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Richard D. McKelvey and Thomas R. Palfrey

Abstract

We report on a series of experiments in which individuals play a version of the centipede
game. In this game, two players alternately get a chance to take the larger portion of a
continually escalating pile of money. As soon as one person takes, the game ends with
that player getting the larger portion of the pile, and the other player getting the smaller
portion. If one views the experiment as a complete information game, all standard game
theoretic equilibrium concepts predict the first mover should take the large pile on the
first round. The experimental results show that this does not occur.

An alternative explanation for the data can be given if we reconsider the game as
a game of incomplete information in which there is some uncertainty over the payoff
functions of the players. In particular, if the subjects believe there is some small likelihood
that the opponent is an altruist, then in the equilibrium of this incomplete information
game, players adopt mixed strategies in the early rounds of the experiment, with the
probability of taking increasing as the pile gets larger. We investigate how well a version
of this model explains the data observed in the centipede experiments.






AN EXPERIMENTAL STUDY OF THE
CENTIPEDE GAME

Richard D. McKelvey and Thomas R. Palfrey*

1 Overview of the Experiment and the Results

This paper reports the results of several experimental games for which the predictions of
Nash equilibrium are widely acknowledged to be intuitively unsatisfactory. We explain
the deviations from the standard predictions using an approach that combines recent
developments in game theory with a parametric specification of the errors individuals
might make. We construct a structural econometric model and estimate the extent to
which the behavior is explainable by game-theoretic considerations. This model allows
us to measure the amount of errors individuals make, and the amount of learning by
subjects as they gain experience. Also, we can measure individuals’ beliefs about the
behavior of the other players, measure the amount of heterogeneity in those beliefs, and
test whether these beliefs are consistent with the actual behavior of the other players.

In the games we investigate, the use of backward induction and/or the elimination of
dominated strategies leads to a unique Nash prediction, but there are clear benefits to
the players if for some reason, some players fail to behave in this fashion. Thus, we have
intentionally chosen an environment in which we expect Nash equilibrium to perform
at its worst. The best known example of a game in this class is the finitely repeated
prisoners’ dilemma. We focus on an even simpler and, we believe more compelling,
example of such a game, the closely related alternating-move game that has come to be
known as the “centipede game” (See Binmore (1987)).

The centipede game is-a finite move extensive form two person game in which each
player alternately gets a turn to either terminate the game with a favorable payoff to
itself, or continue the game, resulting in social gains for the pair. As far as we are aware,

“Support for this research was provided in part by NSF grants #IST-8513679 and #SES-878650 to
the California Institute of Technology. We thank Mahmoud El-Gamal for valuable discussions concerning
the econometric estimation, and we thank Richard Boylan, Mark Fey and Arthur Lupia for able research
assistance. We thank the JPL-Caltech joint computing project for granting us time on the CRAY X-MP
at the Jet Propulsion Laboratory., We also are grateful for comments from many seminar participants.
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the centipede game was first introduced by Rosenthal {1982), and has subsequently been
studied by Binmore (1987), Kreps (1990) and Reny (1988). The original versions of the
game consisted of a sequence of a hundred moves (hence the name “centipede”) with
linearly increasing payoffs. More recently a concise version of the centipede game with
exponentially increasing payoffs, called the “Share or Quit” game, is studied by Megiddo
(1986), and a slightly modified version of this game is analyzed by Aumann (1988). It is
this exponential version that we study here.

In Aumann’s version of the centipede game, two piles of money are on the table. One
pile is larger than the other. There are two players, each of whom alternately gets a
turn in which it can choose either to take the larger of the two piles of money or to pass.
When one player takes, the game ends, with the player whose turn it is getting the large
pile and the other player getting the small pile. On the other hand, whenever a player
passes, both piles are multiplied by some fixed amount, and the play proceeds to the
next player. There are a finite number of moves to the game, and the number is known
in advance to both players. In Aumann’s version of the game, the pot starts at $10.30,
which is divided into a large pile of $10.00 and a small pile of $.50. Each time a player
passes, both piles are multiplied by 10. The game proceeds a total of six moves, i. e,
three moves for each player.

