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ABSTRACT

The extent to which the behavior of people is consistent with game theoretic principles
1s investigated in a first price sealed bid auction environment. Three linear rules of thumb
with increasing complexity are used as benchmarks to gauge the accuracy of the Constant
Relatve Risk Aversion Model (CRRAM). In addition, the CRRAM is tested against the
relaxation of the rational expectation hypothesis.

Existing competitive bidding experiments cannot clearly distinguish between game
theoretic models and linear markdown rules on an individual level. Within the parametric
environments studied and reported in the experimental literature, game theoretic solutions
are linear over the range of private values in which bid functions are estimated. In this
study, agents drew values from nonuniform distributions. As a result, the game theoretic
bidding behavior is nonlinear.

Due to the nonlinearity, special econometric and numerical techniques are applied to
solve the model and obtain the estimates. The CRRAM exhibits good fit of the data. The
pseudo R? is greater than 0.8 in 90 percent of the subjects. The CRRAM is more accurate
than the Markdown Model (MM) and the Simple Ad hoc Model (SIMAM) but not as
accurate as the Sophisticated Ad hoc Model (SOPAM). The data also supports the
relaxation of the rational expectation hypothesis and suggests that substantial increases in
the predictive power of game theoretic models can be gained from improvements in the
theory of belief formation.
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1 Introduction.

This paper investigates the extent to which the behavior in first price sealed bid
auctions is consistent with the principles of rationality that form the foundations of game
theory. Two different sets of rationality principles are of interest. The first set can be
described as principles of maximizing behavior. Roughly speaking, it is as if people are
maximizing expected utlity conditioned on their opponents' strategies and their beliefs
about the state of the world. The second set of principles deals with belief formation and
imply the rational expectations hypothesis which states that in equilibrium all of the beliefs
of all of the agents are consistent with experience/reality.

The research strategy is to conduct a series of first price auction experiments in an
environment in which game theory predicts the existence of substantial nonlinearities in
behavior. The predictions of game theory are then compared and tested against a family
of alternative models. The class of linear decision rules (including piece wise linear
decision rules) is used as alternate behavior models.

The reasons to choose the class of linear decision rules as alternatives are three-
fold. Firstly, linear decision rules are often advocated as replacements for the rationality
postulates of game theory because they are easy to implement and yet they still capture
aspects of strategic considerations. Secondly, in a substantial amount of previous work
linear decision rules were investigated and cannot be ruled out as the explanation of the
data. Thus, a theory of linear rules of thumb competes with game theory as an explanation
of existing data. The third reason reflects the fact that almost any decision rule can be
described in terms of (perhaps piece wise) linear rules - at least within the limits of existing
measurement technology. Sometimes this feature of the models is an extreme
disadvantage since it implies that the models cannot be rejected when they become
complex enough. However. in this study. this flexibility is used as a tool to identify the
“degree” to which subjects exhibit ratonal behavior.

!The financial suppon of the National Science Foundation and the Caltech Laboratory for
Experimental Economics and Pohtical Science 1s gratefully acknowledged. We also wish to thank John
Ledyard. Mahmoud El-Gamal. John Kagel. Dan Levin. and James Walker for many heipful suggestions.

The authors are indebted to Caltech student Ralph Wolf who conducted initial experimentation
with first price auctions under nonuniform distnibutions. The authors are also indebted to Kemal Guler
whose analysis of the Wolf data had a substantial impact on the research reported here,



Previous experimental studies have focused on uniformly distributed individuat
private values. This results in linear game theoretic models (except near a boundary of the
support of private values) and enables researchers to track the models with ease.
However, under these environments, it is hard to separate the predictions of game theory
from the predictions of theories that hold that human decisions are governed by linear
decision rules such as a constant percentage markdown. In contrast to previous studies,
by applying numerical techniques and related econometric methods we are able to study
basic game theory in an environment that was previously not so accessible and where the
behavior predicted has substantial nonlinearities. Thus, we are able to separate the
predictions of game theory from the predictions of theories that hold that human decisions
are based on simple linear decision rules. ‘

In a seminal paper, Cox, Smith, and Walker (1988), the (asymmetric) constant
relative risk averse model, referred to as CRRAM, was developed to explain experimental
data from first price sealed bid auctions. In essence, Cox, Smith, and Walker (CSW)
concluded that the data are very consistent with CRRAM (with the exception that 63% of
the observed bidding functions have negative intercepts while CRRAM predicts zero
intercepts). Thus, they demonstrated that CRRAM explains a long history of sealed bid
auction experiments better than any other model. On the other hand, Kagel, Harstad, and
Levin (1987) (KHL), compared ad hoc discounting rules to Nash equilibrium theories.
They concluded from an analysis of the effects of the changes in public information on
average revenue and on the directional changes in individual bids that the Risk Averse
Symmetric Nash Equilibrium (RASNE) was the best of the theories. However, when the
analysis was applied directly to individual bids alone, they could not statistically rule out a
competing discounting model which assumes the bidders bid a discounted amount of their
private value according to some rule of thumb. In the KHL study of the English auction
and the second price auction, overbidding is observed in the latter but not the former. The
~ overbidding is consistent with ad hoc reasoning but not consistent with game theoretic

models. A third study by Guler, Plott, and Vuong (1987) (GPV) strongly rules out the
model that people use general linear decision rules in favor of a modified game theoretic
model. However, the data from the GPV study cannot easily be applied to an evaluation

‘of CRRAM.

These three patterns of results set the stage for our investigation. It is not
conclusive that people are using optimal decisions rules when involved in competitive
situations such as bidding. Could the CSW results be due 1o a general tendency for
individuals to use linear decision rules? KHL cannot rule out the possibility that the
answer is “yes.” Furthermore, a controversy has blossomed about the econometric
methodology used by CSW (see Kage!l and Roth, 1991 and CSW, 1991).

In our study, new data are obtained with the goal of resolving some of the issues
mentioned above. We focus on how well models of rationality (game theoretic models)
can explain the data in comparison to a number of ad hoc alternate models. A new
method is provided to compare a Nash equilibrium mode! to linear bidding rules. In
previous studies of the first price auction, experimenters used private values that were
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drawn from a uniform distribution.2 Such an environment will result in linear Nash
equilibrium bidding strategies over a substantial interval of possible values.> Such Nash
linear strategies, however, are consistent with a set of ad hoc linear rules. Because of this
correspondence, investigators have resorted to the study of special independent variables
(number of agents, auction rules, information structures) in order to separate models of
Nash equilibrium and ad hoc linear behavior. In the experiments reported below, private
values are drawn from non uniform distributions. Under CRRAM, the equilibrium bidding
behavior is nonlinear and the non linearity depends on individual risk behavior and beliefs
of aggregate risk behavior.

In the first price auction, the rational expectation hypothesis states that all the
agents in an auction have beliefs about the aggregate risk behavior of the other agents that
reflect the truth. Under the CRRAM, risk behavior of an individual is characterized by a
utility function that has one parameter called the risk parameter. The bidding function
under the CRRAM of a player depends on his/her own risk parameter as well as his/her
beliefs about the aggregate distribution of the risk parameter in the population. The
beliefs about aggregate distribution of the risk parameter can be parameterized and
estimated from bids of an individual. The individual risk parameter can also be estimated
from bids of an individual. Thus, by testing whether all the individuals have the same
beliefs and whether their beliefs are consistent with the estimated aggregate distribution of
the risk parameter, we are able to test the reliability of the rational expectation hypothesis.

Thus, we are able to achieve two things. The first is to distinguish between
CRRAM and linear bidding rules.* The second is to test the rational expectation
hypothesis by comparing the beliefs of aggregate risk behavior to the estimated aggregate
risk behavior. _

A subtle but imporant distinction should be emphasized. Previous studiesS have
tested game theoretic formulations against ad hoc linear decision rules where the latter
included a hypothesis of how linear behavior would change in response to changes in the
parameters of the economic environment. The ad hoc rules were rejected because they

failed to track behavior across chan ging environments as well as the behavior was tracked
-by game theoretic models. In some sense, it is the assumption of how linear behavior
changes across different economic environments instead of the assumption of linearity that

2A paper by Palfrey (1985) is a possible exception. He studied the bundling of values each of which is
drawn from a rectangular distribution. Thus. the value of a bundle would be drawn from a nonuniform
distribution. Palfrey studied only risk neutral models.

