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Abstract

Economists and psychologists have recently been developing new theories of decision making
under uncertainty that can accommodate the observed violations of standard statistical
decision theoretic axioms by experimental subjects. We propose a procedure which finds
a collection of decision rules that best explain the behavior of experimental subjects. The
procedure is a combination of maximum likelihood estimation of the rules together with an
implicit classification of subjects to the various rules, and a penalty for having too many
rules. We prove that our procedure yields consistent estimates (as the number of tasks per
subject. and the number of subjects go to infinity) of the number of rules being used, the
rules themselves, and the proportion of our population using each of the rules. We apply our
procedure to data on probabilistic updating by subjects in four different universities. We get
remarkably robust results which show that the most important rules used by the subjects
are Bayes rule, representativeness rule (ignoring the prior), and conservatism (over-weighting

the prior). In our procedure, the subjects are allowed to make errors, and our estimated
error rate is typically 20%.

“The first coauthor acknowledges financial support from NSF grant #SES-9223701 to the Cal-
ifornia Institute of Technology. We thank the Jet Propulsion Laboratory for giving us access to
their Cray YMP, on which all of our calculations were made.



Uncovering Behavioral Strategies:
Likelihood-Based Experimental Data-Mining

Mahmoud A. El-Gamal and David M. Grether

1 Introduction

The economic theory of decision making under uncertainty has been seriously challenged by
a series of discoveries of violations of that theory by experimental subjects. The paradoxes of
Allais (1953) and Ellsberg (1961) are among the earliest examples, but recently, psychologists
have added several others. Among the more recent violations of statistical decision theory
are framing effects, certainty effects, common ratio effects (Kahneman and Tversky (1979)),
preference reversals (Lichtenstein and Slovic (1971), Grether and Plott (1979)), to name but
a few. Part of the economists’ response to these developments has been the introduction of
a number of new theoretical models of decision making designed to be consistent with some
of the reported violations of expected utility theory. Among those theories are Machina
(1982)’s “fanning out”. (Loomes and Sugden (1987), Bell (1982))’s regret theory, Chew
(1983)’s generalized weighted utility theory, (Quigen (1982), Yaari (1987))’s rank dependent
utility, and Kahneman and Tversky (1979)’s prospect theory.

While economists have been introducing new models of individual decision making, psy-
chologists have developed a number of heuristic explanations of specific individual behaviors.
For preference reversals, those models include Lichtenstein and Slovic (1971)’s anchoring
and adjustment, Goldstein and Einhorn (1987)’s expression theory, Bostic et al. (1990)’s
response mode, Loomes et al. (1989)’s regret, Tversky et al. (1988)’s contingent weighting
theory, Mellers et al. (1992)’s change of process theory, Birnbaum et al. (1992)’s configural
weighting theory. Research on judgement of probabilities has produced an array of heuris-
tics which individuals use in different circumstances (c.f. Tversky and Kahneman (1974)).
Prominent heuristics include Kahneman and Tversky (1972)’s representativeness, Tversky
and Kahneman (1972)’s availability, Edwards (1982)’s conservatism, and Lichtenstein and
Slovic (1971)’s anchoring and adjustment. Recent research (e.g. Payne (1982), Gigerenzer
et al. (1991)) suggests that the dependence of such heuristics on the specific context of the
decision -making-experiment-is-not-fully understood.

One clear suggestion of the above referenced literature is the need to develop theories
of decision making under uncertainty which are built on an empirically justified foundation.
The literature in its current state does not support the conclusion that economic subjects
are sufficiently homogeneous to be described by a single theory. Different subjects may use
different decision rules, and if the rules they use do not yield satisfactory outcomes, they



may abandon them and use different ones (c.f. Mellers et al. (1992)). In this paper, we
devise and use a general estimation/classification procedure which uncovers the most likely
collection of rules that experimental subjects use. The procedure is quite simple in nature.
We start by choosing a class of decision rules that the subjects may use. The class of decision
rules provides us with a class of likelihood functions for each data point. For a fixed number
of rules in our class, we estimate the maximum likelihood collection of rules that the agents
are using, as well as the proportions of our population using each of the rules. By adding an
information criterion that penalizes our procedure for admitting more rules, our procedure
achieves consistent estimates (as the number of tasks that each individual performs in the
experiment, and the number of individuals, go to infinity) of the number of rules being used,
the rules themselves, and the proportion of the population using each of the rules.

It is clear that our general procedure is applicable in a variety of situations where a class
of data generating processes is considered, and our sample is not assumed to be generated
by only one of those data generating processes. The applications of our procedure are not
restricted to decision making experiments, or even to experimental settings. However, our
consistency results use the fact that in experimental settings, we can let the number of
tasks per individual, and the number of individuals, get large to obtain estimates within a
required tolerance level. In environments where a finite data sample is given, we typically
cannot choose the design and the sample sizes to get our estimates of the collection of data
generating processes within a pre-specified tolerance of their true values. We emphasize the
fact that finite sample bias and misclassification corrections may be needed when analyzing
given experimental data, but that issues of optimal experimental design should be seriously
considered to minimize the need for such corrections.

