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Abstract

The Gibbard-Satterthwaite Theorem on the manipulability of collective-choice proce-
dures treats only of resolute procedures. Few real or reasonable procedures are resolute.
We prove a generalization of Gibbard-Satterthwaite that covers the nonresolute case. It
opens harder questions than it answers about the prediction of behavior and outcomes
and the design of institutions.






STRATEGIC MANIPULABILITY 1S
INESCAPABLE: GIBBARD-SATTERTHWAITE
WITHOUT RESOLUTENESS®

John Duggan Thomas Schwartz

A voting rule, market economy, management hierarchy, or other collective choice
procedure turns the professed preferences of several individuals into one coliective choice
— one chosen alternative or one choice set of two or more “tied” alternatives. It is strategy
free or nonmanipulable if it ensures that no one acting alone can ever gain a preferred
outcome by misrepresenting his preferences — voting for a second-best candidate, for
example, to stop a worse one from winning, or introducing a disliked amendment to
kill a disliked bill, or dumping many shares of a prized stock to depress its price. The
celebrated theorem of Gibbard (1973) and Satterthwaite (1975) is often said to show
that any strategy-free procedure for choosing among three or more alternatives must be
dictatorial. In one way the theorem is stronger than this summary: it shows that a
nondictatorial procedure must be manipulable, not only for some set of three or more
feasible alternatives, but for any given set. In another way the theorem is weaker: it
is not about all collective-choice procedures but only resolute ones. They choose single
alternatives in every possible circumstance, never allowing ties.

Most collective-choice procedures of any importance are nonresolute, we argue (§1),
and the Gibbard-Satterthwaite Theorem does not show that they are manipulable except
in special circumstances. Some published manipulability theorems do not assume reso-
luteness, but in other ways their generality is limited. We contrast these theorems with a
new one (§2), a generalization of Gibbard-Satterthwaite that covers the nonresolute case
while avoiding the limitations of earlier results. Before stating (§4) and proving (§5) this
theorem, we explain.it in detail but informally (§3). It opens harder.questions than it
answers about the incidence of strategic behavior, the existence and predictive value of
equilibria, and the design of institutions (§6).

*We thank Peter Ordeshook, Thomas Palfrey, Charles Plott, and Martin van Hees for helpful discus-
sions. Schwartz thanks the UCLA Senate for research support.



1 Nonresolute Procedures and the Gibbard-
Satterthwaite Theorem

Outside the two-alternative case, few collective-choice procedures found in practice
or in the imaginations of theorists and reformers are resolute: most allow ties, or multi-
member choice sets. Ties are allowed by all familiar election rules (Plurality, Runoff,
Borda, List PR, STV, SNTV, etc.), welfare criteria {(maximum average welfare, max-
imin, and whatnot), and preference-sensitive taxation schemes (Lindahl, Clarke, Groves-
Ledyard). Market economies and other exchange mechanisms also allow ties (multiple
competitive equilibria, multi-member contract sets and cores). So must any procedure
that fulfills the democratic ideals of anonymity (individuals count equally) and neutrality
(alternatives count equally).

Parliamentary procedure is an apparent exception. It turns any multi-alternative
contest into a series of yes-or-no votes. At each vote, the no option wins by default if the
yes option lacks the required majority. That ensures a unique final winner. But to see
this procedure as resolute is to see the agenda on any occasion — the series of yes-or-no
votes - as part the procedure, making “the procedure” a host of ad hoc procedures that
differ between any two occasions of choice. If “the procedure” is seen instead as one
that endures from occasion to occasion of choice, then the choice set on any occasion
comprises every alternative choosable under some agenda then permissible, each in effect
a tie-breaker. Seen that way, parliamentary procedure is especially irresolute — it often
yields large choice sets — even when the alternatives to appear on the agenda are specified
in advance (Ordeshook and Schwartz 1987).

Which is the right way to see parliamentary procedure? Neither is uniquely right.
We climb a ladder of resolution when we start with general parliamentary procedure
and add reporting committees, scheduling and recognition rules, and finally a specific
agenda: each addition yields a more resolute procedure, one that narrows the choice sets
of its predecessor. We do the same when we start with the constitutional requirements
for some elective office and add statutes governing the details of balloting, nominations,
constituency divisions, and the like. And we do the same when we start with a whole
constitution and-add legislative rules,-ministries;-standing-programs, and so forth, or
when we start with a code of property law and add contracts, courts, and money, or
again when we start with a corporate charter and add a table of organization, hiring
policies, and whatnot. Climb to the top of any ladder of resolution and you will see
either a resolute procedure or one that resolves some residual ties by chance or historical
accident. But you are free to stop before the top and see the part climbed as a collective-
choice procedure and the part above as a tie-resolving mechanism for that procedure.
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The question of manipulability can be posed at any rung, but often it is more interesting
at lower rungs, where the choice sets that might be changed by manipulation are bigger,
and changes in them more consequential. Take the February-to-December procedure
for electing a U.S. president: state primaries (rung 1), national conventions (rung 2),
general election (rung 3), formal vote of the Electoral College (rung 4). A manipulation
of this four-rung procedure might be more discomfiting, or anyway more surprising, than
a manipulation of the procedure (rung 5) by which the House of Representatives resolves
Electoral College ties.

Gibbard emphasizes that his theorem says nothing about procedures involving chance.
That is an understatement: the theorem It also says nothing about low-rung procedures.
Does it imply more than it says? Yes, but not very much.