3In CSW (1988} a portion of the bidding function is actually nonlinear but they did not utilize the
nonlinear data in their estimates.

4In CSW (1984} in which multiple unit discnminatory auchions were conducted. and Kagel and Levin
(1988) in which third price auctions were conducted, subjects’ behavior was not consistent with risk
aversion under the Nash equilibrium. Subjects appear 10 be risk loving if Nash equilibrium theory was
applied. These facts create a type of paradox because they suggest that people sometimes behave as if they
are risk averse and other times behave as if they are-nsk loving. The existence of such inconsistencies
casts doubt on the whole theory.

5Kagel, Harstad, and Levin, 1987,



is rejected. And, since the assumption about how the use of ad hoc rules might change
with changes in the economic environment is itself ad hoc, the methodology has an
inherent weakness that is difficult to overcome. By contrast, this study focuses on those
same ad hoc linear rules within a given economic environment and asks if the linear aspect
of the rules generates statistical models that are as good as those derived from game
theory. Thus, the methodology supplements other studies in an important way. The three
linear models (the MM, the SIMAM, and the SOPAM) studied in this paper are designed
with this fact in mind. Each model assumes a different set of characteristic parametersin a
different economic environment. '

2 Experimental Design

A series of six experiments were conducted.¢ All the experiments were carried out
in Caltech’s Laboratory for Experimental Economics and Political Science with help from
networking software. The instructions read to the subjects are in Appendix A.

Twelve subjects were in each experiment. Some subjects participated in more than
one experiment. The experiments were conducted in periods. In each period, the subjects
were randomly divided into groups of three who would bid against each other in 2 sealed
bid auction. Then the private values of a subject were revealed (only to that subject) on
the subject’s computer screen. Then a first price auction was conducted among each
group of three.

In considering and discussing the models some care must be exercised to avoid
confusion among the various units used in theory, observation, payoffs, etc. Subjects
operated in a space characterized by units called francs. The information that subjects
received and the decisions that subjects made, the entire message space, was defined in
these franc units. Each franc could be converted to U.S. dollars at a rate (privately)
known to the subject.

_ “Each private value was generated by the following scheme: let v be a random
variable where ve [0,1} and with distributon

2av if0sved
2l-aw+2a-1 ifi+ <v<l

where g is a parameter.

H(v) {

®Actually. 8 experiments were conducted. The first of the two experiments not reported was a pilot
experiment. Instead of the computers. it was conducted on a chalkboard by an auctioneer. In the second
experiment that is not reported. only five data points were collected.



Again, as a reminder, we note that the private franc value V, received by a subject, is
V=T + 1000v where T is the “offset.”

Each subject was given the distribution described above. Furthermore, each was
given a table in which the probability of each value is listed. This table was part of the
instructions. The subjects were also told that the amount of dollars they would be paid at
the end of the experiment would be a conversion rate times their franc earnings in the

experiment. '

- Table 1 summarizes the parameters used in the experiments. Parameters include
the subject pool, the franc conversion rate, number of subjects, etc. The important
parameters are those that determine the distribution function from which private values

were drawn,

There are two important parameters to consider in the generation of private values.
Both parameters define types of controls in the experiments. First, the parameter a
dictates the slopes and the slope change of the distribution function at the midpoint of the
support. In our experiments, a = 0.8 and & = 0.2 were used.

Second, the offset T is the lowest possible private value that can occur. Since the
length of the support of private values is fixed to 1000, the support is the interval [offset,
offset + 1000] = [T,T + 1000]. The bidding functions from CRRAM go through the point
(T.7). In our experiments, two values of the variable offset were chosen, T=0 and 7 =
500. See Figures 5A and 5B for graphs of the distribution functions.

As an illustration of the importance of the two parameters, consider how they can
be used to distinguish between behavior generated by a naive markdown rule as opposed
to behavior generated by a game theoretic model. Consider the case in which the offset is
500. I the subjects are following a naive markdown rule, then their bid functions g0
through (0,0) but not through (500,500) as is predicted by game theoretic models.
Therefore, whether the bidding behavior goes through (500,500) in the experiments where
offset = 500 can be used as an extra test of the CRRAM and the ad hoc rule of behavior.

3 Overview of Models

Theory is discussed in normalized units. By normalizing key variables to take
values in the interval [0,1] all derivations and discussions are simpler. In the experiments,
it is not necessary that the private values are in the interval of [0,1]. Lemma 3 proves the
invariance of the theory under linear ransformations for the most general case considered
in this paper.

The central variables are bids and private values. When franc units which are used
in the experiments are intended the notations will be upper case B and V for bids and
private values, respectively, and in normalized units that will typically be used in
theoretical derivations, the script » and v will be used for the two variables, respectively.



For all experiments V takes values in some interval of length 1000. Specifically,
Ve[T.T + 1000] where the parameter T will be called the “offset” which can vary across
experiments. The variable v will take values in the interval [0,1] and thus V = T + 1000v.
Al figures containing data and some of the econometrics will be presented in terms of V
but the technical theoretical discussions will be in terms of v.

Because the models are complex, a brief overview of the issues and the models
might be useful. The following are all of the models studied in the literature. A brief
discussion of the models is also provided. From this discussion an overview of our
experimental design can also be inferred.

In all the models, the following assumptions are made:
1. Subjects are expected utility maximizers with increasing utility for money.

2. Subjects have the following information before making a bid:

(a) his/her private value;

(b) number of subjects he/she is bidding against;

(c) the fact that all values drawn are i.i.d.;

(d) the distribution from which the values are drawn is publicly known.

3. Recall from last section, distribution of normalized private values are of the following
form:

) 2av ifo<sv<d
T |2(1-a)v+2a-1 ifisv<l

Recall that the pﬁvatc value seen by a subjectis V=T + 1000v. So, both V and v can
be called the “private value” without confusion. The parameter a adds control to the
expeniment as does the parameter 7.

Notice that the distribution H() is not uniform over its support. In previous
experiments that have studied bidding in nonaffiliated environments, the distribution of
private values has always been uniform. This departure from previous studies is the key
to the interpretation of the experiments.

The following models are stadied:



1. The Markdown Model (MM)

This model holds that people follow a rule of thumb based on their private values. The
bid will be a proportion of the value. Where v = private value randomly drawn, the
model has the form

bid = Pv.

Without tracking the implications of other variables such as the number of bidders or
information, etc., MM is not distinguishable from the Nash equilibrium behavior under
uniformly distributed private values. An example is contained in Figure 1.

2. The Simple Ad hoc Model (SIMAM)

This model is slight generalization of MM to allow for the possibility that the bidding
function might not go through the origin. When values are sufficiently low people, may
simply bid zero. The function is

bid = o + fv.

Measured bidding functions (CSW, 1988) have the property that &t # 0. An example is
in Figure 1,

3. The Sophisticated Ad hoc Model (SOPAM)

This model assumes that subjects use a more sophisticated rule of thumb. The model
~ has the form

o +Pv if 0<v<]
bid = .
o +Bv +y(v-0.5) if %gv <1

An example is in Figure 2. This is essentially a two-piece linear rule where the subject
follows different linear rules when his private value is in [0,1/2] and [1/2,1]. The
strategic implication of this will be more clear in the experimental design part of this

paper.

4. The Risk Neutral Nash Equilibrium Model (RNNE)

Subjects are identical and risk neutral utility maximizers (i.e., #(x) =x). This model is
not consistent with CSW’s experimental data because their data uniformly lie above the
risk neutral bid function. Generally, this fact has been interpreted as a manifestation of
risk aversion. For the paramerric environment used in our experiments, examples of the
RNNE bid function are contained in Figures 3A and 3B for the cases where a = 0.8 and
a = (.2 respectively.