We close this introduction by briefly comparing our approach to the vast and growing
literature on classification and clustering. The main difference that we want to point out is
that a primary goal of the classical classification literature is to establish simple algorithms
that work for a very large class of problems. For example, Wallace and Boulton (1968)’s
Snob (and later Snob 2) program, and Cheeseman (1988)’s Autoclass II program assume
normality of the data generating process. In contrast, our approach does not rely on a
custom-made algorithm. The general procedure we use agrees with all likelihood-based
classification procedures in its form, but the class of likelihood functions is suggested by the
problem. In that sense, we are closer to the modern coding theoretic approach to estimation
and classification (e.g. Wallace and Freeman (1987), Rissanen (1987)). In that literature,
the class of likelihood functions is used as a means for summarizing the important aspects in
a data set. The trade-off between using simpler classes of likelihood functions and explaining
the data better is explicitly treated in that literature. In our framework, where the number
of tasks per experimental subject,. and. the number.of.subjects,.go 4o.infinity, we prove that
any strictly increasing penalty function (with bounded increments) for the complexity of our
model will yield consistency of our estimates of the number of classes, the classes themselves,
and the proportions of the population in each of the classes. Specific penalty functions from
the literature (e.g. Akaike (1974)’s famous criterion) will work. We derive a particular
pseudo-Bayesian penalty function that seems appropriate for our example.



The remainder of the paper will proceed as follows. In section 2, we describe the col-
lection of experiments that we analyze in this paper. In section 3, we discuss the difficul-
ties encountered in a brute-force classification approach, and introduce a class of decision
rules that reduces the computational burden to feasible levels. In section 4, we present our
likelihood-based estimation/classification procedure for the particular application at hand,
and motivate a particular penalty function for the number of classes allowed. In section 5,
we state our estimation/classification procedure in its general form which is applicable in
many more contexts, and prove the consistency of our estimates of the number of classes, the
classes themselves, and the proportion of the population belonging to each of the classes. In
section 6, we discuss the methods used for implementing our procedure in our application,
and discuss the results that we obtain from the experiments described in section 2. In that
section, we also address some of the suboptimal properties that our procedure may possess
in finite samples, and discuss how they can be ameliorated by considerations of optimal
experimental design. Section 7 concludes the paper.

2 The Experiments

The experimental data that we use in this paper were collected at four different educational
institutions. Subjects were recruited from economics classes at UCLA, Occidental College,
California State University at Los Angeles, and Pasadena City College. The subjects were
told that they were to participate in an economics experiment, and that they would be payed
for their participation. Upon arrival, the subjects were randomly divided into two groups.
The procedures were identical for both groups except for the method of payment. The two
groups performed the experimental tasks independently in two different rooms.

In each room, there were three bingo cages. One cage contained six balls numbered
one through six. this cage was used to generate the priors which were of the form: if one
through m is drawn, use cage A, otherwise use cage B. Cages A and B were the
populations from which the observations were drawn:

Cage A contained six balls, four labelled N and two labelled G.

Cage B also contained six balls, three with each letter.

At the beginning of each experiment, the instructions were read and the subjects elected
one person to serve as a monitor. The monitors inspected all equipment, observed the draws
from the cages and, generally, checked to be sure that the experimenters were being truthful.
The monitors did not communicate with the subjects outside of their duties as monitor. The
monitors were guaranteed a payment at least equal to the average received by subjects in
their rooms.

The experiment proceeded as follows. Cages A and B were placed behind an opaque
screen, and a prior was announced. The prior cage was spun and a ball selected thus
determining whether cage A or cage B would be used. The three prior rules used were two,
three or four chances out of six for cage A. The cage selected was placed in the front of
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the room and six draws (with replacement) were performed, and the results were announced
and written on a blackboard. Subjects also recorded the outcomes on their answer sheets.
Subjects were then asked to indicate which cage they believe was used in generating the
observations. After all subjects had indicated which cage they felt was the more likely, a
new prior was announced, and the procedures were repeated.

In one room, all subjects were payed a flat fee. In the other room, one task was selected
(randomly, using a bingo cage), and subjects earned a $10 bonus if their response was correct.
A response was considered correct if the cage the subject stated was the more likely was in
fact the cage from which the balls were drawn. -The sessions lasted-approximately one and
one half hours, and the number of decisions made by each subject ranged from 14 to 21. The
raw data is reported in Tables 1-8 of Appendix B. The instructions and a sample answer
sheet for experimental subjects are shown in Appendix C.

3 A Natural Class of Decision Rules

Ignoring the order of the draws, there are seven possible outcomes of the draws (zero through
six N’s) and three priors, resulting in 21 possible decision situations. In each of these
situations, the subjects could chose either cage A or cage B. Therefore, there are in principle
221 = 2,097,152 possible decision rules. This is a very large number, and, fortunately, most
of those rules can be excluded by very simple rationality considerations. Since cage A has a
higher proportion of N’s than cage B, the outcome most strongly favoring cage B would be
no N’s (six G’s), and the one most strongly favoring cage A would be six N’s (no G’s). A
natural rule would be to have a cutoff number for each of the priors, such that if the number
of N's exceeds that cutoff number, the rule selects cage A, otherwise it selects cage B.

