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Abstract

In an e�cient securities market, prices correctly re
ect news about future payo�s. This

paper argues that there are two aspects to correctness: (i) correct updating of beliefs from

news, (ii) correct prior beliefs. Traditionally, empirical research has implicitly insisted on

both. Lucas' rational expectations equilibrium theory also assumes both, explicitly. Nev-

ertheless, rationality requires only the former, but not the latter. This paper develops

restrictions on the random behavior of prices of equity-like contracts when (i) is main-

tained, but the market may have mistaken priors about the likelihood of the bankruptcy

state, in violation of (ii). The restrictions are cast in the form of familiar martingale di�er-

ence results. They do not necessarily restrict returns as traditionally computed, however.

Most importantly, the restrictions appear only when the empiricist deliberately imposes a

selection bias. In particular, the price histories of securities that are in the money at the

terminal date are to be separated from those of securities that end out of the money (i.e.,

in the bankruptcy state). As a result, this paper also demonstrates that something can

be learned about market e�ciency from samples subject to survivorship bias or the Peso

problem.

JEL Classi�cation : C22, D84, G14.

Keywords: Market E�ciency, Incomplete Information, Biased Priors, Rational Learning,

Martingales, Default, Survivorship Bias, Peso Problem.

0



1 Introduction

Financial markets are populated with human beings. According to the Chambers 20th Century

Thesaurus, there are many synonyms for the adjective human. One of them is: reasonable. This

should capture man's a�nity to logical reasoning. Over the last thirty years, rationality has been

made the cornerstone of the theory of �nance. The hypothesis is that securities prices would

re
ect the rationality of the market participants. The label e�ciency is used to characterize

the outcome. In particular, a market is deemed e�cient if its prices correctly incorporate the

available information. This is the E�cient Markets Hypothesis (EMH; see Fama [1970], [1991]).

The empirical implementation of market e�ciency and the subsequent theoretical re�nements

(in particular, Lucas' dynamic rational expectations equilibrium - Lucas [1972], [1978]) have

given an extreme interpretation of the quali�er \correctly" in the above de�nition of an e�cient

market: not only is the market supposed to update its beliefs rationally using the available

information, its beliefs are assumed to be unbiased at all times. Therefore, the market is

endowed with far more rationality than is typically associated with even the most sophisticated

of its human participants. Indeed, the Chambers 20th Century Thesaurus lists another synonym

for the adjective human: fallible. Investors do make mistakes; they are not omniscient. Why,

then, wouldn't the market sometimes have mistaking expectations?

In its defense, one must note that EMH leads to a dramatic simpli�cation of empirical

research. Indeed, as long as the world is stationary and ergodic, actual outcomes provide good

estimates of the market's ex-ante expectations. As a consequence, a large body of evidence on the

validity of the theory has emerged. Unfortunately, in violation of one of the main implications

of EMH, returns in excess of the riskfree rate have often been found to be predictable beyond

acceptable compensation for risk,1 or in a way that was opposite to risk.2

Humans are fallible. In particular, they do not always know the true frequency of events that

determine securities prices. This certainly occurs in new or rare events, such as initial public

o�erings in new industries, new political arrangements (Hong Kong's return to China, Rus-

sia's change to a democracy), or economic and monetary arrangements (the European common

currency), exceptional historical developments (Gulf war), etc.

The purpose of this paper is to study securities price behavior in a market that is modeled in

the image of its participants, as a reasonable but fallible human. The market puts a (potentially

biased) prior on the aspects (parameters) of the environment it is uncertain about, and learns

using the rules of conditional probability (Bayes' law).

1E.g., Mehra and Prescott [1985], De Bondt and Thaler [1985], Jegadeesh [1990].

2E.g., Dunn and Singleton [1986], Fama and French [1992].
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The novelty is that the market's prior is allowed to be arbitrary. At �rst, this would seem

to deprive securities prices of any meaningful restriction, even if attention is restricted to risk

neutrality. Unless, of course, one makes the implausible assumption that the biases in market

beliefs are known. In other words, it would be reasonable to conjecture that any price history

could be explained in terms of some bias in initial beliefs. The examples in Bossaerts [1995]

certainly seem to lend support to this conjecture.

The conjecture is wrong. This paper demonstrates that the dynamic behavior of the prices

of equity-like contracts is subject to easily veri�able and powerful restrictions. The \equity-like

contracts" are �nite-lived securities which have a simple �nal payo� structure: in one state, the

contract pays a random quantity; in another one, to be referred to as the bankruptcy state, it

pays zero (or some known amount). This obviously describes the payo� structure of common

stock, call and put options, as well as simple digital options (\Arrow-Debreu securities"). Many

other �nancial contracts are known to be combinations of these securities, or could be imagined

as such.

Initially, the market does not know the state of the world. Most importantly, the market may

have incorrect (biased) beliefs about the frequency of occurrence of the bankruptcy state. As a

sophisticated, rational human, however, the market updates its beliefs as evidence (\signals")

about the true state emerges, using Bayes' law. Still, it will be assumed that the market has

correct beliefs about the distribution of the signals and the �nal payo� conditional on the state

of the world. For instance, in the case of common stock, the market is supposed to correctly

anticipate the distribution of terminal values of shares in the company, conditional on no default.

Therefore, the analysis of this paper is limited to a small, yet important, deviation from the

level of rationality assumed in the standard theory of e�cient markets.

One could refer to the extension of market e�ciency proposed here as a theory of E�ciently

Learning Markets (ELM), a terminology that this paper will adopt. Borrowing from game theory

(Harsanyi [1967]), it could also be called a theory of e�cient markets under incomplete infor-

mation. This terminology may be somewhat confusing, because it resembles market e�ciency

under asymmetric information.3

There is a relationship with recent attempts to model \overcon�dence" and other supposedly

3The equilibrium concept underlying the theory of e�cient markets is Lucas' dynamic rational expectations

equilibrium. The equilibrium concept that could justify the modeling of this paper is somewhere between a tem-

porary equilibrium (see Grandmont [1977] and references cited there) and Lucas' equilibrium. More speci�cally,

Bray and Kreps [1987]'s rational learning equilibrium could form a starting point for developing the general

equilibrium aspects of the concept of market e�ciency proposed here. To re
ect the importance of agreement

among investors, earlier versions of this paper talked about a consistent beliefs equilibrium. See Bossaerts [1996].
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irrational phenomena in �nancial markets (e.g., Daniel, Hirshleifer and Subrahmanyam [1997];

Cecchetti, Lam and Mark [1997]). These attempts, however, put \irrationality" both in the

priors (mistaken expectations) and in the learning (ad hoc learning rules). The present paper

demonstrates that a theory that attributes \irrationality" entirely to mistaken expectations

generates a rich set of results that inherit the attractive analytics of the theory of e�cient

markets, and that allow one to readily incorporate existing asset pricing theory.

In fact, this description of the present paper has to be quali�ed. Indeed, it cannot be

emphasized enough that to have mistaken expectations is no sign of irrationality, for rationality

is purely a property of learning, and not of beliefs.4 This point is also implicit in the theory

of rational decision making under uncertainty. Savage [1954], for instance, shows that strong

rational choice axioms merely induce a mathematical representation of preferences in terms

of expected utility over subjective beliefs, and, therefore, one that does not involve correct

(unbiased) beliefs.5

The restrictions on securities prices are cast in the familiar language of martingales. In

contrast with the theory of e�cient markets, however, they may involve returns measured as

changes in prices divided by end-of-period prices, and weighted appropriately. Most importantly,

they emerge only as a consequence of deliberate conditioning on the outcome. Indeed, the

simplest restriction (which this paper focuses on) holds only for securities that expired \in the

money." This obviously has implications far beyond the attempt to relax EMH. Financial data

often come with the very selection bias that has to be deliberately applied in order to test for

ELM. Indeed, many datasets su�er from survivorship bias, whereby one observes only price

histories of securities that were \in the money" at the �nal date (see, e.g., Brown, Goetzmann

and Ross [1995]).6

One can state this result di�erently: it is shown that a weak form of market e�ciency can

be tested even on a sample subject to selection bias (survivorship bias). One cannot test that

initial beliefs are unbiased, however. So, EMH as it is traditionally understood cannot be tested.

