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Status Quo Bias in Bargaining: An extension of the

Myerson Satterthwaite Theorem with an application

to the Coase Theorem

Richard D. McKelvey Talbot Page

Abstract

We use a generalized version of the Myerson-Satterthwaite theorem to study
ineÆciencies in bilateral bargaining over trade of an indivisible good, where
there is two sided private information on the valuations. We show that when
preferences are convex and quasi linear, and when the private information
represents the magnitude of the utility gain or loss and follows a uniform
distribution, that the most eÆcient mechanism always exhibits a bias towards
the status quo. In the case that utility functions are quadratic in the amount
traded, we prove that for any incentive compatible direct mechanism, there
is an expected bias towards the disagreement point. In other words, for the
class of preferences we study, there is a strategic advantage to property rights
in the Coase bargaining setup in the presence of incomplete information.



1 Introduction

We consider the problem of bilateral trade of a divisible good, when there is two sided

incomplete information about the valuations. The questions we ask are whether in such

a case there will be ineÆciencies, and if so, whether there is any bias in the direction

that outcomes tend to deviate from the eÆcient allocation. This is of course not a new

problem. The Myerson-Satterthwaite (MS) theorem and its corollary identify conditions

under which bilateral trading leads to ineÆciency. In this paper we generalize the MS

theorem, investigate the existence of bias when there is no eÆcient equilibrium, and

apply the results to the Coase theorem.

Generalization of the MS Theorem. The original MS theorem is for an indivisible

good, or equivalently for the case where the good is divisible but utilities are linear.

Theorems 1 and 3 generalize the MS theorem to non-linear utilities and a divisible good.

The generalization is straightforward and follows closely the proof of the original theorem.

Bias. Theorem 4 shows for concave utilities and separable information, that if

there is no fully eÆcient Bayesian Equilibrium (BE), the most eÆcient BE has a bias

towards the status quo: the equilibrium amount traded will never be more than the

eÆcient amount of trade and will sometimes be less. In Proposition 5, we show that if

utilities are quadratic, that for every BE, the expected amount of trade is less than the

expected eÆcient amount of trade.

Application to the Coase Theorem. The Coase theorem says that when property

rights are well de�ned and enforced and when there are no transaction costs, direct

bargaining over the amount of an environmental harm will lead to (A) eÆciency and

(B) neutrality (the amount of the harm will be the same no matter which way the

rights were initially allocated). As noted by Fudenberg and Tirole (1992, p 279), the

original MS theorem is in apparent conict with (A), the eÆciency claim of the Coase

theorem. The generalization of the MS theorem suggests that the conict continues to

2



exist when there are non-linear utilities and a divisible harm,1 and our investigation of

the bias suggests a conict with (B), the neutrality claim. For example, when rights are

allocated to the victim, strategic use of private information appears to lead toward less

pollution than is eÆcient, and when rights are allocated toward the polluter strategic

use of private information appears to lead to less abatement (and hence more pollution)

than is eÆcient.

These results imply that the Coase theorem does not extend to the environment

of private information. In a separate experimental paper (McKelvey and Page 1997) we

estimate the amount of ineÆciency and the strength of the bias toward the disagreement

point in a speci�c game form. We �nd that both are substantial and the bias is in the

predicted direction.

Other literature has considered the e�ects of private information in the Coase

Theorem. Samuelson [1985] argues that in the indivisible good case that ineÆciencies

can be expected. Farrell [1987] considers a case of a divisible good with quadratic utility

and argues that in the presence of private information that one can achieve eÆcient

incentive compatible mechanisms, but not if voluntary participation is required. Illing

[1992] considers a divisible good with quadratic utility similar to the one considered in

section 4 of this paper, and shows that under a particular game form, that ineÆciency

arises and distorts the outcome in the direction of the status quo. The above papers

are for bilateral bargaining. Mailath and Postlewaite [1990] show that for n-person

bargaining over an indivisible good, that the probability of an eÆcient action goes to zero.

We only consider bilateral bargaining. Our contribution to the literature on the Coase

Theorem is to show that for the case of an indivisible good, at least for the quadratic

case considered in the literature, ineÆciencies can be expected to occur for any Bayes

equilibrium, regardless of the game form that is used, and that these ineÆciencies have

1Contrast this with results of Crampton, Gibbons, and Klemperer (1987), who �nd that there exist ex
post eÆcient mechanisms for dissolving a partnership, as long as the ownership shares of each individual
are not too great. In the Coase setting one of the agents has an ownership share of one. So there is no
conict between these results.
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a bias towards the status quo.