By imposing the cutoff class of rules discussed above, we need to decide how to treat
the behavior of a subject who is observed choosing cage B when some number of N’s has
been observed, and then choosing A when a smaller number has been observed. We shall
introduce the possibility of experimental subjects making errors (i.e. deviating from the
rule). This will allow each of our decision rules (which for our data will simply be a triple
of numbers between zero and six) to give a positive probability (likelihood) to all possible
patterns of behavior. We shall assume that each subject uses a decision rule (c;, ¢z, ¢3), of
the form: under prior ¢, choose cage A if the number of N’s observed is greater than c¢;, and
choose cage B otherwise. With probability ¢, however, the subject trembles and makes a
random choice. In other words, for each decision (given a prior, and a number of N’s drawn)
with probability (1 — ¢) the subject follows the rule (¢;, ¢y, ¢3), and with probability e the
subject chooses cage A with probability 1/2 and cage B with probability 1/2. Now, the
number of possible rules {(c),¢3,¢3); =1 < ¢ < 6;¢ = 1,2,3} is 8 = 512 (where ¢’s are
integers. and we use —1 as the lower bound corresponding to always choosing cage A, even
if zero N's were observed). If we further restrict the set of rules by requiring that ¢; > c;
if © > j (i.e. given a stronger prior in favor of cage B, a subject should require at least as
many N's to choose cage A), there are only 84 possible rules.

There is a potential identification problem which arises because of the possibility of agents



making errors. We could model randomness by having individuals use a rule with probability
(1 — z), and deviate with probability z. In that framework, consider a subject who for the
same prior and outcome chooses cage A 100z percent of the time and B 100(1 — z) percent
of the time. The subject could be seen as choosing cage A but making a mistake 100(1 — z)
percent of the time, or choosing cage B but making a mistake 100z percent of the time.
Thus, for each of our 22! conceivable decision rules, together with an error rate, there is
another rule (the opposite of the first), and another error rate (one less the first) which is
observationally equivalent to that rule. Notice that by imposing the restriction to the class of
cutoff rules described above, this identification problem does not arise since those opposite
decision rules are rendered inadmissible (except for the rules that always pick cage A, or
always pick cage B).

4 A Likelihood-Based Estimation/Classification Pro-
cedure

As stated in the previous section, we have restricted attention to a class of decision rules
which can be written as (¢, ¢z, c3) where ¢; is the cutoff rule used when prior ¢ is induced.
Prior 1 corresponds to cage A having probability 1/3, prior 2 to cage A having probability
1/2, and prior 3 corresponds to cage A having prior probability 2/3. We assume that each
of our subjects uses one such rule (c,cj,c3) from the class € = {(c;,co,¢3): =1 < ¢ <
6;2 = 1,2,3}. As we have already pointed out, the class € has 8 = 512 elements. We shall
allow different subjects to be using different rules. We further assume that the error rate €
discussed above is the same for all subjects, and all tasks. For each rule ¢ = (¢i, ¢3, ¢3), and
error rate ¢, we get a likelihood function f¢ € §, where the class § consists of all likelihood
functions for (c,¢) € € x [0,1]. For a subject s, given a sequence of observations Tl Ty,
where =] = (p,, N;,a;), p- € {1,2,3} is the prior, N, is the number of N’s observed, and a.
is the choice (A or B) of the subject, define the variable

o .
e 0 otherwise

. { 1 if (a,=A and N, > ¢,,) or (a.=B and N, < ¢,,);

Now define the sufficient statistic X? = 3"« z2 . Then under rule ¢ = (¢;, ¢3, ¢3), and error
rate ¢, the likelihood function f*¢ can easily be computed as follows:

XS e\ tam XS
c,€ s’.." 5y =1(1~= <= _ .
frat ) ( 2) X (2)

Now. we observe data on n experimental subjects, with each subject s being observed
over ¢, tasks. If we assume that all agents are using the same rule ¢ € €, then we can
estimate (c, €) by the maximum likelihood estimates:

n
(¢,€) = argmax,, [[ f(=2,. .., ).

s=1
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If we assume that different agents may be using different rules, and that there are exactly k

such rules ¢! = (¢}, e}, c}),...,c* = (ck,ck,ck), then we can estimate ¢!, ..., c* ¢ by
(&,...,¢,¢) = argmax, ke H max [ “(23,...,21,) (4.1)

1 he€{l,..k}

Now, we have defined for each allowable number of decision rules k¥ how we can estimate
the maximum likelihood collection of rules. By defining

= 1 ifh= a.rgrna,xh:c_{l,...,k}féh “(z3,...,28);
4 0 otherwise

Then, we can estimate pj,, the proportion of our population using rule &, via the maximum
likelihood estimate .

- *h

Pr = ;l— Z Ia .

In the following section, we shall prove the consistency of our estimates of k, (c!,...,cF),
and (pi,...,px). But in order to get a consistent estimate of k, we need first to introduce
an information criterion which incorporates a penalty for the number of parameters in the
model.! We shall prove that any strictly increasing penalty function with bounded increments
will yield consistent estimate of k, the c*’s, €, and the py’s (all we actually need is that the
increments of the penalty not increase at too high a rate); but we propose one particular such
penalty with a pseudo-Bayesian interpretation. If we start with a prior o) on the model with
k rules, and for each such model introduce a prior m(c,...,c*) ® uir(de), then the Bayes
procedure will pick the model which maximizes the log Bayes posterior

1 n

B(X,k) = log/ > akwk(cl,...ck)Hh max fch"(:zi,...,:zzf’)pk(de)

0 Clynck so; he{1,.k}

Choosing the prior 7k(.) to be uninformative (assigning prior probability Z to each possible
k-tuple of rules in €*), letting pi(de) be uniform for all k, letting oy = %, and assuming
that the maximal likelihood term dominates all other terms in the Bayes posterior (which
assumption is asymptotically justified), we choose the model which maximizes

log(H max, £t :3)) — 3klog(8) — klog(2).

he{l,..