4This bold statement may be surprising, especially to those who study the rational expectations equilibrium

originally de�ned in Muth [1961]. In it, the market correctly forecasts prices because it knows that they emerge

from equilibration of demand and supply. Forecast mistakes would re
ect lack of understanding of economic

theory. Nevertheless, correctness of the rational expectations forecasts depends crucially on correctness of the

belief that every agent in the economy is rational. If enough agents behave suboptimally, the rational expectations

forecasts will be wrong. Hence, forecasts that deviate from the rational expectations belief are not irrational.

They merely express the belief that there are non-optimizing agents, and this could be right.

5A referee reminded me of Savage's views on this matter.
6A related problem is the Peso problem, which occurs when some (random) event did not happen in a history,

yet was anticipated in the price setting (see, e.g., Bekaert, Hodrick and Marshall [1995]).
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But one can test that the market is e�cient otherwise. In particular, one can verify whether

its learning is rational, i.e., that it does not under-react or over-react relative to its own beliefs.

Hence, ELM can be tested.

Some results may lack intuition. Their generality certainly challenges imagination. There-

fore, a simple case will be analyzed �rst. Also, ideas will be developed by means of empirical

and numerical examples. This way, the theory will be built up, and the reader will be able to

gain perspective as to its content, scope, and limitations.7

Here is how the paper proceeds. Digital options will be studied �rst. These are options that

pay one dollar in one future state, and zero dollars otherwise. The analysis will start with an

empirical example, using data from the internet-based Iowa Experimental Market (IEM). Biases

in the market's beliefs will not (yet) be the main concern. Rather, the example will be used to

illustrate survivorship bias. In particular, we will study the impact on tests of market e�ciency

when only price histories of \winning" options (options that expired in-the-money) are used

in the inference. The empirical exercise will be complemented with a numerical example. At

that point, a correction to the traditional return measure will be suggested. It will eliminate

the e�ect of survivorship bias. This will be demonstrated with the numerical example, and the

resulting test will be implemented on the IEM data.

We then turn to general equity-like payo�s. We follow the same chronology. Survivorship

bias is illustrated, this time using prices of S&P500 index call options that expired in-the-money.

A numerical example accompanies the analysis. A correction to the standard return measure

is advanced. It is veri�ed on the numerical data, and implemented on the index call option

dataset.

We do have the full dataset of S&P500 index call options, including those that expired out-

of-the-money. Therefore, standard market e�ciency (EMH) can be tested. We will do this

and document violations. This may seem puzzling, because our correction for survivorship bias

on the returns for winning index call options appeared to work. With the numerical example,

however, we will demonstrate that our correction to the return measure eliminates survivorship

bias no matter what the market's prior is about the chances that the call expires in-the-money.

The results rely only on correctness of learning in the marketplace, i.e., on the usage of Bayes'

law. Therefore, the survivorship-bias adjusted return can be used to test the weaker ELM, and

not the stronger EMH.

We then proceed to stating the main formal result (Theorem 2). Still, this is not presented

in its full generality. Risk neutrality and zero discounting will be assumed, as in the numerical

7The plan follows the suggestions of the Executive Editor.
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examples. Extensions of the theory that accommodate risk aversion and/or random discounting

are delegated to the Appendix, where all the formal proofs are collected as well.

2 Digital Options

Digital options are securities that pay one dollar in one future state, and zero in all others.

While they are the building blocks of modern asset pricing theory (where they are referred to as

Arrow-Debreu securities), they are not widely traded. One exception is the internet-based Iowa

Experimental Market (IEM), to which we now turn to illustrate the problem of survivorship

bias.

The University of Iowa organizes an electronic market in \winner-take-all" contracts (digital

options). A few of those contracts derive their payo� from stock price changes of �rms in the

computer industry. Each month, a new set of contracts is o�ered. Contract liquidation values are

determined by changes in closing prices of the underlying stock measured from the third Friday

of one month to the third Friday of the next month. Trade starts on Monday following the third

Friday of the month. In our illustration, we will focus on the digital options that are written

on common stock of Microsoft. A comprehensive study of all IEM �nancial winner-take-all

contracts can be found in Bondarenko and Bossaerts [1997].

Two Microsoft digital options are traded. One, the \High" contract, pays a dollar when

Microsoft's next month closing price is above a predetermined cut-o� level. The other one,

the \Low," pays one dollar in the complementary state. The cut-o� level is determined by the

exercise price of the closest-at-the-money option written on Microsoft and traded at the CBOE.

We will focus on daily closing prices, which are de�ned to be the last transaction price before

midnight, or, if no transaction took place, the previous closing price. Figure 1 plots price paths

for the two Microsoft securities over four sample months. The prices of the two (complementary)

digital options do not add up to one because of some serious nonsynchrony. The \Low" contract

expired out-of-the-money in each of the four months.

2.1 Illustrating Survivorship Bias Using Data From The IEM

Survivorship bias is the e�ect on sample average returns caused by absence of price data for

securities that did not perform well. In the case of digital options, survivorship bias could

be induced by (deliberate or unintentional) deletion of price histories of options that expired

out-of-the-money. With only data on successful digital options, it is clear that the potential

average return is over-estimated. If the market is risk-neutral, applies zero discount rates, and
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has unbiased beliefs (in accordance with the EMH), then ex-ante expected returns would be

zero. When computed on the basis of price histories of winning securities only, however, ex-post

returns will be positive on average.

We can illustrate survivorship bias using the IEM data. Across the sixteen months in the

dataset, the average of the (time series) mean daily return on Microsoft High is 8.1%. With a

standard error of 4.2%, this is marginally signi�cant at the 5% level.8 This does indicate some

evidence against EMH, which would require the average return to be equal to zero (assuming

risk neutrality and zero discounting). We are primarily interested, however, in illustrating

survivorship bias. So, let us compare this to the average return on winning IEM digitals. Each

month, one of the two Microsoft digitals expires in-the-money, because they are complementary.

So, we have sixteen monthly series of daily returns on winning IEM digital options. Across those

sixteen months, the average of their mean daily return is 9.7%. With a standard error of 3.7%,

this is highly signi�cant. And it is much higher that the average mean daily return on Microsoft

High, because of the selection bias.

It is possible to illustrate survivorship bias with a numerical example.

2.2 A Numerical Example

Consider a world in which a state variable, �, can take two values: � or �. A security is traded

and its market clears at two discrete points in time, indexed t = 1; 2. The security is a digital

option. It expires at t = 3, when it pays $1 if � = � and zero otherwise. The market is risk-

neutral and the interest rate is zero. It does not know � before the end of the second period,

i.e., before time t = 3. At time t = 2, however, it receives a signal s, which it uses to update its

beliefs about the value of �. The equilibrium price at time t is denoted pt.

The market is e�cient, i.e., EMH holds. This means that prices are set according to the

true probability measure P with which signals and states are actually drawn. In particular, the

market uses this probability measure to infer from the signals whether � = � or not.

The �rst price, p1, will be set to equal the unconditional probability (prior) that � = �.

Mathematically,

p1 = Pf� = �g:

Setting Pf� = �g = 1
4 , we get:

p1 =
1

4
: (1)

8The signi�cance levels in all tests of the paper are based on the t-distribution. There is no reason to suspect

violations to the cross-sectional independence that would be required to validate the t-distribution, since cross-

sections of non-overlapping time series are studied throughout.
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The signal at t = 2, s, is determined as follows. Let l(sj�) denote the likelihood of s given �.