It is easy to show that any Nash equilibrium to the centipede game involves the first
~ player taking the large pile on the first move - in spite of the fact that in an eight move
version of the game, both players could be multi-millionaires if they were to pass every
round. Since all Nash equilibria make the same outcome prediction, clearly any of the
usual refinements of Nash equilibrium also make the same prediction. We thus have a
situation where there is an unambiguous prediction made by game theory.

Despite the unambiguous prediction, game theorists have not seemed too comfortable
with the above analysis of the game, wondering whether it really reflects the way in which
anyone would play such a game (See e. g. Binmore (1987) and Aumann (1988)). Yet,
there has been no previous experimental study of this game.!

In the simple versions of the centipede game we study, the experimental outcomes are
quite different from the Nash predictions. To give an idea how badly the Nash equilibrium
(or iterated elimination of dominated strategies) predicts outcomes, only 37 of 662 games
end-with the first player taking the large pile on the first move, while 23 of the games
end with both players passing at every move! (The rest of the outcomes are scattered in
between.} While these facts may be the most striking feature of the experiment to many
readers, we believe-that the real challenge is to come up with an internally consistent
model to explain these data—a model which allows us to address the issue of how badly
(or perhaps how well) game theory predicts behavior in these difficult environments.

IThere is related experimental work on the prisoner’s dilemma game by Selten and Stoecker (1986)
and on an ultimatum bargaining game with an increasing cake by Guth et al. (1991). Also related
experimental work on incomplete information games can be found in Camerer and Weigelt (1988), Jung
et al. (1989), and Neral and Ochs {1989).
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One class of explanations for how such apparently irrational behavior could arise is
based on reputation effects and incomplete information.? This is the approach we adopt.
The idea is that players believe there is some possibility that their opponent has payoffs
different from the ones we tried to induce in the laboratory. In our game, if a player
places sufficient weight in its utility function on the payoff to the opponent, the rational
strategy is to always pass. Such a player is labeled an aftruist.® If it is believed that
there is some likelihood that each player may be an altruist, then it can pay a selfish
player to try to mimic the behavior of an altruist in an attempt to develop a reputation
for passing. These incentives to mimic are very powerful, in the sense that a very small
belief that altruists are in the subject pool can generate a lot of mimicking, even with a
very short horizon.

The structure of the centipede game we run is sufficiently simple that we can solve
for the equilibrium of a parametrized version of this reputational model. Using standard
maximum likelihood techniques we can then fit this model. Despite the assumption of
only a single kind of deviation from the “selfish” payoffs normally assumed in induced-
value theory? we are able to fit the data remarkably well, and obtain an estimate of the
proportion of selfish players on the order of 95 percent of the subject pool. In addition
to estimating the proportion of altruists in the subject pool, we also estimate the beliefs
of the players about this proportion. Surprisingly, we find that subjects’ beliefs are, on
average, equal to the estimated “true” proportion of altruists, thus providing evidence
in favor of a strong version of rational expectations. We also estimate a decision error
rate to be on the order of 5%-10% for inexperienced subjects and roughly half that for
experienced subjects, indicating two things: 1) a significant amount of learning is taking
place, and 2) even with inexperienced subjects, only a small fraction of their behavior
is unaccounted for by a simple game-theoretic equilibrium model in which beliefs are
accurate.

Our experiments can be compared to those of Camerer and Weigelt (1988). In our
experiments, we find that we can explain the data only if we assume that there is a
belief that a certain percentage of the subjects in the population are altruists. This
is equivalent to asserting that subjects did not believe that the utility functions we
attempted to induce are the same as the utility functions that all subjects really use for
making their decisions. L. e., subjects have their own personal beliefs about parameters
of the experimental design that are at odds with those of the experimental design. This
is very similar to the finding in Camerer and Weigelt, who found that one way to account
for behavior in their experiments was to introduce “homemade priors” —i.e., beliefs that
there were more subjects who always act cooperatively similar to our {altruists) than
were actually induced to be so in their experimental design. (They used a rule-of-thumb
procedure to obtain a homemade prior point estimate of 17%.) Our analysis differs from

*See Kreps and Wilson (1982a), Kreps et al. (1982), Fudenberg and Maskin (1986), and Kreps (1990)
pp- 336-543.