'There is a substantial literature on the problem of choosing an optimal_penalty for the complexity of
a model. The best known, and one of the earliest, is Akaike (1974)’s criterion (which picks the model that
maximizes the maximal log likelihood less the number of parameters). Another very popular information
criterion was introduced by Schwarz (1978), which picks the model that maximizes log of the maximal
likelihood less the number of parameters multiplied by log of the sample size, divided by two. Many other
criteria are implicit in the coding literature such as Wallace and Boulton (1968)’s Minimum Message Length,
and Rissanen (1978)’s Minimum Description Length. Each of these procedures has its epistemic advantages,
and some (e.g. Schwarz (1978)) have known asymptotic properties for a given class of likelihood functions.
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Notice that if we take logs of base 2, and if our parameter space €* were continuous, this
would reduce to the Akaike information criterion. We are now ready to prove the consistency
of the general class of procedures to which our procedure belongs. The readers who are not
interested in the proof of the consistency of our procedure can skip the following section and
proceed directly to section 6.

5 Consistency of Our Procedure

We start this section by a more general statement of the procedure. We collect data on n
individuals, each of whom gets to perform ¢ independent tasks. The number of tasks can
be different for different individuals, but since we study the asymptotics as t T oo, and then
as n T oc, we shall simplify the notation by suppressing that possible difference. There are
k rules being used in the population, each defining a likelihood function f, € § (which is a
density function on R). Without loss of generality, we further assume that the k rules are
distinct; 1.e. if [ # h, then f; # f,. Of course, if two rules were observationally equivalent
(induce the same likelihood function), then there is no loss in treating them as one rule. QOur

data is of the form {z};¢i = 1,...,n;7 = 1,. .,t}. Let I? = 1 if agent ¢ uses rule k, and
I" = 0 otherwise. We further assume that zi,...z} is an i.i.d. sample from f5 if I* = 1, and
that rt € Riz=1....,n;5 = 1,...,t.? We assume that in the population from Wthh we

sample the proportlon using rule h 1s pn, where —1 < p, <1, and Z 1P =1

We can now define our estimates k fl, . ,fk,pl, ., b as follows.

(i\-' fl‘ AR -,:ic) = argmaxklthV~~~'jk’{Z(

1=1

}:log fh(a: ) - penalty(k’)}.

J"l

Where penalty(k) is some deterministic increasing function of k, with m < penalty(k) —
penalty(k — 1) < M for some finite positive numbers m, M. We then estimate
1

-3 It

n =1

where t
it - 1 if A =argmax;c( '21 log fl(xj»);
[ =

0 otherwise

Theorem 1

P {llmllm k fl,...,f,;,ﬁl,...,ﬁ,;) =(k,fl,...,fk,pl,...,pk)} =1.

njoc tioc

“For instance. in our case, the sufficient statistic for each observation z? is the number z*, € {0,1}.
The results below will still hold if we allow each :r;- to be a vector in R¢ but in most cases, a real sufficient
statistic will suffice.



Proof: We start by considering a given estimate k, and the corresponding sequence of esti-
mates fi,..., f;, as t T oo. For all subjects : with I* = 1, define the empirical distribution
function

F(6) = T4zl < 6).

Under the null hypothesis, and since the f),’s are assumed distinct, by the Glivenko-Cantelli
Lemma, letting Fi,(¢) = f° fi(z) dz, we have

=, 1 if IP =1;
Pf{igg EH(€) = Fu(6)] = 0f = { 0 otherwise.
Hence, given any two individuals 7,4’ such that I* = I} =1, as t T oo, their two empirical
distributions converge almost surely, which in turn almost surely guarantees that they will be
classified to the same rule, as ¢ T co. Therefore, for each v > 0, there exists a sufficiently large
T such that Vit > T, if i, belong to the same class, for all 1 < b < k, Pr{|[*— [} <4} = 1.
Choosing v < 3 mmhf(maxd log fr(€) — log far(¢ ))I, all subjects of class h will be classified
together with probability one for all t > T.

Now, for each pair ¢,¢' that belong to the same class, let T} ;» be the number of tasks needed
to have the two in the same class with probability one (such a T;; exists by the previous
paragraph). Let T = max{i<ii<a} Ti,r. Then for all ¢ > T*, all individuals belonging to
the same group will have been allocated together with probability one. Now, if k< k, that
means that some classes have been grouped together. Let n’ be a group of individuals who
use rule A, and who are combined with another group that uses rule A’. Let the estimated
rule for the combined group be f;. The gain from adding one more rule is greater than

) Zicallog(fa(z})) — log( fi(x ‘))]- For allt > T, and as t gets larger, this term diverges,
eventually exceeding M (the bound on the incremental penalty for adding an extra rule).
Hence, for all t > T, the probability of k < k is zero.® On the other hand, if k > k, then as
t 1 oo, k — k rules will have no members (since all members of the same class are classified

3In our application, let h (the rule to which the n’ subjects are classified) differ from h (their true rule) in
a collection of observations (prior and number of drawn N’s) that occur with some probability p (notice that
p > 0 by the distinctness of the rules). In the limit the contribution of each of the subjects when classified
to rule A when indeed they use rule h is

1 e -pti=$) ¢ (1-p)ts5 ¢ pt(1-%) . ¢ pts
3 “\2 “\2 “\I=3) -

whereas their contribution to the likelihood function when they are correctly classified to rule h is

e Ct(1-$) N
2 “\z2) -
The likelihood ratio (the second term divided by the first, measuring the gain from creating a new rule for
pt{l—¢)

that one individual) is (—%1 , which for € < 1 diverges to infinity as t | oo, thus proving that the log

likelihood gain will eventually overtake the maximum penalty M, and a new rule will be allowed.
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together and there are only k classes), hence the contribution to the likelihood from those
extra classes will converge to zero, eventually falling below m, and we shall discard those
extra rules. Therefore, for all ¢ > T*, the probability of k > k is zero. Combining the two
results, we know that k = k almost surely, for all t > T™*.