Assume:

l(1j�) =
1

2

l(1j�) =
1

3

l(0j�) =
1

2

l(0j�) =
2

3

Because p1 equals the prior that � = �, we conclude: if s = 1,

p2 = Pf� = �js = 1g (2)

=
l(1j�)p1

l(1j�)p1 + l(1j�)(1� p1)

=
1
2
1
4

1
2
1
4 +

1
3
3
4

=
1

3
; (3)

if s = 0:

p2 = Pf� = �js = 0g (4)

=
l(0j�)p1

l(0j�)p1 + l(0j�)(1� p1)

=
1
2
1
4

1
2
1
4 +

2
3
3
4

=
1

5
: (5)

In the above, Bayes' law is used to compute conditional probabilities such as Pf� = �js = 0g.

In other words, the market is assumed to update its priors rationally. While this assumption is

standard in �nance, and an integral part of EMH, it is crucial to obtain the results that we are

about to discuss.

The above data can be used to study the impact of survivorship bias. First, consider the

expected time-2 price:

E[p2] =
1

3
Pfs = 1g+

1

5
Pfs = 0g

=
1

3

3

8
+

1

5

5

8

=
1

4

= p1:
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Consequently:

Result 1:

E[r2] = 0; (6)

where

r2 =
p2 � p1
p1

;

the traditional return measure. Eqn. (6) states that the return is zero on average. More generally,

the return sequence will form a martingale di�erence sequence. This, of course, is a result that

goes back to Samuelson [1965]. It is the mathematical representation of EMH (under risk

neutrality and zero discounting).

Now introduce a selection bias and condition on a favorable �nal payo�, i.e., on � = �. In

other words, re-compute the average return, but only for cases where the digital option expired

in-the-money. The di�erence between the conditional and the unconditional mean returns will

give an indication of survivorship bias, i.e., the bias in average return caused by deleting price

histories of losing securities.

Compute:

E[p2j�] =
1

3
Pfs = 1j�g+

1

5
Pfs = 0j�g

=
1

3

1

2
+

1

5

1

2

=
4

15

> p1:

Hence:

Result 2:

E[r2j�] > 0: (7)

In words: there is an upward bias in the mean return.

2.3 A Correction For Survivorship Bias

There happens to be a very simple correction for the above survivorship bias. Consider the

following. Compute the conditional expectation of the inverse of the price at time 2:

E[
1

p2
j�] = 3Pfs = 1j�g+ 5Pfs = 0j�g

= 3
1

2
+ 5

1

2

= 4

=
1

p1
:
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Hence, de�ning

x2 =
p2 � p1
p2

; (8)

we conclude the following.

Result 3:

E[x2j�] = 0: (9)

In words: modifying the return by taking as basis not the past price but the future price makes

it again zero on average.

The return measure that one obtains using the future price as basis will be referred to as the

modi�ed return and xt will be used as symbol.

To a certain extent, Result 3 is intuitive. Consider price histories of digitals that eventually

expire in-the-money. One expects these to reveal a distinct positive trend, re
ecting on-balance

positive news about the �nal payo�. Result 2 con�rms this. To bring the average return down to

zero, one ought to make positive returns smaller and negative returns larger (in absolute value),

by multiplying the return with an appropriate factor. The most straightforward candidate is the

ratio of today's price over tomorrow's price: it is smaller than one when the return is positive,

and larger than one otherwise. It turns out that this factor does the trick. The performance

measure that results from multiplying the traditional return with this factor is precisely our

modi�ed return. Figure 2 illustrates this idea.

The result in (9) is very general. It really only relies on the assumption that the market uses

Bayes' law to update its beliefs about the chances that the digital option expires in-the-money.

It is too early to sharply delineate the scope of this result. Things will become more precise as

we go along, however. At this point, it is more useful to observe how the result works when

implemented on the IEM data.

2.4 Re-Visiting The IEM Data

Table 1 also displays the average of the mean modi�ed daily return across the sixteen months

in the IEM dataset. In each month, the digital option that expired in-the-money is determined,

modi�ed returns are computed from its price series, and their (time series) mean is computed.

Subsequently, the mean modi�ed returns across the sixteen months are averaged, and the stan-

dard error is computed in the usual fashion.

Table 1 documents that the average mean modi�ed daily return on winning IEM digitals is -

3.2%. With a standard error of 2.2%, this number is insigni�cant. The insigni�cant -3.2% should

be contrasted with the highly signi�cant 9.7% average mean traditional daily return on winning
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IEM digitals. Apparently, adjusting the return along the lines of the previous subsection does

indeed eliminate the selection bias that was caused by our considering only winning securities.

Because the modi�ed return �lters selection biases from price series of digital options that

expire in-the-money, the reader may be inclined to conclude that EMH can now be tested on

samples subject to survivorship bias. That is, EMH is veri�able even if a biased sample of only

winning securities is all one has. Such a conclusion will have to be quali�ed. We will do so after

introducing the survivorship bias correction for returns on general equity-like securities. At this

point, we also need to clarify something about the impact of perfectly revealing signals.

2.5 Back To The Numerical Example: The Second Period

In the �rst period of our numerical example, signals were not perfectly revealing. That is, they

did not unambiguously signal whether � = �. The data for the second period (t = 2 to t = 3)

allow us to discuss the e�ect of perfect revelation.

At t = 3, the true state is revealed and the security pays o�. There is no real trading, but,

if there were, prices would obviously equal the announced payo�s. That is, p3 = 1 if � = �, and

p3 = 0 if � = �.

Let us assume that s = 1 in the �rst period. Hence, the time-2 price equals 1=3, and the

return over the second period, r3, is either

r3 =
p3 � p2
p2

=
1� 1

3
1
3

= 2

if � = �, or

r3 =
p3 � p2
p2

=
0� 1

3
1
3

= �1

otherwise. On average:

E[r3js = 1] = 2Pf� = �js = 1g � 1Pf� = �js = 1g = 2
1

3
�

2

3
= 0;

in accordance with EMH and Result 1 above.

Let us introduce a selection bias, and investigate whether the modi�ed return eliminates it.

The modi�ed return equals

x3 =
p3 � p2
p3

:

So,

x3 =
1� 1

3

1
=

2

3

if � = �, and

x3 =
0� 1

3

0
= �1
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otherwise. Computing the expectation conditional on the option's expiring in-the-money, i.e.,

� = �, one obtains:

E[x3js = 1; � = �]

=
2

3
Pf� = �js = 1; � = �g �1Pf� = �js = 1; � = �g

=
2

3
�10; (10)

which is indeterminate.

Using limit arguments, one can resolve the indeterminacy in (10) and restore Result 3. See

Bossaerts [1997]. Such arguments are purely mathematical, however. From an empirical point

of view, it is only of relevance to ask what the empiricist will actually see. Conditional on � = �

(and s = 1), the empiricist will only observe: p2 = 1=3 and p3 = 1. So, the average modi�ed

return across replications of histories where the digital option expired in-the-money (and s = 1)

is:

x3 =
1� 1

3

1
=

2

3
;

in violation of Result 3.

Earlier, this paper proposed a simple modi�cation to the traditional return measure that

eliminates biases which result when only price histories of winning digital options are investi-

gated. From the example we have just discussed, it is clear that this adjustment will not work

if there is a chance that signals fully reveal whether � equals �. Bossaerts [1997] discusses the

impact if this chance is only tiny.

3 General Equity-Like Payo�s

The limited liability of equity gives it a peculiar payo� structure: either a positive, ran-

dom amount is received, or zero. The latter outcome is usually referred to as \default" or

\bankruptcy." So, equity is really an extension of the digital option discussed in the previous

section. When equity is \in the money," however, the holder receives a random, positive pay, as

opposed to a �xed $1.

