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Abstract

In this paper we analyze the patterns of behavior voters exhibit over a set of votes. We
explore a set of structural estimation problems that involve analyzing several votes at one
time and develop estimation techniques for identifying and analyzing patterns. Using the
information in these patterns, we introduce a method for studying voter heterogeneity
based on a finite mixture model. Finally, we employ data containing actual micro-level
vote returns to estimate the mixture model parameters.






. . _Patterns of Voting on Ballot Propositions: A
Mixture Model of Voter Types®

Jeffrey A. Dubint Elisabeth R. Gerber?

1 Introduction

The 1990 General Election ballot in California contained no less than 49 separate candi-
date and proposition races.! Voters cast votes for a range of elected officials from school
board member and water district representative, appellate and state supreme court jus-
tices, to state Assembly member and Senator, Governor, and Member of Congress. In ad-
dition, they considered several county and local initiatives and referendums, plus twenty
eight statewide ballot propositions. The official Ballot Pamphlet (California Secretary
of State, 1990), which contained the language, description, analysis, and endorsements
of the statewide propositions was 222 pages of legal jargon, in two volumes. Voters in
several other American states also faced similarly lengthy ballots.

For voters who are busy with their private lives, jobs, and other interests, the im-
plicit costs of obtaining information and learning about so many candidates and so many

*We thank Ken McCue for help in obtaining the data and Henry Brady, Bruce Cain, Skip Lupia,
David Grether, Rod Kiewiet, and Doug Rivers for helpful comments.

t Associate Professor of Econorics, Divisisn of Humanities and Social Sciences; California Institute
of Technology, Pasadena, CA 91125

t Assistant Professor of Political Science, Division of Humanities and Social Sciences, California In-
stitute of Technelogy, Pasadena, CA 91125

!The actual number of races on a ballot varies from precinct to precinct, reflecting differences in
county and local elections.
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measures are enormous. Political scientists, pundits and journalists have expressed con-
cern about the ability of voters to make sense of such complicated ballots and cast well
informed and responsible votes.?

Concerns about voter competence are corroborated by survey evidence and exit polis
for example, the National Election Studies (Center for Political Studies) and the Cali-
ple,

fornia.Poll (The.Field Institute}).which suggest that voters.often have very little content

information about the candidates and measures they are either about to vote for or have
just cast votes on. Yet, in spite of these difficulties, voters do vote, and empirical evi-
dence that votes vary systematically across voters suggests that they do so in non-random
ways. Research on the cognitive and psychological bases of voting suggest that voters
use information short-cuts such as partisan cues and other endorsements to help them
make sense of the process and to simplify their vote decisions. To the extent that vot-
ers rely on partial and potentially non-credible information short-cuts, arguments about
the viability and performance of democratic government are called into question (Lupia,

1992; Gerber and Lupia, 1992).

We find it peculiar that, given the length and format of the American ballot and the
difficulty of the voting task as a whole, most empirical research on voting behavior has
focused on the determinants of a single vote and has all but ignored questions about how
voters consider the set of votes they are asked to make. The current research directly
addresses the question of how voters consider a set of votes by analyzing actual vote
patterns.

The analysis of vote patterns should provide leverage for testing alternative voting
theories. For instance, the theory of voting which identifies partisanship as the primary
determinant of candidate choice leads to predictions about how partisans vote across
candidates (see early works by Campbell, Gurin, and Miller, 1954; Campbell, Converse,
Miller, and Stokes, 1960; Converse, 1976; Nie, Verba, and Petrocik, 1976; and Jackson,
1975; and more recent works by Franklin and Jackson, 1983; and Wattenberg 1984).
Thus in candidate races in a given election, individuals who identify with the Democratic

party should be more likely to vote for Democratic candidates and their vote patterns

?Historically, students of the American political system debated the very viability of democratic
government.and.the. appropriate.role for. citizen. participation. Early work on voting behavior concluded
that voters were incapable of performing an active role in government (Gosnell, 1948), and showed
little consistency and constraint in their votes (Converse, 1964). More recently, active debate about
voter competence has re-emerged in the context of direct legislation. Evidence on voter confusion and
information about direct legislation measures is mixed. Magleby (1984) shows that voters have little
mformation about (pp. 140-141) and have difficulty understanding (pp. 118-119) complicated ballot
measures, although Cronin (1989) argues that voters can at least understand the meaning of ballot
measures and act competently and Zisk {1987) finds that the length of the ballot itgell does not seem to
affect voting behavior.



should reflect this with a preponderance of Democratic votes. A second example is
the theory of strategic voting which predicts that voters will vote against their sincere
policy preferences on one proposition to facilitate their policy preferences on a second
competing proposition (Dubin, Kiewiet, and Noussair, 1992). To the extent that we
observe otherwise moderate voters voting “no” on a moderate proposition and “yes” on
a competing extreme proposition, we can estimate the degree of strategic voting across

these measures.®

We analyze patterns in votes across a set of initiatives and referendums. In the United
States, twenty-six states and thousands of municipalities provide for direct citizen vot-
ing on public policy propositions. Most Western democracies also have provisions for
national referendums.* In California, the direct legislation process has received consid-
erable attention in recent years as an important policy vehicle and is viewed by many
in other states as a possible solution to legislative stalemate and one-party dominance.
Proponents and opponents of the process disagree about its relative merits and shortfalls,
but agree for certain that direct legislation has become an important component of state
and local politics in many American states.

Direct legislation data provides a unique source for studying voting behavior. Most
importantly, we can think of direct legislation votes as direct revelations of policy pref-
erences. Yoters vote directly for or against policies, and so the inferences we make about
their underlying policy preferences are much more direct than the inferences we can make
by studying, for example, votes for candidates. Several works employ aggregate direct
legislation data as measures of underlying public opinion toward policy. For example,
Deacon and Shapiro (1975) use aggregate referendumn returns as indicators of demand for
public goods such as environmental protection and mass transit. Kuklinski (1978) and
Snyder (1991) use direct legislation results, aggregated to the level of the state legislative
district, as measures of constituency preferences in their studies of representation and
the dimensionality of issue constraint.

Our analysis relies on individual level rather than aggregate level direct legislation
results.® The advantage of using individual level vote data to study patterns and individ-

3The analysis of voting patterns could also be applied to theories of divided government and split-
ticket. voting which.predict.that.some. voters. mix their.votes across partisan_lines. .

