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How To Gerrymander: A Formal Analysis

Katerina Sherstyuk

Abstract

The paper presents an effort to incorporate geographic and other possible exogenous
constraints that might be imposed on districting into an optimal partisan gerrymandering
scheme. We consider an optimal districting scheme for a party which maximizes the
number of districts that it will, in expectation, win, given arbitrary distributions of voters
and party supporters over the electoral territory. We show that such a scheme exists if
an equal size requirement is the only constraint imposed on districting. If, further, the
requirement of territorial connectedness is imposed, the optimal districting scheme still
exists when arbitrarily small deviations from the equal size requirement are admissible.
Additional constraints imposed on districting make gerrymandering more difficult and
sometimes impossible. Although the party is assumed to ignore the risk associated with
possible shifts in electoral votes and thus takes the expected share of votes as a perfect
predictor of electoral outcomes, the presented approach is valid for a party with any
attitude towards risk and for any kind of majority rule used in elections. The results are
consistent with earlier findings on unconstrained optimal partisan gerrymandering.



How To Gerrymander: A Formal Analysis

Katerina Sherstyuk*

1 Introduction

While the scientific debate over multiple criteria that should be used to provide for fair
districting is neverending among political scientists (Balinski and Young (1982), Grofman,
Lijphart, McKay and Scarrow (ed.) (1982), Cain (1984), Grofman (ed.) (1990), Butler
and Cain (1992)), in practice contiguity and population equality continue to be the
most important requirements for any redistricting process. What possibilities do these
requirements leave for deliberate gerrymandering by particular interest groups or political
parties? This is the problem that we address in this paper. Taking the viewpoint of a
political party in charge of the redistricting process, we ask the question: how should the
gerrymandering party proceed, given the restrictions that are imposed on districting?
And, further, what can be done to prevent gerrymandering?

We take a formal approach to gerrymandering. While certain gerrymandering tech-
niques such as “concentration gerrymanders” and “dispersal gerrymanders” (Owen and
Grofman (1988)) are well understood and commonly recognized in the literature, few
studies treat the issue as an optimization problem for the group in control of the re-
districting process. The approach we present in this paper is in many respects related
to Owen and Grofman (1988), who analyze optimal gerrymandering schemes for a risk-
averse party in an uncertain world. They consider two possible cases: one in which a party
maximizes its expected seat share, and another where a party maximizes the probability
that it will-win-a-legislative-majority.They-find-that-the-optimal-partisan-gerrymander
in both cases looks much like a bipartisan gerrymander, with one set of districts having
majorities for the controlling party (we call them the “winning” districts) and the other
concentrating the opposition party supporters (the “losing” districts). Specific character-
istics of the winning and losing districts, they find, depend on the type of uncertainty the

"I would like to thank Richard McKelvey, Kim Border, and Morgan Kousser for their help and
suggestions. Any errors are my own.



party faces and the party’s attitude towards risk. If the gerrymandering party is risk-
neutral or faces no uncertainty, an optimal gerrymandering scheme involves spreading
the party supporters among a maximal possible number of winning districts which are
carried by a bare majority. Increased degree of uncertainty and a higher degree of risk-
aversion cause the party to form fewer winning districts with the higher concentration of
party supporters and, hence, higher probability of winning.

Defining the “ideal” characteristics of winning and losing-districts is the first step in
the optimal gerrymandering scheme. Implementing the ideal scheme on a given territory
is the second, and often a more difficult one. Geographic constraints and the cotiguity
of districts requirement, if imposed, may present considerable obstacles in drawing the
map with a set of desirable characteristics. Theoretical possibility of implementing the
latter step is the main subject of this paper.

In what follows, we try to incorporate geographic and other exogenous constraints
that might be imposed on districting into an optimal gerrymandering scheme, paying
special attention to the population equility and contiguity (connectedness) requirements.
We consider the possibility of an optimal districting scheme for a party that maximizes
the number of expected winning seats for itself in a legislative body, with the distribution
of the voters over the territory exogenously given. We show that such a scheme exists
if a population equality requirement is the only constraint imposed on districting for
any continuous distribution of population. If, further, the requirement of territorial
connectedness of every district is present, the optimal districting scheme still exists if
arbitrarily small deviations from the equal size requirement are admissible.

We further show that imposition of additional requirements on districting, such as
ethnic fairness (in the sense of equality), makes realization of the optimal gerrymandering
schemme more difficult and sometimes impossible. Thus, the imposition of multiple criteria
for districting might be useful in preventing strategic manipulation of electoral outcomes,
even if it does not always guarantee fair representation.

To illustrate the details of the districting procedure, we take the case of a party
which is not concerned with possible shifts in electoral votes and thus takes the expected
vote share as a perfect predictor of future electoral outcomes. Yet, one could view
the procedure we propose more generally, as the one which shows the possibility of
implementing any feasible districting scheme on a territory with given characteristics,
once the desirable characteristics of the map are determined.

Section 2 presents the general existence theorems, followed in Section 3 by an example
of optimal districting for the case of a uniform distribution of voters and a single-peaked
distribution of partisans over the territory. Conclusions and possible extensions are
presented in Section 4.
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2 Optimal districting for arbitrary distributions of
voters’ characteristics

Consider the problem of a political party (or its agent) which is entitled to divide a
given territory B C R? into k voting districts. Assume the party maximizes the number
of districts which it will, in expectation, win in the election. Suppose that the number of
districts, k, is given and the districts must be equal in population. To state the problem
formally, consider a measurable space (B, B), where B is a o-algebra of subsets of B.
Let 1+ denote the Lebesgue measure of population size defined on B such that u(B) = 1.
Then the equality of population requirement imposed on i-th district M; , i = 1, .., k, can
be presented in the form:

and we can introduce the following notions:

Definition 1 Given a territory B C R? and a number k, a map M = {M,,..,M,} is a
collection of k subsets of B satisfying'

1. M;€B foralli=1,..,k;
2. MPUM; =0 foranyi#j,1,5=1,.,k;

3. (UL, M;) = B.

