Æi
q
(Æikih� k�̂3)2 � 4Æihihk�̂3 (22)

This equation in �̂3 may be solved for each of 16 possible sign combinations (+ or - for

each of the four terms in the sum).

15



Using xi = �i=�i, the �rst two �rst order conditions may be written

(ki � k�i) = Æixi�3 and (hi � h�i) = �Æixi�3
Hence, (ki � k�i) = �(hi � h�i), which implies

ki + hi = k�i + h�i = �i(k + hxi) or

�i =
ki + hi

k + hxi
. (23)

Now substitute into the �rst order condition:

ki � k

�
ki + hi

k + hxi

�
= Æixi�3 or

ki(k + hxi)� k(ki + hi) = (k + hxi)Æixi�3

kik + kixih� k(ki + hi) = kÆixi�3 + x2ihÆi�3

�khi = xi(�kih + kÆi�3) + x2ihÆi�3

�khi = xi(kÆi�3 � kih) + x2ihÆi�3

�khiÆi = xi(kÆ
2
i �3 � kihÆi) + x2ihÆ

2
i �3

Now use Æ2 = 1 as Æ = 1 or �1. Then:

�khiÆi = xi(k�i � kihÆi) + x2i (h�3) so that

0 = x2i (h�3) + xi(k�3 � kihÆi) + khiÆi

The last equation establishes a bound on xi since the discriminant of the quadratic

equation must be positive. The discriminant is:

(k�3 � kihÆi)
2 � 4(h�3)(khiÆi) � 0

k2i h
2 � 2Æikihk�3 + k2�23 � 2 � 2Æihihk�3 � 0
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�23 � 2Æi

�
h

k

�
�3(ki + 2hi) + k2i

�
h

k

�2
� 0

Next, solving this quadratic at the point of equality to zero for �3, we obtain:

��3i =
2Æi

�
h
k

�
(ki + 2hi)�

r
4Æ2i

h2

k2
(ki + 2hi)2 � 4k2i

�
h
k

�2
2

= Æi

 
h

k

!
(ki + 2hi)�

vuuth2

k2
(ki + 2hi)2 � k2i

 
h

k

!2

=

 
h

k

!�
(ki + 2hi)Æi �

q
k2i + 4kihi + 4h2i � k2i

�

=

�
h

k

� �
Æi(ki + 2hi)� 2

q
hi(hi + ki)

�
(24)

Since the quadratic has a positive second derivative, the inequalities are �3 � min��3i
and �3 � max��3i.

Setting, ai =

�
h
k

��
ki + 2hi � 2

q
h2i + hiki

�
, Gardner and Munford (1980) show that

�min(a2; a3) � �̂3 � min(a1; a4).

Unfortunately, while these bounds bracket the true value of �̂3 they are not guaranteed

to produce sign changes in the equation of interest. Therefore, an iterative solution is

required to bracket each of the solutions for �̂3. We have found that �̂3 = 0 will always

be a trivial solution to the equation above, and should be ignored.

Once �̂3 is found �̂i and �̂i are found from the �rst order conditions.

2.4.2 Multiplicative Constraint

For the multiplicative model, we maximize the Lagrangian:

FM = F + �1F1 + �2F2 + �4F4

with F =
X

hi log�i +
X

ki log �i and

F1 =
X

�i � 1

F2 =
X

�i � 1

F4 =
X

Æi log �i �
X

Æi log �i
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we have:
@FM

@�i
=
hi

�i
+ �1 + �4

Æi

�i
= 0

@FM

@�i
=
ki

�i
+ �2 + �4

�(Æi)
�i

= 0 . Then:

X
�i
@FM

@�i
=
X

hi + �1 + �4
X

Æi = 0 ) �1 = �h
X

�i
@FM
@�i

=
X

ki + �2 + �4
X�(Æi) = 0 ) �2 = �k

hi

�i
� h+

�4Æi

�i
= 0 ) hi � h�i + �4Æi = 0

h�i = hi + �4Æi

�i =
hi + Æi�4

h

ki

�i
+ �2 + �4

 �Æi
�i

!
= 0 )

ki

�i
� k + �4

 �Æi
�i

!
= 0 )

ki � k�i + �4(�Æi) = 0

�k�i = �4Æi � ki

�i =
�4Æi � ki

�k =
ki � �4Æi

h

Finally, substituting into the constraint implies:"
h1 + Æ1�4

h

# "
k2 � Æ2�4

k

# "
k3 + Æ3�4

k

# "
h4 + Æ4�4

h

#
� similar terms = 0

which implies (h1 + �4)(k2 + �4)(k3 + �4)(h4 + �4)� similar terms = 0.

