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Abstract

The stochastic properties of prices in a speculative market are investigated. Agents in
the market start with different priors, but update in a rational (i.e., Bayesian) way from
realizations of payoffs on the risky asset. Convergence of the equilibrium price to the
rational expectations price is investigated, as well as the asymptotic properties of two
standard tests of rational expectations. The results are contrasted with stylized facts
from forward markets.






Asset Prices in a Speculative Market

Peter Bossaerts*

1 Introduction

It is well known that convergence to the truth in a model of Bayesian learning may
fail for many priors. The set of priors for which beliefs diverge is topologically large
(Freedman [1963]). Consequently, in a market with agents who update using Bayes’ rule,
the equilibrium price will not converge to the rational expectations price for many priors.

The examples leading to nonconvergence of beliefs, however, are complicated (Freed-
man and Diaconis [1986]). In contrast, beliefs will converge almost surely (under the true
probability measure) in standard problems, such as when the volatility of a normally dis-
tributed random variable is unknown and beliefs are drawn from the family of inverted
gamma distributions.

In other situations, convergence of beliefs fails either because learning is sub—optimal
(as in most of the Least Squares learning models; see, e.g., Fourgeaud, Gourieroux and
Pradel [1986], Marcet and Sargent [1989]), or because learning is active (i.e., in bandit
problems; see, e.g., Easley and Kiefer [1988], Feldman and McLennan [1989], El-Gamal
and Sundaram [1992]).

Nevertheless, I provide a very simple example of failure of equilibrium prices to con-
verge to the rational expectations price in a market where agents trade a forward contract
on an-underlying-asset-whose-price-is-distributed-as the square-of a-mean-zero normal
random variable. Investors do not know the mean of the underlying price, but start with
differing beliefs drawn from the family of inverted gamma distributions. They update
rationally, i.e., using Bayes’ rule.

*Division of Humanities and Social Sciences 288-77, California Institute of Technology, Pasadena,
CA 91125. Phone (818) 356-4028. I am very grateful to Mahmoud El-Gamal for insisting that I think
differently about asset pricing. Whereas Mahmoud is not to blame for any mistake, he certainly is to be
credited for the inspiration.



The main feature of this model is the difference in beliefs among agents. It is the
only reason why agents trade, i.e., they have no hedging motive. In other words, the
equilibrium price of the forward market is purely speculative: it reflects the distribution
of beliefs in the economy.

The absence of common beliefs is the cause for the failure of forward prices to converge
to the rational expectations price. Indeed, if investors had common priors, drawn from
the same distribution, convergence in probability (under the true probability measure)
would have ensued. Nonconvergence obtains because investors do not learn uniformly.

Unfortunately, I also show that, even if the parameters are constrained so that con-
vergence in probability follows, standard statistics will not converge to their rational
expectations equivalent. Both the average prediction error and the average prediction
error multiplied by the forward rate, scaled by the square root of the sample size, con-
verge weakly to a random variable that (i) has higher variance than if the economy had
been at its rational expectations equilibrium from the outset, and that (ii) is non—-normal.
The differences in beliefs is not crucial here: with homogeneous beliefs, a similar result
follows. Consequently, convergence to rational expectations does not justify the use of
properties of statistics that were derived under rational expectations.

The aforementioned statistics diverge, moreover, when there is a possibility that the
economy does not converge to rational expectations. I show that both statistics diverge
at a rate that is proportional to the square root of the sample size. Suitably scaled,
the first statistic (the average prediction error) converges to a mean-zero random vari-
able, whereas the second statistic (the average prediction error times the forward rate)
converges to a mean—positive random variable.

The remainder of the paper is organized as follows. The next section describes my
economy of speculating agents. Section 3 deals with the first question: will rational
expectations be attained? Section 4 investigates the asymptotics of two popular statistics
(testing unbiasedness and predictability, respectively) when prices do converge to their
rational expectations equivalent. Section 5 does the same when convergence fails. The
last section discusses the relevance of the theoretical findings of this paper for the behavior
of forward interest and foreign exchange rates. It suggests that speculation-based theories
may be useful complements to standard theories of risk premia.