Definition 2 Let the population equality be the only constraint imposed on districting.
Then a feasible map is @ map M that satisfies

p(M;) = 1/k for everyi=1,..,k . (1)

Suppose that each point & of the territory B is characterized by the expected share
of votes f(x) that the redistricting party will get in the election. Assume that the
distribution of voters over the territory as well as the expected vote share f(z), ¢ € B,
are continuous, exogenously given and cannot be affected by the way the district lines
are drawn. Suppose the simple majority rule is used in the elections within each district.
Under these-assumptions-and4f-the-party-is-maximizing-the-mumber-of-districts which it
will, in expectation, win, how should the party draw a districting map?

Under these assumptions, the problem is similar to the divide-a-cake problem studied
by Dubins and Spanier (1961), and specifically to the “problem of the Nile.” Dubins and

'Hereafter, we use the standard notation S and S° to denote the closure and the interior of a set S,
respectively.



Spanier present a solution to the problem of partitioning a set into k pieces and then
evaluating each of n measures on each piece. In this paper, we apply their approach to
the districting problem.

Consider how the redistricting party? might reason. The party expects to win the
election in a district if its expected share of votes there exceeds one half. It is reasonable
to assume that the party will not want the expected share of votes to be much greater
than one half, since that would mean “wasting” votes for that party.that could help to
carry other districts. Formally, we introduce the following definiton.

Definition 3 A district M; is called winning if E(f(z)/M;) > 1/2.

We further assume that the party will want to draw the district lines in a way that
will yield the maximum possible number of winning districts. That is,

Definition 4 For any map M, define the set of the winning districts [(M) as
I(M) = {1|E(f(2)/M;) > 1/2} . (2)

Then let the seat value of the map m(M) be the number of winning districts, i.e. the
number of the elements in the set I:

m(M) = |1 . (3)

Definition 5 A seat-mazimizing map is a feasible map that mazimizes the number of
winning districts. Let {SM} denote the set of all seat-mazimizing maps.

Assumption 1 (seat-mazimization) The party prefers any seat-mazimizing map to any
map that is not seat-mazximizing.

Together with the requirement of equal district size, this reasoning implies that the
party will want to find the largest possible area (with respect to population) A con-
tained in B such that the expected share of the votes over this area exceeds one half:
E(f(x)/A) > 1/2. This region will be then adjusted and divided into m winning dis-
tricts in a way that will conform to the imposed equality of population constraint. If the
party cares only about the number of districts that it will, in expectation, win, then the

*We will refer to the redistricting party hereafter simply as “the party”, since the whole analysis is
presented solely from its point of view.



problem of finding a seat-maximizing map trivially has a solution since its objective func-
tion is integer-valued. However, if the party is not indifferent among all seat-maximizing
maps, a special procedure should be desined to construct the most preferred, among
seat-maximizing, maps. We impose the following additional assumption on the party’s
preferences.

Assumption 2 (lexicographic preferences) Among the set of all seat-mazimizing maps,
the party prefers a map which solves

Mr&%}[ig(iﬁ) E(f(z)/M;)] . (4)

Thus, although the party considers every district with the expected share of votes
above one half to be winning, it prefers to draw a map in a way that will keep the
expectation of votes in the winning districts as high as possible, as long as it does not
decrease the number of winning districts. We summarize the party’s preferences in the
following definition of an optimal map.

Definition 6 An optimal map M* = {A4,.., A} is a seat-mazimizing map that solves

(4)-

After the winning districts are drawn, the rest of the territory will be divided into
n losing districts. (Note that given the above assumptions, it should not matter for
the party how the losing districts are drawn). The number of districts m and n will be
determined to meet the equal size requirement, and so that m 4+ n = k. Observe that
if m > n, the party may secure, in expectation, the majority of seats in the legislative
body.

We now turn to the first proposition of the paper, which formalizes the above reasoning
and proves the existence of an optimal map.

Proposition 1 There exists an optimal map M* = { A, .., Ar}.

Outline of the proof of Proposition 1. Following the reasoning presented above,
the optimal districting map can be designed in two steps. In step 1, we need to pick out
the region A in B such that, first, the expected vote share over this region slightly exceeds
one half, and second, A is the biggest in terms of population among all the regions that
satisfy the first property. We further estimate the number m of winning districts by
comparing the population in A and B\ A. In step 2, we partition the region A into m



sets of equal size in a way that preserves the expected share of the votes at the value
higher than 1/2 in each set. After the winning districts are defined, we divide the rest of
the territory, B \ A, into n = (k — m) regions of equal size; these regions will constitute
the ”losing” districts.

To prove that this procedure is implementable, we apply Lyapunov’s Theorem on the
range of a vector measure, as presented in Hildenbrand (1974):

Theorem (Lyapunov) 1 Let v; (i = 1,...,m) be atomless measures on a measurable
space (Q,B). Then the set

{(A(E),....,vm(E)) € R™ | E € B}

s a closed and convex subset in R™.