*We called them “irrationals” in an carlier version of the paper. The equilibrium implications of this
kind of altruism has been explored in a different kind of experimental game by Palfrey and Rosenthal
(1988). See also Cooper et al. {1990).

1See Smith (1976).



Camerer and Weigelt partly in that we expand on this notion and integrate it into a
structural econometric model, which we then estimate using classical techniques. This
enables us to estimate the number of subjects that actually behave in such a fashion,
and to address the question as to whether the beliefs of subjects are consistent.

Our experiments can also be compared to the literature on repeated prisoner’s dilem-
mas. This literature {see eg., Selten and Stoecker {1986) for a review) finds that expe-
rienced subjects exhibit a pattern of “tacit cooperation’ until shortly before the end of
the game, when they start to adopt non-cooperative behavior. Such behavior would be
predicted by incomplete information models like that of Kreps et al (1982). However,
Selten and Stoecker also find that inexperienced subjects do not immediately adopt this
pattern of play, but that it takes them some time to “learn to cooperate.” Selten and
Stoecker develop a learning theory model that is not based on optimizing behavior to
account for such a learning phase. One could alternatively develop a model similar to the
one used here, where in addition to incomplete information about the payoffs of others,
all subjects have some chance of making errors, which decreases over time. If sorne other
subjects might be making errors, then it could be in the interest of all subjects to take
some time to learn to cooperate, since they can masquerade as slow learners. Thus, a
natural analog of the model used here might offer an alternative explanation for the data
in Selten and Stoecker.

2 Experiments

Our budget is too constrained to use the payoffs proposed by Aumann. So we run a
rather more modest version of the centipede game. In our laboratory games, we stait
with a total pot of §.50 divided into a large pile of $.40 and a small pile of $.10. Fach time
a player passes, both piles are multiplied by two. We consider both a two round (four
move) and a three round (six move) version of the game. This leads to the extensive forms
illustrated in Figures 1 and 2. In addition, we consider a version of the four move game
in which all payoffs are quadrupled. This “high payoff” experiment therefore produced
a payoff structure equivalent to the last four moves of the six move game.

In each experimental session we used a total of twenty subjects. The subjects were
divided into two groups at the beginning of the experiment, which we called the Red and
the Blue groups. In each game, the Red player was the first mover, and the Blue player
was the second mover. Each subject then participated in ten games, one with each of
the subjects in the-other group.®-The experiments were all conducted through computer
terminals. Subjects did not communicate with other subjects except through the strategy
choices they made. Before each game, each subject was matched with another subject,
of the opposite color, with whom they had not been previously matched, and then the

°Only one of the three versions of the game was played in a given session. In Experiments 2 and 6,
not all subjects showed up for the experiment, so there were only 18 subjects, with 9 in each group, and
consequently each subject played only 9 games.
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6.40
P P P P 160
T T T T
40 20 1.60 .80
10 .80 40 3.20

Figure 1: The Four Move Centipede Game.

i 2 i 2 1 2 95 60
P P P P P P 6.40
T T T T T T
40 .20 1.60 .80 6.40 3.20
10 .80 .40 3.20 1.60 12.80

Figure 2: The Six Move Centipede Game.

subjects who were matched with each other played the game in either Figure 1 or Figure 2
depending on the experiment.

All details described above were made common knowledge to the players, at least as
much as is possible in a laboratory setting. For example, the instructions were read to
the subjects with everyone in the same room (See Appendix A for the exact instructions
read to the subjects). Thus it was common knowledge that no subject was ever matched
with any other subject more than once. In fact we used a rotating matching scheme
which insures that no player ¢ ever plays against a player who has previously played
someone who has played someone that ¢ has already played. (Further, for any positive
integer n, the sentence which replaces the phrase “who has previously played someone
who has played someone” in the previous sentence with n copies of the same phrase is
also true). In principle, this matching scheme should eliminate potential supergame or
cooperative behavior, vet at the same time allow us to obtain multiple observations on
each individual’s behavior.