2 Description of the Economy

Consider a repetition of one-period economies with a speculative market. The only
link between economies at adjacent dates are the beliefs: agents living in the previous
period only pass their updated beliefs on to the next generation. Each date, indexed ¢
= 1,2,3,..., a forward market is held. The payoff on the forward contract depends on
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the subsequent period’s value of a random variable, z;y1. The forward rate, denoted p;,
clears the market. If an agent takes a long position of one forward contract, the payoff
on her position will be z;41 — p;. If she shorts one unit, her payoff will be p; ~ z:11.

z; (t = 1,2,3,...) is a real random variable with a distribution that depends on
the value of a parameter @, 0*. Agents do not know §*. The first generation (those
that live at date 0), however, have beliefs about f, speculate in the forward market,
observe the payoffs, update their beliefs in a Bayesian way, and pass them on to the next
generation. There are a countably infinite number of agents, indexed by j = 1,2,3,....
All behave competitively (they take prices as given). At date ¢, only the agents indexed
§ = 1,...,t participate in the forward market. The subsequent trading round, the agent
with j = t 4 1 enters, after updating her beliefs using all observations from the outset on

('7"153327 teey $t+1)'

8 takes values in a parameter space © (a subset of R}, with corresponding Borel o-
algebra F(0©). Agent j’s initial beliefs about # can be summarized by a measure Ajo on
(@, F(0)). Ajo € I1(0), the set of probability measures on ©. The @, t = 1,2,3, ...,
are i.i.d. random variables that live in an outcome space A", with corresponding Borel
o-algebra F(X). All agents agree on the probability measure over X' that generates w,
given a parameter value §. Let Pp; denote this probability measure. We shall work
with the product space © x X x X... x X (¢ replicae of X generate this product), with
corresponding product o-algebra F(O x X x X... x &), and probability measures ¢,
where

jo(dﬁ)Pg,t(d(CEh Ta, $t))

th(d(ﬁ,ml,m% It)) A
= )\jg(dﬁ)Pg,l(dml)Pg,l(d$2)...Pg,1(d$t).

We are interested, in particular, in j’s conditional beliefs about 0, given a ¢-period
history, 1, 3, ..., zy, namely, @;(Alz1, T2, ..., 24), for any A € F(©). This conditional
belief is formed using the rules of conditional probability {Bayes’ rule}, and passed on to
member j of the next generation. For clarity, let Aj(A) denote this conditional belief.
Let f(z;10) be the density of Ps; with respect to the Lebesgue measure. As mentioned
before, beliefs are updated using Bayes’ rule. This means:

fA f(mtw))\jt—l(dg)
Jo [{z:|0)Aj0-1(d0)
= B(l‘t, }\jt—l)(A):

Ap(A)

for any A € F(0O).

Assume that preferences and endowments each date are such that the demand for
forward contracts can be described by a function that depends only on an agent’s beliefs



and the forward quote. (Agents observe the equilibrinm forward quote when determining
their demand.) Let D denote this demand function.

D:II(@)x R— R:(\p)— D(Ap). (1)

Each period, the forward market will clear at a rate that sets the average demand equal
to zero. Assuming competitive behavior, this means:

Z Ajtspe) = 0. (2)

r-4-|r—d

To summarize, each period ¢, agent j (7 = 1,...,1) speculates in a forward market,
depending on her beliefs A;; and the equilibrium quote p;. After the forward market closes,
2141 is revealed and forward contracts are settled (if j demanded D(;:, p;) contracts, she
will receive D(Aj;, pi) (7441 — p¢) units of consumption). From 44, beliefs are updated
to Aji41, using Bayes’ rule, and the result is passed on to the individual in the next
generation corresponding to j. Agent ¢ + 1 then enters the forward market for the first
time, with beliefs Azy1,441, updated from the initial observation on.

The rational expectations forward rate is defined to be the rate that clears the market
assuming agents know 8%, i.e., their beliefs put unit mass on the true #. Let ég. denote
such beliefs. Hence, the rational expectations forward quote, denoted p"®, solves:

1

i
~ 2 D(8g-,p") = 0. (3)

=1

Of course, because we have made the assumption that demand depends only on beliefs
and the forward rate, volume in the forward market will be zero when the economy is at
its rational expectations equilibrium (not an uncommon feature of rational expectations
models).

Consider now the following parametrization. Let z; be the square of a normally
distributed random variable, with mean zero and variance §*. Let the priors on f be
inverted gamma—2 distribution with parameters v; and v; (v; > 0; v; € {3,4,5,...}). Let
DX, ) = Ailfy of(z|0)dz] — p. Functional notation will be used throughout; this
conveniently indicates the measures over which expectations are taken; e.g., A;{g(8)] =
fo g(0)A;:(df). The following utility function justifies the demand function:

Al (D = pi) = 3D°)f(a16)da,

This is a utility function characterized by risk neutrality and quadratic adjustment costs.
Under the above assumptions,

Nol [ 2 (a10)da] = vy,



where v; and v; parametrize agent j’s initial beliefs about 0, and

v; vi 1t t
L/J'+t—2j uj+t—2

Nl [ 2 (al0)da] =

Wy,

where w; = %Ei:l z;. Fix beliefs as follows. Agent j has v; = 7 + 2. v; 1s set to a
common value, v. Consequently,

J+2 t
D\ — _
( gt,Pt) j+tv+j+twt Dty (4)
i —|—2 t
Z(J T ) 9
and
pe= 0 (6)

We shall consider two cases. In the first one, the value of v is fixed at #*2. In the
second, v is drawn from a distribution over (0,0c), with expected value equal to §**
and finite variance. Let y denote the probability measure generated by this distribution.
Define:

My i(d{v, @1, 29, ..24)) = pu(dv) Py s(d{ay, T2, ...21)). (7)

3 Convergence to the rational expectations equilib-
rium

Let us first investigate whether equilibrium prices converge to their rational expectations
equivalent. In order to do so, we establish the following result.