2 Generalization of Myerson-Satterthwaite

There are two agents, a buyer and seller, and a set of outcomes Z = X � Y , where

X = [0; xH ] and Y = [0; yH] are each closed intervals in <. Points in Z are denoted

(x; y), with x 2 X and y 2 Y ; x is the amount of the good sold, and y is the payment, or

transfer from buyer to seller.2 Each agent's utility is a function of the outcome, and of

their own privately observed type, b 2 B = [bL; bH ] for the buyer, and c 2 C = [cL; cH ]

for the seller. Utility functions, u : Z � B 7! < and v : Z � C 7! <, for the buyer and

seller, respectively, take the form

u(x; y; b) = f(x; b)� y Buyer's payo� (1)

v(x; y; c) = y � g(x; c) Seller's payo� (2)

b � P [bL; bH ]

c � Q[cL; cH ] Independent random variables (3)

(x; y) = (0; 0) Status quo, or disagreement point (4)

where f and g are twice continuously di�erentiable real valued functions on X �B, and

X � C, respectively, satisfying f(0; b) = g(0; c) = 0 for all b; c, and P and Q are the

cumulative density functions of absolutely continuous measures on the space of types of

each agent. We let p and q be the corresponding density functions of P and Q.

The two agents attempt to come to an agreement on a point (x; y) 2 Z. If they

fail to agree, they get the disagreement point (0; 0). We do not specify a particular

extensive form game. Rather we characterize the allocations that can arise as a Bayesian

equilibrium to any extensive form game. Using the revelation principle, it is suÆcient to
2Alternatively, in the Coasian context studied later, under victim's rights, the buyer can be though

of as the polluter, and the seller as the victim, x the amount of pollution, and y the transfer. Under
polluter's rights, the buyer is the victim, the seller is the polluter, and x the amount of abatement.
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consider direct mechanisms, of the form (x; y) = (x(b; c); y(b; c)) : B � C 7! Z, and to

characterize the set of incentive compatible individually rational direct mechanisms.

The Myerson-Satterthwaite theorem [1983, theorem 1] characterizes the BE for

bilateral trade of an indivisible good with incomplete information about the valuations.

We are interested in an environment where goods are divisible and preferences of indi-

viduals need not be linear over the amount of the good. So we begin by proving an

extended version of the original MS result that applies to this environment.

For any b, c and x de�ne:

social surplus s(x; b; c) = f(x; b)� g(x; c) (5)

eÆcient allocation x�(b; c) = argmax
x2X

s(x; b; c) (6)

We restrict attention to the set X of integrable functions on T = B � C: For any x,

y 2 X , we de�ne

~U(b) = Ec [f(x(b; c); b)� y(b; c)] (7)

and

~V (c) = Eb [y(b; c)� g(x(b; c); c)] : (8)

De�ne M : X 7! < by

M(x) = E

��
f(x(b; c); b)�

(1� P (b))

p(b)
f2(x(b; c); b)

�
�

�
g(x(b; c); c) +

Q(c)

q(c)
g2(x(b; c); c)

��

(9)

Our generalized version of the MS theorem is split into two parts, a preliminary propo-

sition, and a characterization theorem. The generalization to non-linear utility and a

divisible good goes through straightforwardly and follows very closely the original proof

of Myerson and Satterthwaite.

Theorem 1 (Generalization of MS theorem, part 1) Assume individual utility functions

and information are as in (1) - (4). Then any incentive compatible direct mechanism,

(x(b; c); y(b; c)) satis�es

M(x) = ~U(bL) + ~V (cH) (10)
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The proof of this result, as well as the proof of 3 below follow closely along the lines

of the original Myerson-Satterthwaite [1983] theorem, with the main di�erence being the

added complication of the f and g functions. Because of the di�erences, the proofs are

presented in the appendix.

Corollary 2 If M(x�) < 0, there is no incentive compatible individually rational mech-

anism which is ex post eÆcient.

Proof. Since the status quo is (x; y) = (0; 0); by IR, ~U(bL) � u(0; 0; bL) = f(0; bL) = 0

and ~V (cH) � v(0; 0; cH) = g(0; cH) = 0 Thus by Theorem 1, for a mechanism to satisfy

IC and IR, we must have M(x) = ~U(bL) + ~V (cH) � 0. Thus if M(x�) < 0, there is no

ex post eÆcient IR, IC mechanism.