Many other securities have equity-like payo� patterns. Among those are the quintessential

options, the put and the call. Call options pay the maximum of the di�erence between the value

of the underlying asset and its strike price, or zero. As mentioned in the Introduction, there are

many other securities that have equity-like payo� patterns. Because of their simplicity, however,

call options will be used to illustrate the theoretical developments of this paper.9

9The reader may ask whether common stock (equity) really belongs in the category of securities that is being
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In particular, we will investigate European S&P500 index call options, traded on the CBOE

(symbol: SPX). Four-week series of daily prices will be studied, covering the years 1991-1995. At

the start of each series, the option was at the money and �ve weeks from expiration. The prices

were estimated from closing prices of actually traded put and call options, using the smoothing

technique developed in Bondarenko [1997] (constrained convex least squares regression). The

latter �lters the data for bid-ask bounce and violations of simple arbitrage bounds.

In order to get an idea of the nature of the time series, Figure 3 plots 4 four-week histories,

covering the contracts expiring in 1/93, 2/93, 3/93 and 4/93. The index call option matured

in-the-money in the months 1/93 and 3/93. It expired worthless in the other two months.

Let us proceed as in the previous subsection, and �rst document the e�ect of imposing a

deliberate survivorship bias.

3.1 Illustrating Survivorship Bias Using S&P500 Index Call Option

Prices

Table 2 displays the average of the daily mean return across the 58 four-week periods in the

sample. Returns were computed after in
ating each beginning-of-period price with the price of

a one-day, riskfree pure-discount bond; the three-month Treasury bill rate was used to proxy for

the riskfree rate. The average equals -0.8%, which, with a standard error of 0.7%, is insigni�cant.

So, the evidence in Table 2 is consistent with EMH: one cannot reject that average returns

(adjusted for the riskfree rate) are zero on average. This evidence is based on an unbiased sample:

both \winning" and \losing" call options are included, in the proportion that was dictated by

Nature.

To illustrate the impact of survivorship bias, Table 2 also reports the average daily mean

return across the 40 four-week histories when the index call option expired in-the-money. In other

words, it reports an estimate of the daily mean return that is a�ected by the usual survivorship

studied here, pointing to its lacking a de�nite maturity date. Notice, however, that the theory continues to hold

if we specify the maturity date of common stock to be a speci�c date in the future (e.g., one year from now),

setting V equal to the stock price that would obtain at that point in time. Of course, there is the issue of prior

revelation of bankruptcy. As illustrated in Section 2, securities prices will not be observed to behave as the

theory requires if there is a chance that bankruptcy is announced before maturity. Hence, when implementing

the tests in the context of equity pricing, there is an e�ective limit on how far the horizon (maturity date) can

be extended into the future. Since the theory takes bankruptcy to be liquidation (with zero payo�), one has to

set the maturity date such that de�nite news about liquidation is unlikely to emerge prior to the chosen date.

Nevertheless, a small, positive probability of full revelation of bankruptcy can be tolerated, as the simulations in

Bossaerts [1996] illustrate.
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bias. As expected, it is positive (1.3%), and, with a standard error of 0.6%, signi�cantly so.

Hence, computing average returns only on the basis of winning histories does induce a positive

bias in the estimate of the average return.

Before introducing an adjustment of the return measure that corrects for survivorship bias,

let us �rst discuss a numerical example. It will be used to demonstrate how the return adjustment

works.

3.2 A Numerical Example

We will build on the numerical example from the previous section. We keep the same state and

signal structure, but we now add the complication that our option pays a random amount V +

whenever � = �. In particular, we specify:

V + =

8<
: 2 if s = 1;

1 if s = 0.

By linking the signal at time t = 2 and the payo� at t = 3, we introduce realism in the example.

Indeed, signals about the likelihood that a security expires in-the-money usually also reveal

information about what the �nal payo� will be in the case the security indeed expires in-the-

money. The index call option from the previous subsection is a good example: the main signal

for the likelihood of this option's expiring in-the-money is the level of the S&P500 index; at the

same time, the S&P500 index also reveals a lot about how far the option will be in the money

if it will be at all.

The �rst price, p1, will now be:

p1 = E[V +1f�=�g]

= Pf� = �g
�
2Pfs = 1j�g+ 1Pfs = 0j�g

�
=

1

4

�
2
1

2
+ 1

1

2

�

=
3

8
:

Similarly, prices at t = 2 change. If s = 1,

p2 = 2Pf� = �js = 1g

=
2

3
;

and, if s = 0,

p2 = 1Pf� = �js = 0g

=
1

5
:
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This allows us to re-derive Result 1.

E[p2] =
2

3
Pfs = 1g+

1

5
Pfs = 0g

=
2

3

3

8
+

1

5

5

8

=
3

8
:

Hence,

Result 4:

E[r2] = E[
p2 � p1
p1

] = 0: (11)

Again, this is the translation into mathematics of what EMH is about.

To determine the e�ect of survivorship bias, condition on the state � = �:

E[p2j�] =
2

3
Pfs = 1j�g+

1

5
Pfs = 0j�g

=
2

3

1

2
+

1

5

1

2

=
104

240
:

This is higher than p1, which equals 3=8, i.e., 90=240. Consequently,

Result 5:

E[r2j�] > 0:

Survivorship of winning securities induces a clear upward bias in average returns.

3.3 Again, A Correction For Survivorship Bias

As with the digital option, there is a simple correction of the traditional return measure that

will purge it of its bias. The adjustment is slightly di�erent (in fact, the adjustment for digital

options is nested).

Consider the average inverse p2. We will need a weighted average, where the weights are

determined by the �nal payo� of the security, V +:

E[
1

p2
V +j�] = (

3

2
)2Pfs = 1j�g+ (5)1Pfs = 0j�g

=
3

2
2
1

2
+ 5

1

2

= 4: (12)

Likewise, compute the conditional average �nal payo�:

E[V +j�] = 2
1

2
+ 1

1

2
=

3

2
:
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This, together with (12), implies the following.

Result 6:

E[x2V
+j�] = E[

p2 � p1
p2

V +j�]

= E[V + � p1
1

p2
V +j�]

=
3

2
�

3

8
4

= 0: (13)

Our standard adjustment to the return measure, together with a weighting using the �nal payo�,

eliminates the survivorship bias entirely. Notice that Result 3 (for digital options) is nested in

Result 6. Indeed, for digital options, V + = 1 always, the weighting becomes trivial, and the

average reduces to (9).

Again, this result is very general. Let us look at how it works in the context of CBOE

S&P500 index call options.

3.4 Back To The CBOE Options Data

Table 2 also displays the weighted average of the mean daily modi�ed return across the 40 four-

week periods that the S&P500 index call option expired in-the-money. For the reader who is

unsure about how this weighted modi�ed return was computed, let Ci
t denote the closing price

on day t of the ith four-week history (i = 1; : : : ; 40, t = 1; : : : ; T i). Let rit be the corresponding

riskfree rate (expressed as percentage per day; as mentioned before, the three-month Treasury

bill rate was used as proxy). Modi�ed return (i; t) was computed as:

xit =
Ci
t � Ci

t�1(1 + rit)

Ci
t

:

The weight V +;i was computed from the last closing price of the option:

V +;i = Ci
T i+5:

(At the beginning of each four-week period, options have a maturity of �ve weeks; therefore,

expiration occurs �ve trading days after the end of each history, i.e., at T i+5, and the option's

�nal payo� can be computed from the closing price for that day.) Then, the weighted average

modi�ed return was calculated using the following formula:

1

40

40X
i=1

V +;i

0
@ 1

T i

T iX
t=1

xit

1
A :
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The cross-section of the weighted mean daily modi�ed return formed the basis for calculating

standard errors.