Theorem 1
P — 0% ln(g)(v — 0*?)
in Mo o
(All proofs are in the Appendix.) Notice that in this Theorem, convergence is analyzed
under My .., i.e., v is considered to be random.
Several comments can be made about Theorem 1. First, since p™ = §*? (Equa-

tion (6)), the theorem effectively is an example of failure of convergence of prices to the
rational expectations price. Nonconvergence does not follow from learning per se, but



from the differences in beliefs. As a matter of fact, if agents start with homogeneous
beliefs (i.e., all agents draw the same v and v), then convergence will follow. What
keeps prices from convergeing to the rational expectations price is that in my economy,
while agents are all expected to eventually learn the truth, their beliefs do not converge
uniformly. [ conjecture that uniform convergence of beliefs is a necessary conditions for
convergence of equilibrium prices to their rational expectations equivalent.

Second, the result, is not an artefact of certain agents entering the market after some
time. These agents enter the market after updating their beliefs with observations from
the first trading round on (in financial markets, public disclosure of prices means that new
participants can start at an equal footing with experienced agents). The entry behavior
1s postulated merely to keep the mathematics simple.

Third, the nonconvergence result embedded in Theorem 1 is not based on a com-
plicated argument, as are the examples in Diaconis and Freedman [1986]. As already
mentioned, each individual is expected to learn the truth. Nonconvergence merely fol-
lows from differences in learning speed.

Fourth, nonconvergence does not follow from irrational behavior. All agents are
rational: they do know the laws of probability and use them to update their beliefs. This
is in contrast to the Least Squares learning literature, where agents do not follow optimal
updating rules (although the latter might be too hard te derive, and, hence, agents could
be excused for updating suboptimally).

In Theorem 1, the value of v that is drawn before the market starts is not necessarily
equal to 0*2. If we fix v, however, at 82, then p, — " — 0 in Pp o, and, because
p"® = 6™ (Equation (6)), equilibrium prices do converge in probability to the rational
expectations price. We write this result as a corollary.

Corollary 1.1 Let v = 8*2. Then:
pt — pTE

mn Pg*,oo.

4 -Properties-of-statistics -when -convergence to ra-
tional expectations holds

Let us now investigate the asymptotic properties of two popular tests of rational ex-
pectations (market efficiency). The first test examines whether the average prediction
error (p, — ;41) equals zero. [ shall refer to it as the unbiasedness test. The second
test explores whether the prediction ervor is correlated with the past forward rate, i.e.,



whether the average prediction error multiplied by the forward rate ((p; — z¢41)p¢) equals
zero. 1 shall refer to this one as the predictability test. The unbiasedness test involves
the average prediction error, namely,

z Pz - 3%-1—1 (8)

The predictability test uses the average prediction error multiplied by the forward rate,
ie.,

T
z — Teq1)p (9)

To test unbiasedness and predictability, the quantities in (8) and (9) are scaled. The
scaling factor is chosen such that, if prices indeed were formed by rational expectations
from time 1 on, the corresponding statistics would converge to a standard normal random
variable.

What if beliefs do not correspond to rational expectations from the initial trading
round on? What if, in addition, beliefs initially differ, so that, at least during early
rounds, prices are the consequence of speculating agents, as in my model? In this section,
we shall investigate these questions for the case when equilibrium prices eventually do
converge to the rational expectations price. In my model, this is obtained by fixing v to
be equal to 8** (Corollary 1.1). The next section will deal with the asymptotics of both
statistics when prices do not necessarily converge, i.e., v is drawn from some (nontrivial)
measure y.

Let us investigate the two parts of the test statistics, namely, the averages in (8)
and (9), and the scaling factors, separately. Consider first the averages. Theorem 2
determines the asymptotics in the general case, i.e., when v does not necessarily equal
§*2. Consequently, we will be able to refer to this Theorem in the next section as well.