We conducted a total of seven sessions(see Table 1.) Our subjects were students from
Pasadena Community College (PCC) and from the California Institute of Technology
(CIT). No subject was used in more than one session. Sessions 1-3 involved the regular
four move version of the game, session 4 involved the high payoff four move game, and
session 5-7 involved the six move version of the game. This gives us a total of 58 subjects
and 281 plays of on the four move game, and 58 subjects with 281 plays of on the six
move game, and 20 subjects with 100 plays of the high payoff game. Subjects were paid
in cash the cumulative amount that they earned in the experiment plus a fixed armount



for showing up ($ 3.00 for CIT students and $ 5.00 for PCC students).®

Session 1 | Subject # games/ | total # # High
# Pool | subjects | subject | games | moves | Payofls
1 PCC 20 10 100 4 No
2 PCC 18 9 81 4 No
3 CIT 20 10 100 4 No
4 CIT 20 10 100 4 Yes
5 CIT 20 10 100 6 No
6 PCC 18 9 81 6 No
7 PCC 20 10 100 6 No

Table 1

Experimental Design

3 Descriptive Summary of Data

The data from the experiment is given in Appendix C. In Table 2, we present some simple
descriptive statistics summarizing the behavior of the subjects in our experiment. Table
2a gives the raw outcomes for

the experiment, indicating how many games end at each of the terminal outcomes.
Thus n; is the number of games ending after the i** move i. e., with the subject who
chooses TAKE at node i. Table 2b gives the implied probabilities, p; of taking at the 3th
decision node of the game conditional on having reached that node. In other words, p;
is the proportion of games among those that reached node 7, in which the subject who

moves at node ¢ chose TAKE. Thus, in a game with m decision nodes, p; = Z—,,ﬁ:-lw
; T

All standard game theoretic solutions (Nash equilibrium, iterated elimination of dom-
inated strategies, maximin, rationalizability, etc.,) would predict p; = 1 forall1 <z < m.
The weaker requirement of rationality that subjects not adopt dominated strategies would
- predict that p,, = 1. As is evident from the table, we can reject out of hand either of
these hypotheses of rationality. In only 7% of the four move games, 1% of the six move
games and 15% of the high payofl games does the first mover choose TAKE on the first
round. So thesubjects clearly-do not-iteratively eliminate dominated strategies. Further,
when the experiment reaches the last move, the player with the last move adopts the
dominated strategy of choosing PASS roughly 25% of the time in the four move games’
15% in the six move games, and 31% in the high payofl games.

5The stakes in these games were very large by usual standards. Students earned from a low of § 7.00
to a high of § 75.00, in sessions that averaged less than 1 hour — average earnings were § 20.50 (3 13.40
in the four move, $ 30.77 in the six move, and $ 41.50 in the high payoff four move version).

"It should be noted that T of the 14 cases in this category are attributable to two of the 29 subjects.



SCSSiOH N1 Na N3 T4 Tis | Mg N7
I (PCC) [ 6 26 44 20 4
Four 2 (PCC)|8 31 32 9 1
Moves 3 (CIT) |6 43 28 14 9
Total 20 100 104 43 14
High Dayoff | 4 (CIT) |15 37 32 11 5
Six 5 (CITy |2 97739 28 201 1
Moves 6 (PCCy |0 2 3 37 2879
7 (PCCY |0 7 14 43 23112 1
Total 2 18 h6 108 71|22 4
Table 2a

Raw Qutcomes

Session ™ P2 3 P4 s Ps
1{PCC) | .06 28 .65 .83
(100) (94) (68) (24)
Four |2 (PCC) |.10 A2 .76 .90
Move (81) (73) (42) (10)
3 (CIT) | .08 46 .55 .61
(100) (94) (51} (23)
Total 1-3 | .07 38 .65 75
(281) (261) (161) (57)
High |4 (CIT) |.15 .44 67 .69
Payoff (100) (85) (48) (16)

5(CIT) .02 .09 44 36 |.91 .50
100) (98) (89 (0 |(22) (@
Six 6 (PCC) | .00 02 04 49 72 .82
Move (81) (81) (79) (76) | (39) (11)
T(PCC) | .00 .07 a5 54 | .64 .92
(100) (100) (93) (79) | (36) (13)
Total 5-7 | .01 06 21 53 13 .85
(281) (279) (261} (205) | (97) (26)

Table 2b®
Implied Probabilities
for the Centipede Game

®The number in parenthesis is the number of observations in the game at that node.