Theorem 3 (Generalization of MS, Theorem 1, part 2) Assume individual utility func-

tions and information are as in (1) - (4). Then for any x 2 X a suÆcient condition for

there to exist a y 2 X such that (x; y) is a direct mechanism satisfying IC and interim

IR is

M(x) � 0 (11)

F21 = F12 � 0;
@

@t
F2(t; t) � 0, (12)

G21 = G12 � 0;
@

@t
G2(t; t) � 0. (13)

where F (b̂; b) = Ec[f(x(b̂; c); b)] and G(ĉ; c) = Eb[g(x(b; ĉ); c)]: If f(x; b) = b �f(x); and

g(x; c) = c�g(x), for some �f and �g that do not depend on b or c, then the above conditions

are also necessary

Note that Corollary 2 is the analogue of the MS Corollary 1.

Example 1: f(x; b) = bx; g(x; c) = cx and xH = 1.

For this case the above Theorems reduce to the original MS Theorem, parts (1)

and (2).
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Example 2: X = Y = [0; 1], B = [0; bH ]; C = [0; cH] and

f(x; b) = b(2x� x2)

g(x; c) = cx2; (14)

with uniform priors over B and C (i. e., p(b) = 1=bH and q(c) = 1=cH).

This example is analysed in greater detail in section 4, where we look at implications

of the above results for the Coase theorem under quadratic utilities.

The social surplus is s(x; b; c) = 2bx� (b+ c)x2. For any b; c, this is maximized at

x�(b; c) = b
b+c

, which is the eÆcient allocation.

For this second example, using that f(x; b) = bf2(x; b) and g(x; c) = cg2(x; c), and

substituting in for the remaining terms,

M(x) = E [(2b� bH) f2(x(b; c); b)� 2c g2(x(b; c); c)]

= E
�
(2b� bH)(2x� x2)� 2cx2

�
;

and setting x� = b
b+c

;

M(x�) = E

�
bHb

2

(b + c)2
� 2

b(bH � b)

b+ c

�
:

So

bHcHM(x�) =

Z bH

0

Z cH

0

�
bHb

2

(b + c)2
� 2

b(bH � b)

b+ c

�
db dc

=

Z bH

0

�
�
bHb

2

b + c
� 2b(bH � b) ln(b + c)

�����
cH

0

db

=

Z bH

0

�
bbHcH
b+ cH

+ 2b(bH � b) ln

�
b

b+ cH

��
db

=
1

3

�
b2cH � 2bc2H + b2 (3bH � 2b) ln

�
b

b+ cH

�
+ 2c3H ln (b + cH)

�����
bH

0

=
1

3

�
b2HcH � 2bHc

2
H + b3H ln

�
bH

bH + cH

�
� 2c3H ln

�
cH

bH + cH

��
: (15)
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De�ne W (b; c) = bcM(x�): Then for any 0 < bH ;and 0 < cH ; M(x�) < 0,W (bH ; cH) <

0. But W (b; c) = 0 if either b or c is zero. Setting t = c
b
;

W1(b; c) = b2 ln

�
b

b+ c

�
+ b2

c

b+ c
< 0

, � ln (1 + t) +
t

1 + t
< 0: (16)

Similarly, setting t = b
c
,

W2(b; c) = �bc
b + 2c

b + c
� 2c2 ln

�
c

b + c

�
< 0

, �

�
t

t + 1

��
t+ 2

2

�
+ ln (1 + t) < 0 (17)

But using the fact that for any t > 0,

t

1 + t
< ln (1 + t) <

�
t

t+ 1

��
t+ 2

2

�
;

it follows that W1(b; c) < 0 and W2(b; c) < 0 for all b; c > 0. Hence, it follows that

W (bH ; cH) < 0 for all bH ; cH > 0: Therefore, M(x�) < 0 for all bH;cH > 0.3 So from

Corollary 1, it follows that for the quadratic model, there is no incentive compatible

direct mechanism that is eÆcient.

3 Bias of the maximally eÆcient mechanism

This section considers maximally eÆcient mechanisms, and explores the direction out-

comes tend to deviate from the eÆcient allocation, or the \bias" in these mechanisms.

Gresik (1991) characterizes maximally eÆcient mechanisms for the case of indivisible

goods, and shows that ex ante maximally eÆcient mechanisms are not ex post eÆcient.

His result is for the Myerson Satterthwaite setup of indivisible goods, and hence does

not address the question of bias.