Theorem 2
1 XL e
Z Pe — Teq1) = In(5 ) (v 9”):
t:l 2

q T ¢ e
3 =z o = () (0~ 07— 0 ) (o — 877,

t:l

both in M. o

Setting v = 6”2, one obtains:



Corollary 2.1 Let v = 8*2. Then:

1 T
Pt - lt+1 0,
t 1
1 T
Zptht-ﬂ Pt — 0,
t—l

both in Py o

Corollary 2.1 clearly indicates that the temporary speculative nature of equilibrium prices
affects neither the average prediction error nor the average prediction error multiplied by
the forward rate. This is good news: when the economy is known to converge to rational
expectations, certain quantities have the same asymptotic behavior as if the economy
were at its rational expectations equilibrium from the initial day on.

Unfortunately, the positive result in Corollary 2.1 does not carry over to the corre-
sponding test statistics, which are obtained by scaling. Let us first explore what happens
when we scale the averages in (8) and (9) by multiplying with the square root of the

sample size, V7.

Theorem 3 Let v = 0*2. Then:

T
1 2 Pr — Ti11)) V207 1112/ n)dn — W(1)),

1 T
V(G Y aa)i) — V(2 [ W)y = W),

both weakly. W(n) is the value of a standard Brownian motion at n (n € [0,1]).

Next, divide by the square root of the sample variances of (8) and (9). Define:

Vir = T Z(Pt - $z+1)2 (10)
i=1 . U

and

T 1 T
Var = ( Z - Zig1) )(?lef)- (11)

121

@

of (9) assuming hormoscedasticity.}) Both

+ T
the next Theorem.

11} is an estimator of the varianc

(Equation {
converge in probability, as stated i

n!laﬁf o
FRRTHRTHLwie]

=3



Theorem 4 Let v = 8*2. Then:
I/1T - 29*4,

‘/ZT —* 29*85
both in Py .

~'Combining Theorems 3 and 4, we obtain-the-asymptotics of the unbiasedness and pre-
dictability tests in an economy of speculating investors which 1s known to converge to
rational expectations.

Corollary 4.1 Let v = 0*2. Then:

VI 3ol = ) = a2 [ W)y = WD),

VI (e S = see)) = 2 [ W )y = W),

both weakly. W(n) ts the value of a standard Brownian molion at 5 (n € [0,1}).

Comparing the asymptotics of Corollary 4.1 with the corresponding result when the
economy is at its rational expectations equilibrium from the beginning on (both statistics
then converge to W (1)), we see that the difference equals In2 f %W(n)dn in both cases.
This random variable is a functional of a standard Brownian motion over the interval

0,1].

Corollary 4.1 clearly implies that asymptotic analysis of test statistics must consider
© explicitly the transient learning. The derivation of properties of test statistics as if the
economy were at its rational expectations equilibrium from the intial trading round on
cannot be justified by the knowledge that the economy will move eventually toward
rational expectations.

I should emphasize that this negative result does not depend on differences in beliefs
per se. A careful analysis of the proofs confirms that if investors all start with the same
beliefs, a-similarsesult-would-follow...In-other.words, standard-asymptotics fail to hold in
the mere presence of learning. This contrasts with the findings in the previous section:
convergence to rational expectations (at least in my economy) would always obtain under
homogeneous beliefs.



5 Properties of statistics when convergence to ra-
tional expectations does not follow
In the general case (v is drawn according to a measure u), the averages in (8) and (9)

do not converge to zero, and, hence, the corresponding statistics diverge. It is possible,
however, to establish the speed of divergence.

Theorem 5

’-3

1 In(£)(v — 6*?)
ﬁ( Vsz "”““”) (In(3))(v — 0-2)7 + 26+

(ﬁ(T\/lm s (pe — $t+1)pf))
(In(§))*(v — 672)* — 6 In(5)(v — 6*%)
{(In(£))2(v — 6°2)2 + 20~ }{(In(5))2(v — 0°%)% + =2(0** + 2In(5)(v — 6=2))}’

1
VT

!

both in My o

Theorem 5 not only provides an estimate of the speed of convergence {of the order
of the square root of the sample size), but indicates what variables the statistics con-
verge to (in probability) when suitably scaled. The first statistic, corresponding to the
unbiasedness test, when multiplied by 1/4/T, converges to a random variable that de-
pends on v — §*2. v — §*2 varies across economies and can be both positive and negative.
Consequently, we expect to see both positive and negative values for the unbiasedness
statistic in cross-section, and they should increase (or decrease) in proportion with the
square toot of the sample size. The second statistic, used in the predictability test, con-
verges to a variable that is more likely to be positive (because of the quadratic term
(In{£))*(v — 6**)*). Consequently, we expect to see a higher proportion of positive values
for this statistic in cross—section. They as well should be increasing with the square root
of the sample size.