5. The Risk Aversion Symmetric Nash Equilibrium Model (RASNE)

Subjects are identical utility maximizers. Each subject has a one-parameter
concave/linear utility function in the form u(x) = xX". This model is also not consistent
with CSW’s data because the hypothesis that agents are identical can be rejected. An
example of RASNE bid function is contained in Figures 3A and 3B for g = 0.8 and g =
0.2, respectively. The RASNE bid function has a property that it lies above the RNNE
bid function for both values of a. This property is the reason that RASNE provides a
better account of the CSW data than does the RNNE.

6. The Constant Relative Risk Aversion Model (CRRAM)

Subjects do not have identical utility functions. Each subject has a one-parameter
utility in the form of u(x)=x". The risk parameters r are distributed according to some
publicly known distribution G(r). In the special case when the variance of G(r) is zero,
the CRRAM becomes the RASNE. '

Figures 4A through 4F illustrate different features of the CRRAM bidding function.
The CRRAM individual bidding function, which will be described in Section 4, is a
function of individual risk parameter r, the mean, E(r), of the distribution G(r) and the

price variance, S}, of G(r). In previous theoretical studies, bids were found to be
increasing with increasing risk aversion in first price auctions. The effects of E(r) and
S} on the bidding function are more subtle and less intuitive. Both variables control

the slope and the curvature of the bidding function in the interval [0.5,1]. As one can
see from Figures 4B and 4C, the bidding function is relatively constant to varying E(r)

and S’ in the interval [0,0.5]. Figures 4D through 4F show the effects of varying r,
E(r) and §7, respectively, when a = 0.2 as opposed to the @ = 0.8 used in Figures 4A
through 4C.

The CRRAM is the most supported theory in the CSW study. However, as was
mentioned in the introduction, there are still some inconsistencies between the data and

CRRAM:

(a) In some cases, the subject has a biddin g function with a significant nonzero
intercept, while CRRAM predicts a zero intercept (CSW).

(b) In other experimental data, bidding is observed to be consistently above the
dominant strategy in single unit second price auction (KHL., p. 33).

(c) In third price auctions, 60 percent of all bids lie above the RNNE line with ten
subjects, while risk aversion requires bids 1o be below the RNNE line. This may
be an indication of failure of the theory, or that subjects are nsk-loving (Kagel and
Levin, 1991).

7. The Belief Free Constant Relative Risk Aversion Model (BFCRRAM)

The BFCRRAM is identical to the CRRAM except that the rational expectation
hypothesis is relaxed. The rational expectation hypothesis is imposed on the estimation



procedure by requiring the subject to believe the mean and variance of the distribution
of the risk parameters r; are equal to the estimated ones.

In the BFCRRAM, the beliefs about the mean and variance of the distribution of risk
attitudes (which are used to derive the optimal individual behavior) are estimated as

free parameters. In contrast, when the CRRAM is estimated, these two parameters are
restricted to the average and the variance estimate of the estimated individual risk

parameters.

4 Formal Theoretical Development

This section develops the CRRAM model in our special nonlinear case and shows
how it can be solved by numerical methods.

Consider a first price auction where there are N > 2 bidders. Each bidder’s
monetary value v;, i = 1,...N, for the auctioned object is independently drawn from the
probability distribution with c.d.f. H(-) on [0,1]. Itis assumed that each bidder knows his
own v; but knows only the distribution from which his rivals’ values are drawn. Each
bidder is also assumed to know N, the number of bidders.

The one parameter utility of bidder i is u(x;r;) = x*. Assume that each bidder
knows his/her own risk parameter r,. Also, assume that r; is distributed independently with
distribution G(-). Each bidder knows G(-) and he/she is an expected utility maximizer,

Assume each bidder / believes everyone is using bidding function b(-;7), his
expected utility is Eu=(v — b)" { E.H(n(b,r))}*" where v = {’s private value and n(-;r) =
inverse function of b(-;r). The notation E, denotes an expectation taken on r.

To maximize Eu, the first order condition is

_V_E'EMN ~1E, {H (ﬂ(b-f))an—;g’—r')}/‘gr”("(b’r))= 0

= £ H{n(b.r)= XL x(bur)-h)e (o) Z0
with the substitution v = n(b,r,).
Let
f(b)=E,H(n(b.r)/ E, {H (n(b,r))__.._a";’;”)}
= f &) =2 (n(b.r)-b)
r _



on(b,r,) -

b N‘_lf(b)-i-l 2
As mentioned above, the form of distribution H(x) studied in our investigation is

2ax 0<sx<sd

Hx)=<2(1-a)x+2a-1 +<x<1
1 x21

with density

2a 0sx<i

Hx)=<2(l-a) : $<x<1
0 x21

This distribution is uniform in the intervals [0,}4] and [!4,1]. But the probability of
being in either interval is different, where P(xe [0,}4]) =g and P(xe [4,1]) =1 - a.

Substituting (1) into E.H(n(b,r)), and writing E, in an integral form, we have

E,H(n(b,r))=[" 2a(N’_ 1 f(b)+b)dG(r)+ j’“‘{ 2(1—a)(Nr_ 1 f(b)+b)+2a—l }dG(v)+ _[:dG(r)

2a 5y Z(I_a) far 3
- f(b){N — J’G rdG(r) + == _[ rdG(r)}+b{ 2aG(u,)

+2(1- a)[G(u, ) — G(u,)) } +1-Gu,)+Qa-DIG(u,) - Gu,)]

- -1
where u, = 21 L_p) and =Ny

oy 2 TR T

Similarly, substituting (2) into E,{H‘ (nt(b,r) %} we have

on(b.ry] r L r
E{H‘ (m(b,r) % }—J 20[-—N“1f (b)%—l)dG(r)-é-J:l 2(1 a)(Nulf(b)-'-l)dG(r)

: a ™ 201—-a) [
= f(b)[N_ 1.'.0 rdG(r) + - erG(r):I

N

+2aG U} + 2(1-a)|G(u,) — G(u,)]
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_ 2a 2(1-
W, = IJ:’ rdG(r) +

N- N-
W, =2aG(u,) +2(1-a)[G(u,) ~ G()]

a) iy
1 L rdG(r)

W, = 2a -D[G(u,) - G(u)1+1-Gu,)

Substituting
Wi+ Wb+ W, = fF(BIW,.f (b)+W,])
W, (Wp+w,) 1
by=1-—2+} =2 2 3
= 1 () W;{ W )f(b) 3
From (1)
= e =""Loon
N-1(dv
ﬂf(b)—T('gg—Ij
1
r(-=5) _
and u, = 2 ,uzzr‘(l b)
v=>b v—b
And (3) becomes
ab _ (N-DW,
PN e yw, -, + LW
T (v=b)N-1 _ (4)

Equation (4) is a differential equation that allows one to solve for the optimal
bidding function b(vir) numerically. The following properties of the solution are useful:

Lemma 1) b(0;r,) =0. This gives us the initial condition for the differendal
equation (4)

. db{v,r} n-1

m =

Lemma?2) i
=0y n—t+r

(see Appendix B for proof)

Lemma 3)  if b(v;r,} is a solution to max.(v — xX)r{EH(@(x;r))}", then
E(F;r.) is a solution to max.(V — x)"'{E,ﬁ(n (x;r, ))}M, where for all

AeRPeR+

11



V=A+0v
E(F;r) =A+B b(v;r)
HO + By)=H(®) for all y (see Appendix C for proof).
Lemma 3 shows that the maximization problem is invariant to linear
transformation. In our experiments, a number of different intervals were chosen as

support of v. Lemma 3 legitimizes the use of (4) as the base solution for all of our
parameter choices. ‘

We have mitial condition b(0;;) = 0, so b(v,r;) can be integrated numerically
from (4).

Notice that equation (4) depends upon the distribution G of . We assume r has a
log normal distribution. There are two intuitive reasons to make this choice. First, we
believe that people tend to behave similarly. Second, the structure of the utility function
constrains r on the open interval (0, =). A log normal distribution has support on (0, =),
Let u, and 62 be the mean and variance of log(r).

G(r) =¢(1°gr_‘“oj
c

The density is

g(r>=-1~cb(—1°gr’“°)
cr g

It is advantageous to parameterize G in terms of E(r) and o *instead of u,,0°.