4See Magleby (1984) for an extensive discussion of the legal requirements and details of comparative
direct legislaiion provisions.

5To the extent that individual level votes have been analyzed in the past, it has been through analysis
of survey data in which individuals are asked to report their vote intention (in pre-election surveys) or
to recall votes they already cast (in exit polls and post-election surveys). Vote validation studies provide
evidence that large amounts of error are associated with these reports (Parry and Crossley, 1950; Clausen,



ual vote decisions is simply that we avoid the problems of ecological inference associated
with aggregate data (Robinson, 1950; Goodman, 1953; Shively, 1969; Kramer, 1983)
and study individual votes directly. Individual level direct legislation data also provide
leverage for studying other voting questions, such as strategic voting and vote switching,
which to date have been primarily addressed using aggregate data.

- .. The primary disadvantage. of using.actual.direct. ballot.returns.to study. voting is that,
for reasons of confidentiality, we must do without the personal demographic information
about individual voters that we usually obtain in surveys. Measurement of such factors
as age, education, income, or race can only be conducted at a higher level of aggregation,
for example voting precincts or census tracts. When the model of voting behavior relates
individual level characteristics to an individual’s votes, using aggregate proxies of these
characteristics introduces measurement error into the estimation. Alternatively, if the
model relates contextual effects to votes then aggregate measures of these variables are
appropriate.

In addition, accessing and analyzing actual ballot returns can be prohibitively costly.
By law, most states must make the physical ballots available for inspection for some
period after each election, but the ballot returns are rarely available in a user-friendly
format.

2 Vote Patterns and Voter Heterogeneity

Studying vote patterns across propositions provides a powerful method for identifying
and analyzing voter heterogeneity. We use the term heterogeneity to describe a situation
in which voters have similar objective characteristics yet follow different decision rules
and exhibit fundamentally different behavioral patterns. We can think of a heteroge-
neous population as consisting of a finite number of distinct voter types or conversely as
consisting of a continuum of unique voters.

Several bodies of voting research are concerned explicitly with the question of voter
heterogeneity, especially research on the group bases of voting behavior. For example, a

1968; Trangott and Katosh, 1979). Actual ballots, on the other hand, are free from problems of reporting
error. 'To the extent that they are available, individual ballots provide a much more accurate and reliable
record of voting behavior. One study in which actual ballots were analyzed is described in Mueller
(1969). Mueller studied a small sample of actual ballots cast in the 1964 general election in California
and analyzed patterns of proposition votes cast in that election. Since he analyzed the ballots manually,
Mueller was limited by practical concerns to a small number of ballots. Nevertheless, his findings suggest
that distinctive patterns of votes across propositicns do exist.



great deal of recent research has been directed towards estimating the nature and extent
of racially polarized voting (Engstrom and McDonald, 1987; Lupia and McCue, 1990;
Freedman, Klein, Sachs, Smyth, and Everett, 1990). These studies are concerned with
the degree to which members of minority groups vote homogeneously and in a way that
is distinguishable from other identifiable groups. The existence of racial homogeneity has
formed the basis for assessing claims for protection of minority groups and “communities
of interest” under the Voting Rights Act. Since estimation of racially polarized voting
from aggregate vote returns is fraught with statistical difficulties (see e.g. Lupia and
McCue, 1990), comparing the micro-level vote patterns of minority group members with
those of non-minorities may allow researchers to better estimate the degree of racially
polarized voting.

From a statistical perspective, we must be sensitive to the existence of heterogeneity
because any statistical model of voting must account for differences in underlying be-
havior. For example, an empirical study of voting behavior over several candidates or
propositions would include explanatory factors that help explain why individuals make
particular vote choices. If there are individuals in the population who follow different
decision rules than those specified by the model, then an analysis which ignores these
differences produces estimates which are likely to be biased for any of the individuals.

In general, voter heterogeneity creates a serious estimation problem because there is
not enough information in the data to estimate different coefficients for each individual,
and adding more information (in the form of more ohservations) only increases the scope
of the problem by increasing the number of parameters to be estimated. In the polit-
ical science literature, several works attempt to estimate and correct for heterogeneity
across voters. Rivers (1988) and Jackson (1990) recognize that differences in underlying
behavior may exist across individuals, and develop estimation techniques to accommo-
date those differences.® Rivers presents a model of candidate preference which estimates
the importance of partisanship and issue positions across individuals. He assumes that
a voter’s utility is a weighted sum of the squared differences between the candidates’
partisanship and ideology and her own. These weights vary across individuals and are
estimated using additional information in the form of candidate rank orderings. Jackson
frames voter heterogeneity as a variable coefficients problem in which parameter values
vary across individuals. His approach imposes structure on the ways coefficients can vary
across individuals.

Since vote decisions are usually discrete in nature, such as voting for or against

Brady (1988) has identified a different form of heterogeneity. Iis analysis of survey responses reveals

that individuals employ different scales when they rank candidates on thermometer scales. Thus, even
fihaot halhosriman

if the underlying behavioral patterns across individuals are constant, the manifestation of that behavior

can vary.



a candidate or proposition, methods for estimating models with discrete choice data
are often appropriate. A recent contribution to the literature on heterogeneity which
is particularly useful in the study of voting behavior is the heterogeneous logit model
proposed by Dubin and Zeng (1991). Their model investigates extensions to the standard
multinomial logit which allow for heterogeneity both across individuals and across choices.
Gerber and Lupia (1992) apply a variant of the Dubin and Zeng technique to estimate
a heteroscedastic logit model of policy preferences in which individual covariates are
weighted by estimated levels of information.

Analyzing patterns of voting behavior across votes provides a new technique for es-
timating voter heterogeneity. We can think about the patterns of behavior individuals
exhibit as being either “typical® or “atypical,” and treat the atypical observations much
as we would treat outlying observations in structural analysis. Detection of outliers
in multivariate data, however, is known to be especially difficult. One reason is that
multivariate outliers, unlike univariate outliers, do not stand out easily. In fact, in a mul-
tivariate context a point may be an outlier because of small errors in several components
rather than a single large error in one component. Thus the standard univariate detection
techniques which attempt to find points that “stick out” is not easily generalized to the
multivariate context. The situation is clearly exacerbated in the context of discrete data.
In the limiting case in which only one vote is under consideration it would be difficult to
call someone’s yea an outlier while calling someone else’s yea a valid vote. This problem
diminishes, however, as we increase the dimensionality of the voting space by taking into
account the correlations in an individual’s votes.