We as well use the corollary to the Lyapunov theorem which is due to Dubins and
Spanier (1961):

Corollary (Dubins and Spanier) 1 If each v; is a nonatomic probability measure,
then given k and a1,..,ar > 0 with 3 a; = 1, there exists a partition A,,..,Ax of a
set U such that v;(A;) = a; foralli=1,..,m and j = 1,.., k.

First we present the following lemma?®.

Lemma 1 An optimal map M* = {Ay, .., A}, if exists, satisfies

B(f(2)/A:) = E(f(2)/4;) for all i,j € I(M*) . (5)

We now turn to the proof of Proposition 1.
Proof of Proposition 1.

STEP 1. 1.1)-Given-aanesurable space (B,B)whete.-B C-R%-and-B-s-a-0-algebra of
subsets of B, a Lebesgue measure of population size 1 defined on B, and f(z) such that
0< f(z)<1foranyx € B, find aset A ={AC B| E(f(z)/A) > 1/2}. Pick A* such
that p(A*) = maxseca[n(A)]. To see that it is possible to find such a set A*, observe that
if the set {a € B | f(z) > 1/2} is non-empty, then by Lyapunov Theorem we can find
at least one set A C B such that E(f(z)/A) > 1/2. Next, defining a measure n € R?

3The proof of lemma 1 is given in the appendix.
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by m(C) = u(C) and n2(C) = [, f(z)dp, we obtain that by the Lyapunov Theorem the
range of E(f(x)/C) = n(C)/m(C), C C B, is compact, and so is the range of E(f(z)/C)
constrained by E(f(z)/A) > 1/2; hence there is a set A* € A4 that maximizes u(A).

Note that in generic case we will have:
(m/k)u(B) < u(A*) < ((m +1)/k)u(B) for some m € {1,...,k}, (6)

which means that since we will further need to “adjust” the set A*-to meet-the districts’
equality-of-size requirement (see below), the procedure in consideration may actually

yield a set A C A* such that E(f(z)/A) > 1/2.

The only troublesome situation we may encounter is when
p(A*) = (m/k)u(B) for some m € {1,...,k} (7)
and A* maximizes p(A) over the set A = {A C B | E(f(z)/A) > 1/2}. In this case, such

a districting procedure will, in expectation, produce a tie, not a victory over m districts;
however, this knife-edge situation is not typical and we ignore it here.

1.2) Find m - the number of winning districts.

To satisfy the district’s equal size requirement, we need to solve the following equation
for ky:
pAT) /i = p(B\ A%)/(k — ) (8)

Since k; is an integer, the number of winning districts equals the integer part of 7n:
m = (/). Note that if 4(A) < (1/k)u(B), then the number of winning districts will be
zero. The higher the expectation of f(z) over B and the larger k is, the easier it is to
secure more winning districts.

1.3) Find the winning territory A.

Define the set A = {A C A* | w(A)/m = u(B\ A)/(k — m)}, which is non-empty
by the corollary to the Lyapunov theorem (Dubins and Spanier). Choose A € A that
maximizes E(f(z)/A).

This procedure corresponds to “cutting off” some parts of A* to meet the districts’
equality of size requirement. By assumption 3 the party would want to cut off the regions
of A* with a low expected share of votes to increase the expected vote share on the rest of
A, which will increase its probability of winning over this territory. Let E(f(z)/A) = 83,
and observe that 8 > E(f(z)/A*) > 1/2.

Thus we have defined A, the territory that is to be further divided into k; parts to
form the winning districts. To simplify the notation, we rename A as A. This concludes
step 1 of the proof.

-~



STEP 2. Given A C R?, f(z)suchthat 0 < f(z) < 1foranyz € A, E(f(z)/A) > 1/2,
prove that there exists a partition Ay, .., A,, of A such that the following properties are
satisfied:

(4) u(A1)=---=u(A ) = (1/m)u(A) , (9)
(i) E(f(z)/A1) = ... = E(f(z)/An) = E(f(z)/A) , (10)

where, as before, u is the measure of a set’s population.

To prove the above statement, we reproduce the reasoning used in the proof of lemma
1. For any set C' C A define a measure € R? by 1;(C) = p(C), and n2(C) = [, f(z)du
Then by the Lyapunov’s Theorem the set

R={m(C),m(C) e B |C€a},

where a is the o-algebra of A, is closed and convex. Since (0,0) = (91(9),72(8)) € R and
((A), [4 fdp) = (m(A),n2(A)) € R, we can find a set A; C A such that

#(Ar) = m(Ar) = (1/m)m(A) = (1/m)u(A)

and

m(An) = [ f@)dn = (1/m) « [ fa)d

Then, by an induction argument, there exists a partition Ay, .., A,, such that

#A) = m(A) = (1/m)m(A) = (1/m)u(4) , i=1,.,m, (11)

and

m(4) = [ f@du=(1/m)x [ f@ydp, i=1,m. (12)
Now consider the expected vote share in each A;:

E(f(@)/A) = [ f@)du/n(a) = [(1/m)« [ f)dul/[(1/m)  u(4)] =
[ @)l /()] = B(f(@)/4), i=1,.,m. (13)

Thus we proved that the partitioﬁ of A we are looking for exists, which implies, using
lemma 1, that there exists an optimal way to divide the “winning” territory into m
winning districts. This completes step 2 of the proof.

Finally, to define the “losing” districts, we need to divide the rest of the territory,
B\ A, into (k —m) parts meeting the population equality requirement. By the corollary
to the Lyapunov theorem (Dubins and Spanier), this is implementable.