(Game Ny TNy ns3 Tig Toeg | Mg Ty
Four Move | 20 100 104 43 14

(Exp #1-3)

1-5 9 44 52 29 11

6-10 11 56 52 14 3

Six Move 0 18 56 108 7T1:i22 4
(Exp #5-7)

1-5 0 8 25 48 48113 3
6-10 2 16 31 60 239 1
Table 3a
Raw Outcomes
Game h D2 D3 Pa Ps Ps

Four Move | .07 .38 .65 s
(Exp #1-3) | (281) (261) (161) {(5T7)
1-5 .06 .32 57 75
(145) (136) (92) (40)
6-10 .08 49 75 82
(136} (125) (69) (17)
Six Move .01 .06 21 .53 73 .85
(Exp #5-7) | (281) (279) {(261) (205) | (97) (26)
1-5 .00 .06 18 43 715 .81
(145) (145) (137) (112) | (64) (16)
6-10 .01 07 .25 .65 (VN
(136) (134) (124) (93) | (33) (10)
Table 3b

in the low payoff centipede game

Implied Mixed Strategies
Comparison of early versus late plays




The most obvious and consistent pattern in the data is that in all of the experiments,
the probability of taking increases as we get closer to the last move (see Table 2b). The
only exception to this pattern is in Experiment 5 (CIT) in the last two moves, where
the probabilities drop from .91 to .50. But here the figure at the last move is based on
only two observations. Thus any model which we use to explain the data should make
this basic prediction. In addition to this dominant feature, there are some less obvious
patterns of the data, which we now discuss.

Table 3 indicates that there are some differences between the earlier and later plays of
the game in a given treatment which are supportive of the proposition that as subjects
gain more experience with the game, their behavior appears “more rational.” Recall
that with the matching scheme we use, there is no reason to expect players to play any
differently in earlier games than in later games. Table 3 shows that in both the four
and six move experiments, subjects chose TAKE with higher probability at all stages of
the game (with the exception of node 5 of the six move games). Further, the number of
subjects that adopt the dominated strategy of passing on the last move drops to 4 of 27,
or 15%.

There is at least one other interesting pattern in the data. Specifically, if we look
at individual level data, there are several subjects who PASS at every opportunity they
have.® We call such subjects altruists, because an obvious way to rationalize their behav-
ior is to assume that they have a utility function that is monotonically increasing in the
sum of the red and blue payoffs, rather than a selfish utility function that only depends
on that players’ own payoff. Overall, there were a total of 9 players who chose PASS at
every opportunity. Roughly half {5) of these were red players and half (5) were in 4-move
games. At the other extreme (i.e. the Nash equilibrium prediction), only 1 out of all 138
subjects chose TAKE at every opportunity. This indicates the strong possibility that
players who will always choose PASS do exist in our subject pool, and also suggests that
a theory which successfully accounts for the data will almost certainly have to admit the
existence of at least a small fraction such subjects.

Finally, there are interesting non-patterns in the data. Specifically, unlike the ten
cases cited above, the preponderance of the subject behavior is inconsistent with the use
of a single pure strategy throughout all games they played. For example, subject #8
in experiment #1 (a red player) chooses TAKE at the first chance in the second game
it participates in, then PASS at both opportunities in the next game, PASS at both
opportunities in the fourth game, TAKE at the first chance in the fifth game, and PASS
at the first chance in the sixth game. Fairly common irregularities of this sort, which
appear rather haphazard from a casual glance, would seem to require some degree of
randomness to explain. While some of this behavior may indicate evidence of the use of
mixed strategies, some such behavior is impossible to rationalize, even by resorting to
the possibility of altruistic individuals or Bayesian updating across games. For example,
subject #16 in experiment #1 (a blue player), chooses PASS at the last node of the

®Some of these subjects had as many as 24 opportunities to TAKE in the 10 games they played! See
Appendix C.



first game, but takes at the first opportunity a few games later. Rationalization of this
subject’s behavior as altruistic in the first game is contradicted by the subject’s behavior
in the later game. Rational play cannot account for some sequences of plays we observe
in the data, even with a model that admits the possibility of altruistic players.