The following example illustrates this point. Suppose our structural voting model
predicts that an individual will vote yes on a proposition with high probability, yet we
observe her voting no. One explanation is that the observed behavior is an outlier and
the individual is following a decision rule other than the one described in our model. A
second explanation, however, is that the individual is following the model and simply
selects the low probability choice (in this case, a no vote). Alternatively, suppose we
extend the voting space to five votes, and our model of voting predicts that an individual
will vote yes, no, yes, no, and yes on the five propositions, respectively. If we observe her
casting an aberrant string of votes, say no, no, no, no, no, the probability of this pattern,
given the model which predicts a mix of yes and no votes is very low, and we are in a
better position to classify the observation as an outlier.

There are several reasons why one might hesitate to regard individual behavior that
deviates from that of the average voter as “outlying” behavior. First, in real elections ev-
ery valid vote counts no matter what the motivation. An individual who votes atypically
may have cast a perfectly valid set of votes even if they do not happen to conform to
the same patterns cast by the typical voter. Second, outlying observations in statistical
analysis are usually regarded as a nuisance - something without intrinsic value to be



removed from the analysis. Moreover, the observation that voters are segmentable into
types and that within those types voters follow a particular strategy is of independent
interest.

Thinking about heterogeneity in the context of outlier analysis suggests two methods
for handling atypical observations: elimination and accommodation. The elimination
.method .requires that.outliers are identified and removed from the “base” model.” The
accommodation principle, rather than eliminating outlying observations, requires that
the model conform to all of the data. This may entail robust estimation methods or
modeling the process that generates the outlying observations.

3 Qualitative Mixture Models

An alternative approach to accommodating outlying observations and to studying pat-
terns of voting behavior more generally is to employ a model based on a finite mixture
distribution. Generically, a finite mixture model is appropriate when cbserved phenom-
ena are the consequence of two or more underlying probability distributions (usually
unobserved) and when the component distributions arise probabilistically (usually with
a frequency which is unknown as well).® The estimation problem is to use a sample of ob-
servations to decompose the mixture, that is, to estimate the parameters of the mixture
distribution and those of the component distributions.® We assume that the population
of voters can be characterized by a finite mixture of distinct voter types, and that each
voter type behaves according to a unique voting rule which governs their vote choices.

It is useful to distinguish the mixture model from two other related but distinct ap-
proaches to classifying groups of observations. In the method of discriminant analysis
(see e.g. Kendall and Stuart, 1976) an observation is assumed to have been sampled from
one of a finite number of populations about which one has supplementary information.
The purpose of discriminant analysis is to find a rule which assigns an observation to
a member class.’” In the related area of pattern recognition (Fukunaga (1990), Duda

"This technique is employed in the contingent valuation literature to eliminate survey responses
reporting implaustbly large values of willingness to pay for environmental resources. See e.g. Schultze,
McClelland, and Waldman (1991).

®In finite mixture problems it is common to assume that the number of populations (or types) from
which observations are drawn is known, as are the parametric distributions associated with each type.

®The statistical analysis of finite mixture distributions is well presented in Titterington, Smith and
Makov (1983).

105tandard discriminant analysis which utilizes a linear classification rule is particularly inappropriate



and Hart (1973)), the classification rule is found using a known “training” set of obser-
vations.'! In each case, significant a priori information must be employed to facilitate
the classification problem. When training data sets or ancillary population statistics are
not available, researchers have attempted to use various classification techniques such as
clustering, principal components, or other geometric based procedures (Gordon, 1981).
These classification methods are often ad hoc in that they lack established statistical
. properties and are generally ill suited in applications which have high dimensionality.!?
In the absence of auxiliary information that would permit the use of standard classi-
fication techniques, we employ a mixture model of gualitative choice to represent the
observed voting outcomes.

Several examples of mixture models for continuous (rather than discrete) outcomes
have appeared in the econometrics literature. The most well known of these models is
the switching regression model of Goldfeld and Quandt (1973). Many of the statistical
issues which arise in the context of switching regression models apply equally well in
discrete choice models. For instance, the switching regression may not be identifiable
under some circumstances'® and the regimes themselves may be endogenous (i.e. the
unobserved random effects which lead individuals to switch regimes may be correlated
with the unobserved random effects which affect the individual’s response).?

Applications of mixture models to qualitative choice situations are apparently new in

when applied to discrete variables (Goldstein and Dillon, 1978}).

11The neural network approach to pattern recognition also requires the use “training” observations
(see e.g. Pao, 1989).

12A common clustering technique, for example, relies on n(n-1)/2 dissimilarity measures computed
between n distinct objects. If dissimilarity is measured using Euclidean distance, the number of calcu-
lations required to classify objects with large dimension can be excessive. Even in the case where the
component observations are discrete, the storage requirement of order O(n?) will limit the size of the
problem which can be handled by clustering methods.

Another geometric solution to the classification problem is multiple correspondence analysis (see e.g.
Hoffman and de Leeuw (1990). This method suffers, however, from the same Limitations as arise in cluster
analysis. Finally, Christofferson (1975) and Muthen (1978) have developed a latent factor representation
for multivariate dichotomous variables. Estimation of such models is constrained by the necessity to
evaluate high dimensional multiple integrals.

BMixtures of qualitative choice models are subject to identification constraints. Identification issues
are fairly well understood for mixtures of simple univariate distributions (see e.g. Teicher, 1961, 1963);
Yakowitz and Spragins, 1968. General identification results for mixtures of multivariate distributions,
however, do not exist (see e.g. Rennie, 1974). In our case it should be clear that unless some component
distribution exhibits dependence among the votes cast on individual propositions, then there will be no
Lope in achieving identification.