6 Concluding Remarks

The analysis of this paper seems to be particularly relevant in view of some longstanding
puzzles about asset prices, in particular, forward rates. Errors from forward rates as
predictors of future spot rates have persistently been found to be biased and predictable.
This is most obvious in the case of interest rates (see, e.g., Fama [1986]}. On the aver-
age, one—month forward rates implicit in two-month U.S. Treasury bill prices have been
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above next month’s one-month spot rate, and the prediction error, multiplied by the
forward rate, is positive on average. As a matter of fact, explaining this finding is what
term structure theory is about. While various equilibrium rational-expectations models
attribute it to the presence of a (time-varying) risk premium (e.g., Cox, Ingersoll and
Ross [1985]), the empirical succes of such models has been mixed at best. Some even
wonder whether they will ever fit the data (e.g., Den Haan [1991]). In contrast, this
paper indicates that speculation may explain the empirical regularities.

Among other things, speculation not only explains why the one—month forward rates
are biased and the prediction error multiplied by the forward rate is positive on average,
but why the same phenomenon is true for two—month, three-month, four-month and five—~
month forward rates as well (the n-month forward rate predicts the one-month spot rate
n months in the future, or the n — l-month forward rate one month ahead). Speculation
also explains why the corresponding statistics (scaled averages) often increase with the
square root of the sample size.

Figure 1 illustrates this. It plots, as a function of sample size, (1) the unbiasedness
statistic, (11) the predictability statistic, (iil) the averages in (8) and (9), for the three—
month forward interest rate (the results are similar for other forward rates'). A square
root function is also fitted to (i) and (ii), in order to calibrate trends. All time series are
constructed using the Fama Treasury bill files on the CRSP tapes. The sample consists
of monthly values over the period 1959-86. I took the n-month forward rate in ezcess of
the n — 1-month forward rate as a predictor of the change in the n — l-month forward
rate, in order to avoid well-known nonstationarity problems (the 0-month forward rate is
the spot rate). In the notation of the model in the previous sections, p; is the n-month
forward rate in excess of the n — l-month forward rate, and z;4; is the change in the
n -- I-month forward rate.

Prediction errors in forward foreign exchange rates exhibit the same behavior (see,
e.g., Fama [1984]). Their averages are positive or negative, but, when multiplied by the
forward rate, their averages are always positive. The corresponding statistics often grow
proportional to the square root of the sample size. Figure 2 illustrates this. It plots the
same variables as Figure 1 for one-month forward Japanese yen rates (the figures are
simnilar for the deutsche mark, British pound, Swiss Frank, Canadian Dollar and French
franc). Again, the forward rate in excess of the spot rate is taken as a predictor of the
change in the spot rate, in order to avoid problems with nonstationarity. The data are
sampled in intervals of four weeks over the period 1973-90. The data were acquired from

DRI

As with forward interest rates, the behavior of forward foreign exchange rates has been
linked to equilibrium models within the rational expectations framework, but attempts to
fit such models to the data have hitherto met little succes (for an overview, see Hodrick

!The complete set of figures can be obtained from the author.
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[1987]). While they should not be ignored, data-related problems do not explain the
findings either (Bossaerts and Hillion [1991]). Speculation, however, provides a viable
alternative (or complement), well worth further investigation.

An asset pricing theory based on speculation has the added advantage that it read-
ily explains trading volume, something which is difficult within a rational expectations
framework (see Harris and Raviv [1991]). It also provides an alternative justification for
trade in options (Bossaerts and Hillion [1992]). In a model of rational expectations and
frictionless markets, trading in derivative securities such as options can only be linked to
market completion.

A closer look at Figures 1 and 2 indicates that part of the puzzle is left unexplained.
In particular, while the statistics of the predictability test increase in proportion to the
square root of the sample size, this is not the case for the unbiasedness test. The square
root function fits miserably. The unscaled averages, however, still reveal evidence of
slowly changing beliefs: they change substantially as the sample size increases, i.e., they
do not quickly converge to some population average and stay there forever.

In my economy, when prices do not converge to their rational expectations equiva-
lent, the statistics corresponding to the unbiasedness and predictability tests increase in
absolute value, proportional to the square root of the sample size. The former, however,
will equally likely be positive or negative. The latter will be more often positive. Data
from the forward interest rate market and the forward foreign exchange market confirm
this. At present, however, I am unable to grasp the intuition behind this result.