3In an earlier version of this paper, we incorrectly computed that M(x�) > 0 for some bH ; cH :

and hence incorrectly claimed that this provided a counter-example to the possibility of extending the
Myerson Satterthwaite Corollary to a quadratic environment.
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We consider only the case where f(x; b) = b �f (x); and g(x; c) = c�g(x) for some �f; �g:

We assume that the distribution of b and c are both uniform over [0; 1]. In other words,

P (b) = b; and Q(c) = c. Since we assumed that f(x; b) = g(x; c) = 0 for all b; c, it follows

that �f(0) = 0 and �g(0) = 0. We make the additional assumptions that �f 0(x) � 0; with

strict inequality for x < xH , �g
0(x) � 0; with strict inequality for x > 0, and �f 00 < 0;

�g00 > 0:

Under the above assumptions, F2(b̂; b) = �F (b̂); and G2(ĉ; c) = �G(ĉ); where �F (b̂) =

Ec[ �f(x(b̂; c))]; and �G(b̂) = Eb[�g(x(b; ĉ))]. Hence, from Theorem 3, it follows that for any

x 2 X , necessary and suÆcient conditions that there exists a y 2 X such that (x; y) is a

direct mechanism satisfying incentive compatibility and individual rationality is that

M(x) � 0; (18)

�F is non decreasing, (19)

�G is non increasing. (20)

Therefore, we de�ne a maximally eÆcient mechanism to be any xo 2 X satisfying

xo 2 argmax
x2X

E[s(x; b; c)]

s:t: M(x) � 0; �F 0 � 0; �G0 � 0

Theorem 4 (Bias) If M(x�) < 0 (No fully eÆcient BE), and xo is a maximally eÆ-

cient mechanism, and 0 < x�(b; c) < xH on a set of positive measure, then xo(b; c) �

x�(b; c) a. e., with xo(b; c) < x�(b; c) on a set of positive measure.

4 Bias for the quadratic case

We now consider in more detail the quadratic case introduced in equation (14) of the

second section. Recall that for the quadratic case, we assumed that X = Y = [0; 1],

B = [0; bH ]; C = [0; cH] and

f(x; b) = b(2x� x2)

9



g(x; c) = cx2; (21)

with uniform priors over B and C. Hence, we can write

u(x; y; b) = b(2x� x2)� y Polluter's payo�
v(x; y; c) = y � cx2 Victim's payo�

(22)

The quadratic case has been used in the literature on the Coase Theorem 4. In this

interpretation, we can think of the buyer as the polluter, the seller as the victim, and the

property rights as being assigned to the victim. Property rights in this framework are

represented by the location of the disagreement point, or status quo. We have assumed

that the disagreement point is at the point (0; 0), which is at the value of x = 0; y = 0

corresponding to the ideal point that can be enforced by the victim, if the victim can

choose the level of x .

To consider the case where property rights are assigned to the polluter, we would

change the disagreement point to the point (1; 0) where x = xH = 1, corresponding to

the ideal point of the polluter. But with a lump sum tax of b to the polluter, and a lump

sum subsidy of c to the victim (which does not change the Bayes equilibria of the game),

we get that

u(x; y; b) = b(2x� x2)� y � b = t� bz2 = v(z; t; b)
v(x; y; c) = y + c� cx2 = c(2z � z2)� t = u(z; t; c)

(23)

where z = 1� x is the amount of abatement, and t = �y is the transfer from victim to

polluter. Setting the disagreement point to be the point z = 0; t = 0: we see that the

case where the property rights are assigned to the polluter is formally equivalent to the

case of victim rights, were we simply reverse the roles of the victim and the polluter.

Because of this symmetry of the two rights assignments, it is only necessary to

consider one case. If we show that there is a bias towards the disagreement point in

4Similar models have been used by Coase [1960], Turvey [1963], Demsetz [1966], and Mishan [1971].
Coase, in his table and discussion of the rancher and farmer, uses a quadratic cost function for the
victim (farmer) and side payments (pp. 111-116); Turvey (p. 311, Figure 1), Demsetz (p. 68, Figure 1),
and Mishan (p. 20, Figure 2) have quadratic cost and bene�t functions of pollution, and side payments.
However, none of these models explicitly specify the information structure.
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the case of victim rights, polluter rights will lead to a corresponding bias towards the

disagreement point that can be enforced with polluter rights. Hence, a status quo bias

in the framework of the quadratic model of equation (22) implies that there is a bias of

the equilibrium level of pollution in the direction of the holder of the property rights.