14 A good exposition of these issues is given in Maddala (1983, Chapter 8).



the econometrics literature.!®* A family of models which bears some similarity to our pro-
posed class of qualitative mixture models is the randomized response technique of Warner
(1965).' This technique combines the survey response of an individual with a random-
ization mechanism so that individual’s true response is masked to the interviewer.!?
Using maximum likelihood methods, the effect of covariates on the true response can
be recovered from the randomized responses. The random response model differs from
the gualitative mixture model in two important respects. First, in the random response
model, the mixture is induced by the analyst to preserve respondent anonymity, while in
the qualitative mixture model, nature makes the random assignments and thus becomes
an inherent part of the choice process. Second, the rule that assigns individuals to groups
in the random response model is known to the analyst whereas in the qualitative mixture
model, the group assignment problem itself must be estimated.!®

Another class of models sometimes employed in qualitative choice situations is the
random parameter model. In these applications, the parameters of the probabilistic
choice model are themselves assumed to be randomly distributed. Random parameter
models are the infinite analogues of finite mixture models and are appropriate when the
number of individual types is plausibly infinite. The most well known of the random
parameter discrete choice models is the covariance probit model due to Hausman and
Wise (1978).1°

15Mixture models for quantal response have appeared in the statistics literature. One example is
a mixture of probit distributions used to analyze arsenical responses by Ashford and Walker (1972).
Mixtures of distributions in the logistic class have been considered by Anderson {1979). Related models
include mixtures of binomial distributions as discussed in Blischke (1962, 1964) and mixtures of multi-
nomial models as employed by Gordon and Prentice (1977). Issues of estimation are well covered by
Titterington et. al (1985) but see especially Hasselblad (1966) for estimation of finite mixture models
by maximum likelihood using gradient methods. A useful case study is presented by Do and McLachlan
(1984).

16The randormized response model is discussed in Zdep, Rhodes, Schwartz, and Kilkenny (1989).

17This technique can be useful in situations in which the question content is sensitive such as sexual
behavior, tax cheating, domestic violence, etc.

¥The estimated mixture model can be used for purposes of observation classification. The optimal
classification rule (Welch, 1939, Hoel and Peterson, 1949), assigns observation pattern 2} to voter group

kif ‘.'kak(.‘ﬂ?) > ’.n'gfg(:cg),Vf # k.

19For further examples and discussion see Fischer and Nagin (1981).



4 A Mixture Model of Voter Types

Consider a model of vote choice in which there are K types of voters. Let the probability
that a voter is of type k be given by 7. where XX _x; = 1. Denote the pattern of votes
cast by individual ¢ as z;. The vector z; has dimension [, where L is the number of
candidates or propositions which appear on the ballot. Each component of z; represents
- the vote by individual ¢ ona given candidate race or proposition.~We-employ the notation
z; = (i1, Tizy ..o, Ti,) to refer to the individual component votes. Let fi(z;) be the joint
density function for the pattern of votes cast by individual 7 who is of type k. The finite
mixture model implies a sample likelihood function

N K
L=T1]> mfu(z) (1)
=1 k=1
with log-likelihood function
N K
L= log(3 mefila). 2)
i=] k=1

Unlike previous applications, we adopt a parametric probability distribution function
for the unknown parameters 7. Choosing to represent 7 in a probability family has
two advantages. First, if 7 is estimated using equation (1) without restriction, it is
possible to produce estimates of 7; which are not bounded between zero and one.?®
Second, we anticipate applications in which the mixture probabilities are themselves
functions of individual covariates. Using a parametric probability distribution for the
unknown parameters 7 facilitates this construction.?* In the current analysis, we use a
multinomial logit representation:

K
.ﬂk:,evk/z_evk.._‘_ e (3)
k=1

20An alternative solution is to set 7} < 0 equal to zero and to set @3 > 1 equal to one.

211f the prior probability that an individual is of type k depends on her observed characteristics, we
would follow standard practice and specify V3 to be a function of the covariates.

10



where the V, are the unknown parameters to be estimated. We employ a maximum
likelihood technique which uses analytic gradient information in our estimation.?? Since

QET_Q;_ — T j#k
a%_ ﬂ'k(l—ﬂ'k) ]:k

it follows that the derivative of the log likelihood with respect to V is:

[ i 2o ik fj(wi-)g—ﬁ + fk(xi)%%
v, g Sl mifi(w)
_ %{Wk(fk(fﬂi) - wz‘)}

where w; = Zf=1 felz)m.

Estimation of equation (1) requires that we specify some particular functional form
for the joint density fi(x;). Consider for the moment the simpler problem of estimating
the joint density f(z) associated with one of the K voter types.?® Since the components
of z are discrete, the problem of estimating the density f(z) is equivalent to the problem
of estimating Problz = z°]. Conceptually, this problem is quite simple. One need only
count the fraction of times z° occurs in a sample of N trials and rely on the law of large
numbers for an estimate of the probability Prob[z = z°]. This non-parametric approach
has some practical limitations. Taking the simplest case in which the components of z; are
binary, there are 2F possible vote patterns z%.2¢ If the components of z are independent,
the problem becomes much simpler. Under independence,

L
Problz = 2% = [ Problz; = ] (4)
£=1

22This procedure is implemented using Statistical Software Tools {SST), Dubin-Rivers Rescarch, 1510
Ontario Ave., Pasadena, Ca. 91103,

23We drop the subscript  to simplify notation.

*4In the current analysis we consider voting over twenty eight propositions, and so in theory there are
over 26 million distinct voting patterns. Therefore, a complete specification of the density function f(x)
would require estimation of an inordinately large number of joint probabilities.

11



In the binary case, equation (4) can be written as:
Lo, .
Problz = 2% = [[ B 41 — Py
£=1

with P; = Prob{z; = 1]. Here, estimation of the joint density only requires the determi-
natien of L — 1 individual probabilities.

To avoid either estimating 2% parameters or imposing the assumption of indepen-
dence, several researchers have sought parametric representations of the density f(z)
using finite approximations. When the components of x are binary, it is known that
a linear combination of 2% independent basis functions can exactly represent the den-
sity f(z) (Ito (1968)). The set of functions {¢:(z)} forms a basis for the density p(x)
provided that it is possible to write p(z) = Y2, ¢;¢{z). If the basis functions satisfy
[ k(z)di(z)d;(z)dx = 6;; where 6;; =1 if ¢ = j and 0 otherwise, then the ¢;(z) are said
to be orthonormal with respect to the kernel k(z). The coefficients ¢; in the expansion
for p(z) can then be computed by ¢; = [ k(z)p(z)d:(z)dz.