4 'The Model

In what follows, we comstruct a structural econometric model based on the theory of
games of incomplete information that is simultaneously consistent with the experimental
design and the underlying theory. Standard maximum likelihood techniques can then be
applied to estimate the underlying structural parameters.

The model we construct consists of an underlying incomplete information game to-
gether with a specification of two sources of errors — errors in actions and errors in
beliefs. The model is constructed to account for both the time-series nature of our data
and for the dependence across observations, features of the data set that derive from
a design in which every subject plays a sequence of games against different opponents.
The model is able to account for the broad descriptive findings summarized in the pre-
vious section. By parametrizing the structure of the errors, we can also address issues of
whether there is learning going on over time, whether there is heterogeneity in beliefs,
and whether individuals’ beliefs are “rational”.

We first describe the basic model, and then describe the two sources of errors.

4.1 The Basic Model

If, as appears to be the case, there are a substantial number of altruists in our subject
pool, it seems reasonable to assume that the possible existence of such individuals is
commonly known by all subjects. Our basic model is thus a game of two sided incomplete
information where each individual can be one of two types (selfish or altruistic}, and there
is incomplete information about the number of altruists in the population.

In our model, a selfish individual is defined as an individual who derives utility only
from its own payoff, and acts to maximize this utility. In analogy to our definition of
a selfish individual, a natural definition of an altruist would be as an individual who
derives utility-not-only-from-its ewn-payoff, but also from-the payoff of the other player.
For our purposes, to avoid having to make parametric assumptions about the form of
the utility functions, it is more convenient to define an altruist in terms of the strategy
choice rather than in terms of the utility function. Thus, we define an altruist as an
individual who always chooses PASS. However, it is important to note that we could
obtain an equivalent model by making parametric assumptions on the form of the utility
functions. For example, if we were to assume that the utility to player ¢ is a convex
combination of its own payoff and that of its opponent, then any individual who places

10



a weight of at least = on the payoff of the opponent has a dominant strategy to choose
PASS in every round of the experiment. Thus, defining altruists to be individuals who
satisfy this condition would lead to equivalent behavior for the altruists.

The extensive form of the basic model for the case when the probability of a selfish
individual equals ¢ is shown in Figure 3. This is a standard game of incomplete informa-
tion. There is an initial move by nature in which the types of both players are drawn. If
a player is altruistic, then the player has a trivial sirategy choice (namely, it can PASS).
If a player is selfish, then it can choose either PASS or TAKE.

Player Player Player Player Player Player Player Player
1 2 1 2 1 n-2 n-1 n
9 ? P rad » » A e o @ » » red 41
7 A A A 7ol 7 A
S N SN
i | I I i | | |
] | I I | | | I
| I I I ! l | I
AN I AN ! AN I AN !
! | ! | )
q(1-q) © P \.P\C e N P‘ 5 ® @ @ 1 N P‘ B N T bu+
I N I \ | \ I \ ol
BN NOEENE
L IR
NP2 N by N bia | N by
(1-9 ; o— - e & © —o, —1 Inet
4 NG P, P PP P B AN | P
\I I \I I \I I \I I "
: i I E I I I I
I I | I I
a a a. a
S I I I |
1./ s 3 7/ 7 5 7/ s n-1/ e
9 I Ve Vg Ve /7 Ve 7 a
4 P P P P P ® & ® i iz P me
n+
T T T T T T T T
a1 g a3 a4 g ) 251 &y
b1 b2 b3 b4 b5 bn—2 bn-l bn

Figure 3: Centipede Game with Incomplete Information
Dashed lines represent information sets and open
~eircles are starting nodes, with probabilities indicated.