In the quadratic case, we are able to show that all BE (not just the maximally eÆ-

cient one) have a bias towards the status quo, yielding a strategic advantage to property

rights:

Proposition 5 Assume X = Y = [0; 1], with individual utility functions as in (22), and

that B = C = [0; 1], with uniform priors on B and C. Then any incentive compatible

direct mechanism (x; y) 2 X � X satisfying individual rationality satis�es:

(A) It is not ex post eÆcient: x(b; c) 6= x�(b; c) = b
b+c

on some set of positive measure.

(B) E[x(b; c)] < E[ b
b+c

]:

We can interpret these as implications about the allocations that can arise in the

Bayes equilibria (BE) of any bargaining game with quadratic payo�s as in (14). Then

(A) says there is ineÆciency for any BE. (B) says that on average, x will be less than the

eÆcient amount. Thus (B) gives a direction to the deviations of outcomes from eÆcient

allocations proven in (A): the direction of the deviations from eÆciency is toward the

disagreement point x = 0.
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APPENDIX

This appendix presents proofs of the main results of the paper.

5.1 Proof of Theorem 1

Proof. The idea is to derive two expressions for the expected social surplus and equate

them. From (5), the expected social surplus is

E[s(x(b; c); b; c)] = E[f(x(b; c); b)� g(x(b; c); c)] (24)

To obtain the second measure of social surplus, �rst de�ne U(b̂; b) to be agent 1's expected

utility from reporting b̂ when his true type is b: Thus,

U(b̂; b) = F (b̂; b)� Ec[y(b̂; c):] (25)

where F (b̂; b) = Ec[f(x(b̂; c); b)]: Note from (7), that ~U(b) = U(b; b): Thus

~U 0(b) = U1(b; b) + U2(b; b) = F2(b; b);

since IC requires, for b 2 (bL; bH), U1(b; b) = 0: Thus we have,

~U(b) =

Z b

bL

F2(t; t) dt+ ~U(bL) (26)

Taking the expectation, and reversing the order of integration yields

Eb[ ~U(b)] =

Z
B

Z b

bL

F2(t; t)dt p(b) db + ~U(bL) =

Z
B

F2(t; t)

�Z bH

t

p(b) db

�
dt+ ~U(bL)

=

Z
B

(1� P (b))F2(b; b) db+ ~U(bL):

A similar argument for agent 2 shows,

~V (c) =

Z cH

c

G2(t; t) dt+ ~V (cH); (27)

and

Ec[ ~V (c)] =

Z
C

Z cH

c

G2(t; t) dt dc+ ~V (cH) =

Z
C

Q(c)G2(c; c) dc+ ~V (cH):

14



Thus, a second measure of the expected social surplus is the sum of these two expected

earnings

Eb[ ~U(b)] + Ec[ ~V (c)]

=

Z
B

(1� P (b))F2(b; b) db+

Z
C

Q(c)G2(c; c) dc+ ~U(bL) + ~V (cH)

=

Z
C

Z
B

[(1� P (b)) q(c) f2(x(b; c); b)

+Q(c) p(b) g2(x(b; c); c)] db dc+ ~U(bL) + ~V (cH): (28)

Equating 24 with 28, collecting terms, and factoring out the p(b) q(c), gives M(x) =

~U(bL) + ~V (cH):

5.2 Proof of Theorem 3

Proof. (SuÆciency:) Pick y so that

y(b; c) =

Z b

bL

F1(t; t) dt+

Z c

cL

G1(t; t) dt+ F (bL; bL)�

Z
C

[1�Q(t)] G1(t; t) dt

Since only the �rst term depends on b, it follows that

y(b; c)� y(b̂; c) =

Z b

b̂

F1(t; t) dt:

Or, taking expectations,

Ec[y(b; c)� y(b̂; c)] =

Z b

b̂

F1(t; t) dt �

Z b

b̂

F1(t; b) dt = F (b; b)� F (b̂; b) (29)

where the inequality follows from the assumption F12 > 0. Rearranging the above gives

F (b; b)� Ec[y(b; c)] � F (b̂; b)� Ec[y(b̂; c)] (30)

which establishes IC for the buyer. IC for the seller goes through analogously.