Standard election rules are near resolute: electoral ties are rare and rarely large.
Although resoluteness bans all possible ties, these procedures fall so little short of reso-
luteness, one might contend, that nothing much can hang on the shortfall. But see how
much is hung on little shortfalls by the Gibbard-Satterthwaite Theorem: to block all
possible opportunities for manipulation, a nondictatorial procedure for choosing among
three or more alternatives must deviate at least a bit from perfect resoluteness. Just a
little bit may be enough, and the opportunities that have to be blocked may be very few,
so far as we know from the theorem.

When multi-member sets are chosen, it is tempting to count them as “alternatives”
on all fours with their members (Barberd, Sonnenschein, and Zhou 1991). But Gibbard-
Satterthwaite still does not apply because it assumes unrestricted preference orderings
of whatever qualify as “alternatives,” in this case allowing someone who prefers {z} to
{y} to {z} also to prefer {y,z} to {z}.

Yes, a nonresolute procedure must be combined with some tie-resolving mechanism.
But suppose that this mechanism is stochastic or partly so: it picks lotteries, not all of
them degenerate. Then Gibbard-Satterthwaite does not apply to the combined proce-
dure, much less the original one, unless we assume unrestricted preference orderings of
lotteries, and that is no more reasonable than unrestricted preference orderings of sets.
So suppose instead that the tie-resolving mechanism is completely deterministic. Let
there be three or more feasible alternatives and no dictator. Now Gibbard-Satterthwaite
implies that the combined procedure is manipulable. But it is the original, lower-rung
procedure whose manipulability may be of interest. Does Gibbard-Satterthwaite imply
that it is manipulable? Not if the tie-resolving mechanism depends on the professed pref-
erences of individuals: for all we know from the theorem, a manipulator of the combined
procedure can change the final outcome from one to another member of the pre-resolution
choice set but can never change that set. If, on the other hand, the tie-resolving mecha-
nism does not depend at all on professed preferences, then a manipulator of the combined

procedure must change the pre-resolution choice set to change the final selection from



that set, so the original procedure is manipulable once the tie-resolving mechanism is
in place. But that follows from Gibbard-Satterthwaite only in this rather special case:
the tie-resolving mechanism is completely independent of professed preferences yet com-
pletely deterministic.

2 What is Known and_ What is to be Shown

Beginning in the late eighteenth century, students of voting have learned that all famil-
iar voting rules, none of them resolute, are manipulable when the feasible alternatives
are three or more. Do we know anything more general, anything like the Gibbard-
Satterthwaite theorem shorn of its resoluteness assumption?

This question raises another. Strategy freedom bans all possible cases of manipula-
tion. When collective choices are single alternatives and preferences are represented by
orderings of alternatives, the banned cases are of this type:

A change in Mr. #’s professed ordering of alternatives, all else re-
maining the same, changes the collective choice from an alternative
z to an alternative y though y is preferred to = according to ¢’s
original ordering.

But when collective choices are sefs of alternatives, what does it mean for one to be
preferred to another according to an ordering of alternafives? Four approaches have
been taken to this problem.

Where X and Y are potential choice sets, the Heroic Approach ascribes a preference
for Y over X to individual ¢ only when such a preference is plainly necessitated by :’s
ordering of alternatives. For example, someone who prefers  to y to z must prefer
{z} to {y,z} and {z,y} to {z} but not necessarily {y} to {z,2} or {z,z} to {y}. Kelly
(1977} and Barbera (1977a,b) prove manipulability theorems based on this approach, but
they pay for weak preferential assumptions with strong procedural ones. Barbera (1977b)
assumes the acyclicity and Kelly the transitivity of (strict) social preference, and Barbera
(1977a) assumes “strict monotonicity,” a property exemplified by few voting rules — by
Borda, but not, for.example, by .Plurality, Runoff, or.parliamentary procedure.

The Maximin Approach assumes that ¢ prefers ¥ to X only if ¢ prefers the worst
alternative in Y (according to his preference ordering) to the worst in X. Pattanaik
(1978) uses this approach to prove the manipulability of a number of important types
of procedure. But those types are quite specific, defined by strong “democratic” re-
quirements. Also Pattanaik shares with Kelly a formal framework which differs from



Gibbard-Satterthwaite’s and Barbera’s in a way that weakens his results: instead of as-
suming a fixed set of feasible alternatives, he lets the feasible set vary over all or many
subsets of some given set, leaving open the possibility that manipulability afflicts few
feasible sets. :

The Set Preference Approach represents preferences to begin with by orderings that
rank sets of alternatives, though it does not count all such orderings as “admissible”: an
admissible ordering might rank {x} over {z,y} over {y}, for example, but not {z} over
{y} over {z,y}. Schwartz (1982) uses this approach to deduce manipulability from mild
procedural assumptions. But he makes a host of opaque assumptions about admissible
orderings of sets, and he too lets the feasible set vary.

Finally, the Possible Preference Approach represents preferences by orderings of al-
ternatives but assumes that strategy freedom bans all cases of the following type:

A change in i’s professed ordering, all else remaining the same,
changes the collective choice from a set X to a set Y though a
preference for Y over X is compatible with ¢’s original beliefs and
ordering — though it would be possible if not compulsory for a
rational individual who had 7’s original beliefs and ordering to prefer

Y to X.