Table 2 reports that the weighted average of the mean daily modi�ed return on winning

S&P500 index call options equals 0.4%. With a standard error of 11.4%, this is insigni�cant

at any reasonable level. Our adjustment to the standard return measure, together with the

peculiar weighting scheme, appear to have eliminated the bias that we introduced by looking

only at 40 four-week price histories for options that expired in-the-money.

To gain perspective, it should be emphasized that the lack of signi�cance of the weighted

average modi�ed return in Table 2 is in no way caused by our weighting with a variable with

substantial range, namely V +. To illustrate this, Table 2 also displays the weighted average of

the daily mean traditional return, which, like its unweighted counterpart, should also be a�ected

by our deliberately imposed selection bias. Table 2 reports that it equals a sizeable 35.3%, which

is highly signi�cant in view of the standard error of 12.7%.

Still, the issue of power is interesting. Because of lack of space, we cannot address it here.

The interested reader is referred to Bossaerts [1997], as well as Bossaerts and Hillion [1997]. The

latter includes a Monte Carlo exercise and reports excellent power properties against alternative

hypotheses with an over-reacting market.

3.5 Projections

Just like Results 1 and 4 ( Equations (6) and (11) ) are known to be extendible to become

martingale di�erence restrictions, Results 3 and 4 ( Equations (9) and (13) ) generalize. This

would mean that modi�ed returns or weighted modi�ed returns must not be predictable from

past information. Any projection of modi�ed or weighted modi�ed returns onto past information

must lead to insigni�cant coe�cients (except for the usual type I error).

Let us investigate how projections would work on the index options data. Figure 4 plots

weighted daily modi�ed returns of winning options against lagged information. The lagged

price level was chosen as predictor, because it was one of the few variables that did reveal some

anomaly.10 The solid line through the scatter plot is a kernel estimate of the regression function.

For options that are priced below $5, there seems to be some indication that the lagged price

level could be used to predict weighted daily modi�ed returns, with lower prices indicating lower

weighted modi�ed returns. This would violate our restriction. For prices beyond $5, however,

there is clearly no discernible pattern, con�rming the restriction. One could suspect that bid-ask

10Also, the lagged price is a popular predictor for asset returns, ever since Keim and Stambaugh [1986] discov-

ered that it could be used to forecast stock returns.
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bounce is behind the rejection for low-priced options, but this is not the appropriate place to

further investigate such a possibility. We will interpret the evidence from Figure 4 to be roughly

in line with the martingale-di�erence extension of Result 6.

Instead, we come back to a question that was raised at the end of the previous section. We

can adjust returns to o�set survivorship biases. Does that imply that EMH can be tested on

biased samples? It is time to address this question.

4 Biases In Beliefs

In EMH, the market has unbiased beliefs. Among other things, it is supposed to know ex

ante the true frequency with which options expire in-the-money. As far as the CBOE data is

concerned, we have found no clear violations of EMH. A closer look, however, does reveal some

striking violations.

4.1 Re-Visiting S&P500 Index Option Prices

Figure 5 plots daily changes in S&P500 index call option prices against lagged call price levels

across all histories. That is, all daily price changes were included, no matter whether the option

eventually expired in-the-money (winners) or out-of-the-money (losers). Price changes were

preferred over returns: the plot with the latter on the Y axis was harder to interpret because of

some obvious heteroscedasticity.

Figure 5 clearly displays strong evidence against EMH. There is a pronounced, positive, linear

relationship between price level and subsequent price changes. This relationship is uniform across

all price levels. The intercept of the OLS projection depicted in Figure 5 is -0.894. Its standard

error is only 0.114. Likewise, the slope coe�cient is 0.097, with a standard error of only 0.010.

Figure 5 should be contrasted with Figure 4. The latter revealed some weak evidence against

the proposition that weighted modi�ed returns should not be predictable, but only for low-priced

options. In contrast, the evidence from the former is sharp and convincing: option price changes

are predictable across the board, and, hence, EMH has to be rejected.

This empirical example suggests that tests based on weighted modi�ed returns of securities

that expire in-the-money must be validating a weaker theory than EMH. So, the impression

that one could use weighted modi�ed returns to test EMH in biased samples seems to be wrong.

Of course, there may be other explanations for the discrepancies between Figures 4 and 5, such

as power, market microstructure e�ects, skewness, etc. But one should at least entertain the

possibility that weighted modi�ed returns of winners can be used only to test a weaker restriction
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on beliefs than EMH imposes.

We will demonstrate this by means of our numerical example. We will impose a bias on the

market's beliefs, and prove that Result 6 continues to hold. In other words, weighted average

modi�ed returns remain zero even with biases in the market's prior about the chances of the

security's expiring worthless (default).

4.2 Changing The Market's Beliefs In The Numerical Example

Let us change the market's prior about the event f� = �g, from Pf� = �g = 1=4, to P �f� =

�g = 1=2. From now on, P � will indicate the market's beliefs, in order to clearly distinguish

them from the \true" probabilities, which remain the same as before, and which will still be

indicated with P . To distinguish whether expectations are based on P � or on P , we should use

the notation E� and E, respectively. Notice that the market is too optimistic, in violation of

EMH.

It should be emphasized that we only change the prior about the event f� = �g. We do

not change the market's beliefs otherwise. In particular, the market continues to hold correct

conditional beliefs. For instance,

P �fs = 1j�g = Pfs = 1j�g =
1

2
:

The �rst price, p1, will change, to:

p1 = E�[V +1f�=�g]

= P �f� = �g
�
2P �fs = 1j�g+ 1P �fs = 0j�g

�
=

1

2

�
2
1

2
+ 1

1

2

�

=
3

4
:

Similarly, prices at t = 2 change. If s = 1,

p2 = 2P �f� = �js = 1g

=
l(1j�)P �f� = �g

l(1j�)P �f� = �g+ l(1j�)P �f� = �g

=
1
2
1
2

1
2
1
2 +

1
3
1
2

=
6

5
;

and, if s = 0,

p2 = 1P �f� = �js = 0g
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=
l(0j�)P �f� = �g

l(0j�)P �f� = �g+ l(0j�)P �f� = �g

=
1
2
1
2

1
2
1
2 +

2
3
1
2

=
3

7
:

Because EMH is violated, Result 1 must be violated as well. Indeed:

E[p2] =
6

5
Pfs = 1g+

3

7
Pfs = 0g

=
6

5

3

8
+

3

7

5

8

=
201

280
:

Since p1 = 3=4 = 210=280,

E[r2] = E[
p2 � p1
p1

] =
201

210
� 1 < 0:

The impact of survivorship bias remains the same, however.

E[p2j�] =
6

5
Pfs = 1j�g+

3

7
Pfs = 0j�g

=
6

5

1

2
+

3

7

1

2

=
114

140
:

This is higher than p1, which equals 3=4, i.e., 105=140. Consequently, Result 5 is upheld:

E[r2j�] > 0:

What about Result 6? First compute the weighted expected inverse price.

E[
1

p2
V +j�] =

5

6
2Pfs = 1j�g+

7

3
1Pfs = 0j�g

=
5

6
2
1

2
+

7

3

1

2

= 2:

The conditional average �nal payo� remains the same as before.

E[V +j�] = 2
1

2
+ 1

1

2
=

3

2
:

All this implies the following.

E[x2V
+j�] = E[

p2 � p1
p2

V +j�]

= E[V + � p1
1

p2
V +j�]

=
3

2
�

3

4
2

= 0:
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This con�rms Result 6!

So, the validity of Result 6 does not depend on correctness of the market's priors (EMH).