2.4.3 Unconstrained Maximum Likelihood

The log likelihood under the constraint of additivity or multiplicativity is
P
hi log �̂i +P

ki log �̂i. For the unconstrained case we maximize the Lagrangian

L =
X

hi log�i +
X

ki log �̂i +  1
hX

�i � 1
i
+  2

hX
�i � 1

i
The �rst order conditions are

@L

@�i
=
hi

�i
+  1 = 0 and

@L

@ 1
=
X

�i � 1 = 0

@L

@�i
=
ki

�i
+  2 = 0 and

@L

@ 2
=
X

�i � 1 = 0
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These equations imply that �̂i = hi=h and �̂i = ki=k for the unconstrained maximum

likelihood.

Hypothesis tests may be based on �2(log likelihood unconstrained � log likelihood

constrained), which has a �2 distribution with one degree of freedom.

While the additive and multiplicative models are non-nested, a comparison of the log

likelihood values provides a basis for a non-nested hypothesis test.

3 Bonferroni Intervals and Monte Carlo Simulations

3.1 Bonferroni Interval

The additive statistic A = RRA&B �RRA�RRB � 1 is composed of three random vari-

ables. A con�dence interval for each component may be established using the variance of

the log-odds ratio. Set at appropriate levels, these con�dence intervals may be combined

using basic results from probability theory. For a 95 percent con�dence interval, chose a

signi�cance level such that one third of one half of 5 percent probability is in each tail of

a normal distribution. Then:

prob[�2:39 � N(0; 1) � 2:39] = 1� :05

6
= 0:98334

Since (log R̂R � logRR)=� �A N(0; 1) we have

prob[�2:39� � log R̂R� logRR � 2:39�] = 0:98334

or

prob[�2:39� + log R̂R � logRR � 2:39� + log R̂R] = 0:98334

so that

prob[R̂Re�2:39� � RR � R̂Re2:39�] = 0:98334

Similarly,

prob[R̂RA&Be
�2:39�RRA&B � RR � R̂RA&Be

2:39�RRA&B ] = 0:98334

and so forth for R̂RA and R̂RB. Similarly:

Prob[CA&B
low � RRA&B � CA&B

high ] = :98334

Prob[CA
low � RRA � CA

high] = :98334

Prob[CB
low � RRB � CB

high] = :98334
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Denoting the intervals within square brackets as A,B, and C, we have by the Bonferroni

inequality:

prob[A \ B \ C] � 1�
�
P (Ac) + P (Bc) + P (Cc)

�
Then

prob[CA&B
low � RRA&B � CA&B

high \

�CA
high � �RRA � �CA

low \

�CB
high � �RRB � �CB

low] � 1� :05 = :95 (25)

so that

prob[CA&B
low � CA

high � CB
high � RRA&B �RRA � RRB � CA&B

high � CA
low � CB

low] � :95

and

prob[CA&B
low � CA

high � CB
high � 1 � A � CA&B

high � CA
low � CB

low � 1] � :95

As noted before, given the tendency of the intervals to be broad and imprecise, these

intervals should be rejected in favor of Wald or Likelihood Ratio tests.

3.2 Simulation Methods

Consistent estimates of the �j and �j are formed using hj=h and kj=k respectively. A

Monte Carlo technique draws a random multinomial deviate with marginal probabilities

�j and �j. Then, the empirical distribution of the statistics M and A are formed using

repeated simulations. The empirical distributions establish con�dence intervals centered

around the realized value of the statistic. If these con�dence intervals contain zero, then

the hypothesis is not rejected.

4 Synergy Indices

4.1 Rothman's S Index

Rothman (1976) considers the independently-acting agents A and B and a background

e�ect C. C is assumed to act independently of A and B.