Two expansions for the joint density f(z) are well known. The first relies on the basis
functions ¢o(z) = 1,é1(z) = 21,...,a(2) = 2n, np1 = z12n, ... where z; = 2z, — 1 and
is known as the Rademacher-Walsh expansion. The second expansion, due to Bahadur
(1961) and Lazarsfeld (1961), uses z; = (z; — P;)/(P;(1 — P;))2. In the first case the
kernel function is simply k(z) = 27" while in the second case the kernel satisfies k(z) =
Ly PP (1~ P,)15,

The Bahadur-Lazarsfeld representation for the density f(z) is:

L
flz) = {H P;Uj(l — Pj)l_z]} . {1 + Z PixZize + Z pikezizpze + . . }

i<k j<k<t

where p;r = E(2;2;), piee = E(zjz32¢),. .. and so on. The Bahadur-Lazarsfeld expansion
shows that every density in binary variables can be written as the product of its kernel (a
simple function of the marginal probabilities embodying the independence assumnption)
and a correction factor which may be well approximated by only a few terms when higher
product moments are nearly zero. In the present application, the discrete components of
z are trichotomous variables (taking on values yes, no, and abstain) rather than binary
variables. Thus the existing orthonormal basis expansions are not applicable. Instead

12



we utilize an alternative approximation to the joint probability distribution based on
recursive conditioning.?®

The joint density f(z) may be written as

f(@) = flz1) f(za]zr) fzs)za, 21) ... flzplzpoa,...,z1).

Under independence, the product of the conditional densities reduces to the product of
the marginal densities as before. If the component discrete variates are not independent
but the conditional densities can be assumed to depend on only a few of the conditioning
variables, then a significant savings in complexity can be achieved. Expansions using
conditional densities were extensively explored by Chow (1962).%6

To implement the conditional density expansion we use a multinomial logit specifi-
cation for the conditional probability that an individual votes yes, votes no, or abstains
on each proposition. The explanatory variables are the indicators of the individuals’
votes on earlier propositions. This is equivalent to a log linear representation where the
log-odds probability of voting yes to abstaining is linear in the previous state effects:

l Prob{z, = yes]
© Prob[z; = abstain]

) = ’Yf + OfingE—1 + ﬁfo_1 + agYe_z + ﬂSNg_z + ...

and

log ( Prob[z; = no]

Prob[z, = abstaiﬂ) =9+ M Yo + MENpy + MYeg +0iNe o + ...
- 1

Y

where Y;_; and N;_; are binary indicators for a yes and no vote, respectively, on propo-
sition £ — 1. A few comments are in order. First, we have omitted an indicator for ab-
stentions among the explanatory variables since its effect is implicit in the specification.
second, we have used only the first-order effects and omitted higher-order interactions.
This is analogous to using a first-order correction in the Bahadur-Lazarsfeld expansion,
the properties of which are discussed in Solomon (1961) and Mooere (1973).?” Finally,
the logistic representation can be easily extended for the case of higher order discrete
variables.

#5The Bahadur-Lazarsfeld technique can be generalized to cases where the discrete components take
on more than two values (Bahadur, 1961, pp. 167-168).

28Chow applied his expansion to a problem in pattern recognition where he was able to exploit a
natural spatial dependence between observations.

*"Gilbert (1968) used a log linear model to represent the density f(z) and also assumed that all second-
and higher-order effects were zero.

13



5 Estimation

In proposition voting, most voters cast a mix of yes and no votes and abstentions over
a set of propositions.”® Propositions, placed on the ballot by either the legislature or by
citizen’s groups can represent a wide range of interests.”® Therefore, a voter following
one of several “typical” decision rules, such as voting all liberal or all conservative will
vote ‘yes on some measures ‘and no on-others. ~Other-decision rules, such as following
endorsements by the major parties or newspapers, also will result in a mix of yeas, nays,
and abstentions.

In contrast to a pattern of votes mixing yeas, nays, and abstentions, some of the
most distinctive patterns are strings of all yes votes, all no votes, or all abstentions.
We can infer that a voter casting a string of all no votes, for example, is following a
different decision process than a voter mixing yeas and nays, perhaps using his vote as a
way of signaling disaffection to politicians. Similar inferences can be made regarding all
abstainers and all yes voters.

Our mixture model captures these differences between “typical” voters and “pure
type” voters by positing four types of voters in the sample. Three represent the all yes,
all no, and all abstain pure types, and the fourth base category represents voters who mix
their votes. Included in the base category are voters who exhibit a wide range of vote
patterns across propositions, including those we would expect to observe if the individual
was voting according to issue evaluations, elite or newspaper endorsements, or ideology.
Subsequent analyses may specify some of these other patterns as distinct types as well.
The current implementation of the finite mixture model compares pure type voters to
the rest of the sample.

To simplify the estimation of our base voting model, we employ the logistic probability
expansion discussed in the previous section.®® This representation of the base voting
model provides an approximation of the underlying vote patterns in the data based on

28As discussed below, over 96% of voters in Los Angeles county cast a pattern of votes with some
mixing (compared with all yes, all no, or all abstain patterns). This mixed pattern is also overwhelmingly
present in similar data from other years and seems to be the general rule.

29In the period between 1974 and 1990, propositions were placed on the California ballot by such di-
verse groups as farmers, the insurance indusiry, the tobacco and alcoholic beverages industries, environ-
mental groups, and a wide range of citizen groups. Some of the measures were pro-citizen, pro-consumer,
or pro-taxpayer, while others were clearly pro-business in nature.

30A full structural specification would require a deep analysis of the issue content of each proposition
and a series of hypotheses about how the propositions (and votes on them) are linked. Such an analysis
is beyond the scope of this paper.

14



the first-order correlations between each of the propositions. Structural interpretation of
the estimates generated by this model, however, must recognize the conditional nature
of this particular expansion.

For pure type voters, we assume that the individual has a large but unknown prob-
ability of voting identically on every proposition. If we assume that this probability is
- .exactly equal to.one, this is.equivalent to.specifying a priori that a pure type voter must
vote identically on every proposition. Such a characterization seems too extreme, how-
ever, and we prefer a model which is less stringent and accepts small deviations from the
pure type model. This will allow us to include voters in the pure type model who make
a small number of mistakes or mispunches in their votes, or who deviate from the pure
type model by only a few votes.?

Our pure type voting models are special cases of the logistic expansion which we use
to represent the base voting model. In the pure type models, we assume that propositions
are considered independently.*® The joint density for the pure yes type, for example, has
the form:

fo(as) = PR P P Bl ®

where Y;;, N;;, and A;; are indicator variables for a yes, no, or abstention on proposition
J by individual 7. Py is the probability that a pure type voter votes yes on a given
proposition, and Fr, is the probability that she votes no or abstains. By construction,
2. Pr, 4+ Py = 1. Collecting terms in equation (5), we see that:

fr(z:) = Py P (6)

where ¥; = Yi; + Y2+ -+ + ¥ is the number of yes votes by individual i among all L
propositions. Similar specifications for the all no and all abstain pure type models are:

Iu(ws) = PPN | (7)
fales) = PP (8)

HWhether an observation is categorized as a pure type depends both on the number of deviations
from the pure pattern and the location of the deviations.