Result 6 derives from the other assumptions: correctness of conditional beliefs, and, most impor-

tantly, whether the market uses Bayes' law to update its beliefs. The importance of Bayes' law

was already alluded to in the numerical example of a digital option. A market with biased priors

but which otherwise reacts correctly to new information (uses Bayes' law) has been referred to

as an E�ciently Learning Market (ELM). Therefore, the weighted average modi�ed return on

winning securities can be used to test ELM, and not EMH.

4.3 Discussion Of The Evidence From The CBOE Options Data

How, then, do we interpret the evidence from the CBOE index options data? Because we found

predictability of the traditional return in an unbiased sample, but little evidence of predictability

of the weighted modi�ed return in a biased sample (only those options that matured in-the-

money), we must conclude: (i) EMH is rejected, (ii) the evidence against ELM is weak. This

implies that the options market is one which learns correctly, albeit from biased priors. It may

not always know correctly what the probability is that an S&P500 index call option expires

in-the-money, but it does react correctly to the arrival of new information.

You will remember, however, that we did uncover some slight evidence against Result 6,

and, hence, against ELM, in low-priced options. There may be various explanations for this,

including bid-ask spreads, or risk premia (remember that we have been assuming risk neutrality

throughout)11. It is interesting, however, to take the evidence at face value and wonder what

type of irrational market would generate a (conditionally) negative weighted average modi�ed

return. The paper would become inordinately burdened if we were to try to answer this question

here. The analysis can be found, however, in Bossaerts and Hillion [1997]. In particular,

it appears that a market that over-reacts to new information (relative to Bayes' law) would

generate signi�cantly negative weighted average modi�ed returns.

5 General Result

It is now time to state the main result formally. Here is the framework. Let time be indexed t

= 1; 2; 3; : : : ; T +1. The possible states of the world are listed in an outcome space 
 = �� ~
.

� is binary, with two elements, � and �. Generically, the elements of � will be referred to as �.

11The evidence against the theory comes mainly from low-priced options. Generally, these are out-of-the-money

options, with a high beta. Hence, models such as the CAPM would predict that they carry a large risk premium.
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� is the basic state space. It determines the payo� on the one security that is of interest

to us. This security's payo� is denoted V , and will be realized at time T + 1. V is a random

variable de�ned on 
. It relates to � as follows:

V =

8<
: V + if � = �;

0 if � = �,
(14)

This is meant to re
ect the typical payo� structure on equity and equity-related contracts (such

as options). � can be referred to as the \default state," because our security pays $0 when it

occurs. When � = �, the security will mature \in the money."

The 
ow of information to the marketplace will be represented by a �ltration fFtg
T+1
t=1 .

V 2 FT+1, but, importantly, � is not in Ft when t � T . In other words, the information

never fully reveals �. The importance of this assumption was discussed at the end of the second

section.

Nature's drawings generate a probability measure P . In accordance with the factorization of

the outcome space, we split P into an unconditional measure that determines how � is picked, �,

and a conditional measure, P�, that determines how ~! (and, hence, V , as well as the information


ow fFtg
T+1
t=1 ) is drawn, conditional on �. That is,

P = �P�:

Not only does the market not know � before T + 1, it may also have biased beliefs about

how � is drawn. The market's beliefs will be represented by a probability measure P �, to be

factored into a (subjective) �� over �, and an objective conditional measure P� over ~
. Since

we take P� instead of any subjective belief, the market is assumed to have correct conditional

beliefs. Hence:

P � = ��P�:

Because � and �� may di�er, EMH may be violated. To distinguish whether expectations are

computed over the objective P or over the subjective P �, the notation E (when P is involved)

and E� (expectations over P �) will be used.

The market in our security clears at times t = 1; : : : ; T . Let pt denote the time-t equilibrium

price. pt 2 Ft. Subject to risk neutrality and zero discounting, pt is obtained as:

pt = E�[V jFt]; (15)

where the conditional expectation E� is computed under P �, i.e., under the market's subjective

beliefs.
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If the market's subjective beliefs are correct, i.e., if EMH holds, we obtain the following

well-known result, originally derived in Samuelson [1965]. As before, let rt+1 denote the return

over the period t; t+ 1:

rt+1 =
pt+1 � pt

pt
: (16)

Lemma 1 Under risk neutrality and zero discounting, and if the market is e�cient (i.e., EMH

holds),

E[rt+1jFt] = 0;

t = 1; : : : ; T � 1.

(All proofs are collected in the Appendix.) In words: returns cannot be predicted from past

information.

Lemma 1 will obviously not obtain if subjective beliefs (P �) and actual frequencies (given by

P ) di�er. If the market is too optimistic about chances that the security expires in-the-money,

as in the numerical example of Section 4, we expect:

E[rt+1] < 0:

Absent knowledge about the nature of the bias in the market's priors, we cannot put a de�nite

sign on the expected return (conditional or unconditional). In other words, under ELM, we have

no unambiguous results. Of course, we could frankly assume that we know whether the market

is always too optimistic or too pessimistic, but that would be implausible. Also, we do want the

theory to work when the market's priors change randomly from one history to another. Right

now, they are �xed (and equal ��), but the proofs in the Appendix allow them to be random.

This discussion reveals that little can be inferred from an unbiased sample of price histories.

The restrictions that ELM imposes only become transparent when a deliberate selection bias is

imposed. In particular, we have to investigate the price behavior of winning securities separately

from those of losing securities. This was also the message from the examples in Sections 2 to 4.

We now introduce such a selection bias: we condition on knowledge that the security expired

in-the-money, i.e., that � = �. For digital options, the resulting survivorship bias can be signed.

Digital options are securities for which V + = 1. We have the following result.

Theorem 1 Consider the traditional return rt+1 on a digital option. Assume risk neutrality

and zero discounting. If the market learns e�ciently (i.e., under ELM),

E[rt+1jFt; �] � 0;

t = 1; : : : ; T � 1.
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This survivorship bias was illustrated with empirical and numerical examples in the previous

sections.

It is somewhat surprising that the survivorship bias can be signed under ELM, because we

have not �xed the market's priors: �� can di�er arbitrarily from �. In fact, in the proof of

Theorem 1 in the Appendix, we allow ��, and, hence, the market's beliefs bias, to be arbitrarily

random. One could have expected that Theorem 1 would not obtain if it is known that the mar-

ket always tends to be too optimistic, inducing a negative drift on securities prices. Theorem 1

states that this conjecture is wrong.

As the empirical and numerical examples of the previous section illustrated, one can adjust

the traditional return measure and correct for survivorship bias under ELM. In particular,

consider the modi�ed return xt+1:

xt+1 =
pt+1 � pt
pt+1

:

When weighting xt+1 with the �nal payo� on the security, we eliminate survivorship bias. This

is stated formally in the following theorem.

Theorem 2 Assume risk neutrality and zero discounting. If the market learns e�ciently (i.e.,

under ELM),

E[xt+1V
+jFt; �] = 0;

t = 1; : : : ; T � 1.

The IEM Microsoft \High" data illustrated the working of this Theorem in the case of digital

options (for which V + = 1). The CBOE S&P500 index call options data did this for general

equity-like payo�s (V + is the di�erence between the S&P500 index level and the option's strike

price). The numerical examples in the previous sections complemented the empirical illustra-

tions.

The Appendix provides the proof of Theorem 2. It may seem demanding (especially because

random priors are allowed for), but its core is simple, at least for digital options. The core

relies on arguments that have already been employed elsewhere in the mathematical-statistics

literature, to show that sequences of ratios of likelihood functions are martingale processes (see,

e.g., Doob [1953], II.7 and VII.9). Likelihood functions appear here because, through Bayes'

law, they determine how prices change as the result of information accumulation.