Let PT denote the probability that disease develops when both A and B are present

in addition to the background C. PA is the probability that disease develops if A were
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to act in isolation (without background). We de�ne PB similarly. PC is the probability

of getting disease from background only. Then

PT = P [A [B [ C]

= P [A] + P [B] + P [C]� P [A \ B]� P [A \ C]�

P [B \ C] + P [A \ B \ C] (26)

Now, under independence we have:

PT = P [A] + P [B] + P [C]� P [A]P [B]� P [A]P [C]� P [B]P [C] + P [A]P [B]P [C]

Let RAB = PT denote the combined risk.

Let RA = P [A [ C] = P [A] + P [C]� P [A]P [C]

Let RB = P [B [ C] = P [B] + P [C]� P [B]P [C]

Let R0 = P [C]

Then, under independence:

RAB �R0 = (RA � R0) + (RB �R0)� PAPB(1� PC)(1� PC)

(1� PC)

= (RA � R0) + (RB �R0)� (RA � R0)(RB � R0)

(1� R0)
(27)

Rothman's synergy index is de�ned as the ratio of the left-hand side of this equation to

the right-hand side.

S =
(RAB �R0)

(RA � R0) + (RB �R0) +
(RA�R0)(RB�R0)

(1�R0)

Under independence, the numerator and denominator will be equal and the synergy index

will equal one. Ignoring the product terms in the denominator, which are likely to be

small, Rothman's index becomes:

S =
(RAB �R0)

(RA � R0) + (RB �R0)
=

RRAB � 1

RRA +RRB � 2

where RRAB = RRAB=R0 etc. When S = 1, we obtain:

RRAB � 1 = RRA +RRB � 2 or

RRAB = RRA +RRB � 1 (28)
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which we recognize as the additive hypothesis.

An alternative expression for Rothman's S index is

S =
ERRAB

ERRA + ERRB

where ERRAB = RRAB � 1 and ERRA = RRA � 1 etc. Here, ERR denotes excess

relative risk.

4.2 Attributable Proportion

The attributable proportion is de�ned as the excess relative risk compared to the additive

model divided by the combined relative risk. Formally,

AP =
ERRAB � (ERRA + ERRB)

(ERRAB + 1)

=
(RAB=R0 � 1)�

h
(RA=R0) + (RB=R0 � 1)

i
[RAB=R0 � 1 + 1]

=
RAB � R0 � (RA +RB � 2R0)

RAB

=
RAB � (RA +RB � R0)

RAB

=
RRAB � (RRA +RRB � 1)

RRAB

(29)

When the additive model is correct, AP = 0.

Rothman's index S and the attributable proportion AP measure departure from

additivity. They do not include the multiplicative hypothesis as a natural alternative.

Therefore we consider an alternative which nests both hypotheses.
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4.3 Additive-Multiplicative Measure

De�ne

 =
(RRA&B � 1)� (RRA � 1)� (RRB � 1)

(RRA � 1)(RRB � 1)

=
RRA&B � RRA �RRB + 1

(RRA � 1)(RRB � 1)
(30)

Note that when  = 0 the additive hypothesis is true. When  = 1 we have:

RRA&B = RRA � RRB + 1 = RRARRB � RRA �RRB + 1

which implies: RRA&B = RRA �RRB, i.e. the multiplicative hypothesis.

While diÆcult, a con�dence interval may be derived by examining the distribution of

log . Note that

log  = logA�
�
log (RRA � 1) + log (RRB � 1)

�
where A is the additive statistic. Then

V ar(log ) = V ar(logA)� V ar
�
log (RRA � 1)

�
+ V ar

�
log (RRB � 1)

�
+2cov

h
log (RRA � 1); log (RRB � 1)

i
�2cov

h
logA; log (RRA � 1)

i
�2cov

h
logA; log (RRB � 1)

i
: (31)

For case-control studies, we have previously derived these components. However, the

utility of the expansion is questionable given that when the additive hypothesis is true,

the log transformation is not de�ned.

5 Cohort Studies

Cohort studies derive standardized morbidity or mortality rates with reference to an

external reference group. The standardized mortality rate (SMR) is also known as an

observed to expected ratio because it is constructed by computing the expected number

of outcomes (deaths) based on the external reference group's rates. Given the large

samples from which they are typically based, the latter rates are assumed to be known

without error.

The cohort method compares the death rates between groups for those exposed to

contaminant A (with or without exposure to B) and for those not exposed to contaminant

A (with or without exposure to B). For present purposes, contaminant A will be smoking,

while contaminant B will be asbestos. Death rates are calculated and given in the

following 2� 2 table:
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non-smoking smoking

asbestos dNS
A dSA

non-asbestos dNS
NA dSNA

The cohort method follows a group of individuals with some exposure to asbestos.