To show IR it suÆces to show ~U(bL) = 0, since we know from (26) and the fact

that F2(t; t) is non-decreasing in t that ~U(b) is non decreasing. But by de�nition of y,

y(bL; c) =

Z c

cL

G1(t; t) dt+K

15



where K = F (bL; bL)�
R
C
[1�Q(t)] G1(t; t) dt is a constant, independent of c. So

Ec[y(bL; c)] =

Z
C

�Z c

cL

G1(t; t) dt

�
q(c) dc+K =

Z
C

G1(t; t)

�Z cH

t

q(c) dc

�
dt+K

=

Z
C

[1�Q(t)]G1(t; t) dt+K = F (bL; bL)

But by (25), ~U(bL) = F (bL; bL)�Ec[y(bL; c)], so ~U(bL) = 0: Finally, we need to prove IR

for the seller. By assumption, M(x) � 0. By theorem 1, M(x) = ~U(bL) + ~V (cH): From

the de�nition of y(b; c) we have ~U(bL) = 0. Hence, M(x) = ~V (cH) � 0: But ~V (c) is non

increasing. So ~V (c) � 0 for all c 2 C:

(Necessity) From Theorem 1 together with IR, we have M(x) � 0. Next, we show the

monotonicity conditions on F . By IC and (25), it follows that for any b; b̂ 2 B, and

c; ĉ 2 C

F (b; b)� Ec[y(b; c)] � F (b̂; b)� Ec[y(b̂; c)]

F (b̂; b̂)� Ec[y(b̂; c)] � F (b; b̂)� Ec[y(b; c)]:

These inequalities imply

F (b; b)� F (b; b̂) � F (b̂; b)� F (b̂; b̂)

But if bf2(x; b) = f(x; b), then bF2(b̂; b) = F (b̂; b), and f22(x; b) = 0 implies F22(b̂; b) = 0

for all b; b̂, which implies that F2(b̂; b) = F2(b̂; b̂). So ,

bF2(b; b)� b̂F2(b; b̂) � bF2(b̂; b)� b̂F2(b̂; b̂),

(b� b̂)F2(b; b) � (b� b̂)F2(b̂; b):

which implies that F2; must be non decreasing in its �rst argument. I. e., F21 � 0: But

then @
@t
F2(t; t) = F21(t; t) + F22(t; t) = F21(t; t) � 0. A similar argument shows that

G21 = G12 � 0 and @
@t
G2(t; t) � 0

16



5.3 Proof of Theorem 4

Proof.

Consider two problems. The �rst problem is:

max
x2X

E[s(x; b; c)] (31)

and the second problem is:

max
x2X

E[s(x; b; c)] (32)

s:t: M(x) � 0

The �rst problem is solved by pointwise maximization, yielding x� = x�(b; c).

Recall from equation (5) that s(x; b; c) = b �f(x)� c�g(x). Note that s00(x; b; c) = b �f 00(x)�

c�g00(x) < 0. So s0(x; b; c) is decreasing in x. Hence, the solution to problem (31) must

satisfy

s0(x�; b; c)

8<
:

= 0 if 0 < x� < xH
� 0 if x� = xH
� 0 if x� = 0

(33)

For the second problem, we �rst show that any solution xo of problem (32) satis�es

xo(b; c) � x�(b; c) a. e., with strict inequality on a set of positive measure. We then will

show that any solution of problem (32) satis�es the additional monotonicity conditions

on F and G of Theorem 3, and hence is indeed a maximally eÆcient mechanism.

The Lagrangean for problem (32) is:

L = E[s(x; b; c)] + �M(x):

So

L = E[b �f(x)� c�g(x)]

+�E
�
(2b� 1) �f(x)� 2c�g(x)

�
=

Z
C

Z
B

�
(1 + 2�)s(x(b; c); b; c)� � �f(x(b; c))

�
db dc (34)

17



and � > 0, because M(x�) < 0. For any given �, the solution to (32) must maximize

the integrand of (34) almost everywhere. In other words, for almost all b; c, xo = xo(b; c)

must solve

max
x2R

(1 + 2�)s(x; b; c)� � �f(x) (35)

Depending on the value of (b; c) this leads to one of three cases:

Case 1 In the region of (b; c) for which there is an interior solution (0 < xo < xH), of

(35), a necessary for x to be a solution is,

(1 + 2�)s0(x; b; c)� � �f 0(x) = 0 (36)

Fix b and c, and assume that x satis�es x�(b; c) = x� � x < xH . Then from equation

(33), s0(x�; b; c) � 0. And by monotonicity of s0, s0(x; b; c) � s0(x�; b; c) � 0. Hence, the

�rst term in (36)is negative or zero, and the second is negative, yielding a contradiction.