What makes a procedure manipulable, after all, is not that it is actually manipulated
but that it fails to make manipulation impossible. Taking this approach, Zeckhauser
(1973) and Gibbard (1977) hit nearer our target of Gibbard-Satterthwaite without res-
oluteness. They prove manipulability for nonresolute procedures and fixed feasible sets,
assuming that a preference for Y over X is compatible with ¢’s original beliefs and or-
dering if a certain lottery over Y has a greater expected utility than a certain lottery
over X for some utility function compatible with ¢’s ordering. But besides adding some
hard-to-interpret procedural assumptions, Zeckhauser and Gibbard assume that lotteries
are procedurally determined: in effect, the procedure picks both a choice set and the
probability distribution used by all individuals to evaluate that set. That is reasonable
in most electoral contexts, where ties are resolved randomly. It is not so reasonable in
constitutional, parliamentary, market, management, and other low-rung contexts, where
typical choice sets are large and individuals differ in their beliefs about the resolution of
ties, about what happens higher on the ladder, sometimes making strategic use of those
differences. Think of legislators who profit from knowing better than their colleagues
what motions will be recognized in what order. Or think of voters in a U.S. presidential
election who have different beliefs about how the House of Representatives would resolve

an Electoral College tie. Zeckhauser and Gibbard cover top-rung procedures that use
ey descend the ladder of resolution only in worlds

chance to resolve residual ties, but th

marked by an unusual coincidence of beliefs.



We too take the Possible Preference Approach and prove a generalization of Gibbard-
Satterthwaite that covers the nonresolute case without assuming any common beliefs
about the resolution of ties. On the procedural side, we follow Gibbard and Satterth-
waite by assuming a fixed set of three or more alternatives, each feasible in the “citizens’
sovereignty” sense that there is some way to secure its choice, and a fixed population
of individuals, none a dictator, with variable preference orderings of alternatives. On
the preferential side, we follow Zeckhauser and Gibbard by assuming that an individ-
ual compares potential choice sets as if comparing lotteries according:to their expected
utilities for some utility function compatible with his ordering of alternatives. But we
generalize their framework by letting each individual 7 have his own lottery over every
potential choice set X. And we let this lottery depend, not only on ¢ and X, but on
i’s true preference ordering and the professed preferences of others. Given these factors,
the corresponding lottery is arbitrary but fized: our theorem shows that manipulation is
possible, not merely for some set of lotteries (or beliefs) of the fancied sort, but for any
given set.

3 Explanation of Theorem

Like Gibbard and Satterthwaite (G&S), we assume a fixed population of individuals,
Messrs. 1,2,...,n, and a fixed set A of three or more feasible alternatives. Unlike G&S,
we explicitly assume that A is finite. Actually it is enough that choice sets be finite, as
G&S assume, but then we might as well make the simpler assumption that A is finite.
The realism of this assumption would be hard to contest: the candidates for any office
are finite in number, as are the policy options of any sort if each is formulable from some
given finite stock of symbols (those on your keyboard, say) in a string no longer than
some given physical constraint (the number of quarks in the Milky Way, say).

We copy G&S’s version of citizens’ sovereignty: every member of A is the unique col-
lective choice in some possible circumstance. The weaker assumption that every member
of A belongs to the choice set in some possible circumstance is nigh impotent: it is au-
tomatically true if there is no real choice at all in some odd circumstance, the choice set
being A itself. Our G&S version captures the idea that every so-called feasible alternative
really is feasible, not only in the weak sense that Messrs, 1,2,...,n can somehow permit
its choice, but also in the strong sense that they can somehow secure its choice.

G&S’s version of nondictatorship says there is no individual whose professed favorite
alternative in every possible circumstance is the unique collective choice. For nonresolute
procedures, that is vacuous, a consequence of nonresoluteness itself. Our version says

there is no individual whose professed favorite in every possible circumstance belongs
to the choice set. Thig is stronger than it may look. Besides dictatorships of the nsual
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sort, it bans the Collective Hamlet Rule, whose choice set in any circumstance contains



everyone’s professed favorite. More important, both versions ban dictators of some sort
for the given set A, yet some reasonable procedures allow dictators for certain sets, those
representing issues that affect one individual’s rights. Thus, we must think of A as not
being such a set (if it were then strategy freedom would be assured).

It is not always clear what to count as an expression of someone’s preference, nor when
a given expression is candid (Gibbard 1973, Pattanaik 1978). But for us as for G&S,
it is enough that every possible expression be.uniquely determined by some possible
preference ordering of alternatives, that there exist a mapping from possible preference
orderings to possible individual strategies. Unlike G&S, we assume that all such or-
derings are linear: they never rank two alternatives at the same level. Like G&S, we
assume that these orderings are otherwise unrestricted, singly and in combination. The
“possible circumstances” of the previous two paragraphs are all the profiles, or ordered n-
tuples of linear orderings of A. While barely strengthening nondictatorship and citizens’
sovereignty, our linear restriction greatly strengthens our conclusion. If manipulation is
possible in the universe of linear preferences, then of course it is possible in any larger
universe which contains that one. But its possibility in the linear universe shows that it
is possible under those preferential voting systems that require ballots to express linear
orderings (most do) and also those nonpreferential systems that require ballots to desig-
nate single “favorite” alternatives, either once or at each of several stages of voting (most
do): only linear orderings uniquely determine such ballots. It shows as well that strate-
gic misrepresentation is not just the advantageous but arbitrary resolution of subjective
“ties.”

Qur version of strategy freedom bans all cases of the following type:

A change in Mr. i’s professed ordering of alternatives, all else re-
maining the same, changes the collective choice from a set X to
a set Y though the lottery that ¢ associates with Y and the orig-
inal profile has a greater expected utility than the lottery that ¢
associates with X and the original profile for some utility function
compatible with ¢’s original ordering.