Death rates are determined over time for this cohort. A sample of individuals from a

non-asbestos exposed population is matched to the exposed population at the aggregate

level (i.e., there is a similar number of individuals of each age group).

Before discussing the derivation of the death rates dij, we note that cohort studies

make each cell of the 2� 2 table independent by design. This greatly simpli�es the hy-

pothesis testing and determination of con�dence intervals. Relative risks are determined

as follows:

RRA = relative risk of asbestos exposure = dNS
A =dNS

NA

RRS = relative risk of smoking exposure = dSNA=d
NS
NA

RRAS = the relative risk of combined exposure = dSA=d
NS
NA

The additive hypothesis is stated as:

RRAS � RRA � RRS + 1 = 0

or
dSA
dNS
NA

=
dNS
A

dNS
NA

+
dSNA

dNS
NA

� 1

or

dSA = dNS
A + dSNA � dNS

NA

or

A� = dNS
A + dSNA � dSA � dNS

NA

Under additivity A� = 0.

The multiplicative hypothesis is stated as:

RRAS = RRA �RRS = 0

or
dSA
dNS
NA

� dNS
A

dNS
NA

� d
S
NA

dNS
NA

= 0

or

dSA � dNS
NA � dNS

A � dSNA = 0 (32)

or

log dSA + log dNS
NA � log dNS

A � log dSNA = 0
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or

M� = log dNS
A + log dSNA � log dSA � log dNS

NA = 0

We note that the multiplicative statistic is similar to the additive statistic with the

exception that it is stated as a sum of logarithms. This suggests that the two hypotheses

may be nested using a Box-Cox transformation.

It is worth noting that (32) implies

dNS
A

dSA
=
dNS
NA

dSNA

which states that the columns in the table are proportional to one another. Similarly,

the rows are in proportion if the multiplicative hypothesis is correct. These are common

statements of independence and can be tested via Pearson Chi-squared statistics for

such tables. Finally, given the relationship between contingency tables and the log-linear

model, we should expect a direct test of the multiplicative hypothesis from the log-linear

model.

Suppose log (P [Y1; Y2]) = �0 + �1Y1 + �2Y2 + �12Y1 � Y2 Then

log (P (0; 0)) = �0

log (P (0; 1)) = �0 + �2

log (P (1; 0)) = �0 + �1

log (P (1; 1)) = �0 + �1 + �2 + �12

If P (0; 0) is estimated by dNS
NA, P (1; 0) by d

NS
A , P (0; 1) by dSNA, and P (1; 1) by d

S
A (after

suitable normalization), then the multiplicative hypothesis may be stated as:

M� = (�0 + u1) + (�0 + �2)� (�0 + �1 + �2 + �12)� (�o) = ��12
Then, M� = 0 (the multiplicative hypothesis) if and only if the interaction parameter

�2 = 0 in the log-linear model.

5.1 Determination of Death Rates

The death rate is de�ned as the number of deaths per 100,000 person years. This is

typically measured by the number of deaths observed in the cohort divided by the number

of person years multiplied by 100,000.

25



For example, suppose that a particular cohort has NNS
A individuals who are non-

smokers but who are exposed to asbestos. Suppose that these NNS
A individuals are

followed for Y NS
A person years (on average Y NS

A =NNS
A years per person). Suppose that

hNS
A of these individuals die during the period of observation. Then

dNS
A =

 
hNS
A

NNS
A

! 
NNS
A

Y NS
A

!
� 100; 000:

The stochastic component in the expression is the binomially distributed random

variable hNS
A that denotes the number of observed deaths in NNS

A trials. Let PNS
A denote

the true but unobserved probability of dying. Then P̂NS
A = hNS

A =NNS
A is a consistent

estimate of PNS
A .