So we must have xo < x�. Hence for almost all b; c, we have xo(b; c) < x�(b; c):

Case 2 In the region of (b; c) for which equation (35) is satis�ed for xo = xH ,a necessary

condition is for almost all b; c,

(1 + 2�)s0(xH)� � �f 0(xH) � 0

Then s0(xH) �
�

1+2�
�f 0(xH) � 0. Since s0 is strictly decreasing, this means s0(x) > 0 for

all x < xH . So x
� = xo; implying that xo � x�.

Case 3 In the region of (b; c) for which equation (35) is satis�ed for xo = 0, then we

automatically have xo � x�, with strict inequality whenever x� 6= 0:

We have shown that in all three cases we have xo(b; c) � x�(b; c) for almost all b; c.

Now by assumption, there is a set of positive measure where 0 < x�(b; c) < xH . Denote

this set by D. Then D cannot intersect with case 2, since in that case we must have

x� = xo = xH . So D must be a subset of cases 1 and 3. But in both of these cases, we

showed that xo(b; c) < x�(b; c) for almost all b; c. Hence, there must be a set of positive

measure where xo(b; c) < x�(b; c).
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We next show that any solution of problem (31) must also satisfy the monotonicity

conditions on �F and �G. To see this, we show that @
@b
x(b; c) � 0 and @

@c
x(b; c) � 0.

Consider any interior solution. Then we can rewrite equation (36) as

b = c
�g0(x)
�f 0(x)

+K;

where K = �
1+2�

: Taking derivatives with respect to b, we get

1 = c

� �f 0(x)�g00(x)� �g0(x) �f 00(x)

[ �f 0(x)]2

�
@x

@b
;

Since the term in parenthesis is positive, and c is positive, it follows that @x
@b

must also

be positive. Similarly, taking derivatives with respect to c, we get

0 =
�g0(x)
�f 0(x)

+ c

� �f 0(x)�g00(x)� �g0(x) �f 00(x)

[ �f 0(x)]2

�
@x

@c

Since the �rst term is positive, and the term in parenthesis is positive, @x
@c

must be

less than zero. In the regions where x is not interior, it must be constant, hence,

we get @
@b
x(b; c) � 0 and @

@c
x(b; c) � 0 trivially in those regions. But then �F 0(b) =

@
@b
Ec[ �f(x(b; c))] = Ec[

@
@b
�f(x(b; c))] � 0: Similarly, �G0(c) � 0:

5.4 Proof of Proposition 5

5.4.1 Part A

Proof. When B = C = [0; 1], we substitute into (15) to get

M(x�) =
1

3
[ln (2)� 1] < 0

But then, by Corollary 1, it follows that there is no eÆcient solution.

5.4.2 Part B

Proof. It follows from Corollary 1 that if (x; y) 2 X � X satis�es IC and IR, then we

must have M(x) � 0. Hence, to show that the expected x is less than the eÆcient x, it

suÆces to show that if the expected x is greater than or equal to the eÆcient x, then we
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can't obtain M(x) � 0. So let X be the set of integrable functions on T = [0; 1]� [0; 1].

This is the set of L1 functions on T . Thus, we consider the problem:

maxx2X M(x)

subject to
R
1

0

R
1

0
x(b; c)db dc �

R
1

0

R
1

0

b
b+c

db dc = 1

2

x(b; c) � 0

x(b; c) � 1

(37)

We will show that the value of the objective function at the solution to this optimization

problem is negative.

Necessary conditions for a solution to this problem can be obtained from the gen-

eralized Kuhn Tucker theorem (see e. g., Luenberger [1969], Theorem 1, p. 249). The

Lagrangean for the above problem is

L(x; �; 0; 1) =

Z
1

0

Z
1

0

�
(1� 2b� 2c)x2(b; c) + (4b� 2)x(b; c)

�
db dc

+�

�Z 1

0

Z 1

0

x(b; c)db dc�
1

2

�
+

�Z 1

0

Z 1

0

x(b; c)0(b; c)db dc

�

+

�Z 1

0

Z 1

0

(1� x(b; c))1(b; c)db dc

�
(38)

where � 2 < is non negative, and 0; 1 are non negative L1 functions on T . Here,

we use the duality of L1 and L1 (see Aliprantis and Border, Theorem 10.28, p. 354).