8



Q.E.D.

Before turning to the question of the districts’ connectedness, we consider whether
imposing additional constraints on districting makes winning harder for a strategic party.
The procedure that we have proposed allows us to predict the effect of additional equal-
ity constraints. Specifically, suppose now that the districts are required to be identical
with respect to population size and also n other measurable characteristics such as ethnic
composition. Then generally the proposed procedure would not-work: by the corollary
to Lyapunov theorem (Dubins and Spanier), it is possible to partition any set A C B
such thatf(z/A) > 1/2 into m subsets Ay,.., A, in a way that all (n + 1) equality
constraints will hold, but we cannot in a general secure that the additional equality con-
straints will hold between the subsets in A, {Ay,.., A} € A and the subsets in (B \ A),
{Am+1,.., A} € (B\ A). However, in some special cases where distributions of differ-
ent characteristics of a population are highly correlated with each other, the proposed
procedure might be implementable. (Consider a degenerate case when all the charac-
teristics are distributed identically and are perfectly correlated; then additional equality
constraints do not matter at all!). The higher the number of equality constraints imposed,
the less likely it is that the proposed procedure is implementable. Thus additional equal-
ity constraints imposed on the districts make it generally harder to manipulate electoral
outcomes.

What can be said about other types of constraints that may be imposed on dis-
tricting? Although a formal analysis of the effect of all possible constraints is not the
subject of this paper, we can note that generally additional constraints restrict the free-
dom of a decision-maker and thus make gerrymandering harder. On the other hand, the
same argument shows that too many constraints might prevent “fair” districting as well
as gerrymandering, and hence we cannot blindly welcome more restrictions instead of
fewer. Yet in some situations constraints such as, for example, the requirements not to
split ethnic communities or counties (if we treat them as “fairness” constraints) might
restrict gerrymandering. As an illustration, suppose that all voters in the same ethnic
community are either supporters or opponents of the gerrymandering party. Then the
“not splitting” requirement will prevent the party from spreading its supporters among
numerous districts, as it would otherwise choose to do. Unfortunately, we cannot gener-
alize this conclusion for an arbitrary distribution of voters over counties or ethnic groups.
Rather we can conclude that effectiveness of each additional constraint will depend on
characteristicsof -voters™distribution-overthe territory.

We now go back to our initial problem. Proposition 1 assures that there is a solution
to the districting problem when the districts are not required to be connected. In lemma 2
below, we show that the disconnected parts of the districts may be further connected in a
way that nearly preserves the required characteristics of districts. The idea is to connect
all the disconnected parts with connecting sets of infinitesimal measure of population



size*. Then by continuity arguement we can further show that the expected share of
votes does not change significantly in any district, either.

Lemma 2 For every optimal map® Ay, .., Ay, for any & > 0, there exists a connected
map Fi,.., Fy such that

1. Each F; is connected, 1 = 1,..,k;
2. | ,u()(—}) —p(A) |<é foralli=1,.. k.

Outline of the Proof of Lemma 2 Suppose that the procedure described in Propo-
sition 1 has been implemented and we obtained an optimal partition of the set B into
the districts Ay, .., A, with each A; possibly consisting of a number of disjoint parts
(subsets) A;,. To make connections possible, it is necessary for the following conditions
to be satisfied: (:) Every A; has a finite boundary. Since Proposition 1 does not provide
any information about the properties of the resulting districts of the optimal map, we
cannot exc¢lude the case that some of the sets (districts) might have infinite boundaries®;
this may create difficulties in connecting the disjoint parts. (i7) No part of any district
forms a loop, i.e. every Aj, is contractible. Otherwise it might be impossible to connect
disjoint pdrts of a district together without cutting some other district into pieces. (1i7)
No resulting connected district A; forms a loop, i.e. A; is contractible. These conditions,
as we show in the proof, guarantee that it is possible to connect each of k districts to-
gether with no district cutting any other into parts; the connecting sets can be located
along the boundaries. Hence we first adjust each set A4; to meet the above conditions;
then we construct the connecting sets. By making the adjustments and the connecting
sets small enough we guarantee that the total measure of population does not change

significantly in the districts after the adjustments are made and the connecting parts are
added.

Proof of Lemma 2 By Proposition 1, there exist an optimal districting map A, .., Ax
when the connectedness requirement is not imposed. We take this map as a starting

4Note that this in fact has been done in practice, at least in some racial gerrymandering cases. I am
indebted to Morgan Kousser for pointing out the following examples. Gomillion v. Lightfoot (364 U.S.
339) Supreme Court case (1960) considered validity of redefining city boundaries in a way that removed
the black voters.from its.territory;.the-new.map.of the.city~contained.parts.that were.connected solely
by a channel. In California, Proposition 6, passed in June, 1980, was aimed at preventing just such
tricks (among other things). Yet a congressional district set up in 1981 was connected only by water
(see district 6 in the Congressional district maps for the 1980s.).

5The result of this lemma holds for an arbitrary, and not only an optimal or a feasible, map.

®Although a district with an infinite boundary is hard to imagine, Lyapunov theorem does not guar-
antee that the resulting subsets (districts) will always have “nice” properties, such as finite boundaries.
Hence we need to undertake some additional steps to make sure that we can implement the districting
procedure in question.
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point for costruction of connected districts. Now suppose given is a partition of the set
B into subsets Ay, .., Ay, B = Ule A;, with each of A; possibly consisting of a number of
disjoint parts (subsets) A; = Ui, A;,, and A;NAS, =0fori#jorn#m,n=1,.,N,
m = 1,..,]\/}', Ni, Nj S o0, Z,j = 1,..,k.