32If pure type voters are making their vote decisions independent of the issue content of the proposition
and according to some other motivation, this independence assumption is well justified.
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As a final simplification, we estimate the mixture model in two steps. First we esti-
mate the parameters of the base model, fy, for a subsample of non-pure type voters.>?
From the first stage estimates, we predict f in the full sample and denote these predic-
tions by f{) The second stage estimates the conditional maximum likelihood:

N
L= Z log (Wg‘fg(:vi) + wnfa(zs) + v fyv(z:) + WAfA(mi)) ' (9)

=1

where fn, fy, and f4 are given above. As with the mixture probabilities, 73, we introduce
an unknown parameter, g, to measure the probability Py via a logistic transformation:

Py =1/(1+ %), (10)

Finally, by using equations (6), (7), and (8) and imposing the restriction 2Py, + Py = 1,
we obtain the last analytic derivative required to estimate L:

Y Un(z)(N;: = PuL) + fy(z:)(Yi — PuL) + fa(z:)(A; — Py L))
o =21 J

w;

The remaining unknown parameters to be estimated are Vi, V¥, V4 from equation (3),
and ag from equation (10).

6 Data

We employ a unique data set which consists of images from the actual ballots cast by
approximately 1.8 million voters in Los. Angeles county in the November 1990 General
Election. LA county has a unique method for tabulating and recording votes. The
county uses punch-caid style ballots on which the voter creates physical perforations to
indicate his vote. The cards also contain precinct identification information which allows

33To estimate the parameters of f5, we include only those observations in our sample whose voie
patterns deviate from pure type behavior by at least five deviations. We then predict fy in the full sample
using the subsample parameter estimates. Our results are not sensitive to the number of deviations we
use to identify the base model and very similar estimates resulted when we used a larger number of
deviations to select the base model sample.

16



us to determine the voter’s residence and an exact list of candidates the voter considers.
These cards are transported from the precincts to a central location and fed into a
machine similar to the card readers used in the early days of computer data analysis.
The machine reads the information on the cards and tabulates the votes for each race
and measure. As a by-product of the counting process, a binary image of each ballot is
written to a magnetic tape. This tape, after extensive manipulation, provides the data
for our analysis.

Several factors complicate our analysis of the ballot image tape. First, the information
on the tape is not used for official counting purposes, and so the procedures used to
generate the tape are often ad hoc. For example, there are several circumstances in
which ballots from a given precinct are fed into the reader, written to the tape, and
then at a later time erased from the official count (but not the tape) and re-read. This
shows up as a duplication on the tapes, and our procedures are designed to identify and
eliminate these duplications. Second, ballots from different precincts have information
contained at different places on the cards. Punch positions for a given candidate race
or proposition vary across precincts because voters in different areas in the county vote
for different local officials and measures, and so the sequence of votes differ across these
areas. Punch positions within candidate races also vary, because LA county rotates the
sequence of candidates on the ballots so no individual candidate can unfairly benefit from
her position on the ballot. In total, there are 320 different ballot “groups,” representing
each of the possible combinations of races and rotation sequences. Since the images on
the tape are simply binary representations of the votes, we must match each ballot to
one of 320 different ballot groups to correctly match punches with votes. Third, ballot
cards may be read into one of several card readers simultaneously and their images are
also written to the tape simultaneously. This means that images of cards from different
precincts may be “shuffled” together on the tape, and so must be “unshuffled” in order
to facilitate the matching described above.

Once we have identified, read, and recoded all of the individual ballot images, we can
aggregate voters within each precinct and verify our counts by comparing precinct totals
to the official vote record reported in the Statement of the Vote (California Secretary of
State, 1990). Since the rules that define the exact collection of votes used in creating
the SOV are not fully understood (by us or by the county) and since the procedures for
creating the tapes are even less rigorous, it js impossible for us to exactly replicate the
SOV totals. However, our procedures and implementation of the rules as we understand
them identifies 1,839,960 of the 1,925,811 records (96%) that contribute to the totals
reported in the SOV. We discard the 85,851 records that we can not match exactly to
avold the possibility of double counting. These records come from approximately 300 of
the 6614 precincts in the county, and the discarded precincts appear to be distributed

randomly across the county.
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For each of the approximately 1.8 million valid cases, the data shows the actual
vote cast on each of the twenty eight statewide ballot propositions, which we analyze in
this study, plus votes for state, county, and municipal candidates and county and city
measures for each individual ballot. For the purposes of the present analysis, we have
taken a 0.5 percent random sample from the universe of valid records. This random
sample contains a total of 9148 valid records.

The statewide propositions on the 1990 ballot consisted of five constitutional amend-
ments or statutes proposed by the legislature, ten bond measures (also proposed by the
legislature), and thirteen constitutional amendments or statutes proposed by citizens.?*
The measures ranged in substance from taxation and government reformm to fisheries and
environmental regulation, veterans and education bonds and drug treatment programs.
Appendix A lists the number and title of each of the twenty eight propositions.

Compared to previous years, the 1990 California ballot had several distinguishing
features. First, with twenty eight measures on the ballot, voters were faced with an
unusually high number of propositions.®® Second, the passage rate was historically low,
with only 6 of the twenty eight measures passing. Together, these two trends have been
popularly interpreted as evidence of a high degree of voter alienation and a general
rejection of the direct legislation process. The results of subsequent elections will show
whether November 1990 was the beginning of a trend in direct legislation politics or
rather an aberrant election. In addition, the November 1990 election was characterized
by extremely high levels of campaign spending, especially on several measures such as the
alcohol tax and the environmental regulation measures. Also, several of the measures on
the ballot were “competing measures,” in which an extreme measure was countered with
a similar, more moderate measure. This strategy was introduced (with mixed success)
with respect to the insurance reform measures in the 1988 general election and again
in the current election on the alcohol tax, term limits, forestries, and environmental
measures.