The lottery, or probability distribution, that i associates with a set X and profile v
summarizes his beliefs about how the tie would be resolved if the choice set were X, the
ith ordering in v were ¢’s true preference ordering, and the others were the professed
orderings of the other » — 1 individuals. This lottery assigns positive probabilities only
to members of X, of course, but maybe not to all members. It is enough that the best
and worst members of X have positive probabilities: z is not so pessimistic or optimistic
that he ignores these possible outcomes.

This version of strategy freedom is quite general in that individual lotteries are min-
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imally constrained but fixed: our theorem holds for any given set of lotteries of the
assumed sort. It is quite general as well in that it allows a potential strategist’s beliefs
about the resolution of ties to be similar or not to those of other individuals, procedu-
rally determined or not, well-informed or not, dependent or not on his own preference
ordering, and sensitive or not to the professed preferences of others (he cannot directly
observe their true preferences), hence based or not on his assessment of the behavior of
others in the tie-resolving process. Naturally there are limitations. Mr. i’s lotteries may
evince some risk aversion or risk acceptance: because they depend on i’s own preference
ordering, he can assign probabilities that rapidly increase or rapidly decrease down his
ordering. But beyond that, i’s lotteries cannot depend on his utilities, or preference inten-
sities, or preferences between lotteries themselves: ¢ cannot simultaneously pick lotteries
and utility functions to “fit” each other, as in the classical Ramsey-Savage framework,
and we exploit this fact to prove the first lemma of §5.

The promised theorem says that strategy freedom is inconsistent with the assump-
tions sketched earlier in this section. In proving it, we first gain control over comparisons
between potential choice sets by deducing, in effect, that an individual has a possible
preference (one compatible with his preference ordering and beliefs) for one such set over
another whenever he prefers the worst alternative in the one set to the worst in the other
or the best in the one to the best in the other. Beyond that, our proof is somewhat like
G&S’s. Where they deduce their theorem from Arrow’s (1963), we similarly exploit a
variant of Arrow’s Theorem that strengthens nondictatorship to nonblocker (or nonve-
toer) and weakens transitivity of social preference-or-indifference to that of sirict social
preference.

4 Formal Statement of Theorem

Formally, our theorem is about a set A, positive integer n, unary function C, and ternary
functions py,...,p,. An alternative is any member of A. A utility function is any real-
valued function on A. A profile is any ordered n-tuple of linear orderings of A, each a
binary relation on A that is asymmetric, transitive, and connected in A (borne by one
to the other of any two members of A). Denote alternatives by z,y, etc., nonempty sets
of them by X, Y, etc., integers 1,2,...,n by 1,7, etc., utility functions by u, u’, etc., and
profiles by v = (v1,...,v,), v/ = (v],...,v}), etc. Profiles v and v' are i-variants if
v; = v} forall j #¢ Aistobe interpreted, of course, as the set of feasible alternatives, n
as the number of individuals, C as the function that turns every v into a choice set C(v),
and p; as the function that turns every v, X, and @ into ¢'s assessment p;(v, X, z) of the
probability that 2 would be the final choice if X were the choice set, the ith ordering in
v were #’s true preference ordering, and the others were the professed orderings of the
other n — 1 individnals
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Theorem. The following six conditions are inconsistent:

F3A A is a finite set of three or more objects.

CH C associates with every v a nonempty subset C(v) of A, called the
choice setin v. : L

PROB  p; associates an element p;(v, X, z) of [0,1] with every v, X, and z so
that S capi(v, X, z) =1 and p;(v, X, y) > 0 = p;(v, X, z) whenever y
is the v;-least member or the v;-first member of X and z ¢ X.

CiSov (C(v) = {z} for some v (citizens’ sovereignty).

D No ¢ is such that, for all v, z, if z ranks first in v; then z € C(v)
(nondictatorship).
B If v and v’ are i-variants then @y (C(v')) > @ (C(v)) for no represen-

tative u of v; (strategy freedom},

where u is a representative of v; if and only if, for all z,y, u(z) > u(y) just
when zvy,

and T (X) = Saex Pilv, X, 2)ufz) (¢'s expected u-value of X in v).

?

5 Proof

To prove the inconsistency of these conditions, we first reduce our task to one of deducing
from them that a certain function must meet six other conditions proved inconsistent by
Fishburn (1973:128, or Mas-Colell and Sonnenschein 1972, or Schwartz 1986:59):



3A A has three or more members.

SoPREF 7P is a function that associates with every v an asymmetric binary
relation PY on A (a strict “social preference” relation).

ITA If 2Py and v’ is an zy-twin of v then 2PV'y (independence of irrelevant
alternatives),
where v’ is an zy-twin of v if and only if, for all i, zvly & zviy.

PARETO I zv;y for all ¢ then zPVy.

B No 7 is such that, for all v, z, y, if zv;y while yv;z for every j # ¢ then
not yPVz (nonblocker).

TRANS  If aPVyPVz then 2PVz.

Because these conditions are inconsistent, no function P of profiles can satisfy all of them,
so this one cannot:

zPYy if and only if = # y and {z} = C(v") for every zy-twin v’ of

v in which {z,y} is a top set,

where X is a top set in v if and only if every member of X" ranks above
every member of A — X in every v;.

Hence, it suffices to deduce from our own six conditions that P satisfies the six conditions
just above.