To understand how the proof works for digital options, let us assume that the information

at t + 1 can be represented with a continuous signal st+1 taking values in some set St+1. Its

likelihood given � (derived from P�) is continuous, and denoted lt+1(st+1j�). Also, let ��t (�)

denote the market's posterior about �, given all the information up to time t (Ft). In particular,
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��t (�) denotes the market's posterior about the event f� = �g. Since we are investigating a

digital option, ��t (�) will also equal the equilibrium market price, pt. The market's posterior at

t + 1, ��t+1(�), is obtained from the signal and ��t (�) using Bayes' law. It will also equal the

price at time t+ 1, pt+1. Hence,

pt
pt+1

= ��t (�)
lt+1(st+1j�)�

�
t (�) + lt+1(st+1j�)�

�
t (�)

lt+1(st+1j�)��t (�)

=
lt+1(st+1j�)�

�
t (�) + lt+1(st+1j�)�

�
t (�)

lt+1(st+1j�)
:

(Notice that the prior ��t (�) in front of the �rst fraction canceled; this is why prior beliefs are

irrelevant in Theorem 2.) Taking conditional expectations using lt+1(st+1j�) generates:

E[
pt
pt+1

jFt; �]

=

Z
St+1

lt+1(st+1j�)�
�
t (�) + lt+1(st+1j�)�

�
t (�)

lt+1(st+1j�)
lt+1(st+1j�)dst+1

=

Z
St+1

lt+1(st+1j�)�
�
t (�) + lt+1(st+1j�)�

�
t (�)dst+1

=

 Z
St+1

lt+1(st+1j�)dst+1

!
��t (�) +

 Z
St+1

lt+1(st+1j�)dst+1

!
(1� ��t (�))

= 1:

(Notice the cancellation of likelihood functions, possible because we assume that the market has

correct conditional beliefs.) Consequently,12

E[xt+1jFt; �] = E[1�
pt
pt+1

jFt; �] = 0:

6 Extensions

The theory from the previous section can be extended in various directions.

First, risk aversion and/or nonzero riskfree rates can easily be built into the analysis, provided

one has a candidate state-price de
ator (stochastic discount factor). The Appendix discusses

how, and restates Theorem 2 in this more general framework.

Second, under mild conditions, the unweighted modi�ed return is restricted as well. In

particular, Bossaerts [1997] proves when the following obtains:

E[xt+1jFt; �] � 0: (17)

12Lones Smith independently proved a weaker version of this result, under correct beliefs and independent

signals. His motivation was entirely di�erent. The question whether the modi�ed return satis�ed martingale

di�erence restrictions showed up as part of the determination of optimal investment strategies. See Smith [1996].
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Finally, until now, we have only investigated the price pattern of winning securities. One

obviously wonders whether prices of losing securities (i.e., those that expired out-of-the-money)

reveal anything about ELM. Subject to certain conditions, the answer is a�rmative. The re-

strictions require, however, that one investigate the return series in reverse time. Because the

ensuing complexity distracts from the main objective of this paper, the analysis of returns on

losing securities is not included here. The interested reader may consult Bossaerts [1997].

7 Conclusion

The concept of market e�ciency is central to asset pricing. Intuitively, it is understood to mean

that the market does not over-react or under-react to new information. In other words, the

market updates its beliefs rationally, using the rules of conditional probability (Bayes' law).

Empirical tests of asset pricing models, however, implicitly assume also that the market's initial

beliefs are unbiased. Likewise, Lucas' theory of rational expectations equilibria explicitly posits

that the representative consumer correctly assesses the frequency of future random events.

This paper is a �rst attempt to relax the assumption of correct priors. Its aim is to demon-

strate that (i) securities prices remain restricted even if one allows the market to have biased

priors, (ii) the resulting retrictions are simple and powerful. The paper does so in the context

of equity-like contracts: securities that pay nothing in one state (the bankruptcy state), and

a random amount in the other state. The market is allowed to have wrong priors about the

likelihood of the bankruptcy state, yet is assumed to update its beliefs rationally as information

arrives.

In such a world, restrictions emerge only after deliberately imposing a selection bias on price

histories. The paper thereby demonstrates that market e�ciency can be tested on samples

that are subject to survivorship bias. The concept of market e�ciency that is being tested is,

however, weaker than the traditional EMH: only rational updating is assumed; priors can be

biased. We referred to this concept as ELM (E�ciently Learning Markets).

One aspect that this paper does not dwell on is the nature of the �nancial market where the

restrictions would fail. Let us assume that prices were correctly adjusted for risk and/or nonzero

discounting. (The body of the paper actually assumes risk neutrality and zero discounting; the

Appendix, however, explains how to accommodate risk aversion and/or nonzero discounting.)

Such a market must then be making mistakes in updating its own beliefs. It either under-reacts

or over-reacts to new information. Probability theorists would describe the situation as one

where a Dutch book could be used to make money in gambles against the market, with no
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risk.13 Asset pricing theorists would refer to it as an (asymptotic) arbitrage opportunity. It can

be shown, for instance, that over-reaction to new information leads to negative weighted average

modi�ed returns on winning contracts; conversely, under-reaction leads to positive weighted av-

erage modi�ed returns. Over-reaction and under-reaction are measured relative to the Bayesian

update. The interested reader is referred to Bossaerts and Hillion [1997] for further analysis.

13See, e.g., Schervish [1995], p. 655-6.
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Appendix

There are two parts to this Appendix. First, proofs of the Lemma and Theorems in the paper

are given, albeit in the more general context of random market priors (we will discuss what

that means). Second, the main result, Theorem 2, is extended to allow for risk aversion and/or

nonzero discounting.

Part I: Proofs

I.A. Preliminaries

To capture potential randomness in the market's prior over �, ��, extend 
 (= �� ~
) by the

Cartesian product with the set of probability measures on �, denoted �(�). �� 2 �(�). We

obtain the following outcome space:

���(�)� ~
:

Extend the probability measure P accordingly, obtaining Q, to be factored as follows:

Q = ���P��� : (18)

Under traditional market e�ciency, �� = ��, i.e., the probability measure that puts unit mass on

the correct belief about �, namely �. Nothing fundamental is added by allowing the outcomes in

�(�) (i.e., market beliefs) and in ~
 (the latter determine signals and payo�s) to be independent

conditional on �. In fact, assuming the converse would mean that knowledge of the market's

priors reveals information about the likely signals and eventual payo�, which is rather awkward

as an empirical proposition. Hence, assume that P��� does not change with ��. The earlier

notation P� wil be used when referring to P��� .

In the Appendix, the expectations E will be computed with respect to the more general

measure, Q, which allows market beliefs to be random.

The following notation will be used throughout the remainder of the Appendix.

Let s1; s2; : : : ; sT denote the sequence of signals that investors receive. Each st lives in a

space St. One does not have to be speci�c about what the Sts are. Just let lt(stj�) denote the

density (if st is continuous) or probability mass (otherwise) of st corresponding to P�. Following

the discussion of Section 5, P �
� equals P�. Hence, lt(stj�) also denotes the density or probability

mass corresponding to P �
� .

Agents' beliefs about � will be written as a sequence of elements in �(�), f��t g
T
t=1, which
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are recursively de�ned by:

��t (�) =
lt(stj�)�

�
t�1(�)P

�2� lt(stj�)��t�1(�)
(19)

when t = 2; : : : ; T ;

��1(�) = ��(�);

and:

��t (�) = 1� ��t (�);

all t.

I.B. Proof Of Lemma 1

Under EMH, market prices are determined as in (15), with E substituted for E�. Using the law

of iterated expectations,

E[rt+1jFt]

= E[
pt+1 � pt

pt
jFt]

=
1

pt
E[pt+1jFt]� 1

=
1

pt
E[E[V jFt+1]jFt]� 1

=
1

pt
E[V jFt]� 1

= 0:

2

A.III. Proof Of Theorem 1

Let 1f�=�g denote the indicator function, which takes the value 1 if � = �, and 0 otherwise.