Table 1 shows the aggregate vote results from our sample.®® Several interesting pat-
terns are evident. First, we find that the percent of voters abstaining increases on later
propositions. This finding is consistent with the common lore that voters tire as they
work their way down the ballot and “drop off.” Note, however, that this trend is not
monotonic, and that there are both positive and negative variations in the percent of
voters abstaining on later propositions. From the aggregate data alone, we are unable

% An additional four of the citizen initiatives provided for the approval of general obligation bonds as
well.

350nly the November 1988 ballot had more statewide measures, with twenty-nine.

35In Table 1, invalid ballots were those which contained multiple punches for a given proposition.
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to determine whether some individuals abstain from all measures or whether individuals
pick and choose which propositions they will vote on or not.

(Insert Table 1 Here)

Second, the returns in Los Angeles were quite different from the statewide returns. In
particular, more propositions gained the required majority of votes to pass in the county
than statewide, and several of the propositions that did pass failed to gain a majority vote
in Los Angeles county. These differences reflect the nature of the Los Angeles electorate
which is more urban, ethnic and liberal than the rest of the state, on average.

T Results

Table 2 presents the actual counts and frequencies of voters who voted all yes, all no,
and all abstain, respectively, on the twenty-eight ballot propositions, plus the residual
category containing all other vote patterns. The observations included in the first three
calegories represent “pure type” voters in an absolute sense - they cast pure vote patterns
without any exceptions. We find that these absolute pure types occur very rarvely in the
sample, with only 0.2% of Los Angeles county voters casting all yes votes, 1.72% casting
all no votes, and 1.75% completely abstaining on the propositions. The vast majority,
96.31%, mixed their votes over the propositions with some yeas, some nays, and some
abstentions.®

(Insert Table 2 Here)

As we have discussed, this characterization of pure type voters is excessively restrictive
and excludes many voters who cast only one or two errant votes and who ought to be

3"The all-abstatn-eases-in-our-sample-are-particularly-interesting~AH-of-the voters-in our sample were
actual voters - that is, they turned out to vote on election day (or mailed in absentee ballots before
election day) and cast at least one vote. Therefore, we know that voters who abstained on all of the
propositions must have cast at least one vote on the candidate portion of the ballot, otherwise they
would not be included in our sample. This is a different type of abstention, then, than a voter not
turning out and voting at all. Subsequent analyses will examine the all abstention cases to determine
exactly what types of voters incur the costs of turning out but fail to consider many of the measures
on the ballot. Similar analyses of the geographic bases for ail no voting should provide insight into this
particular form of “protest” voting,.
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categorized as pure types. Our use of the mixture model, which assigns observations
to each type probabilistically should be more tolerant of small deviations from the pure
type patterns and should therefore better capture voter heterogeneity in the data.

Tables 3 and 4 present the results of the conditional logit probability expansions used
to estimate our base model. Recall that a structural interpretation of these results is
.complicated .by the.conditional nature.of.the logistic specification. Nevertheless, the
patterns that emerge from the estimated models display some interesting relationships
among the sample votes and provide insight into the viability of our base model for
capturing these relationships. Table 3 presents the log-odds of an individual voting yes
on each proposition compared with that individual abstaining. Table 4, which follows
later, compares no votes against abstentions.

(Insert Table 3 Here)

Along the vertical axis of Table 3, we list each of the twenty-eight propositions.
Along the horizontal axis, we place a series of dichotomous variables indicating a yes
vote and a no vote, respectively, for propositions 124 through 150. These dichotomous
variables constitute the explanatory variables in the series of twenty-eight conditional
logit estimations. In this manner, we report the relationship between each explanatory
variable and the log-odds of a yes vote to an abstention for each proposition. Table
4 reports the relationship between each explanatory variable and the log-odds of a no
vote to an abstention. Given that the conditional logit models have a large number
of coefficients and that the substantive interpretations of the estimated coefficients are
ambiguous, we notate in the tables only whether there was a statistically significant
positive or negative estimated relationship. Blank positions in the lower triangle of these
tables indicate that the estimated relationship was not significant.

Two points about Table 3 are of primary interest. First, we observe that as the
number of right hand side variables increases (that is, for higher numbered propositions),
levels of significance fall off dramatically and we observe fewer and fewer significant
relationships. This suggests that there is probably a high degree of collinearity between
the vote variables so that it is difficult to separate out the independent effects of each
individual variable as we add more and more. Second, we find that the coeflicients on the
variables closest to the diagonal are significant and positive in every case. For example,
in the equation for votes on Proposition 148, the variables for vote yes and vote no on
Proposition 147, as well as the variables for vote yes and vote no on Proposition 146 are
positive and significant. This suggests that the order of the propositions matter - voters
exhibit a “smoothness” across their votes on contiguous propositions. What is peculiar is
that both the yes vote and the no vote are positively associated with the log-odds of a yes
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vote versus an abstention. This implies that if an individual casts a vote of either type
on a proposition, she is likely to cast a vote (rather than abstain) on the next proposition
as well. The magnitude of these effects drops for later propositions-consistent with the
observation that voters experience “voter fatigue” and “drop-off” (i.e. abstain) with a
higher probability later on the ballot.

- . ..The .results .contained .in .. Table 4 .are very similar to.those.contained in.Table 3.
Again, we find that as we increase the number of votes on the right hand side of the
conditional logit models, the number (and percentage) of significant coefficient estimates
falls. We also continue to observe the strong pattern of positive, significant relationships
on contiguous propositions, suggesting a spatial correlation in an individual’s votes.?®

(Insert Table 4 Ilere)

Table 5 presents the maximum likelihood results of the estimation of the qualitative
mixture model. The estimates for V; correspond to the unknown parameters in equation
(3). These estimates are shown in column 2, and the corresponding t-statistics are
- reported in column 3. In the fourth column, these estimates are converted back into the
mixture probabilities 75 (all yes), 73 (all no), and m4 (all abstain).

(Insert Table 5 Here)

We observe that the mixture model estimates 0.73% of the cases as pure type all
yeas, 3.91% as pure type all nays, and 1.95% as pure type all abstains. By construction
this implies a mixture probability for the base model, m;, of 93.44%. Comparing these
estimates with the absolute pure type frequencies in Table 1, we find that, as expected,
the mixture mode] analysis identifies more cases as pure types (in fact, about twice as
many ).