Now that we have established that as ¢t T oo, the number of classes k is almost surely
correctly estimated by k, and the individuals are almost surely correctly classified with
the other individuals who use the same rule, the rest of the results follow trivially. The
almost sure estimation of py,...,pi correctly by py,...,p; as n 1 oo follows from the strong
law of large numbers (moreover, a central limit theorem applies, and we can construct
confidence intervals for the p;’s). The consistent estimation of the rules f,,. .., fi also follows
immediately from the Glivenko-Cantelli Lemma (and pointwise Central limit theorems apply,
which we can use to estimate confidence intervals for the f,’s). |

6 The Data Analysis

Now, having established the consistency of our estimation/classification procedure, we pro-
ceed to discuss its implementation. For a given k, a rather crude method for estimating
c',...,c* and ¢ would be to loop over all possible classifications of the n subjects to the
various rules, estimate the maximal likelihood rules used by each class, and pick the classi-
fication that yields the maximal overall likelihood. This brute-force method would not be
feasible for reasonably large k and n, since for each k-tuple of rules, the number of possible
classifications is k™ (i.e. it grows geometrically in k, and exponentially in n, since we want
n to be very large, this procedure would be computationally infeasible). Fortunately, there
is no need to explicitly loop over all possible classifications. We can implement the classifi-
cation implicitly by using a standard maximization routine for the likelihood function with
k rules (the dimensionality of the parameter space is now 3k, and the number of possible
k-tuples of rules is 8%). For each likelihood evaluation of the routine, as we loop through the
data of each of the n individuals, we make k likelihood evaluations for that individual’s data
using each of the k rules. For the given class of rules under consideration, we classify each
subject to the rule that maximizes the likelihood of that subject’s data, and the contribution
of that subject’s data to the overall log likelihood function is added to the other subjects’
as shown in equation (4.1). Notice that this transforms our problem into a simple likelihood
maximization one, with the number of parameters growing linearly in the number of rules,
and each likelihood function evaluation growing linearly in the number of agents and number
of rules. This improvement over the brute-force (geometric/exponential) algorithm makes
our procedure rather easy to implement by invoking any of the standard multidimensional
optimization subroutines generally available in mathematical and statistical packages.

The results that we obtained by applying our algorithm to the data from the four univer-
sities are reported in the seven tables in Appendix A. We had a total of 256 subjects, and the
total number of tasks was 4506. The first 4 tables report the results where we analyze the
data for each of the schools separately. Table I shows our analysis the data from UCLA, Ta-
ble II shows the analysis of the data from PCC, Table III shows the analysis of the data from



Occidental College, and Table IV shows the analysis of the data from CSULA. Tables I-IV
report estimates up to k = 7. Tables V and VI report the maximimum likelihood estimates,
and the value of our information criterion, for all the subjects who were payed according to
the outcome, and all the subjects who were payed a flat fee, respectively. Table VII reports
the estimates and information criterion for £ = 1,2,3, for all the subjects in our sample
pooled together. In each of these tables, for a number of given k’s, we report the maxi-
mum likelihood estimates of €, the maximum likelihood estimate of (¢}, c}, c}), ..., (ck, cf, ck)
(with the number of subjects allocated to each of the rules shown in parentheses), the value
of the maximal likelihood for the model with k rules, and the information criterion that we
introduced in Section 4 (/C' = log(maximal likelihood) - 3k log(8) - k log(2)). When our
information criterion told us to stop after a certain number of rules, we indicated that by
italicizing the values of the IC that tell us that we should not use a model with that many
parameters.

In order to facilitate the understanding of the rules that our algorithm estimated, we now
identify three of those rules:

e A subject who correctly uses Bayes’s rule chooses cage A if the prior in favor of cage
A was 1/3 and the number of N’s was greater than 4, the prior in favor of A was 1/2
and the number of N's was greater than 3, or the prior in favor of A was 2/3 and the
number N’s observed was more than 2; otherwise cage B is chosen. In our notation,
that means that the cutoff rule (¢, ¢z, ¢3)=(432) corresponds to Bayes’s rule.

e A subject who judges likelihood using the representativeness heuristic would have the
same cutoff for all three priors (i.e. ¢; = ¢; = ¢3). Since 3 is representative of the
parent distribution in cage B, and 4 is representative of the parent distribution in cage
A, a subject using the representativeness heuristic will pick cage B if 3 N’s are drawn,
and pick cage A if 4 N’s are drawn. The representative heuristic together with our
rationality assumption that more N’s should be treated as increased evidence in favor
of cage A, makes a subject using that heuristic pick cage B if the number of observed
N's is less than or equal to 3, and cage A if the numbe of observed N’s is greater than
or equal to 4, resulting in the cutoff rule (333).

e A third class of subjects that we wish to identify are conservative Bayesians. Those
subjects give more weight to the prior odds than Bayes’s formula (posterior odds =
prior odds x likelihood ratio) dictates. For instance, subjects using the cutoff rule
(531). requiring six N’s to be observed in order to pick cage A (where five N’s would
be enough to convince a Bayesian to pick that cage) when the prior favoring A is 1/3,
and one N to.be observed in.order to pick.cage-B-{wheretwo Nis would be enough to
convince a Bayesian to make that choice) when the prior favoring A is 2/3, are clearly
giving too much weight to the prior information and hence needing extra evidence
to be convinced to change their prior pick. Note that due to the discreteness of our
observations, subjects could be conservative and yet use the rule (432). However,
subjects using (531) are definitely conservative (see Edwards (1982)).
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We summarize the most important aspects of our results below:

For all tables but Occidental College and CSULA, when we force the algorithm to
choose only one rule, it picks the rule (432), which corresponds to Bayesian updating.
Even in the two institutions where (432) was not picked initially as the first most likely
rule, when we allowed the algorithm to pick more rules, (432) surfaced and dominated
all the other rules. With the exception of the PCC table, the (432) Bayesian rule is
the most prominent (with more subjects allocated to it than any other rule) regardless
of how many rules we allowed the algorithm to pick.

The second most prominent rule in all but the PCC table (where it is the most promi-
nent) is (333) which corresponds to making the decision based on the likelihood ratio,
ignoring the prior. This rule has been named the “representativeness” rule by psychol-
ogists, and its robustness regardless of the number of rules that we allow our algorithm
to pick is also remarkable.

The third most prominent rule that we pick in all tables once enough rules are allowed is
(531) which corresponds to weighting the prior more than its share in Bayes’s formula
(posterior odds = prior odds x likelihood ratio). This rule also has been discussed
in the psychology literature, and it has been given the name “conservatism” since it
requires more data to change one’s mind than Bayes’s rule dictates.

We note that the algorithm was free to pick any of the possible rules. For instance,
when three rules are allowed, where most of the Tables have picked the rules (432),
(333), and (531) in that order, there are a total of 8% = 134,217,728 rules available, of
which the algorithm picked our three most prominent rules.

Of our four schools, UCLA had the lowest estimated ¢, followed by PCC, followed by
Occidental College, and CSULA had the highest estimate of the error rate ¢. Also,
Tables V and VI show that our estimate of € for the subjects who were payed according
to the outcome was lower than its counterpart for the subjects who were payed a flat
fee. Moreover, the ordering of the schools, and of those who were payed according to

the two systems, is almost the same when we inspect the proportions who use Bayes’s
rule.

Some cautionary notes are in order before we conclude this paper. Even though our
procedure has been proven to yield consistent estimates of the number of rules, and the rules
themselves, there are a few issues that may arise in finite samples. We discuss some of those
1ssues in the framewark of .our-application.

In finite samples, certain individuals’ data could have the same likelihood under two or
more rules. For instance, it is conceivable that an individual’s collection of observations
(p, N) (where p is the induced prior, and N is the number N’s observed) all fall in the
class of observations that are treated identically by rules (531) and (521) (for instance,
if there were no data points where prior 2 was induced, and 3 N’s were drawn). In those

11



cases, the likelihood function will have multiple maxima, and we are free to choose any
one of them. In the tables reported in the appendix, we gave the benefit of the doubt
to rules that were a priori more appealing to us (e.g. (432) was chosen any time it was
tied with one of the other rules). This limitation is not severe since in large samples,
the multiple maxima will vanish, and since the rules we gave priority in breaking ties
were the ones that were picked by the algorithm when fewer rules were allowed for (e.g.
where (432) is the rule being picked when only one is allowed).

e Our information criterion is not sufficiently severe in punishing models with a large
number of rules. For instance, where it did indicate that we should stop in the UCLA
Table I with six rules, one rule has only 4 subjects (less than 5% of the population)
allocated to it. When we allowed for a seventh rule, only 2 subjects were allocated to
that rule, and now the information criterion’s penalty for the extra rule was enough to
tell us to stop. The worst illustration of the permissiveness of our information criterion
is in the Occidental College Table III, where the seventh rule (111) (which is a very
strange rule, equivalent to almost always choosing cage A, regardless of the prior and
outcome) only picked one individual out of 56, and our information criterion (which
told us to stop with five rules) does not prefer six rules to seven. Of course, on the
positive side, the rule of almost always picking cage A may be a legitimate rule that
some subjects are using. Our theory suggests that if such a rule were correct, regardless
of how few individuals used it, then it should indeed be picked by the algorithm. If it
is not a rule that anyone uses, but we are simply picking the idiosyncratic behavior of
a subject in this particular collection of tasks, then more tasks should be assigned to
that subject in order to be able to determine if that is a legitimate rule.

We note on the positive side that those issues arising in finite samples can be resolved
not only by letting the number of tasks and the number of individuals get large, but also
by considerations of optimal experimental design. Our data set was not constructed for
the purposes of this paper (see Grether (1980) for discussion). For instance, if we were
interested in distinguishing models which give different weights to the prior odds and the
likelihood ratio (which seems a reasonable goal after we saw the rules that our algorithm
picked), then the design with the flat prior (prior 2) would probably have been omitted due
to its uninformativeness. Also, the data generating mechanism was chosen to increase the
probability of getting outcomes that mimic the parent distribution. That design may be
suboptimal for our purposes, and we probably would have chosen a larger number of priors,
and more draws from the cages to reduce the probability of ties between various rules. The
essential point to note is that our procedure’s performance can be made as good as one
wishes, even in finite samples {given t and n), by studying issues of optimal experimental
design (choice of priors, and the number of draws from each cage, for instance) to minimize
the occurrence of ties, and maximize the sharpness of our information criterion (which serves
as an Ockham’s razor).