Now E(P̂NS
A ) = PNS

A and V ar(P̂NS
A ) =

PNS
A (1� PNS

A )

NNS
A

:

Then

V ar(dNS
A ) = V ar(P̂NS

A ) �
"
NNS
A

Y NS
A

#2
� 100; 0002

When logarithmic transformations are employed we have

log dNS
A = log P̂NS

A + log

"
NNS
A

Y NS
A

#
+ log (100; 000) :

Recall that a Taylor's series expansion shows that log P̂
:
= logP0 +

1
P0
(P̂ � P0) so that

V ar(log P̂ ) =
1

P 2
0

P0(1� P0)

N
=

(1� P0)

P0N

Then

V ar(log (dNS
A ))

:
=

(1� P̂NS
A )

P̂NS
A NNS

A

Before proceeding with the formula for the variance of the A� and M� statistics, we

note that replacing PNS
A by P̂NS

A in the variance formula is valid asymptotically. Some

researchers have noted that it may be more accurate in small samples to use a chi-square

approximation.

To do this, we set �2 = (P̂�P )
P (1�P )=N

. Then we set the �2 value to a critical level for the

appropriate size test. Let �2r be the critical value. Then

�2r =
(P̂ � P )2

P (1� P )=N
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so that

P̂ � 2P̂P + P 2 = �2rP (1� P )=N

=
P

N
�2r �

P 2

N
�2r (33)

Then

P 2

 
�2r
N

+ 1

!
+ P

 ��2r
N

� 2P̂

!
+ P̂ 2 = 0

is a quadratic equation that may be solved for P . A con�dence bound is derived us-

ing the two solutions of the quadratic equation.

5.2 Variance of the Additive and Multiplicative Statistics

Next, we derive the variance of the additive and multiplicative statistics for cohort studies.

Recall that

A� = (dNS
A � dSA)� (dNS

NA � dSNA)

For the non-asbestos exposed cohort, the rates dNS
NA and dSNA are determined from

large samples and are considered non-stochastic. Therefore the variance is determined

from the components dNS
A and dSA, which are stochastic but independent. In this case,

V ar(A�) = V ar(dNS
A ) + V ar(dSA)

=

"
P̂NS
A (1� P̂NS

A )

NNS
A

# 
NNS
A

Y NS
A

!2

� (100; 000)2 +
"
P̂ S
A(1� P̂ S

A)

NS
A

# 
NS
A

Y S
A

!2

� (100; 000)2 (34)

For the multiplicative statistic,

M� = [(log dNS
A )� (log dSA)]� [(log dNS

NA)� (log dSNA)]

so that

V ar(M�) =
(1� P̂NS

A )

P̂NS
A NNS

A

+
(1� P̂ S

A)

P̂ S
AN

S
A
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These variances are used to calculate standard errors, con�dence intervals, and Wald

tests for the additive and multiplicative hypotheses.

For instance, M�=
q
V ar(M�) is asymptotically standard normally distributed under

the null hypothesis that M� = 0.

5.3 Variance of the Synergy Index

To derive the variance of S, V ar(S) we �rst �nd logS.

logS = log (RAB �R0)� log
h
(RA �R0) + (RB � R0)

i

For cohort studies, we have:

logS = log (RRAB � 1)� log
h
(RRA � 1) + (RRB � 1)

i

= log

 
dAS
dNS
NA

� 1

!
� log

" 
dNS
A

dNS
NA

� 1

!
+

 
dSNA

dNS
NA

� 1

!#

= log(dSA � dNS
NA)� log(dNS

A + dSNA � 2dNS
NA)

V ar(logS) =
V ar(dSA)

(dSA � dNS
NA)

2
+

V ar(dNS
A )

(dNS
A + dSNA � 2dNS

NA)
2

(35)

where we have used the fact that V ar(dSNA) = V ar(dNS
NA) = 0 in cohort studies since

these variables are assumed to be non-stochastic.

For case-control studies, we have:

V ar(logS) =
V ar(RRAB)

(RRAB � 1)2
+
V ar(RRA) + V ar(RRB) + 2cov(RRA; RRB)

(RRA +RRB � 2)2
(36)

where the relevant components were derived above in the case-control section.

6 Conclusion

Case-control, cohort, and prevalence studies provide varying types of information to

determine relative risks and attendant con�dence levels. We have considered several

methods for testing additivity and multiplicativity hypotheses using Wald and likelihood

ratio techniques. In these cases, we have relied on asymptotic expectation for which the
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small sample populations are unknown. Our empirical results are reported in a companion

paper and, generally, we �nd agreement in our conclusions regarding the additivity or

multiplicativity hypothesis whether the analysis is conducted using Wald or likelihood

ratio methods.
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