Further examination of our estimates for the mixture probabilities show that nearly
4% of the cases are identified as pure type all nays. This suggests that in the data, there
are a substantial number of voters who cast “nearly pure” no vote patterns over the
twenty-eight propositions. This is in contrast with our estimate for, =4, the all abstain
pure type probability. We know from our initial counts that there were about the same
number of absolute pure type all no voters and absolute pure type all abstainers. However,

33We might alternatively think of voting on a series of propositions as a sequential process, and thus
cast the correlation between votes as a matter of serial, rather than spatial correlation.
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the relatively smaller value of 74 indicates that there were many fewer near-pure type
all abstainers. Voters were less likely to abstain on all but one or two propositions—if
they abstained on most propositions, they abstained on all. In contrast, voters who were
pre-disposed to vote all no were more likely to abstain or vote yes on at least a few
propositions.

- . ... Finally, we estimate o . from equation (10) as 3.2978 (t-statistic: 73.04). This implies
a value of 96.44% for Py. As expected the value of Py is very close to one and corresponds
to our hypothesized notion of a pure type voter.

8 Discussion and Conclusion

Our use of a finite mixture of qualitative choice models has several unique features.
First, the mixture approach allows us to identify and analyze voter heterogeneity in a
powerful new way. By using the finite mixture class we rigorously adopt a well known
statistical methodology which may provide new insights into voting and voter decision
making. Second, our model develops a mechanism for ez-post classification. Thus, a
new observation with a given vote pattern may be classified into a distinct voting type
based on the a priori probability that an observation arises from a given joint probability
distribution, and on the likelihood that a specific pattern would arise if drawn from that
distribution. This paradigm makes it unlikely that we classify a pattern that consists
of many yes or no votes as a pure type if the prior probability of finding a pure type
voter is small. Third, our development of the joint probability of a vote pattern allows
position to matter. Indeed, some dependence of the vote pattern is an essential condition
for identification. Alternative techniques which simply count the number of yes or no
votes cast by an individual do not allow for the dependence in voting behavior across
propositions. Fourth, when we do assume independence across propositions (in the pure
type voting models) we implicitly employ a form of probabilistic counting. Thus, the
model does not require that a pure type voter “get it right” on every proposition (i.e.,
vote yes, no, or abstain identically for all propositions). Instead, pure type voters are
allowed to deviate but with a small probability. Finally, we believe the mixture paradigm
will prove valuable in other settings. For example, a mixture model could used to identify
alternative types of voters who are more difficult to identify or count, such as voters
who follow newspaper recommendations or other endorsements. Alternatively, a mixture
model may prove useful for analyzing patterns in other types of political data. For
example, these techniques could easily be applied to legislative roll call data to identify
and analyze distinct patterns in legislators’ voting behavior.
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Appendix A

California Statewide Propositions
General Election, November 1990

Prop Title

124 || Local Hospital Districts -

125 || Motor Vehicle Fuels Tax. Rail Transit Funding

126 | Alcoholic Beverages. Taxes

127 || Barthquake Safety. Property Tax Exclusion

128 || Environment. Public Health. Bonds

129 || Drug Enforcement, Prevention, Treatment, Prisons. Bonds

130 || Forest Acquisition. Timber Harvesting Practices. Bond Act

131 || Limits on Terms of Office. Ethics. Campaign Financing

132 || Marine Resources

133 || Drug Enforcement and Prevention. Taxes. Prison Terms

134 i Alcohol Surtax

135 || Pesticide Regulation

136 || State, Local Taxation

137 || Initiative and Referendum Process

138 || Forestry Programs. Timber Harvesting Practices. Bond Act

139 || Prison Inmate Labor. Tax Credit

140 || Limits on Terms of Office, Legislators’ Retirement, Legislative Operat-
ing Costs

141 || Toxic Chemical Discharge. Public Agencies

142 || Veterans’ Bond Act of 1990

143 || Higher Education Facilities Bond Act of November 1990

144 || New Prison Construction Bond Act of 1990-B

145 || California Housing Bond Act of 1990

146 | School Facilities Bond Act of 1990

147 || County Correctional Facility Capital Expenditure and Juvenile Facili-
ties Bond Act of 1990 ,

148 || Water Resources Bond Act of 1990

149 || California Park, Recreation, and Wildlife Enhancement Act

150 || County Courthouse Facilities Capital Expenditure Bond Act

151 || Child Care Facilities Financing Act of 1990
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Proposition % Abstain % Yes

% No % Invalid
124 12.36 43.56  43.92 0.15
125 11.36 43.68 44.81 0.15
126 9.55 37.14 53.06 0.24
127 10.67 59.87 29.16 0.30
128 7.07 38.40 53.95 0.58
129 9.66 28.75  61.18 0.40
130 7.54 47.87 43.95 0.63
131 9.97 33.66 56.06 0.32
132 12.24 48.66 38.90 0.20
133 10.43 33.76  53.62 0.20
134 8.33 31.02 60.46 0.19
135 10.18 27.03 62.58 0.21
136 10.60 42,12 47.05 0.23
137 12.43 41.77 45.64 0.16
138 9.47 26.27 6407 0.20
139 10.60 44,62 44.61 0.16
140 9.91 44,02 45.71 0.35
141 14.22 46.23 39.95 0.20
142 12.52 55.04 32.29 0.15
143 12.83 45.64 41.36 0.16
144 11.47 39.53 48.92 0.09
145 13.63 44 .83 41.36 0.17
146 12.06 4743 40.31 0.20
147 15.28 3517 49.45 0.14
148 14.16 41.47 44.01 0.10
149 12.09 45.84 41.91 0.16
150 14.71 27.16  57.95 0.17
151 12.69 16.99 40.14 0.17

Table 1: Aggregate Vote Returns
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Type Count  Frequency

All Yes 3863 0022
All No 30,248 0172
All Abstain 30,676 0175
Other 1,690,693 9631
Total 1,755,480 1.0000

Table 2: Counts and Frequencies of Voter Types
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Table 3
Conditional Logit Estimates
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Table 4
Conditional Logit Estimates

+

+

+ 4

124

128

178

127

128

129

130

133

134

136

138

138

143

144

148

140

14T

148

14w

100

151

148 1B0

148

142 144

140

abstain)]

= na)/Prob(g;

log[Prob(g;

136 132 134 132

34

124



Type V; t-statistic 7
All Yes -4.8585 -34.82  .0073
All No -3.1731 -53.66 .0391
All Abstain -3.8666 -39.58 .0195

Table 5: Mixture Parameter (7;) Estimates
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