STEP | Adjust each set A; to make the boundaries finite.

1.1) Approximate each A; with a finite collection of rectangles. Observe that since
R? is a metric space we can cover every A; with an infinite collection of rectangles:
A; C Uydy Rim for all 4 = 1,..,k. Moreover, for any ¢ > 0 we can find {Rim}m and
numbers M; such that

M; M;
{[( Q Rim) \ AJU[A;\ ( L__J Rin)]} < €/2k for all ¢, (14)
which implies
M;
m J Rim) — p(Ai)| < €/2k for all 3. (15)

Thus we approximate every A; with a finite collection of rectangles in a way that does
not change the measure of the set significantly; this construction guarantees that every
resulting set S; = U%;l R;p has a boundary of a finite length.

FIGURE 1 HERE

1.2) Estimate the size of overlapping and remaining parts. As a result of the above
adjustment some of S;’s may overlap, and some parts of A;’s may be left uncovered by
any of 5;’s|(we will further call the latter parts the “remaining” sets). We now show that
the overlapping and remaining parts are negligibly small in size and hence can be added
to any district without changing its characteristics significantly.

(1) Prove that the the overlapping parts are negligibly small. It is sufficient to show
that
1(Si\ U S;) =.u(S:) as e ».0forall i =1,k . (16)

i

Let e; = (Si \ Ai) and r; = (A; \ S;). Then by construction S; = (A; \ r;) Ue; and
from (14)

ples) + pu(rs) = l(S\ Ad) U (A;\ 9] < /2 |
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which impli

If S; ax

pISiN
=
0

since A? N

Similar

Hence
over, since

es that for all ¢

p(e;) < €/2k and u(r;) < €/2k . (17)

1d S; overlap then for any 1,7 = 1,..,k, i # 7,
Sil = w{[(Ai\ r) U e N [(A;

)Uej]} =
)N e lU (A \ ) NeUleine;]} =
ri) N el + pl(A \ i) Nel + pleiNej)} =

{{(A:\
[(Ai\ )N

7‘{) n
(

(A \ )] U [(As
Aj\ )] + pl(As

ri

\
\
\

pl(As\ i) D] + pl(A; \ ) Ned + ple N es]}

A;? = (). It follows that

/,L(Sz N SJ) < ,u(ei U 6]') = ,u(ei) -+ ,LL(GJ') < 26/2](: . (18)

FIGURE 2 HERE

ly we can estimate the total overlapping of all S;’s:

U ) < ij ) < k*(e/2k) = €/2 . (19)

| U (SinS;)] <

6, 1#E]

the total size of the overlapping districts can be made arbitrary small. More-

(Sz\US S\ U SﬂSk ,
J#e 7.k, 3F#k
we obtain
p(GANT S = (SN U (S50 80) =u(8)—u( {J (S0 8)) >
J#F 5k, i#k 2k, 3£k
> u(Si) —€/2 > p(S;)ase—0, (20)
which proves (16).

(i) Est
sets {rr}r1,

i

mate the size of the remaining sets. Consider the colection of remaining
where r; denotes the remaing set adjacent to the sets Sj,,, {im} eI, IC

12
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{(z7) 3:11 ,iv ‘. For example, a set 7(;, ;»y would be the set left uncovered between S,
and 5;,. By construction
rr € (U A\ U Sm)= U (Ain\( U Sim)) C
{im}el {im}el {im}el {im}el
C U @m\Sm)C U A\ U =, (21)
{im}eI is{im}el i{im}erl
and hence
UrrSUnr: . (22)
I i
Now consider the size of all overlapping and“remaining” sets. Since from (19) and
(22)
Urdul U Sinsgl ¢ lUrjulUel =Uriue), (23)
I ik, 5k i i i
we have
p{UrdUl U (850801} < plU(riue)] <
1 ik, 54k i
k
<> u(riUe) < kx(e/2k)=¢/2, (24)
1=1

which prov
characteris

1.3) Co

First n
is each r;

boundary
that the b

It follo
way:

start]

(Si \ Uj;&i S
adjacent S|

es that the overlapping and the remaining sets are very small and cannot affect
tics of any set they will be added to substantially.

nstruct the sets B; with finite boundaries and such that U; B; = B.

ote that by construction each (S; N .S;) is a finite collection of rectangles; so
which is surrounded by S;’s from all sides; r;’s with the parts adjacent to the
of B might not wholy consist of rectangles in this part but since we can assume
oundary of B is finite, r;’s boundaries are guaranteed to be finite as well.

ws that we can construct the sets B; with finite boundaries in the following

with the sets (S; \ U,z Sj); then arbitrarily add each (S; N S;) to either
7) or (S;\Uiyg; Si) for all ¢ = 1,.., k; then arbitrarily add each r; to one of the
m's: (¢m) € 1. Then by construction

(S\USi) € B € Siu( | (SinsSeyuUr),
i#i ik, ik
p(5:) —€/2 < u(Bi) < u(Si)+¢/2,

|u(B:) — u(Si)| < ¢/2;

)
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and since

we finally

Thus
B, have fi
numbers.
its bound
district re
districts ul
§,~ is a un

STEP
Em’s form
C; of mea
loops. Sin

that all Cj

make ever

Denote
al

L < oo,

loop, C;
1% hor

STEP
minimal -

(U; Cj) su
resulting s
give the re
we need tq

every Cj;

a finite op

(U Eijn)

connected|

by more t}

we have constructed the sets B; , i = 1,

n
sets with fi

from (19) we also have

| p(Si) — w(Ai) < €e/2k

obtain

| 1(B:) — lAs) |< e (26)
..k, which cover the whole territory
nite boundaries and differ in size from the original sets A; by arbitrarily small
Next, for the purposes of further construction, , make every B; open by excluding
aries.  Formally, for every ¢ = 1,..,k, take B; = = (B;)°. We now have every
presented by an open set B; = Un_ Bm, with population measure in all the
nchanged: N(E) = u(B;). Besides note that now N; < oo for all i since every

ton of a finite number of rectangles.