4.1.1 Equilibrium of the Basic Model

Most of the formal analysis of the equilibrium appears in an appendix, but it is instruc-
tive to provide a brief overview of the equilibrium strategies, and to summarize how
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equilibrium strategies vary over the family of games indexed by ¢ and ¢. We analytically
derive in the appendix the solution to the N-move game with ¢ = 0, for arbitrary values
of ¢ (the common knowledge belief that a randomly selected player is an altruist) ranging
from 0 to 1.

Given a level of altruism ¢, a strategy for the first player in a six move game is a
vector, (p1, pa, ps), where p; specifies the probability that RED chooses TAKE on move
¢ conditional on RED being a selfish player. Similarly, a strategy for BLUE is a vector
(P2, pa, pa) giving the probability that BLUE chooses TAKE on the corresponding move
conditional that BLUE is selfish. Thus a strategy pair is a vector p = (p1,p2, .., ),
where the odd components are moves by RED and the even components are moves by
BLUE. Similar notation is used for the four move game.

In Appendix A, we prove that there is a unique sequential equilibrium to the game, and
solve for this equilibrium as a function of ¢. Let us write p(q) for the solution as a function
of ¢. From the solution, we can compute the implied probabilities of choosing TAKE at
each move, and the probability s(g) = (s1{¢), ..., s7(q)) of observing each of the possible
outcomes, T, PT, PPT, PPPT, PPPPT, PPPPPT, PPPPPP. Thus, si(g) = ¢pi(q),
s2(q) = ¢*(1 — p1(q))p2(q) + q(L — q)pa(q), etc. Figures 4 and 5 illustrate the probability
of choosing TAKE at each node for the four and six move games respectively, and Figures
6 and 7 give the probabilities of the outcomes as a function of ¢.

The derivation of these strategies proceeds by verifying some properties of the equi-
librium.

Property 1: For any ¢, in any equilibrium, BLUE assigns 0 probability of choosing
PASS on its last move.

Property 2: If ¢ = 0, the (essentially} unique equilibrium is for both RED and BLUE
players to always choose TAKE.

Property 3: If ¢ > %, the unique equilibrium is for both players to always choose

PASS, except on the last move, when BLUE chooses TAKE.

Property 4. 1If ¢ € (0, %) then there is no pure strategy equilibrium, but there does
exist an equilibrium in mixed strategies.

It follows from the properties of the solution that the equilibrium predictions of game
theory are extremely sensitive to the beliefs that players have about the proportion of
altruists in the population. The basic intuition of what is going on is well-summarized
in the literature on signalling and reputation building (for example, Kreps and Wilson
(1982b), Kreps et al. (1982)) and is exposited very nicely for a one-sided incomplete
information version of the centipede game more recently in Kreps (1990).

The guiding principle is very easy to understand, even if one cannot follow the technical
details of the appendix. Because of the uncertainty in the game when it is not comimon
knowledge that everyone is self-interested, it will generally be worthwhile for a selfish

12
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Figure 4: Implied Probabilities for Four Move Game.
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player to mimic altruistic behavior, in order to confuse the opponent as to whether or
not it is an altruist. This is not terribly different from the fact that in poker it may be
a good idea to bluff some of the time in order to confuse your opponent about whether
or not you have a good hand. In our games, for any amount of uncertainty of this
sort, equilibrium will involve some degree of imitation. The form of the imitation in our
setting is obvious: selfish players sometimes pass, to mimic an altruist. By imitating an
altruist one might trick an opponent into passing, thereby raising one’s final payoff in
the game. The amount of imitation depends directly on the beliefs about the likelihood
of a randomly selected player being an altruist. The more likely players believe there
are altruists in the population, the more imitation there is. In fact, if these beliefs are
sufficiently high (at least 2, in our versions of the centipede game), then selfish players
will always imitate altruists, thereby completely reversing the predictions of game theory
when it is common knowledge that there are no altruists. Between 0 and 1, the theory
predicts the use of mixed strategies by self-interested players.

4.1.2 Limitations of the Basic Model

The primary observation to make from the solution to the basic model is that this model
can account for the main feature of the data noted in the previous section — namely that
probabilities of taking increase as the game progresses. For any level of altruism above
= in the four move game, and for any value above 2% in the six move game, the solution
satisfies the property that p; > p; whenever 7 > j.