12



8 Appendix A

Table 1

UCLA

No. of Rules | ¢ | Rules (#)| Likelihood IC

1 0.3 | 432 (97) | 6.726 x 1073 | -840.864

2 03] 432 3.026 x 107328 | .768.003

3 0.2 | 432 7.018 x 10731 | -734.950

2.447 x 10731 | -719.909

) |1.300 x 10-%°° | -713.658

) | 7.769 x 10721 | -709.591

) |6.220 x 10-2° | -712.139
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Table 11

PCC

No. of Rules

Rules (#)

Likelihood

IC

1

0.4

432 (66)

7.412 x 10728

-472.353

2

0.3

432 (31)

2.276 x 10~162

-386.059

3

0.3

432 (25)
333 (35)
531 (6)

(
333 (35)

(

(

7.770 x 10~1%®

-375.645

0.2

432 (20)
333 (33)
531 (6)
444 (7)

5.668 x 10~148

-366.774

0.2

432 (18)
333 (28)
531 (6)
444 (1)
332 (7)

3.012 x 107142

-360.522

0.2

432 (15)
333 (23)
531 (6)
444 (7)
332 (7)
433 (8)

1.601 x 10-136

-354.270

-1

0.2

432 (13)
333 (23)
531 (6)

1.601 x 10~136

-361.201

15




Table III

Occidental College

No. of Rules

€

Rules (#)

Likelihood

IC

1

0.4

332 (56)

4.075 x 107206

-479.859

2

0.3

332 (47)
511 (9)

2.831 x 10718

-438.801

3

0.3

432 (28)
333 (19)
511 (9)

3.300 x 10~17°

-411.040

0.3

432 (21)
333 (13)
332 (14)
511 (8)

1.988 x 10~163

-402.360

0.3

432 (16)
333 (13)
532 (8)
332 (12)
511 (7)

1.616 x 10-1%°

-400.288

0.3

432 (18)
333 (12)
332 (14)
542 (3)
511 (7)
222 (2)

1.198 x 10~1%¢

400.611

-1

0.2

432 (19)
333 (14)
332 (10)
531 (4)
542 (3)
511 (5)
111 (1)

1.976 x 10~1°3

-400.135
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Table IV

CSULA

No. of Rules

Rules (#)

Likelihood

IC

1

0.5

433 (37)

1.141 x 1071¢%

-395.936

2

0.4

432 (24
333 (13

6.137 x 1071°2

-362.042

3

0.4

)
)
432 (16)
333 (12)
433 (9)

4.022 x 107147

-357.883

0.4

432 (11)
333 (11)
531 (7)
433 (3)

1.748 x 107143

-356.437

0.3

132 (10)
333 (11)
531 (6)
542 (2)
433 (8)

9.598 x 10~14!

-357.060

0.3

432 (9)
333 (11)
531 (5)
433 (7)

3.082 x 10~ 1%°

-360.523

-1

0.3

9.897 x 107138

-363.985
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Table V

All Schools—payed according to outcome

No. of Rules

€

Rules (#)

Likelihood

IC

1

0.4

432 (125)

1.229 x 10~

-999.140

2

0.3

432 (85)
333 (40)

1.354 x 107382

-893.147

3

0.3

432 (64)
333 (38)
531 (23)

1.678 x 107361

-851.510

0.3

432
333

1.042 x 10731

-835.892

0.3

4.595 x 10344

-825.222

0.2

2.198 x 107337

-816.773
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Table VI

All Schools—payed a flat fee

No. of Rules

€

Rules (#)

Likelihood

IC

1

0.4

432 (131)

1.188 x 10-5%0

-1204.104

2

0.3

432 (77)
333 (54)

3.693 x 10~44°

-1045.417

3

0.3

432 (56

521

2.594 x 1074%7

-1003.045

0.3

5.174 x 10~416

-983.958

0.3

1.767 x 107498

-973.543

0.3

1.064 x 10~%01

-964.864
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Table VII
All Schools

No. of Rules | ¢ | Rules (#)| Likelihood IC
1 0.4 | 432 (256) | 1.460 x 10-°°1 | -2196.312
2 0.3 | 432 (162) | 4.999 x 10783 | -1925.702
333 (94)
3 0.3 | 432 (120) | 1.355 x 10~ | -1837.230
333 (92)
531 (44)
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priors for the 20 tasks

/2 in favor of cage A, and 4 refers
of the 20 outcomes (number of N’s
each of the subjects (choosing cage

Jects in UCLA who were each payed a bonus of $10 if they made
, for each of the tasks.

the correct choice on a randomly drawn task. The first line contains a list of the 20
(2 refers to the prior of 1/3 in favor of cage A, 3 refers to the prior of 1

observed, between 0 and 6). The last 48 lines contain the 20 choices of

to the prior of 2/3 in favor of cage A). The second line contains a list
A is coded as 1, and choosing cage B is coded as 0)

Table 1: Raw data on 20 tasks for 48 sub
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Table 2: Raw data on 20 tasks for 49 subjects in UCLA who were each payed a flat fee for participating

in the experiment. The first line contains a list of the 20 priors for the 20 tasks (2 refers to the prior of 1/3
in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and 4 refers to the prior of 2/3 in favor of
cage A). The second line contains a list of the 20 outcomes (number of N’s observed, between 0 and 6). The
last 49 lines contain the 20 choices of each of the subjects (choosing cage A is coded as 1, and choosing cage