2 Make all the sets B’in, t=1,..,k, n=1,..,N;, contractible. In case some of
loops around other sets, we need to break these loops with the connecting sets
sure zero, 11(C;) = 07, to make it possible to connect subsets inside and outside
ce each C'; can be drawn along the borders of rectangles R;,, we can guarantee
s will be of finite lengths. Thus Cj’s are the additional boundaries created to
y subset B, contractible, and the measure of any B; has not changed.

by {C;}i; the collection of all the boundaries in B, where L is some number,
nd each C denotes a piece of boundary of finite length which either cuts the

B;, \ ( in)°, Or separates two ne1ghbo1mg subsets, C; = Bm N ma, for some
# m. Then U .Ci = B\ (Ut Un 1 Bm), where Bj,’s are now contractible

inite boundaries, and w(B) = u( kUM Bi) =1, p(C;) = 0 for every j.

q

3 For every district i, connect its disjoint parts. Fix an i € {1,..k}. Take a
with respect to the number of boundaries C; included - set D; = (U,]:’;'l Em) U
ch that it is connected. Minimality guarantees the absence of loops in the
et. Denote by {Cij}f;l the collection of boundaries included in D;. Next, to
sulting connected district a positive measure of population size in every point,
cover all the Cj;’s with sets of arbitrary small but non-zero measures. Since
s of finite length, for any ¢ > 0 and for every C;;, j = 1,.., L;, we can find
en cover E;; = Uy Eyp such that each Ejjp, is a rectangle, Ci; C Us Eijp and
< €/(k * L;). The open set F; = ((U:, B;,) U U (U; Up Eijn))° is now fully
and its population measure does not exceed the measure of the initial set A;
1an 2¢ * p(A;).

FIGURE 3 HERE

“This sim

\ply means that C;’s are lines in R2.
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The same argument applies to show that the population measure on the sets from
which the connecting sets E;; are cut does not change significantly.

We have now obtained an open connected set F; which is equivalent to the initial
disconnected set A; up to an arbitrarily small deviation in population measure. The
construction of F; caused the change of the boundaries but since F; is an open union
of rectangles the new finite boundaries have automatically emerged, and the set of all
boundaries {C;}I_, in B is once again well defined.

Repeat the procedure described in Step 3 for all i € {1,..k}. Observe that the total
number of connecting sets E;;, i = 1,..,k, j = 1,.., L;, is finite and hence the deviations

from original values of population size measure can be kept arbitrary small for every
district.

Q.E.D.

It is left to show that, once the districts are connected, every winning districts is still
winning, ile. the expectation of votes in every winning district remains on the level above
one half. We use the following lemma to show that negligible changes in the population
size of a set can result in only small changes in the expected share of votes over this set®.

Lemma 3 If f(z) is a continuous function on a measurable space (B,B), then the
expectation of votes E[f(x)/C] on any C € B is continuous in the measure of pop-
ulation size p(C): for any C,D € B, any ¢ > 0, there exists d(e) > 0 such that
if u(C\ D)U (D \C)] < § then E[f(z)/C] — E[f(z)/D] < e. In particular, any
6 < [exmin{u(C), u(D)}]/[2 * max,ep f(z)] satisfies the the above requirment.

We are| now in position to present the main result of the paper.

Proposition 2 For any € > 0, there exists 6(€) > 0 such that the territory B can be
divided intp k connected districts of §-close to equal size and e-close in the expected vote
share to the optimal map. In particular, generically, the number of winning districts in
the resultihg connected map stays the same as in the optimal map.

Proof pf Proposition 2 The first statement of the proposition follows directly from
lemmas 2 hnd 3. Therefore, it is sufficient to describe the procedure that produces a
connected map with the same number of winning districts as in an optimal map. Take
an arbitrarily optimal map M* = {A1,.., Ar}. Then by the properties of the optimal

8The proof of lemma 3 is given in the appendix.




map (lemma 1) E[f(z)/A;] = E[f(z)/A;] for any two winning districts A;, A;. Let ¢

denote the value

e(M*) = E[f(z)/Ai] —1/2 for some A;€ M~*. (27)

Then, by lemma 3, and keeping in mind that u(A;) = 1/k for any ¢, define &(e(M*))
by
e(M™)
d(e(M™)) =
(e(M7)) k* (2 x max,ep f(z) + e(M*)) (28)
By lemma 2, for any given § > 0 there exists a connected map F = {F,.., F}
such that ||x(A;) — u(Fi)| < 6/2 for all : = 1,..,k. Then by lemma 3 we have that if
1(Ai) — ()| < 8(e(M*))/2, then
W(Fy) — u(Fy)| < 6(e(M™)) forevery 4,5=1,..,k (29)
and
E[f(2)/E] > E[f(z)/A] — e(M*)=1/2 forall i€ I(M*). (30)
Thus for any ¢ < d(e(M~))/2 by lemma 2 there exists a connected map such that
[u(F}) — p(Fy)l < 6 (31)
and, for any ¢ =1, .., k,
if E[f(z)/Ai]>1/2 then E[f(z)/F]>1/2. (32)
Q.E.D.
We corlclude that generically the party can insure for itself the same number of win-

ning distri

Next w

3 Th

cts even if the additional connectedness requirement is imposed.