CE( = [ratar

_ -_l_¢ (iogr—Uo]dr

"o (8]
s
=g -

-r (logr—u
E(riy= —cb[———0 r
=] .

Qug+s’

=¢
ol =E(r’)y—(E(r)

2ug+lc” (] _5C )

=€ (4
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and

u, =log E(r)—~ log 1+ o,
0 =208 2 TRy
02
2= log{l+—2
og( E(r)2)

5 Data Analysis/Econometrics

The data is analyzed with the following goals in mind:

1. To compare CRRAM to the Markdown Model (MM), the simple and
sophisticated ad hoc model (SIMAM and SUPAM).

2. To show (in a pseudo R2 sense) how well CRRAM explains the bids.

3. To test whether risk parameters of subjects in different experiments are drawn
from the same distribution.

4. To test whether the bidding functions go through the point (offset, offset) =
(T.7).

5. To test the rational expectation hypothesis.

Both the RNNE and RASNE models were also analyzed. Recall that RNNE and
RASNE are special cases of CRRAM and both models were rejected in CSW's paper. In
separate (unreported) tests, both RNNE and RASNE models can be rejected using the
likelihood ratio test.

Using the framework developed in Section 3, for given risk parameter r and risk
distribution G, one can calculate the bidding function

b(vir,E,(r).0} where E,(r) = [rdGrand 6 ? = E,((r - E()?).

The following econometric model is used:

B, =BV, :r E(r)o})+&, (5)
where .
B() = CRRAM bidding function in franc units
By = bid submitted by subject / at time ¢
Vi = private value of subject 7 at time ¢
Eir is distributed i.i.d. n(0, 67 )
ri = risk parameter of subject i

13



The following assumptions are made:

o The variance of 62 of £, is constant across periods but can vary from subject to

subject.
e Since b(vi, ri, E(r), 6?) depends also on E(r) and 6, we use F== 2 - 10 estimate
E(r) and —-1-12 (r, = F)* to estimates 2.
n— '

The method of maximum likelihood is used to estimate #; for all subjects. The

" results will be presented in the next section. The maximum likelihood procedures were
carried out on a CRAY X-MP/18 supercomputer at the Jet Propulsion Laboratories and a
CRAY Y/MP supercomputer at the NASA Goddard Space Flight Center.

Each evaluation of the bidding function typically included a 100-step integration.
Since the bidding functions of the subjects are all interrelated under CRRAM, the risk
aversion parameters of all subjects in an experiment have to be estimated simultaneously.
Each experiment consists of 12 subjects and typically 100 bids per subject. To calculate
the maximum likelihood, we have to maximize a likelihood function with 1200 data points
in a 12 dimensional space. With the level of precision used in the analysis, the calculation
typically takes about six to twelve hours on a CRAY. Better precision of the integration
routine may be desirable since some divergence of bidding functions were encountered
upon integration. None of the numbers reported below involve the divergence problem.
The problem itself can be overcome by computer techniques or by a willingness to devote
much more time to computations.

The pseudo R’ was also calculated for each subject. The pseudo R’ is a measure
of how much explaining power the model has.

pseudo R’ =1~ ;ﬁ:ﬁ ‘ (6)

where
2

SSR. =3 (B, - BV, .F.E(r).61))

SR =35, B

The pseudo R’ is between 0 and 1 since SSR, < SSR, . The closer the pseudo R’ is
to 1, the better explanatory power the model has. A model that explains all the variation
of the bids will have a pseudo R” of 1. The result is presented in the next section.

Maximum likelihood estimation is also carried out for the following two ad hoc models:

The Simple Ad hoc Model (SIMAM)
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B, =a,+BV,+&, )]

And the Sophisticated Ad hoc Model (SOPAM)

B ={ai+ﬁi(‘/iz_T)+§i:

"o le, + BV, ~ T +y,(V, ~ T -500)+&,
if T<V, <T+500

if T+500<V, <T+1000

®
where &; is i.i.d. with constant variance ¢ ;. These two models have been outlined
in previous sections. Both models are rewritten in a statistical fashion here.

The Vuong’s model Selection Test was used to compare the SIMAM and the
SOPAM to the CRRAM. Let us consider the general case where one wants to select
between two strictly non-nested models f and g.

let

Y {y,}_,=1 be a data set with » points.

8 = parameter of model f

Y = parameter of model g

6 = maximum likelihood estimate of 8 under ¥
4. = maximum likelihood estimate of ¥ under ¥
Iy

= likelihood function of f
[, = likelthood function of g

Define the estimated log likelihood ratio of f to g to be

- . [, A,)
m,(e,,-y.)fg‘f’g zfo‘,tl?,)

Now, consider the hypothesis H, : f and g are equivalent,

A [ Lok LG8,

- | —
n el [’U'h- n o Oglg(y,I'Y,)

Consider the following three hypotheses:

e H;: fand g are equivalent,

@ H; fis better than g, and
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o H,: g is better than f.
Vuong’s theorem 5.2 states that

() underHo: n*LR B ,,7,)/W —=—n(0,1)
(i) under Hy: n™* LR 8,7 ,) /W, —=—+eo

(iii) under H,: n“"zm”(én,fnj/WnL>—m R 9)

Equation (9) provides a very simple directional test for model selection. If the
value of the statistics n™>LR (6,7 ,)/W, is higher than some critical value ¢, which is
decided by the significance level, then one rejects the null hypothesis that the models are
equivalent in favor of f being better than g. If n”2LR (6,7 .) /W, is smaller than -c then
one rejects the null hypothesis in favor of g being better than f. Finally, if
In"LR 8 ,,7,)/W, | <c then one cannot discriminate between f and g given the data.

In our case, let

Lcrram = estimated maximum log likelihood of CRRAM

Loy = estimated maximum log likelihood of M M

Lsimam = estimated maximum log likelihood of SIMAM

Lsopanm = estimated maximum log likelihood of SOPAM
LR = estimated maximum log likelihood ratio of CRRAM to MM
LRIV =  estimated maximum log likelihood ratio of CRRAM to STMAM
LR = estimated maximum log likelihood ratio of CRRAM to SOPAM
WERRAM = estimated variance of LR LCRRAM

WERRAM  _  estimated variance of LR W4

Woran estimated variance of LR

n = number of data points in an experiment

The critical value of a normal distribudon at 0.05 level of significance is 1.65.

Therefore, we select CRRAM over SIMAM if n™2 LRSHAM W ERRAM 1 65 and SIMAM
over CRRAM if n™? LREIAM (W ERAM <165 and we cannot select one over the other if

En LRG| Wi |<1.65. Similarly, we can compare CRRAM to SOPAM and MM.

SIMAM SIMAM

Vuong noted the existence of other model selection criteria that, when
appropriately normalized, are asymptotically equivalent to the LR-statistics (9).
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More generally, let

Lén(éu’yﬂn)ELRn(én"?n)-—Kn(f?g) .
where K,.(f, g) is a correction factor depending on the characteristics of models

fand g. The statements in (9) hold true when LR, is replaced by LR .
It is found that some of our results depend on whether a correction factor

K.(f.e) =p—-qor K.(f.g) =£logn - E-Iogn is applied. (Where p= number of
: 2 2

parameters of f, g = number of parameters of g).

We have also considered using other procedures like the bounded-size likelihood
ratio (BLR) test. We decided that the Vuong’s Model Selection Test is most suited to our

purpose.

In the maximum likelihood procedures, we obtained estimates of the risk
parameters of the subjects. In each experiment there are 12 estimates. The
Kolomogorov-Smirnov test was used to test whether the sets of 12 estimates from
different experiments are drawn from the same distribution or not. The results are
presented in the next section.

To test whether the bidding functions go through the point (offset, offset), the
following econometric model was used:

5
B, =a,+Y B, (V, -offset)’ +§, (10)

J=i

If the bidding function for subject i goes through (offset, offset), then
o, = offset. After o is estmated, a simple t-test can tell whether ¢ is significantly
~ different from the offset. The results are reported in the next section.