From the definition of P it follows immediately that P satisfies SoPREF (the Defi-
nition obviously ensures asymmetry of PV) and ITA (by definition, zP"'y holds for all or
no zy-twins v’ of v). And our F3A is obviously stronger than 3A. Hence, it suflices to
assume our own six conditions and prove that P satisfies PARETO, B, and TRANS.

To this end we first milk PROB and B of all their useful content in a lemma.

Strategy Lemma. If z € C(v) and v’ is an z-variant of v, then (1) z or something
ranked lower in v; belongs to C'(v'), and (2) = or something ranked higher in v; belongs

to C(v').

Proof of (1). Suppose not. Then the v;-least member y’ of C'(v') must rank higher
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in v; than the v;-least member y of C(v). Let p = pi(v,C(v),y) and y7 = the highest-
ranked alternative in v;. Then p > 0 by PROB, and u(y") > u(y’) > u(y) for every
representative u of v;. So some such u must make u(y®?) — u(y’) small enough and
u(y') — u(y) big enough to ensure this:

u(y') > pu(y) + (1 — pluly

But wy (C(v")) = uly’)

because u(y’) < u(w) for all w € C(v'), and
@ (C(v)) < puly) + (1 = pu(y™)

because pu(y) is a summand of TY(C(v)) and u(y”) > u(w) for all w. It follows that
Y (C(v") > @ (C(v)), contrary to 5.

H

Proof of (2). Suppose not. Then the v}-first member z of C(v) must rank higher in
v! than the vl-first member s’ of C(v'). Let p = p;(v/,C(v),z) and z&' = the lowest-
ranked alternative in v/. Then p > 0 by PROB, and u(z) > u(2') > u(z) for every
representative u of v.. So some such u must make u(z’) — u(z") small enough and
u(z) — u(z") big enough to ensure this:

u(z') < pulz) + (1 = phu(h).

But 7 (C(V)) < u(2)

because u(z') > u(w) for all w € C{v’), and

-y

7 (C(v)) 2 pu(z) + (1 = pJu(zF)

because pu(z) is a summand of @’ (C(v)) and u(z%) < u(w) for all w. It follows that
7Y (C(v)) > @Y (C(v"), contrary to 5.

1

We shall make repeated use of three more lemmata.

Singleton-Monotonicity Lemma. If C(v) = {z} and every alternative that ranks
above z in any v} also ranks above z in the corresponding vy, then C(v') = {z}.

Proof. It is enough to show this when v and v’ are i-variants for some 7; the fuil lemma
then follows by n — 1 repetitions. If C(v’) contained any y that ranked higher than =
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in v;, then y or something ranked even higher in v; would have to belong to C(v) by
Strategy Lemma (2) (with the roles of v and v’ reversed). But that is impossible because
C(v) = {z}. If C(v') contained any y that ranked lower than & in v;, then y would also
rank lower than z in v! by hypothesis, and y or something ranked even lower in v} would
have to belong to C(v) = {z} by Strategy Lemma (1), again an impossibility. Hence, no
alternative but = can belong to C(v'). But ¢ # C(v") € A by CH. So C{v') = {z}.

P-Sufficiency Lemma. If z # y and C(v) = {z} then zP"y.

Proof. We must show that C(v') = {z} for every zy-twin v’ of v in which {z,y} is a
top set. But at most y ranks above z in any v., in which case y also ranks above z in v;.
So C(v') = {z} by Singleton-Monotonicity L.emma.

Top Lemma. If X is a top set in v then ¢ # C(v) C X.

Proof. ¢ # C(v) C A by CH. To show that C(v) C X, take some z € X and
some v® in which every ordering ranks z first. By CiSov, {2} = C(v’} for some v'.
So {z} = C(v*) by Singleton-Monotonicity Lemma. Now change v to v¥ one ordering
at a time. By Strategy Lemma (1), each change from v; to v preserves membership
in the choice set by any given member or something ranked lower in v;. But every
member of A — X ranks below every member of X in every v;. Hence, if any member of
A — X belonged to C(v), then some member of A — X would belong to C(v®), which is
impossible because C{v®) = {z} and # € X. So no member of A — X belongs to C(v),
and thus C(v) C X.

With these lemmata in hand, we can now complete the proof of our theorem by
deducing that P satisfies PARETO, B, and TRANS.

_ Proof that P satisfies PARETO. Suppose zv;y for all i (so z # y). To prove that
zPVy, we must show that C(v) = {2} whenever v’ is an zy-twin of v and {z,y} is a top
set in v'. But in that case {z} too is a top set in v/, so C(v’) = {z} by Top Lemma.

Proof that P satisfies B. Suppose on the contrary that 7 is a blocker in this sense: for
all z,y,v, if zv;y while yv;z whenever j # 1 then not yPVz. We shall deduce, contrary
to 1, that for all &, v, if 2 ranks first in v; then @ € C(v). For suppose = ¢ C(v). Let y
rank second in v;. Take some v’ in which v} = »; while every other v} ranks y first and @
last. It suffices to show that C({v') = {y}, which implies, by P-Sufficiency Lemma, that
yPV'z, contrary to our hypothesis that i is a blocker.