e present a simple example of the suggested districting procedure.

e case of a single-peaked distribution of the

expected share of votes

Suppos
distributio
is single-pe

e the voters are uniformly distributed over the territory B C R? and the
h of the expected share of votes f(z) that the party will get in the elections
aked with its peak at some point O in the interior of B; and suppose f(x) is
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decreasing in all directions from O. Assume that f(z) is continuous at any point z of the
territory, land 0 < f(z) < 1. How should the party divide the territory into & districts of
equal size in this case?

Given| the assumption about the distribution of f(z), we might expect that the win-
ning districts will be concentrated around the center, so that each of them will cover
some cenfral area with a high expectation of the vote share and then expand towards the
border as| long the expectation of the vote share in the district.exceeds one half. More
accurately, the party will want to find the largest possible neighborhood A of O in B
such that|the expected share of the votes all over this neighborhood slightly exceeds one:
half, E(f(z)/A) > 1/2. This region will then be divided into k; winning districts, and
the rest of the territory - distant from the peak O - will constitute k, losing districts,
ki + ko =|k.

For simplicity, suppose that the territory B is a circle with the center at O and the
radius R [denote it by B(O; R)), and the expected share of the votes is maximal at O,
with f(O) > 1/2. Let us consider the requirements on the distribution f(z) of expected
vote shargs that will allow the party to get the majority of seats in elections under these
circumstances.

Suppope k is even. Then at least (k/2 + 1) winning districts are necessary to win
in the election. Following the reasoning presented above, without loss of generality we
can assume that the winning districts may be drawn as k; identical sectors of a circle
A(O;r) with the center at O and with radius r, where r < R is determined to satisfy the
condition fthat the expected share of the votes over the area of each sector of A is no less
than one half:

E(f(x)/Az) 2 1/2 ’ 1= 17"’ki ’
where A; denotes the i-th sector of A. Equivalently,

[/Or(l/kl)vr:czf(ac)da:]/(l/kl)7ra:2 >1/2,

[Arxzf(m)dx]/r221/2 : (33)

To determine the number of winning districts, the party solves the following equation
for ky:
mr?/ky = m(R* — r?)/(k — k) (34)

Equatipn (34) is the equal size of districts requirement. If the k; that solves this
equation is not an integer, then its integer part will indicate the number of winning
districts. Note that in the latter case r will need to be adjusted - namely, decreased to
satisfy (33)).
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We cah now write out the party’s problem as follows:

max kp

subject to:

ki €{1,2,..,k}
( /0 "ot f(e)dz)/ne® > 1/2
mr?/ky = n(R* — r?)/(k— ky)

The party may expect to win the majority of seats in a legislative body if k; > k/2+1,
that is the number of winning districts will be greater than a half of the total number
of districts. In particular, it is sufficient to have k = k/2 + 1, and thus it is sufficient to
find » which solves:

( /0 et f(x)de)/ra > 1/2 (35)

and

w2 (k/2 4 1) = m(B> —r2)/(k/2 — 1) . (36)

Obviously, the higher the expected value of f(z), the more easily conditions (35) and
(36) are satisfied. It is interesting to note that under these conditions, to win a majority
of districts it is sufficient to have slightly more than half a territory with slightly more
than half of the supporters. The total share of supporters over the whole territory, or,
equivalently, the expected share of voters for the party necessary to win the election may
be much lower than one half. What is important for winning, though, is having a non-
uniform distribution of supporters over the territory, with a concentration of supporters
in some areas. Then the party will draw the districting map in a way that will secure
it a maximal number of winning districts located around the peak of the distribution of
expected vote shares. In Figure 4, we illustrate the districting map problem for the case
when the number of districts & equals seven.

FIGURE 4 HERE

4 Conclusions

In this paper we show that for any given territory it is theoretically possible to find a
districting| map that will in expectation maximize the number of winning districts for
a gerrymandering party, under the condition that no restrictions except for the equal
population of districts requirement are imposed. If the districts are required to have
connected territories, optimal districting is still implementable if the districts are allowed
to vary in|population size by an arbitrarily small amount. With the optimal map the
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political party in control of the districting process might need much less than one half of
the electorate’s support to be able to win in a majority of seats in a legislative body. The
party will choose to concentrate its supporters in the group of winning districts while
leaving the other group of losing districts to the party’s competitors. These findings are
consistent with earlier results of Owen and Grofman (1988); we show that they hold not
only for an “ideal”, but also for a geographically constrained optimal districting scheme.

Although we have only considered the case of a party which takes expecteed vote
share as a perfect predictor of electoral outcomes, and in in elections held under simple
majority rule, the approach presented can be generalized for any m-majority rule® or for
a party with any attitude towards risk. For example, if the party is risk-averse or is aware
of possiblew1 shifts in electoral votes, it might want to secure the expected share of the votes
in the winning districts at some level higher than one half depending on the degree of the
risk-aversion. The trade-off that the party faces then is between the number of potential
winning djstricts and the risk of not winning all of them. The procedure proposed here
does not substantially change in this case except for the value of the expected share of
votes that the party would want to secure in the winning districts.