From (15) and (19), the time-(t+ 1) price of the digital option equals:

pt+1 = E�[V jFt+1]

= E�[1f�=�gjFt+1]

= ��t+1(�)

=
lt+1(st+1j�)�

�
t (�)P

�2� lt+1(st+1j�)��t (�)
: (20)

Using pt = ��t (�),

pt+1
pt

=
��t (�)

��t (�)

lt+1(st+1j�)P
�2� lt+1(st+1j�)��t (�)

:
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Now consider:

E[
pt+1
pt

jFt; �]

= E[E[
pt+1
pt

jFt; �; �
�]jFt; �]:

Compute the inner conditional expectation, using the assumption that P��� = P�:

E[
pt+1
pt

jFt; �; �
�]

=

Z
St+1

lt+1(st+1j�)P
�2� lt+1(st+1j�)��t (�)

P
�
(dst+1)

=

Z
St+1

1P
�2�

lt+1(st+1j�)��t (�)

lt+1(st+1j�)

lt+1(st+1j�)dst+1

�
1R

St+1

P
�2�

lt+1(st+1j�)��t (�)

lt+1(st+1j�)
lt+1(st+1j�)dst+1

=
1P

�2�

R
St+1

lt+1(st+1j�)dst+1��t (�)

= 1:

The result immediately obtains:

E[rt+1jFt; �] = E[
pt+1
pt

jFt; �]� 1

= E[E[
pt+1
pt

jFt; �; �
�]jFt; �]� 1

� 0:

2

A.IV. Proof Of Theorem 2

Let us �rst prove the following Lemma.

Lemma 2

E[
��t (�)

��t+1(�)
jFt; �] = 1:

Proof:

E[
��t (�)

��t+1(�)
jFt; �]

= E[E[
��t (�)

��t+1(�)
jFt; �; �

�]jFt; �]
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Computing the inner conditional expectation, using arguments from the proof of Theorem 1:

E[
��t (�)

��t+1(�)
jFt; �; �

�]

=

Z
St+1

P
�2� lt+1(st+1j�)�

�
t (�)

lt+1(st+1j�)
P
�
(dst+1)

=

Z
St+1

P
�2� lt+1(st+1j�)�

�
t (�)

lt+1(st+1j�)
lt+1(st+1j�)dst+1

=
X
�2�

Z
St+1

lt+1(st+1j�)dst+1�
�
t (�)

= 1:

This leads to the desired result.

(End of Proof of Lemma 2.)

Now the proof of Theorem 2. First, notice from (15), the assumption of correct conditional

beliefs and of independence between V + and �� (remember: P��� = P�):

pt = E�[V jFt]

= E�[V +1f�=�gjFt]

= E�[V +jFt; �]�
�
t (�)

= E[V +jFt; �; �
�]��t (�)

= E[V +jFt; �]�
�
t (�):

Hence,

E[V +xt+1jFt; �]

= E[xt+1E[V
+jFt+1; �]jFt; �]

= E[V +jFt; �]

�E

"
E[V +jFt; �]�

�
t (�)

E[V +jFt+1; �]��t+1(�)
E[V +jFt+1; �]jFt; �]

#

= E[V +jFt; �]

�E[V +jFt; �]E

"
��t (�)

��t+1(�)
jFt; �

#

= 0;

where the last equality follows from Lemma 2.

2
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Part II: Risk Aversion And/Or Nonzero Discounting

Until now, risk neutrality and zero interest rates have been assumed. To allow for risk aversion

and/or nonzero interest rates, i.e., to accommodate stochastic discount rates, one should chose

a state-price de
ator and use it to normalize prices.

Here is how it works. Let Mt denote the chosen (stochastic) state-price de
ator, for t =

1; : : : ; T + 1. If ~pt is the raw price level, then the following restriction characterizes equilibrium

prices:14

Mt~pt = E�[MT+1V jFt]; (21)

The de
ated price pt is obtained as Mt~pt. De�ning:

M =MT+1;

we obtain the following pricing formula:

pt = E�[MV jFt]; (22)

For our purposes, the representation in terms of de
ated prices (22) is more useful than the

original representation using raw prices (21). This should be clear once we get to the proof of

the main result. De�ne:

xt+1 =
pt+1 � pt
pt+1

:

(Remark: this modi�ed return is based on de
ated prices!)

Theorem 3 If the market learns e�ciently (i.e., under ELM),

E[xt+1MV +jFt; �] = 0;

t = 1; : : : ; T � 1.

Proof: Notice the similarity between the pricing equations (22) and (15): the former can

be obtained by substituting MV for V in the latter. The Theorem follows from implementing

the same substitution in the proof of Theorem 2, and remembering that, conditional on � = �,

V = V +.

2

14The (strictly positive) ratio MT+1=Mt is often referred to as pricing kernel. See, e.g., Hansen and Jagan-

nathan [1991].
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Table 1

Securities Prices In The Iowa Experimental Markets:

Digital Options Written On Microsoft (MS) Common Stock

N Mean

All MS High Contracts

Return 16 0:081�

(0.042)

All MS Winning Contracts

Return 16 0:097��

(0.037)

Modi�ed Return 16 -0.032

(0.022)

Remarks: To compute the modi�ed return, the end-of-period price is used as basis; N is the

number of time series (each one month long); The averages are computed as the cross-sectional

average of the time series mean daily return or modi�ed return; Standard errors in parentheses;

�: signi�cant at the 5% level; ��: signi�cant at the 1% level.
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Table 2

Prices Of CBOE S&P500 Index Call Options

N Average

All Contracts

Return 58 -0.008

(0.007)

Winning Contracts

Return 40 0:013�

(0.006)

Weighted Return 40 0:353��

(0.127)

Weighted Modi�ed 40 0.004

Return (0.114)

Remarks: Modi�ed returns are computed based on the end-of-period price; Weighted returns

are returns multiplied by the payo� on the security at maturity; N is the number of time series

(each four weeks long); The averages are computed as the cross-sectional average of the time

series mean daily return or modi�ed return; Standard errors in parentheses; �: signi�cant at the

5% level; ��: signi�cant at the 1% level.
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Figure 1: Time series plots of daily closing prices for contracts Microsoft High (bold lines)
and Microsoft Low (dotted lines) in the Iowa experimental markets. One-month histories for
expiration months 1/96 (contracts MS090a*) till 4/96 (contracts MS100d*) are shown.

36



1 2 3
35

40

45

50

55

60

65

Time

P
ric

e
•←Return:+20%;Modified:+17%

1 2 3
35

40

45

50

55

60

65

Time

P
ric

e

•←Return:−20%;Modified:−25%

Figure 2: Left panel: when prices increase, the modi�ed return (based on the end-of-period
price level) is lower than the traditional return (based on the beginning-of-period price level).
Right panel: when prices decrease, the modi�ed return is larger (in absolute value) than the
traditional return. For digital options that matured in-the-money, the traditional return is
positive on average. The modi�ed return can be proven to be zero on average, provided that
the market reacts rationally to news about the eventual payo�. The result obtains even if the
market has biased expectations ex ante.
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Figure 3: Time series plots of daily closing prices for CBOE S&P500 index call options. The
options were at the money at the beginning of each time series, and expired �ve weeks later.
Four-week histories for four expiration months are shown.
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Figure 4: Scatter plot of weighted daily modi�ed returns divided by lagged prices (WMRet)
against lagged prices for CBOE S&P500 index call options. The line is an estimate of the
regression function (local polynomial estimation). The conditional expectation is negative and
increasing for prices below $10; it is zero above $10.
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Figure 5: Scatter plot of daily payo�s (returns times lagged prices) against lagged prices for
CBOE S&P500 index call options. Straight line is the OLS projection.
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