A necessary condition for x to be a solution is that it be a stationary point of the

Lagrangean. In other words, we must have

@

@�
L(x + �h; �; 0; 1)

����
�=0

= 0

for all h 2 L1. But

@

@�
L(x+ �h; �; 0; 1)

����
�=0

=

Z 1

0

Z 1

0

[2(1� 2b� 2c)x(b; c)h(b; c) + (4b� 2)h(b; c)] db dc

+�

Z 1

0

Z 1

0

h(b; c)db dc+

Z 1

0

Z 1

0

h(b; c)0(b; c)db dc

�

Z 1

0

Z 1

0

h(b; c)1(b; c)db dc (39)
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But if h = �A, where A = [0; b]� [0; c], then the above reduces to:

0 =

Z c

0

Z b

0

[2(1� 2b� 2c)x(b; c) + (4b� 2)] db dc

+�bc +

Z c

0

Z b

0

0(b; c)db dc�

Z c

0

Z b

0

1(b; c)db dc (40)

for all b; c 2 [0; 1]. Now taking derivatives of the above with respect to b and c, and

appealing to the Fundamental Theorem of Calculus, we get necessary conditions for a

solution are

2(1� 2b� 2c)x(b; c) + 4b� 2 + �+ 0(b; c)� 1(b; c)

= 4(b�
1

2
+
�

4
)(1� x(b; c))� 4(c�

�

4
)x(b; c) + 0(b; c)� 1(b; c) (41)

= 0 (42)

Further, the constraints must be satis�ed:

�

�Z 1

0

Z 1

0

x(b; c) db dc�
1

2

�
= 0 (43)

Z 1

0

Z 1

0

x(b; c)0(b; c) db dc = 0 (44)

Z 1

0

Z 1

0

(1� x(b; c))1(b; c) db dc = 0 (45)

From (44) and (45), it follows that if 0 < x(b; c) < 1, then 0(b; c) = 1(b; c) =

0. From the second order conditions, it follows that any solution satisfying (41) is a

maximum only if b + c � 1

2
. Using these facts, we conclude that any solution to (37)

must satisfy:

x(b; c) =

8><
>:

0 if b� c < 1

2
(1� �); b < 1

2
� �

4

1 if b� c � 1

2
(1� �); c < �

4
b� 1

2
+
�

4

b+c� 1

2

otherwise
(46)

Now, consider the special case � = 1. In this case,

x(b; c;�) =

8><
>:

0 if b < c; and b < 1

4

1 if b > c; and c < 1

4
b+ 1

4

b+c� 1

2

otherwise
(47)
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and x(b; c; 1) + x(c; b; 1) = 1;which means that
R
1

0

R
1

0
x(b; c)db dc = 1

2
. So x(b; c; 1) is a

solution to (43).

It is easy to check that this solution is unique. From (46), note that for x(b; c;�) = 0

and x(b; c;�) = 1, x(b; c;�) is non-decreasing in �.; and when � = 1, 0 < x(b; c;�) < 1

for a set of positive measure. Thus, for all � � 0,
R 1

0

R 1

0
x(b; c)db dc is non-decreasing in

�, and is strictly increasing in � for � in a neighborhood of 1. Thus, x(b; c; 1) is the only

solution to (37).

But now for � = 1, the value of the objective function is:

M(x) =

Z 1

0

Z 1

0

�
(1� 2b� 2c)x(b; c)2 + (4b� 2)x(b; c)

�
db dc

=

Z 1

1

4

Z 1

1

4

2(b� 1

4
)(b� 3

4
)

b + c� 1

2

db dc+

Z 1

4

0

Z 1

c

(2b� 2c� 1)db dc (48)

The �rst term evaluates to

Z 1

1

4

2(b�
1

4
)(b�

3

4
)ln(2b + 2c� 1)

����
1

1

4

db

=

Z
1

1

4

2(b�
1

4
)(b�

3

4
)ln(

(2b+ 1)

2b� 1

2

)db

=

�
1

3
(2b+ 1)[(b� 1)2 +

9

16
]ln(2b + 1)

�
2

3
(b�

1

4
)2(b� 1)ln(2b�

1

2
) +

b2

4
�

7b

8

�����
1

1

4

=
9

16
ln(2)�

27

64
= (

3

4
)2(ln(2)�

3

4
) < 0 (49)

and the second term of (48) evaluates to � 5

192
. Hence, we have

M(x) =
9

16
ln(2)�

27

64
�

5

192
< 0 (50)

which completes the proof.
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