If the change from v; to v} for any j # 7 let z enter the choice set, then the change
from v} back to v; would keep z in by Strategy Lemma (1) because nothing ranks below
z in v}. Hence, 2 g C(v'). Now change v’ to v¥ by putting y above z in the :th ordering,
leaving all else the same. Then if anything that ranked lower than y in v} belonged
to C(v'}, it or something that ranked even lower in v{ would have to belong to C'(v¥)

12



by Strategy Lemma (2). But {y} is a top set in v¥, so C(v¥} = {y} by Top Lemma.
Therefore, nothing lower than y in v} can belong to C(v’), so only z and y can belong.

But z ¢ C(v'). Hence, C(v') = {y}.

Proof that P satisfies TRANS. Suppose :z:’ﬁ""y’p"z. Thenz # y,y # z,and ¢ # z by
SoPREF (asymmetry). To show that zPVz, first change v to v*¥* by moving z, y, and
z above all other alternatives in every ordering while preserving their positions relative
to each other. Then {z,y,z} is a top set in v, and v®¥ is an zy-twin, a yz-twin, and
an xz-twin of v. By ITA, therefore, PV P"Ig z, and it suffices to show that zPrves,

We first show that y & C(v®). For suppose y € C(v"™¥?). Change v to v one
ordering at a time by moving z immediately below z and y (below them but above all
other alternatives) unless it is already there, leaving all else the same. Each change from

v7¥ to vf¥ must preserve y’s membership in the choice set. That is trivial if v]¥ = v]*
So suppose not. Then z ranks last among z,y, and z in v;¥ but not in v""y”. Thus, Y
must rank first in v7¥ or last among z,¥, and z in v7¥*. If y ranks first in v;”, then y
stays in the choice set by Strategy Lemma (2 ) And if y ranks last among =z, y, and z
in v7¥%, then y or something even lower in v;** must belong to the post- change choice
set by Strategy Lemma (1). But {z,y, 2} remains a top set after the change, so nothing
but z, ¥, or z can belong to the post-change choice set. by Top Lemma, and thus y must
belong Hence, y € C(v™), so C(v®¥) # {z}. But that is impossible because PV
{z,y} is a top set in v*¥, and v® is an zy-twin of v*¥*. Consequently, y ¢ C(v™) a,fter

all.

By a similar argument (move z below y and z), z & C(v ””-"z). But ¢ # C(v®¥*) C
{z, y,z} by Top Lemma. So C(v*¥*) = {z}. It follows by P-Sufficiency Lemma that
zPv z, as desired.

6 Open Questions

Resolute or not, any multi-alternative collective-choice procedure must be manipulable or
dictatorial. That is true regardless of the population of individuals or the set of feasible
alternatives, regardless of how ties are resolved, regardless of the content, accuracy, or
variety of beliefs about the resolution of ties, and regardless of what counts as an expres-
sion of preferences — regardless of the hypothesized-mapping from preference orderings
to individual strategies.

How important is all this? That depends on three open questions, harder than any
we have answered.

Question 1. How common is sirategic misrepresentation? Manipulability is one
thing, manipulation another. The one is unavoidable. The other may be rare: a manipu-
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lator must be in a position to change the choice set all by himself, and of course he must
wish to do so and know enough about the (perhaps yet-to-be) professed preferences of
others to know that he can. But manipulation is not the only kind of strategic misrep-
resentation. If the opportunity to gain from misrepresentation is rare, the opportunity
to adopt a dominant strategy of misrepresentation may be greater: a misrepresentation
by Mr. ¢ that has no effect given the actual combination of acts by others might be
advantageous under some such combination and disadvantageous under none. Dominant
strategies of misrepresentation are.quite- common under parliamentary procedure with
fixed agendas (Farquharson 1969, McKelvey and Niemi 1978, Moulin 1979). Ilere is one
subject that merits further investigation. More important for us now, if the opportunity
for individuals to gain by misrepresentation is rare, the opportunity for groups to do so
may be greater.

What groups? A small enough group may be scarcely more potent than a single
individual, and a big enough group may be empowered to get its way without need
of misrepresentation. Among intermediate groups, an arbitrary one is not likely to be
organized enough in its actions or cohesive enough in its preferences to strategize. But
specific groups may be. Let our population be partitioned into groups organized and
cohesive enough to strategize, given the chance. Call them factions. At least one factional
partition must exist because individuals (their unit sets, that is) are factions in our sense.
The rub is that nothing stops us from reinterpreting 1,2,...,n as factions, however big
they may be: our theorem applies to any factional partition of the population, coarse or
fine. :

Roughly speaking, the chance of strategic behavior is greatest when the factional
partition is coarsest, and an institutional designer bent on minimizing strategic behavior
should seek to minimize the coarseness of the most likely factional partitions. For small
and mid-size organizations, that goal might be achieved by the continual shuffling of per-
sonnel among potential factions (or their continual elimination, as Stalin appreciated).
For democratic polities, factional manipulation might be minimized by anti-careerist
policies — term limits, weak tenure for civil servants, no collective bargaining. Ancient
Athens perfected these devices: office holders were chosen by lot and frequently changed.
For large democratic polities, James Madison argued in his celebrated “Federalist 10”
that factional manipulation of low-rung procedures (constitutions) can be minimized by
establishing numerous cross-cutting territorial and functional jurisdictions and electoral
constituencies. How specific arrangements of these sorts affect the chances for manipulat-
ing specific procedures is another subject for further investigation: we suspect there are
theorems to be proved that would complement the ideas and findings of constitutional
and organizational theory.