The reason a polynomial model was chosen is that any well-behaved function can
be closely approximated by a finite polynomial.

6 Results

The CRRAM is estimated for the six experiments conducted. The eight figures,
6A through 6H, are examples of individual bids and estimated bidding functions . As can
be seen in the figures, the CRRAM can yield highly nonlinear predictions. Among these
figures there are “good fits” (Figure 6A), “worst fits” (Figure 6B) and “typical fits” from
each experiment (Figures 6C-6H). Notice that in Figures 6D and 6F the bidding functions
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have slightly different features than the others probably due to the fact that in 6D and 6F
(experiment 2 and 4), the parameter a = 0.2 while in the others a = 0.8.

Together these figures suggest how the CRRAM respond to the single (risk
aversion) parameter. These visual supports for the CRRAM suggest that if people are
using rules of thumb, then these rules of thumb highly resemble the CRRAM.

Result 0 is included for completeness. It deals with the special cases of risk
neutrality and with the risk averse symmetric cases with homogenous bidders. As was
mentioned, the RNNE and RASNE are both special cases of the CRRAM which have
been rejected by CSW. RASNE is the special case where the constraint n=r=-=r,
is put on the CRRAM. RNNE is the special case where the constraint h=r =2=r,=1
is put on the CRRAM. Result 0 simply states that neither of these models can be accepted
and so the result sets the stage for an investigation of a more elaborate class of models.

Result 0: Both the RNNE and the RASNE can be rejected.

Support: Both constraints are tested using the likelihood ratio test. The statistics
of the test of constraints are listed in Table 2B. In separate tests, both RNNE and
RASNE models can be rejected at the 0.05 level of significance in all of the six
experiments and also in the pooled data.[d

The Result 0 is consistent with the CSW conclusion that subjects behave as if they
are risk averse and heterogeneous. It is therefore necessary to explore in detail the more
general model that they propose.

The results of the estimation of the CRRAM and other models together with
relevant summary statistics are contained in Tables 2 through 5. Table 2 contains the
likelihood estimates of the models, the results of Vuong's Model Selection Test discussed
in Section 5 above and the results of testing the rational expectation hypothesis. For each -
of the models considered Table 3 gives the means and the standard deviation of the
pseudo R” of all of the subjects in all experiments. Table 4 contains the means and the _
standard deviations of the esamates of the CRRAM risk aversion parameters of subjects.
Table 5 contains statistics to determine if the estimates of the risk aversion parameters
from different experiments are drawn from the same distribution.

The first result addresses one of the central issues directly. When separated within
a fixed parametric environment, the CRRAM captures the subtleties of individual behavior
that the Markdown Model does not capture.

Result I: The CRRAM is a better model than the Markdown Model (MM).
Support: The support of this result comes at two levels of data analysis. The first

is the data set for each whole experiments using the Vuong's Model Selection Test. In
five of the six experiments, the MM can be rejected at five percent significance in favor of
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the CRRAM. In experiment 5, one cannot discriminate between the two models given the
data. The statistics are in Table 2A. The analysis of the pooled data also favors the
CRRAM.

The second level of support for Result 1 is provided by the pseudo R? analysis. In
72 percent of the subjects, the CRRAM gives a higher pseudo R’ than MM reflecting a
greater explanatory power of the CRRAM. These higher proportions are reflected in the
tendency for higher means of the pseudo R contained in Table 3 which are reported here
rather than the pseudo R’ for each of the individuals.[J

Result 1 indicates that people respond to the strategic consideration of the
environment (CRRAM) instead of following some rule of thumb (MM) blindly. Result?2
is that even when we increase the sophistication of the rule of thumb to the two parameter
SIMAM, the CRRAM is still a better model than the rule of thumb. This result suggests
that the full power of the rationality postulates does a better job of describing choice
behavior than a model that suggests that people follow a linear rule of thumb with a free
slope and free intercept. Notice that SIMAM has double the number of parameters than
CRRAM has.

Result 2: The CRRAM is a better statistical model than the Simple Ad hoc Model
(SIMAM).

Support: Using the Vuong's Selection Test, in three out of six experiments and in
the pooled data set, the SIMAM can be rejected in favor of the CRRAM at five percent
significance level independent of whether the correction factor K, is applied. In the
remaining three experiments, if the correction factor K, is applied, all are indistinguishable
from the CRRAM. However, if the correction factor X, is not applied, in two experiments
(experiments 2 and 4) the CRRAM can be rejected at the five percent level in favor of
SIMAM. Notice that in the experiments that the CRRAM performed worst (experiments
2 and 4), the parameter a = 0.2. The statistics are listed in Table 2A.

In 56 percent of the subjects, the CRRAM gives a higher pseudo R? than the
SIMAM. Again, this phenomenon is reflected in the means reported in Table 3.0

The support for Result 2 contains the perplexing fact that serves as a warning not
to be over confident about the rationality postulates. When the probabilities govemning
individual values changed across experiments, support for rationality was reversed. Thus,
Result 2 is sensitive to the underlying environment.

The next result, Result 3, gives the limit of the explanatory power of the CRRAM
in comparison to rules of thumb. The result is that the SOPAM explains the data better
than CRRAM. The SOPAM can be viewed as a natural extension of the SIMAM. It also
captures aspects of the strategic situations since the bid function is allowed to change
slope when the distribution of private values changes slope. Formally stated the result is:
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Result 3: The Sophisticated Ad hoc Model (SOPAM) is a better statistical model
than the CRRAM.

Support: When Vuong’s Model Selection Test is used without the correction
factor K, in all six experiments and the pooled data the CRRAM can be rejected at five
percent significance in favor of the SOPAM. When the correction factor is applied, the
CRRAM can be rejected in four of the six experiments. The statistics are listed in Table
2A. In 92 percent of the subjects, the SOPAM gives a higher pseudo R’ than the
CRRAM. This phenomenon is reflected in the means reported in Table 3.3

The SOPAM is a piece wise linear decision rule. The pieces cover what might be
considered to be the prominent parts of the individual values space. Thus, SOPAM in
conjunction with some rule of thumb regarding where the breaks of the decision rule might
fall is in a sense the limits to which rationality is exhibited.

The results do not appear to be due to statistical techniques. Result 1 is
independent of the correction factor X, = £log(n) —$log(n). Results 2 and 3 depend
only slightly on this correction factor. As mentioned in Section 5, since all the ad hoc

models have at least as many parameters as CRRAM, applying K, will only tilt the
Vuong’s Selection Test in favor of the CRRAM.

Notice that the CRRAM performs better in experiments 1,3,5 and 6 in wlﬁch the
experimental parameter a = (.8 than in experiments 2 and 4 in which a = 0.2. It seems
that the performance of the CRRAM depends on the experimental environment.

Results 1 through 3 evaluate the rationality postulates relative to linear rules of
thumb behaviors. There is no absolute measure to judge how well a model explains data.
However, there are facts that suggests that the CRRAM is explaining the data reasonably
well. The following facts should help the reader to form his/her own judgment about the
absolute explanatory power of the CRRAM.

Result 4: The CRRAM has good explanatory power.

Support: The pseudo R’s are generally high. Ninety percent of the subjects have
pseudo R’s greater than 0.8 and 67 percent of the subjects have pseudo R’s greater than
0.9. Figure 7 shows the distribution of pseudo R’ of all subjects for all experiments.

‘The CRRAM predicts that the bidding functions go through the point (offset,
offset) = (T,7). Equation (11) was estimated for each of the 72 subjects. For each a t-test
was performed on the hypothesis that 3 =T (i.e.. the bidding function goes through the
point (7,T)). For 86 percent of the subjects the hypothesis @, =T cannot be rejected at the

five percent level of significance.[J

The support of the above result suggests an important aspect of model evaluation
that can be easily overlooked. The CRRAM has a property of translational invariance.
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That 1s, a translation of the support of probabilities of values leaves the prediction of the
theory the same relative to the translation. This can be seen in Figures 6E, 6F and 6H in
which the predictions of CRRAM with the offset parameters are displayed against the
data. This is actually a translation of the predicted bidding function of the case with offset
equal to zero by adding (500,500) to each point. The support of Result 4 suggests that
the data has this property also. In particular, if the SOPAM is modified to, say, a
sophisticated two piece linear bidding rule such that value = 0 implies bid = 0, then the
CRRAM is a better model. If a rule of thumb does not have this translational invariant
property, it is most likely that it will be inconsistent with the data. Formally the
observation is as follows:

Observation: The data are consistent with a model with the translational invariant
property. That is, rules of thumb that are not translation invariant will generally be
rejected in favor of the CRRAM.