Appendix
Proof of Theorem 1:

From Chebychev’s inequality:

Mo {lpe =07 = In(5)(v = 6%) | > &}
Mo« oo|ps — 6% — In(£)(v — ]

€
From (5)
1 J+2 t
P le(;«u e
Hence,
e
My colpe = 072 ln(;j)(v -0
+2 e
< - g2 ]
< [PRE=NE
b Pl wev*‘é‘nlzt: any
g+, P Yy
1JdL 2
+ 9*2
T
Now:
J+2 & +3
le —oo = —>oof
s Z; e e S
£
= —d
0 T
e
i l —
H(Q)?
and
lim li t < i 152-5
Mo |7 T, -~ UM N
tjzlj l ! j=1 t
t?
- lsz—»ooT
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Also
Pg~'oo|wt - 6*2| — O

and
1
t

i 2
it
as t — oco. Consequently:

limaooMpe oo|pe — 07 — In (g) (v— 6| = 0.
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Proof of Corollary 1.1
From (6), the rational expectations price equals: p™® = §*2,
The result then follows immediately from Theorem 1.

O
Proof of Theorem 2

First, consider -:IF YT (pr — g1} — In (%) (v —0"2);
£} e

Z Pt — $t+1 —In (5) (U - 9*2)

T =

= 53 (=) = ()= 01) = 7 D e — 07

1

T E (1542 e
= (w—0)=3 (=318 s
c-r B (12w
1 1< ¢t 1 1. 2
+_ w_g*? - - +9*2— o _
T;( )(t;]—i—t) T;t;j t
1T
- "fZ(iBt.{..} — 8 2).

Using Chebychev’s inequality:

1 T
M@*,oo {|? Z(pt - $z+1 ( ) ’U - 0*2 | > 6}
t=
3

Me*,oolglw Zpe — ) ~ n(§)(v 9*2)['

€

<
The numerator of the right-hand side can be rewritten as:
1 e .
MB*,oo|i: Z(pt - .’L'H_]_) — In(-é-)(v —8 2)[

Z}-!—Z (:)

< w02ty

i=1 -~
1 & Lot 114 2
=S Poowy = 07223 —— |+ 623
T; Z;-{—t T;tizlj+t
1
'}‘Pg*, ——Z.‘Et.;_-l—g‘
T
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The last term converges to zero as ' — oc. The terms in the sum (over #) in the first term
converge to zero, hence, they are Cesaro summable, and their average converges to zero as
well. The average (over j) in the second term is finite, for all t. Since Py« oo|w; — 82 — 0,
the terms in this sum (over ¢) are Cesaro summable, and the expression converges to
zero as well. The third term is also a Cesaro sum with limit 0.

Next, consider + ST (ps — Teq)pe — (1n(~§))2 (v —6"2)% — 92 In(£) (v - 0°2).

1 & e\ *212 *2 € *2
?; e — Tog1)Pr — (In(é)) (v—0")"—40 111(5)('0—9 )

+
T

™~

(ps — 0"%)p, — (ln(%))2 (v — 07%)2 — g2 ln(g)(v — 6%
T
Z $t+1 — 6

1

=1

e

Mhﬂ l~-3IH

1 . e )
= = ( s 1n<2)>2(v—92)2)

i=1
*21 4 *2 € *2

+0 Tz(m—e )= n(S)w-67)

=1

1 4 *2 *'21 4 *2
E:E‘H-l — 0 ) g "T“Z(il't+1—9 )
t:l i=1

Again appealing to Chebychev’s inequality, convergence to zero of the following must be
verified:

T
Mor oo |3 (b= 072 = ()00 = 67
T e
HE Y ((pg —07%) ~In(5)(v - 0*2))
1 el &
R ;(mHl - 9*2)(1% - 9*2) - 9*2“3; ;(mtﬂ - 0*2){




1
T

NgE

+ M+ o (5«"t+1 - 9*2)(}% - 9*2)

T
+ 02 My oo Z (2409 — 6

"‘ﬂl'—* i

- Convergence of the last-term is easily-established ~Convergence of the-second term follows
from the first part of this proof. Consider the third term:

1 T
M oo ‘T 2(331‘--1-1 - 9*2)(% - 9*2)
i=1

1 Z 1 j+2

< Mas o = Tepy — 8o — ") (= -

9+, T;( i+ )(1’ )(fj;j-i-t)
VAN L S S (PP
*on |75 x — w - it
ax, Tt:l i+1 tj=1]+t

t
2
+ 9*2 Z Pg* |$t+l - 9*2| | Z + t

Convergence to zero of the [ast term follows from Cesaro summability. As to the second
term, write:

Mool 157 02) (e, — 00 (2 3 L
f*0c i Th Ty — UJ“
Tt:l t_}:l-?—l_t
< 2 P 02| Py oo 9*2Hli -y
et oo | T - * ool Wy — " 5 s
S T4 b*, t+1 o+, t =S

and convergence to zero follows again from Cesaro summability. Next, the first term can
be rewritten as follows:

1 & 1742
Ms oo — 0o - FHZY L=
8 |T§($t+1 Jit )(ij=1.7+t)l
- 0| |1 i e (1é;'+2)|
< plv— % 00 Tﬁ%{(ﬂfﬂ-l ) PRy
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¢
Define: s; = Y (2, — 6*%) and Wr(n) = %f\/glg.z sp7]- Then:

=1

PS*,oo %;(mt+l_9 %E;
1 11 1o~ J
= Pro Z«/"f" Tf— 1‘%5@5“) (EZ:: )

" T+YT /T (WTUT  [pT}+3
< V20 P /I/T m/ GEOET
As T — o0, :
AT [¢T] 43 no¢ e
/0 [T+ (9T]+1 dﬁ-—-s'/é E+qp dﬁ—nln(Q),
but
VT o
7]

Consequently, this term converges to zero as well,

Finally, to show convergence to zero of the first term, write:

T
Mo |35 (0= 0722 — ()20 - 077
T t t
= Mo %E((( 9*2)(%; %)Jr (wt—e“)(%; J—_%)
+e*2(§ ) - ()0 — 077

< uho -0 Z| (12:11?) — n(5))’

A

+_§:P*m ___9*2 et 2

T — .9, Iwi |(531j+t)
|9*4 (/1 : 2 )2

TLtﬁj-Ft
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E4 1 4 w2 1
+ 2ulv — 6 |"“ZP9*,OO lwe — 67| | =
T 2 i

) (15

b
2 2 J+2 1<
+ 20 pjv — 6 ITZ( Zj-l—t) (—t-zj t)

t=1 =1

1. A 1< 2
vt e ei(555) (152)

t=1 timg+t tizostt

Cesaro summability implies that the 3rd, 5th and 6th terms converge to zero. The
arguments of the first part of this proof immediately lead to convergence to zero of the
1st, 2nd and 4th terms.

O
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Proof of Corollary 2.1
Immediate from Theorem 2.

a

Proof of Theorem 3

Borrowing results from the proof of Theorem 2, write:

\/T (% ;(Pt —$t+1))
( 3 0% %zﬁ))
+ V16 (

=3~

;%;J ) (% > (e Ao*g))_

Define s; and Wp(n) as in the proof of Theorem 2. Then:

c-«-»—t

fge-mit
_ ‘/_ *2 S
= RV (\F«M*? ) (§j+t)

B wo [THUT T2 p[iTYT (7]
= V2 fw WA T e e

Using a version of the continuous mapping theorem that allows the functional to depend
on the sample size (Billingsley [1968], Theorem 5.5, p. 34), and noting that, as T — oo,

W T N
fo €T+ [nT]+1 déﬁ/(] §+nd§—nln2,

one obtains:
\/I/ml T(w —\9*2)(l W) ~ /2072102 W )d
kT%, t t)_, } j (n)dn,
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where W(n) is the value of a standard Brownian motion at 7(e[0, 1]).

Next consider:

114 2 oy ([nT1+1)/T 2T
T2 =SS ) = ¢2f — déd
VT (th.zj“) /0 [nT]+'1'/o €T+ [nT]+ 2 Edn

— 0D

as T' — oco. Finally,

%2 1 1
\/_ ;$t+1_9 \/_9 (\/—\/—9*2 ) \/T($T+1“331)

~ V267 (1),

by Donsker’s Theorem (Billingsley [1965], Theorem 16.1, p. 137).

As for the second part of the theorem, consider:

1 T

72l - 07)

i=1

The fourth term is easiest:

T
9*2 Z $t+1 - 6 )

_ ” L 1 w1
= 20 (\/T T sT) + 0 \/T( 741 — 1)
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by Donsker’s Theorem. The second term was shown in the first part of this proof to
converge to:

1 1
VT2 ( > (pe — 9*2)) ~ V2074 0 2 lV[/(w;r)dwy.
T 0%
Using arguments from the proof of Theorem 2,
1 T
VT (f Z(mt-H — %) (p — 9*2))
t=1
_\/_ 1 T %2 %2 1 : t
= VT ‘T‘Z(ﬁm = 07) (w0 )(;Z-—t)
t=1 =1

Using Chebychev’s inequality, the last term converges to zero in probability. To see this,
consider:

MG*,OO

(FEe o250
T
= 2Pp |z, — 02NVT (% Z(% ‘ —2;)) .

The first part of this proof showed that \/—( YL (35 ) = 0as T - .

=1 j4¢

Using arguments from the proof of Theorem 2,

VI X =02 = 09 2 )

- ;ZIVW( s~ =)

e () (1572

< -
— %
%
2

\/_\/_G*Zt ti g+t

_ g [TTVT T3/ ]’”"”T 7] dEWr(n)d Wr(n)
- .LT WTPR o €T+ [pT]+1 e
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As T — o,

T)/T [nT] WL .
L e pede ) prpde =2

but
T3/ 2

T

Consequently, the above expression converges to zero.