B is coded as 0), for each of the tasks.
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Table 3: Raw data on 14 tasks for 35 subjects in PCC who were each payed a bonus of $10 if they made
the correct choice on a randomly drawn task. The first line contains a list of the 14 priors for the 14 tasks
(2 refers to the prior of 1/3 in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and 4 refers

to the prior of 2/3 in favor of cage A). The second line contains a list of the 14 outcomes (number of N’s
observed, between 0 and 6). The last 35 lines contain the 14 choices of each of the subjects (choosing cage

A is coded as 1, and choosing cage B is coded as 0), for each of the tasks.
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Table 5: Raw data on 14 tasks for 25 subjects in Occidental College who were each payed a bonus of $10
if they made the correct choice on a randomly drawn task. The first line contains a list of the 14 priors for
the 14 tasks (2 refers to the prior of 1/3 in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and
4 refers to the prior of 2/3 in favor of cage A). The second line contains a list of the 14 outcomes (number
of N’s observed, between 0 and 6). The last 25 lines contain the 14 choices of each of the subjects (choosing
cage A is coded as 1, and choosing cage B is coded as 0), for each of the tasks.
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Table 6: Raw data on 19 tasks for 31 subjects in PCC who were each payed a flat fee for participating
in the experiment. The first line contains a list of the 19 priors for the 19 tasks (2 refers to the prior of 1/3

in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and 4 refers to the prior of 2/3 in favor of
cage A). The second line contains a list of the 19 outcomes (number of N’s observed, between 0 and 6). The
last 31 lines contain the 19 choices of each of the subjects (choosing cage A is coded as 1, and choosing cage

B is coded as 0), for each of the tasks.
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Table 7: Raw data on 19 tasks for 17 subjects in CSULA who were each payed a bonus of $10 if they
made the correct choice on a randomly drawn task. The first line contains a list of the 19 priors for the 19
tasks (2 refers to the prior of 1/3 in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and 4
refers to the prior of 2/3 in favor of cage A). The second line contains a list of the 19 outcomes (number of
N’s observed, between 0 and 6). The last 17 lines contain the 19 choices of each of the subjects (choosing
cage A is coded as 1, and choosing cage B is coded as 0), for each of the tasks.
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Table 8: Raw data on 19 tasks for 20 subjects in PCC who were each payed a flat fee for participating
in the experiment. The first line contains a list of the 19 priors for the 19 tasks (2 refers to the prior of 1/3
in favor of cage A, 3 refers to the prior of 1/2 in favor of cage A, and 4 refers to the prior of 2/3 in favor of
cage A). The second line contains a list of the 19 outcomes (number of N’s observed, between 0 and 6). The
last 20 lines contain the 19 choices of each of the subjects (choosing cage A is coded as 1, and choosing cage
B is coded as 0), for each of the tasks.
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10 Appendix C

Instructions

Name:

Social Security Number:

The experimenters are trying to determine how people make decisions. We have designed
a simple choice experiment and we shall ask you to make decisions at various times. The
amount of money (DESIGN I: will not) (DESIGN II: will) depend on how good your decisions
are. (DESIGN I: At the end of the experiment you will receive $7) (DESIGN II: At the end
of the experiment, we shall randomly choose one of your decisions and if it was correct, you
will receive $15, and if it was incorrect, you will receive $5).4

If you look at the person in the front of the room, you will see that he or she has three
randomizing devices, otherwise known as bingo cages, which are designated as cage A, cage
B, and cage X. Inside both cage A and cage B are six balls, some of which are marked with
an N and some with a G. Cage A has four N’s and two G’s and cage B has three N’s and
three G’s. Inside cage X there are six balls numbered one, two, three, four, five, and six.

The experiment will proceed as follows. First, we shall ask you to select one individual
as a monitor to watch the procedures, to examine the equipment, and to make sure that
the experimenters really are doing what they say they are doing. The monitor should check
the truthfulness of what the experimenter says, but other than that may not communicate
any information to you in any way. If the monitor communicates any other information, he
or she will be asked to leave without payment. The monitor will receive (DESIGN I: $7)
(DESIGN II: $10) for his or her efforts.

(PICK VOLUNTEER)

Now cages A and B are put behind this screen and we spin cage X. Before each run we
will tell you that if certain numbers come up, we will choose cage A, and other wise we will
choose cage B. For example, if 1, 2, 3, or 4 are drawn, we will pick cage A; if a 5 or 6 is
drawn, we will pick cage B. After drawing from cage X, the monitor will be asked to choose
the appropriate cage (A or B) from behind the screen. Now the experimenter will make six
draws from the cage. replacing the drawn ball each time. He will write the results of the
draws on the board. You will be asked to indicate on your answer sheet whether you think
the draws came from cage A or cage B.

‘Legend: DESIGN I = Subjects are payed a flat fee. DESIGN II = Subjects are payed a bonus if a
randomly chosen choice was correct.
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Answer Sheet

Cage A has 4 N’s and 2 G’s.
Cage B has 3 N’s and 3 G’s.

Run No. 0 In this run there are
chances for choosing cage B.

Record the results for this runi — — — — — — .
Circle the one you think the balls came from. Cage A Cage B

chances out of 6 for choosing cage A and ——

Run No. 1 In this run there are
chances for choosing cage B.

Record the results for this runy — — — — — — .
Circle the one you think the balls came from. Cage A Cage B

chances out of 6 for choosing cage A and ——

Run No. 2 In this run there are
chances for choosing cage B.

Record the results for this run; — — — — — — .
Circle the one you think the balls came from. Cage A Cage B

chances out of 6 for choosing cage A and ——
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