Until now, the analysis has focused on the full set of rationality postulates in
comparison with the ad hoc rules. The natural questions to pose concern the ability of
some reduced set of rationality postulates to explain the data. The next result addresses
the issue of the rational expectation hypothesis and identifies it as a possible source of
error of the CRRAM. As stated in the result, in all the experiments, the rational
expectation hypothesis is not consistent with the data. This result suggests that subjects
have beliefs about the distribution of risk behavior that are neither true nor consistent with
each other.

Result 5: The rational expectation hypothesis is rejected. Hence, the parameters
E(r) and ©? from individual bidding functions are not consistent with the hypothesis that
they are the same across individuals.

Support: Using the likelihood ratio test, we reject the hypothesis that all the
individual £(r) and &7 are equal at five percent significance in all experiments. The
- statistics are listed in Table 2B. O

Since the rational expectation hypothesis is rejected in Resuit 5 a natural exténsion
of the investigation is to investigate the CRRAM without the rational expectation
hypothesis. We will call the relaxed model the Belief Free CRRAM (BECRRAM). The
strategy 1s to test BFCRRAM against the three linear decision rules (MM, SIMAM and
SOPAM). Using the set of three linear rules as a benchmark, we are able to measure the
“degree” of rationality exhibited by the subjects. Although the BFCRRAM gained
substantial accuracy over CRRAM as demonstrated by Result 5, its relative accuracy
compared to the three linear rules did not change. The BFCRRAM is more accurate than
MM and SIMAM but not quite as accurate as SOPAM. This fact is stated formally in the
next three results.

Result 6: The BFCRRAM is a better statistical model than the Markdown
Model (MM).



Support: Using the Vuong's Selection Test, in five out of six experiments and in
the pooled data set, the MM can be rejected in favor of the BFCRRAM at a five percent
significance level. The statistics are listed in Table 2C. O

Result 7: The BFCRRAM is a better statistical model than the Simple Ad hoc
Model (SIMAM).

Support: Using the Vuong's Selection Test, in five out of six experiments and in
the pooled data set, the MM can be rejected in favor of the CRRAM at a five percent
significance level. The statistics are listed in Table 2C.00

Result 8: The Sophisticated Ad hoc Model is a better statistical model than the
BFCRRAM.

Support: Using the Vuong's Selection Test, the BECRRAM is rejected in favor
of the SOPAM in experiment 1 and the SOPAM is rejected in favor of the BFECRRAM in
experiment 2 - both at the five percent significance level. In all the other experiments,
they are indistinguishable from each other. In the pooled data set, the BFCRRAM is
rejected in favor of the SOPAM. The statistics are listed in Table 2C.0O3

Notice that the support for SOPAM over BFCRRAM is based only on the pooled
data thereby suggesting that the results of statistical tests of BFCRRAM against rules like
the SOPAM might be sensitive to econometric specification. In addition, the great
improvement of the CRRAM when modified to become the BFECRRAM demonstrates the
constraining power of the theory of beliefs in the game theoretic model and suggests that
generalization of the theory should focus on beliefs. Such an approach is precisely the
same as that of GPV who identified the consistency conditions -of game theory as its major
source of error.

The next result addresses the validity of the assumption employed in the
application of the CRRAM that the risk parameters of the subjects are distributed with a
log-normal distribution. The result is that the esumated risk parameters {r;} are consistent

with a log-normal distribution with mean 7 =< z r. and variance —HJ_TZ(r,. -F)*.
i I

Result 9: The risk parameters estimated from the data in all the experiments are
consistent with the hypothesis that they are log-normally distributed.

Support: The Kolomogorov-Smimov test statistics are listed in Table 5. For risk
parameters estimated from all experiments, we fail to reject the hypothesis that the risk
parameters are drawn from a log-normal distribution at a five percent level of
significance.]
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The next result addresses a very interesting question. Is the distribution of risk
parameters estimated from the data the same for all experiments? The subjects in these
experiments are drawn independently from the same general population. It is not
unreasonable to expect the measured risk attitudes in different experiments to be
statistically similar. If they were not the same then, the possibility exists that either the
sampling of subjects does not result from independent draws from the population or there
is an error in CRRAM in a broad sense. Randomly drawn risk attitudes should show up
as a random distribution of risk parameter estimates when measured by the application of
CRRAM. If the subjects’ risk parameters are drawn from the same distribution, it is not
necessary for them to have the same beliefs of this distribution. Table 4 shows the means
and the standard deviations of the estimated risk parameter r in all of the experiments.
The result is that all of the subjects in most of the experiments behaved as if their risk
parameters were drawn from the same distribution.

Result 10: The risk parameters estimated from the data in most of the six
different experiments are consistent with the hypothesis that they are drawn from the same

distribution.

Support: Kolomogorov-Smirnov test statistics are listed in Table 5. For 12 out
of 15 possible pairings of different experiments, we fail to reject the hypothesis that risk
parameter estimates are drawn from the same distribution at five percent significance.[3

7 Summary and Conclusions

This research was motivated by the possibility that people may not exhibit the full
degree of rationality that game theory assumes. In particular, two sets of principles of
rationality are of interest. The first set consists of the principles of maximizing behavior.
This set of principles is tested against the alternatives that people are following simple
rules of thumb. We use a set of three linear decision rules (the MM, the SIMAM and the
SOPAM, which is a series of increasingly sophisticated linear rules) as a benchmark of
how much maximizing behavior the subjects are exhibiting. The second set of principles
of ratonality consists of those which generate the rational expectation hypothesis which
states that, in equilibrium, all of the beliefs of all of the agents are consistent with
expenience/reality. We estimated the subjects’ beliefs about the aggregate risk behavior in
the unconstrained CRRAM and thus we were able to test whether the beliefs are
consistent with the true aggregate risk behavior.

The first two results suggests that the principles of maximizing behavior should not
be abandoned in favor of simple ad hoc deciston rules in a given economic environment.
The increasingly sophisticated linear rules of thumb are MM, SIMAM, and SOPAM. The
CRRAM is better than the first two. The SOPAM was introduced to answer the question
of how complicated can one get in the class of piece wise linear models before a rule is
found that outperforms the CRRAM? Result 3 shows that the CRRAM does not perform
as well as the SOPAM. This by no means suggests that people are using non-optimal
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rules of thumb disregarding the strategic situation. In fact, if the SOPAM is constrained
to assume some constant characteristic parameters regardless of the environment (e.g., if
the SOPAM is constrained to go through (0,0) regardless of what the offset is) then there
is no doubt that the CRRAM will perform better than all three models. Thus, we know
that game theory has limitations on its ability to predict but if it is to be improved upon by
ad hoc models then those models must exhibit some sophistication and leave parameters
free to vary from environment to environment.

Result 5 suggests that the relaxation of the rational expectation hypothesis is
supported by the data. Subjects do not appear to have fully consistent beliefs about the
true aggregate risk behavior of their fellow subjects. However, given beliefs, a subject's
behavior is quite consistent with game theory.

Results 6, 7, and 8 show that with no constraint that requires subjects' beliefs to be
the truth, the CRRAM performs better than the two simpler linear models (MM and
SIMAM) while CRRAM still does not perform as well as the sophisticated piece wise
linear model (SOPAM). The accuracy gap between the two models is very small and a
real possibility exists that Result 8 might be sensitive to the statistical specifications of the
model. That is, game theory without the full constraints of rational expectations is
sufficiently accurate that the measurement technology might be a real factor in
comparisons with the most sophisticated rules of thumb.