Finally,

=1 =1 J =t
- VT (% S =0 G ﬁ))
i
+2v/To (% S (= 074 > AGY j%)) .

The first term converges to zero:

JT (}- ZTj(w ek
2
1 Zr 1 1 P gt
e N 7/ Y Z —
VT E (ﬁﬁe) (fzwrt)

_ g [T T (T e ] ’ s
= [T ([nﬂfo wmmﬂdf) (W (n))” dn,

and, as T' — oo

T TyT [T?T] - _— N
A e e Al Al el
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but
T3/2

The second term converges to zero as well:

3
1=y
P
|-
]~
H—Tﬁ—‘
Mﬂ
7|
e
e

il

=
On—d
— I
=

.
é“\

([nT1+1)/T 2 71/4 2
d¢ | dn,
€T+ [nT] + 2

and, as T' — oo,

(77141} 971/4

nT] g} / €T+ [nT) dc = 0.

Finally,

+
B ” T+y/T T3 T/T] [nT] [+ T/ T P
= 2/ [ (/ [5TJ+[nT}+1d5) (/0 [fT]+nT]+1d£)

Since f[”T m dé — 0 as T — oo, the above expression converges to zero.
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Proof of Theorem {

To prove the first claim, verify whether
1 T

Pﬂ*,oolf Z(Pt - Cl¢t+1)2 - 2‘9*4|
i=1

converges to zero. Convergence in Pj- o, then follows from Chebychev’s inequality. Re-
arrange this expression:

1 T
Pﬂ*,oo!f Z(Pt - $t+1)2 - 29*4|
=1
1 & 1T
Pg*:“"? Z(pt - 9*2)2| + PS*,ooli_l_ 2(9*2 - .'L't+1)2
i=1 t=1

1 & o
- 20| 4 2Pg¢,w|f Sps — 0O — 1)

=1

Borrowing a result from the proof of Theorem 2, the first term converges to zero. Conver-
gence to zero of the second term follows immediately from the maintained distributional
assumptions. As shown in the proof of Theorem 2, the third term converges to zero by
Cesaro summability.

Consider the second claim. Convergence in Py ., will follow, again by Chebychev’s
inequality, if it is shown that:

1

T
T Z(Pt —2401)? — 20" = 0 as T — oo,

i=1

PH“‘,OOI

and

1 T
Pg‘,w|T > pi — 0™ — 0 as T — <.
t=1

The former-was-shown-before:-For the latter, write:

T
Pg* ooli ZPZ . 0*4|
’ Tt:l !

}' g 242 2 1 L 2
S Preeolm 2 (0= 077)7 42623 (pe = 072,
Tt:l Tt=1
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From the proof of Theorem 2, both terms converge to zero.

[}
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Proof of Corollary 4.1

Follows immediately from dividing the results in Theorem 3 by the those of Theorem 2.
O
Proof of Theorem &

Borrowing results from Theorem 2:

L) r
\/T TZPt—l’fH
i=1

1 T
Z Pt — Teqq)

t:l

— In(5)(v— ")

in Mg« .. The denominator of the first statistic can be rewritten as follows:

1 T 1 T
_1_1 Z pi _ 8*2 T Z(a*? . mt-i-l)?
2

=1 t=1

e~

T
+ 5—.‘ Z 0*2 9*2 _ $t+1)

t=1

The proof of Theorem 2 indicates that the first term converges to (In(£))? (v — 6*?)? in
My+ oo, while the third term converges to zero. Because of the distributional assumptions,
the second term converges to 26**. Combining the numerator and denominator produces
the first claim of Theorem 5.

Analogously,

(pr — Zus1 )Pz))

[~

1(\/—(%

t

1l

1

T
- Z - $t+1

= (In(3)) v = 02)* = 0% In(3) (v — 02)

}-..3
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in Mpgs 0. Decompose the denominator into % 7, (p, — 441)? and 15l pt. By the

above argument,
1 T

T 2P~ men) = (In(5))*(v — 6%)? + 20

in Mg+ ... Use Chebychev’s inequality to show that %ZL ps converges in My o, to
C(In(£))* (v — 0%)% + 0*2(0*% + 2In(%)(v — 6"2)):

L =4 €
Morgo g5 302 = (n(5))*(0 = 0 = 870" 4 21a(5 )0 — 0°)

1 Z . e i
< Me*,oolf Y o(p— 07 = (1H(§))2(U—9 )
i=1
*2 1 ! *2 € *2
2% My oo S (e = 672) — In(E) (0 — 07
thl 2

From the proof of Theorem 2, both terms converge to zero.

O
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