Question 2. Under what conditions can an observer predict an equilibrium, a pro-

Iy 1 ~1 a1 : 1 : L | 1 ) B4 TS I . I R NPT B
Iessed DProille that no one nas an HCenuve Lo Change! WUr LICOrcin SIlOWS Oy vhat
the “true” profile is not necessarily an equilibrium. Equilibriumhood of any profile is
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relative to some given profile, itself or another, of supposed true preferences: v’ is an
equilibrium relative to v if and only if T (C(v")) > @Y (C(v')) for no ¢, i-variant v" of
v’, and representative u of v;. /5 says that every profile is an equilibrium relative to
itself. But neither S nor the equilibriumhood of the true profile is necessary for the
existence of equilibria, of which there may be many, most of them — possibly all of them
— predictively useless. Neither is the existence or uniqueness of equilibria, even useful
ones, necessary for all predictive purposes. We illustrate the range of possibilities with
six toy examples.

Example 1. Under Plurality Rule (choose the professed favorites of the most voters),
the first of these two profiles, the “true” one, yields the choice set {z}, the second {z}:
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Although Plurality Rule is manipulable, both profiles are equilibria (relative, as always,
to the true one). But the second is predictively useless because it is inaccessible, foreign
to any path of manipulations that starts from the true profile.

Example 2. Under Plurality Rule, the true profile

LN e
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yields the choice set {z,y}. Mr. 3 can advantageously change this to {z} by raising
z above z. He alone can manipulate, and no further manipulations are possible. So
the true profile is not an equilibrium, but the new one is, and of course it is accessible.
Besides many inaccessible equilibria, there is one more accessible one, also yielding {z}.
In it, Mr. 3 ranks x above y above z.

Example 3. Under Plurality Rule, the true profile

2 3
x Yy =z
y oz
z T Yy
woow
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yields {z,y,z}. Ties are resolved randomly, and everyone knows it. With preference in-
tensities represented by vertical distance in our picture, Mr. 1 can advantageously change
{z,y, 2} to {y} by raising y above . Mr. 2 or Mr. 3 could have manipulated in a similar
way, creating an equilibrium that yielded {z} or {z}. So different paths end in different
equilibria and different choices. There is a coordination problem: Messrs. 1,2, and 3
might try to manipulate simultaneously, creating a nonequilibrium profile that yielded
the original {z,y,2}. Despite the multiplicity of accessible equilibria yielding different
choice sets and despite the coordination problem, we can still predict the rejection of w:
it is not chosen along any path.

Example 4. The true profile is

@NQC;’E-Q»—*
S A

The operative procedure says the choice set is {w} unless one or both individuals rank w
last, in which case the choice set is {z} if both rank z above y, {y} if both rank y above
z, and {z} otherwise. So the true profile yields {z}. But Mr. 2 can advantageously
change this to {z} by raising y above z, after which Mr. 1 can advantageously change
{z} to {y} by raising y above z, after which Mr. 2 can advantageously change {y} to
{2} by raising = above y, and so on. Although no profile is an equilibrium, we can still
predict the rejection of w: as before, w is not chosen along any path.

Example 5. This is like Example 4 except that the choice set is {w} unless both
individuals rank w last. Now, all profiles in which neither individual ranks w last are
equilibria, and they are the only ones. But all of them are inaccessible.

In Examples 1-3 and 5, the inaccessible equilibria can be eliminated by successively
eliminating dominated professions of preference. But that is not always true, as witness:

Example 6. Of these two profiles, the first is the true one:

N R
ENR = (N
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‘Under the operative procedure, the first profile yields {x}, the second {y}, all others {z}.
So both displayed profiles are equilibria. The second is inaccessible, but the orderings
therein are undominated.

A manipulator “changes” the choice set from X to Y by “changing” his professed
ordering from his true one to a new one. His manipulation is contractive if ¥ C X,
disruptive if not. It might be thought that all paths would end in equilibria if all possible
manipulations were contractive, if our procedure satisfied .

W5 If v and v’ are i-variants and @ (C(v’)) > @/ (C(v)) for some rep-
resentative u of v;, then C(v') C C(v) (weak strategy freedom).

Any series of changes that merely contract the choice set must end, after all, because A
is finite.

- But it does not immediately follow from W /8 that all strategic paths must end.
Imagine a path from v? to v? to v* that changes the choice set from {z,y, z} to {z,y}
to {z}. Suppose Mr. i can unilaterally change the choice set from {«} back to {z,y} by
changing v® to v%. Assuming W 8, {z,y} cannot be better than {z} according to v}:
Y’ ({z,¥}) > w ({z}) for no representative u of v?. However, if v? # v} then it is not
Mr. i’s currently professed v? but his true v} that motivates his behavior, and for all we
know, {z,y} is better than {z} according to v!: maybe @’ ({x,y}) > @Y ({z}) for some
representative u of v}. For all we know, indeed, a path of strategic contractions could
create the strategic opportunity, not originally present in v!, to choose an alternative
outside {z,y,z}. Maybe W 8 does ban this sort of thing, but that is not obvious: a

proof is needed.

To formalize all this, denote any sequence of profiles by s, and any ordered n-tuple
of utility functions by u = (u3,...,u,). Those functions are representatives of the corre-
sponding orderings in one profile. Call it v¥. Define:

v’ u-suceeeds v if and only if, for some 7, v’ is an ¢-variant of v and

W CV) > T (W),

and s is a u-path if and only if v¥ is the first profile in s and every
successive profile in s u-succeeds its immediate predecessor.