In summary, the results in this paper suggest that the fundamental conclusions of
CSW, KHL and GPV are all correct. The simple markdown models do not account for
behavior as well as does the CRRAM which is based on game theory. In spite of a long
history of application in the social and economic sciences as alternatives to models based
on strategic and rational behavior, neither the simple markdown model nor its natural
generalization (SIMAM) are as good as the CRRAM. The CRRAM is reasonably
accurate in a certain absolute sense (Result 4) and the estimates of the parameters have a
type of internal consistency that might be expected (Result 9 and 10). However, while the
support for optimal strategic behavior is strong, it appears that people do not exhibit the
full extent of the kind of rationality that game theory assumes. The CRRAM is not as
accurate as the SOPAM nor is the rational expectation hypothesis supported by the data
(Result 3 and 5).

It stands as an challenge for theonists to improve game theory to account for the
limited form of rationality that is observed in these experiments. The results reported here
suggest that the theory of beliefs and belief formation might be the most productive place
to work. The power of the theory is increased dramatically when the constraints that the
theory places on beliefs is relaxed. In this sense, the conclusion of this study are precisely
the same as GPV who concluded that the ““consistency conditions” of game theory were
the primary source of the theory's error.
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Appendix A

General Information:

This is an experiment in the economics of market decision making. The
instructions are simple and if you follow them carefully and make good decisions you
might earn a considerable amount of money, which will be paid to you in cash after the

experiment. :

In this experiment, you are going to participate in a market in which you will be
buying units in a sequence of independent market days or trading periods. You will each
receive a sequence of numbers from the computer, one for each period, which describe the
value to you of any decisions you might make. These numbers may differ among
individuals. You are not to reveal this information to anyone. It is your own private
information.

Redemption Values and Earnings:

During each market period you are free to purchase a unit if you want. I you
purchase a unit, you will receive the redemption value indicated on the computer for that
period. Your earnings from a unit purchased is the difference between your redemption
value for that unit and the price you paid for the unit. The formula is:

Your earnings = (redemption value) - (purchase price).

Suppose, for example, that you buy a unit and that your redemption value is 200. If you
pay 150 for the unit, then your earnings are

Earnings from unit = 200 - 150 = 50.

- Nouce that if the price paid is above the redemption value, the buyer experiences a loss.
Anyone with a net loss at the end of the experiment is allowed to work to pay the loss at a
rate of $6 per hour. The earnings will be calculated for you by the computer in each
period. The currency used in the market is francs. Each franc will be worth

dollars to you.

Market Organization:

In each period, one or more markets will be open and you will be participating in
one of the markets. The computer will determine which market you are participating in
randomly. There will be 3 participants in each market. In each market, buyers submit bids
by entering their bid into the computer when prompted. The bids will be arranged from
the highest bid to the lowest. A single unit will be sold to the highest bidder. The highest
bid and the bidder of each market will be announced by the computer. The buyer will pay
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a price equal to the bid and as a result will eam the difference between his/her redemption
value for the unit and the bid. Ties are resolved randomly by the computer. The bids of
all other bidders are nullified. They receive no redemption value and pay nothing, and so
have eaming of zero for that period.

Determination of Redemption Values:

For each buyer, the redemption value each period is determined randomly from the
following distribution. The chance of having a value between 0 and 499 is 80% and each
number from 0 to 499 has equal chance of appearing. The chance of having a value
between 500 and 999 is 20% and each number from 500 to 999 has equal chance of
appearing. Itis as if each number between 0 and 499 is stamped on 4 balls and placed in
an urn. And each-number between 500 and 999 is stamped on 1 ball and placed in the
same urn. A draw from the um determines the redemption value for an individual. The
ball is replaced and a second draw determines the redemption value for another player.
The redemption value each period is determined the same way. The following is a table of
which the probability of getting a value in a certain range is listed: (It is for your reference)

Range of Redemption value Probability of a value in this range
0-49 8%
0-99 16%
0-149 24%
0-199 32%
0-249 40%
0-299 48%
0-349 56%
0-399 | 64%
0-449 72%
0-499 80%
0-549 82%
0-599 84%
0-649 86%
0-699 88%
0-749 90%
0-799 92%
0-849 94%
0-899 96%
0-949 98%
0-999 100%
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Appendix B

To Prove:
db(vir), N1
dv " N-l+r
Proof:
b0;rHy=0
This implies

iim b(O; r, ) =0
v-30
since &(v;r) is a continuous function

1(2-2)

limy, = lim—’ = o

= v p—=p
vl v=0 y—p

substitute into W, and W, we have

mW, =lim 2aG(y,)+2(1 - a){G(x, )~ G(u, )]
=2a+2(1-a)(1-1)
=2a since imG(yx)=1
imW, =lim  (2a-1[G(x,)-G(u,)]+1-G(x,)
=(2a~1)(1-1)+1-1
=0

put into equation (4) and let jim :;—) =x, we have

N (v -1,
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since

solving for x, we have

therefore

b db
lim—=—
0y gy

N-1
X=—

N=-1+r

im 205m) __N-1

w0 gy N—1+r_
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Appendix C

To prove If b(v;r) is a solutionto  max.(v-x)"{ E.H(R(;r))}* !
then &(¥,r)isasolutionto max.(¥ -¥)'{E, H (n(xr))*
where foralle e R, e R*

V =a+Bv
b(T;r)=a +pb(v;r)
H(o +By)= H(y) forallye®R*

Eu(x)=(v-x) {E,H (n(x; r))}"“1
Ei(x)=(F -x) {Erﬁ (r(x; r))}"-1
since b 1s solution to max, Eu(x) for fix v
Eu(b) 2 Eu(x) for all xe R (1)
now
ga(p)=(v-5) {Eﬁ(r’f (5: r))}
=B (v~ b)'{E,ﬁ(a + fESff(l;v;r))}"_1 since ¥ —b =ot + Pv— (e +PBb)=B(v-b)
=B"(v=b) {E,H(n(b; r))}"_’ and let E(E; r) =o +Pr(b;r)
= B’ Eu(b)
similarly E#(o + Bx)= " Eu(x) for all xe R (1)implies
5'53(5)2 B" Eii (o + fix)
> B Eii(y)forally
= EEZ(E)B Eii(y)since B >0

= b is a solution to max Eu(x)
X






Table 1: Experimental Parameters

No. of No.inEach | No. of T= Subject Franc/Dollar
Experiment | Subjects Auction Periods a Offset Pool* mm Date
1 12 3 60 0.8 0 Cahiech 0.01 11/6/88
2 12 3 120 0.2 0 Caltech 0.01 1/30/8%
3 12 3 70 0.8 500 Caitech 0.01 5/01/89
4 12 3 100 0.2 500 Cahiech 0.01 5/02/89
5 12 3 100 0.8 0 PCC 0.01 503189
6 12 3 100 0.8 500 PCC/ahtech 0.01 505789

*The subjects are either Caltech or PCC (Pasadena City College) students.
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Table 2A: Maximum Log Likelihood Statistics

Experiment

3 4

pooled

L SOPAM

-3392
-3757
-3641
-3190

-7736
-7780
-7682
-7512

-4599
-4979
4731
4504

-6818
-6880
6792
-6706

-6414
-6428
-6380
-6289

-6598
-6982
-6677
-6516

-35557
-36806
-35903
-34717

Log Likelihood
Ratic Estimates

CRRAM
IR v

CRRAM
LRSIMAM

CRRAM
LR sopan

365
248
-203

442
-54.0
-224

380 62.3
132 -25.9
952 -112

384
79.0
-81.6

1143
345
-840.8

Log Likelihood
Ratio Standard
Deviation

1

417 CRRAM
nw, .

! -~

T1i CRRAM
W gnan

H

107 CRRAM

2
W o pan

26.5
23.8
325

12.6
16.6
225

37.5 12.2
20.7 136
16.2 20.1

28.2
250
17.8

38.4
243
14.6

27.0
20.0
20.7

Test Statistics
CRRAM vs. others

CRRAM
LR
1
T1i7 CRRAM
2
W
CRRAM
LR g\um
1
117 CRRAM
2
12 W iran
CRRAM
LR gorans
. 1
©Tvrr CRRAM
2
W opan