We are now in position to return to the question we asked in the introduction: may
the constraints on districting help to prevent gerrymandering? As we find in the paper,
imposition of the connectedness requirement generically does not provide an effective
controlling device against gerymandering: the party is able to secure for itself the same
number of winning districts as in the unrestricted optimal scheme. However, additional
requirements imposed on districts make manipulability of electoral outcomes by means of
districting more difficult. Specifically, we find that the optimal gerrymandering procedure
considered above may not be extended to an arbitrary number of districting constraints.
Thus by imposing extra requirements, either on the population characteristics or shapes
of districts, an electorate might at least get more protection against possible partisan
gerrymandering (if not more fairness).

Consideration of geographic constraints, when the distribution of population and
partisan support is exogenously given, helps to explain why districts of unusual shapes,
extended too much in one direction or with narrow connecting parts included, might
present evidence of a partisan gerrymander. Thus we find some rational grounds for
most people’s understanding of gerrymandering as drawing oddly shaped districts (Butler
and Cain, [1992). Yet one should not forget that some districts may look “funny” just
because they join what some redistricters consider communities of interest, or because
the topology of an area is not uniform.

Although it is hard to believe that the party in control of the districting process
would use an abstract optimization scheme like the one we have presented, one might
expect to qind certain real world approximations of the proposed procedure. Empirical

®By an nﬁ—majority rule we mean a rule requiring an m-percent majority of votes to win a district.

19



consideration of electoral maps in view of our theoretical scheme suggests a subject for
an exciting but still a different study.
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Appendix
Proof of Lemma 1 It is sufficient to prove that if A; € M* — optimal and ¢ solves

Jmin, E(J(2)/4) (37)

then E(f(z)/A;) = E(f(z)/A:) for all j € I(M*). Suppose there exists A;, j € I(M*),
such that E(f(z)/A:) < E(f(z)/A;). Then for any set C C (A; U A;) define a measure
n € R? by n1(C) = p(C), and n5(C) = [ f(z)dp. Then by the Lyapunov’s Theorem the

set
R={(m(C),n(C)) e R*|C€a},

where o is the o-algebra of A;U 4, is closed and convex. Since (0,0) = (7:(9),72(#)) € R
and (u(AiUA;), [4,04, fdp) = (m(AiU Aj),m2(Ai U A;)) € R, we can find a a partitition
of A; U A; into two subsets fli, /~1j such that

(A = m(Ay) = (1/2)m(Ai U A;) = p(A) = p(4;)

and

m(A) = [ f@)du= (/2% [ f@)da,
= /A]- fla)dp = (1/2) */A,-UA,- f(z)dp .

Now compare the expected vote share in A; with the ones in A; and ;1]-:

E(f(2)/(Ai U A)) = [E(f(2)/Ai) + E(f(2)/A;))]/2 > E(f(2)/A:) (38)

by the initial assumption;

B(f@)/(A) = 1f, fe)dul/u(A) =
=KU®‘AM P@)dul/[(1/2) * p(A4; U A7) =

7

- [/ z)dpl/[p(A; U Aj)] =

- ()MAuAD (39)
and, similarly, .

E(f()/(A))) = E(f(2)/(A:U A;)) . (40)

Thus, there exists another map A = (M*\ (A; U A;)) U (A; U A;)) that is prefered to
M* by asstiumption 3. This shows that the initial map M* could not have been optimal.
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Q.E.D.

Proof of Lemma 3 Suppose we have u[(C'\ D)U (D \ C)] < & for some § > 0; this
also implies u(C' \ D) < 6 and p(D \ C) < §; moreover,

| w(C) — (D) | | ul(C\DYU(CN D) —p[(D\CYU(DNCO)]]| =
| (C\ D) +u(CND)~pu(D\C)—pu(DNC)]| =
| W(C\ D) —(D\C)] <6,

and u(C) —u(CND) <6, u(D)—pu(DNC) < . Now consider the expected share of
votes on C' and D:

Elf@)/C] = ([ f@)du)/u(C) =

U ormpoionsy [E/EIC\ DY U (€A D)) =

= | o\py T @ /p(C\ D) + u(C@ N D) +

[/ 2)dul/pul(C\ D) + u(C N D)] =

= E[f(z /(C\D)] *[w(C\ D)/u(C)] +
+ Elf(z)/(C N D)+ [w(C N D)/u(C)] . (41)

Similarly,

Elf(2)/D] = E[f(z)/(D\C)]*[u(D\ C)/u(D)] +
+ E[f(z)/(C N D)+ [u(C N D)/u(D)] . (42)

Let @ = max{u(C), (D)}, and b = min{u(C), u(D)}. Then we obtain
Elf(=)/C] - E[f(=)/D] <
< {max f(e)} * {u(C\ D)/p(C)} = —{min f(2)} * {u(D \ C)/u(D)} +
Hmax f(2)} * {[s(C 0 D)/u(C)] = [u(D N C)/u(D)]} <
< {max f(2)} * {8/b} + {max f(x)} » {6/b} =
= {ma f(z)} = {26/0} (43)

Hence for an arbitrary € > 0, if we choose
§(€) = [ex min{p(C), p(D)}]/[2 * max f(z)] (44)

then the continuity requirment stated in the lemma is satisfied.
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Figure 2. Overlapping and remaining sets :
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Figure 3. Connecting district's disjoint parts.

Figure 4. Dividing a circle into seven districts:

winning districts
losing districts