Then v is a u-equilibrium if and only if no profile u-succeeds v,

and v is u-accessible if and only if v belongs to some u-path.
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As we know, there may be a u-accessible u-equilibrium different from v", and there
may be more than one: each is then path-dependent. Also a u-path may end with a u-
equilibrium or cycle endlessly (u-paths of both sorts sometimes coexist, we have found).
The obvious open questions demand conditions governing the existence, nonexistence,
uniqueness, and path-dependence of u-accessible u-equilibria for any given u, and the
effects of W B on such matters. An open question of a different sort is whether anything
like our theorem remains true when B is weakened to W 5.

Regardless of the answers, our imagined observer might predict, given u, that the
chosen alternative will belong to

PRED(u) = {z | for some u-path s and vins, ¢ € C(v) and
either v is a u-equilibrium or v recurs infinitely often in s }.

A more elaborate treatment would allow p; to depend on finite sequences of profiles
rather than single profiles. Also it would allow simultaneous strategic moves, with and
without coordinating signals. And it would pare down the range of profiles by (per-
haps among other ways) successively eliminating dominated professions of preference. A
greater elaboration would impute greater sophistication to individuals by letting them
see the branches of extensive-form games instead of seeking the momentary advantages of
short steps down foggy paths. Coordination problems would then show up as information
sets, and endless cycles would give way to mixed-strategy equilibria.

Question 3. When can an institutional designer achieve his goals? Never, if one of
his goals is to make manipulation impossible. Maybe quite often, if he seeks merely to
make manipulation unlikely. Why would he care about manipulation?

He might deplore manipulation because he deplores the “dishonesty” of manipulators
or the information costs they bear or the “unfair” advantages they gain. He would
specifically deplore contractive manipulation if he sought to keep choice sets as big as
possible once certain constraints were met. Maybe the intended tie-resolving process
is completely decentralized, driven by voluntary individual behavior, and our designer
seeks to maximize liberty by making pre-resolution choices as permissive as can be.
Or perhaps he is designing a constitution for a sovereign state, understands that it
must be self-enforcing for want of any higher authority, and appreciates that a self-
enforcing constitution cannot be too specific or constraining in its policy requirements
lest opponents of particular policies pursue their ends outside rather than inside the
constitution. However, if his sole goal is “good” choices, and if C(v) always comprises
“good” alternatives when v is the true profile, then contractive manipulation by itself is
not objectionable to him.

This suggests that our designer would be happy to settle for W B, which bans only
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disruptive manipulations. But for all we know, W B8 is neither necessary nor sufficient
for “good” choices. Strategic contractions may be unobjectionable by themselves. As
noted earlier, however, a path of strategic contractions might conceivably create the op-
portunity, not originally present, for departures from the unmanipulated choice set. Also
a path of manipulations, some disruptive, might conceivably lead outside the unmanip-
ulated choice set but then terminate inside that set or settle down in an infinite cycle
within that set.

If C(v) always comprises “good” alternatives when v is the true profile, and if our
PRED function makes satisfactory predictions, then “good” choices are ensured by

PRED{u) C C(v").

But even this is stronger than necessary. For we have unnecessarily assumed that C
- represents both the operative procedure and the criterion for “good” choices absent
manipulation. Let C continue to represent the former, but now let G represent the latter.
While we are at it, we may as well let G depend on utility functions (though G may be
invariant under monotonic changes in those functions). So G(u) is the set of “good”
alternatives when u; ...u, are the true utility functions of Messrs. 1,2,...,n. To ensure
“good” choices, it is not necessary that C'(v") C G(u) or PRED(u) C C(v"). Again
assuming the adequacy of PRED, this is necessary and sufficient for “good” collective
choices:

B PRED(u) C G(u).

The problem 1s to find plausible conditions on C and G which imply B*, or failing that,
to find plausible conditions inconsistent with 5*.

The former problem is akin to that of finding plausible conditions for Nash-imple-
mentability of G (Dasgupta, Hammond, and Maskin 1979, Maskin 1985). One difference
is that /S* does not require the existence of Nash equilibria. Implementation theory
does contemplate different solution concepts, but all are refinements of Nash. We instead
let strategic maneuvers cycle endlessly, so long as they never lead outside the G-set, or
anyway so long as the cycle eventually settles down for good inside that set. If our goal is
to ensure that collective.choices.belong to some target set, the demand for Nash equilibria
is unwarranted.

Another difference is that we equate individual strategies with preference orderings.
Implementation theory is more abstract: strategies can be objects of any sort. Our
equation is more than the legacy of the strategy-freedom literature: it lets us define
accessibility in terms of strategic paths from true profiles. Accessibility is more important,
we think, than equilibriumhood, both because equilibria tend to abound when they exist
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at all and because our substantive problem (to ensure “good” choices) does not require
their existence. If, however, we wish to let strategies be objects of any sort, we can then
define accessibility by naming one “naive” strategy N for every ¢ and u and requiring
(NE, ..., N%) to be the first step of every u-path.

The biggest difference from our point of view is that we do not require resoluteness: a
profile (or vector of strategies) produces a set of alternatives. In a sense, games must yield
single outcomnes. But in that sense, those outcomes are vectors of strategies. They can
be mapped into further consequences of any sort in any number of ways, depending on
intended applications. Implementation theory applies game theory to social-choice the-
ory by starting with a mapping of outcomes into collective choices. But it assumes that
collective choices are single chosen alternatives rather than choice sets. That assump-
tion is pointless on its face, unrealistic because real collective-choice procedures rarely
are resolute, and unwarranted by the stated substantive problem because multi-member
choice sets are compatible with the goal of achieving “good” choices.
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