13.82

1042

-6.160

3.498

-3.26b

-10.3b

10.12 5.082

63921 _191b

58761 .5.56b

0.494

-1.37

-7.03b

10.02
3.242

-5.58b

46,32

17.38

-40.6b

Test Staustics
CRRAM vs. ou;ners
with correction

K, = flog(n) ~ Llog(n)

R CRRAM
—SIMAM
1
147 CRRAM
2
W pian
LRCRRAM
SOPAM
1
1147 CRRAM
1
n*Weon

-0.63

8.344 -1.65

086| -5.21b

0.35

2.22b

4.994

0.24

19.92

-18.7b
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Table 2B: Maximum Log Likelihood Statistics

Experiment

1 2 3 4 5 6 pooled
Model Estimates
L crram -3392 | -7736 -4599 -6818 -6414 -6598 | -35557
) S -5343 | -8165| -6236| -7052| -B966| -8925| 44687
Lior -3975 -7807 -5034 -6926 -6848 -7023 | -37613
Log likelihood of CRRAM w/o -3254 -7390 4563 -6717 -6383 -6542 | -34849
rational expectation hypothesis
LCRRAM w/o R.E.H. ‘
Likelihood Ratio
Test Statistics
2( Leggav = Liwng ) 3902 858 3214 468 5104 4654 18200
2( Learan = Lrasne ) 1170 142 870 216 868 850 4116

1442 834 942 418 930 962 5228
2(LCRRAMWIO REH — LCRRAM )
p-vaiue

i CRRAM vs, RNNE 1.00* 1.00% 1.00% 1.00% 1.00* 1.00* 1.00%

CRRAM vs. RASNE 100 | 100 100t} 100*| 100%| 100t| 1.00t
CRRAM w/o R.E.H. vs. CRRAM 1.00% 1.00% 1.00t 1.00% 1.00% 1.00* 1.00*

4 Denotes the CRRAM is a better model than the other.
b Denotes the CRRAM is a worse model than the other.

* Since the MM and the CRRAM have the same number of parameters, no correction is needed.

Correction for other models are: for the SIMAM. q=24: for the SOPAM, q=36; for the CRRAM, p=12,

* Indicates the model can be rejected at 5 percent significance,
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Table 2C: Maximum Log Likelihood Statistics

Experiment

-3254 -739%0 -4563 6717 -6383 -6542 -34849
-3757 -7780 -497% -6830 -6428 -6982 -36806
-3641 -7682 -4731 6792 -6380 6677 -35903

Lsopam -3190 27512 -4504 -6706 6289 6516 34719

Log Likelihood
Ratio Estimates

LR BFCRRAM 503 390 416 163 45 440 1957

LR EFCRRAM 387 292 168 75 3 135 1054

SIMAM

LR BFCRRAM -64 122 -59 -1l -04 26 -132
SOPAM

Log Likelihood
Ratio Standard
Deviation

' -~
niW JrCRRAM 34.8 343 507 238 82.5 76.4 56.0

1
1A BFCRRAM
n*Wonin 316 121 43.] 21.8 812 6738 519

]
TUi7 BFCRRAM
nw SOPAM 30.1 24.0 41.0 219 783 63.3 48.7

Test Statistics
CRRAM vs. others

LR BFCRRAM
MM 1453 11.42 8212 6.85% 0.55 5.76% 3490

1
<yi7 BFCRRAM
nW .,
[‘R BFCRRAM
SIMAM 12.28 9,10% 3807 3.442 0.04 1.992 2032
H
3137 BFCRRAM
n'Ww
SIMAM
LR BFCRRAM
SOPAM -2.13% s.08% -1.44 -0.50 -1.20 -0.41 27110

1

17 BFCRRAM

2
n*Wopam

4 Denotes the CRRAM is a better model than the other.
b Denotes the CRRAM is a worse model than the other.

33




Table 3: Psendo R2

Experiment
1 2 3 4 5 6
CRRAM
Mean of
Proads R? 0.97 0.90 0.83 0.89 0.91 0.96
Standard deviation 0.02 0.10 0.02 0.05 0.09 ¢.12
of Pseudo R?
MM
M f
o s;a‘;lo OR’ 0.92 0.91 0.66 0.89 0.90 0.74
Standard deviation 0.05 0.09] . 0.24 0.05 0.08 0.22
of Pseudo R
SIMAM
Mean of
Peenas B2 0.94 0.92 0.80 0.90 0.91 0.85
Swndarddevision | 008 | 007{ 019] o005] o003] o1
of Pseudo R?
SCPAM
Mean of
pogean of 0.97 0.93 0.84 0.91 0.92 0.87
Standard deviation 0.02 0.07 0.21 0.05 0.07 0.11
of Pseudo R?
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Table 4: Estimation of Risk Aversion Parameter (r)

Experiment
1 2 3 4 5 6
Mean of r 0476 0.528 0.713 0.654 0.350 0.423
Standard deviztion of r 0.187 0.119 0.596 0.291 0.182 0.251

Only the means and standard deviation across subjects are reported.
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Table 5: Kolomogorov-Smirnov (K-S) Test Statistics
of Risk Parameter (r) Estimates

Experiment
Exocriment 1 2 3 4 5 6
1 K-S Stats . 0.17 0.25 0.42 0.50 0.42
p-value 1.00" 0.85" 0.25* 0.10* 0.25"
2 K-S Stats 0.17 . 0.25 0.33 0.58 0.50
| pvatue 1.00* 0.85" 0.52* 0.03 0.10*
3 K-S Stats 0.25 0.25 . 0.33 0.58 0.42
p-value 0.85" 087" . 0.52" 0.03 025"
4 K-S Stats 0.42 0.5: 0.33 . 0.58 0.50
p-value 0.25* 0.52* 0.52* 0.03 0.10*
5 K-S Stats 0.50 0.58 0.58 0.58 . 0.33
p-value 0.10" 0.03 0.03 0.03 052"
6 K-S Stats 0.42 0.50 0.42 0.50 0.33 .
p-value 0.25* 0.10* 0.25" 0.10" 0.52"

K-S Statistics

p-value

All experiments vs. log-normal distribution

0.14

0.13*

* Indicates failure to reject the hypothesis that the risk parameters estimates are drawn from the same
distribution in both experiments at 5 percent significance.

* Indicates failure to reject the hypothesis that the risk parameters estimates are drawn from a log-
normal distribution at 5 percent significance.
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Figure 1

: MM and SIMAM
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Figure 2 : Sophisticated Ad hoc Model (SOPAM)
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Figure 3A : RANE & RNNE model with Nonuniform Distribution a=0.8
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Figure 3B

bid

: RANE & RNNE model with Nonuniform Distribution a=0,2
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Figure 4A : CRRAM with a;O.B, E{r)=0.7 8r2=0.1
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Figure 4B : CRRAM with a=0.8, r=0.7 sr2=0.1

"E(r) =1.0
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Figure 4C : CRRam with a=Q, g, =0.7, Elr)=0.7
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Figure 4D : CRRAM with 2=0.2, E(r)=0.7 sr2=0.1
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bid - Figure 4E : CRrraM with a=0.2, r=g.7 sr2am(. ]
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~ Figure 4F : CRRAM with a=0.2, zr=0.7, E(r)=0.7
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. ' Figure 6A : Estimatin Of Bidding Function (Exp 3 Subject 4)
id '

1500 -

-1000

500

500 1000 1500

48




Figure 6B
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Estimatin Of Bidding Funetion (Exp 5 Subject 4)
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Estimatpn Of Bidding Function {Exp 1 Subject 9)
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5 Figure 6D : Estimatin Of Bidding Function (Exp 2 Subject 9)
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bid igure &E Estimation Of Bidding Function (Exp 3 Subject 3)
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Figure 6F : Estimation Of Bidding Function {Exp 4 Subject 4)
bid A

1500 ~

1000

500

500 1000 1500

53




Figure 6G :
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Estimatipn Of Bidding Function {Exp 5 Subject 7)
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Estimation Of Bidding Function {(Exp € Subject 1)
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~Figure 7

: Distribution Of Pseudo R~2
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