Despite the fact that the basic model accounts for the main pattern in the data, it
1s just as obvious that the basic model cannot account for the remaining features of the
data. It is apparent from Figures 6 and 7 that for any value of ¢, there is at least one
outcome with a 0 or close to 0 probability of occurrence. So the model will fit poorly
data in which all of the possible outcomes occur. Nor can it account for any consistent
patterns of learning in the data, or some of the irregularities described earlier.

To account for these features of the data, we introduce two additional elements to the
model — the possibility of errors in actions, and the possibility of errors in beliefs.

4.2 Errors in Actions — Noisy Play

One explanation of the apparently hizarre irregularities that we noted in the previous
section is that players may “experiment” with different strategies in order to see what
happens. Alternatively, subjects may simply “goof”, either by pressing the wrong key,
or by accidentally confusing which color player they are, or by failing to notice that it
is the last round, or some other random event. Lacking a good theory for how and why
this experimentation or goofing takes place, a natural way to model it is simply as noise.
So we refer to it as noisy play.
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We model noisy play in the following way. In game ¢, at node s, if p* is the equilibrium
probability of TAKE that the player at that node attempts to implement, we assume
that the player actually chooses TAKE with probability (1 — ¢;)p*, and makes a random
move (i.e. TAKES or PASSES with probability .5) with probability ¢;. Therefore, we
can view I as the probability that a player experiments, or, alternatively, goofs in the
#* game played. We call ¢; the error rate in game t. We assume that both types (selfish
and altruistic) of players make errors at this rate at all nodes of game #, and that this is

common knowledge among the players.

4.2.1 Learning

If the reasons for noisy play are along the lines just suggested, then it is natural to
believe that the incidence of such noisy play will decline with experience. For one thing,
as experience accumulates, the informational value of experimenting with alternative
strategies declines, as subjects gather information about how other subjects are likely to
behave. Perhaps more to the point, the informational value will decline over the course
of the 10 games a subject plays simply because, as the horizon becomes nearer, there
are fewer and fewer games where the information accumulated by experimentation can
be capitalized on. For different, but perhaps more obvious reasons, the likelihood that
a subject will goof is likely to decline with-experience. Such a decline is indicated in a
wide range of experimental data in economics and psychology, spanning many different
kinds of tasks and environments. We call this decline learning.

We assume a particular parametric form for the error rate as a function of ¢. Specifi-
cally, we assume that individuals follow an exponential learning curve. The initial error
rate is denoted by € and the learning parameter is §. Therefore,

¢ = Ee—&(t—i}

Notice that, while according to this specification the error rate may be different for
different ¢, it is assumed to be the same for all individuals, and the same at all nodes of the
game. Maore complicated specifications are possible, but we suspect that such parameter
proliferation would be unlikely to shed much more light on the data. When solving for
the equilibrium of the game, we assume that players are aware that they experiment
(or rmght goof} and learn, and are aware that other players experiment (or goof) and
learn too.? Formally, when solving for the Bayesian equlhbuum TAKE probabilities, we
assume that ¢-and § are commeon knowledge.

®An alternative specification would have subjects being aware that others experiment and goof, but
act as if they do not make these “errors.” Such a model is analytically more tractable and leads to very
similar conclusions, but seems less appealing on theoretical grounds.
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4.2.2 Equilibrium with errors in actions

For € > 0, we do not have an analytical solution for the equilibrium. The solutions were
numerically calculated using GAMBIT, a computer algorithm for calculating equilibrium
strategies to incomplete information games, developed by McKelvey (1990). For compaz-
ison, the equilibrium strategies as a function of ¢, for € = .2 are illustrated graphically
in Figures 8 to 11. These figures can be compared to Figures 4 to 7. Figures 8 and
9 illustrate the probability of choosing TAKE at at each node for the four and six move
games respectively, and Figures 10 and 11 give the probabilities of the outcomes as a
function of ¢.

4.3 Errors in Beliefs — Heterogeneous Beliefs

In addition to assuming that individuals can make errors in their strategies, we also
assume that there can be errors in their beliefs. Thus, we assume that there is a true
probability ) that individuals are selfish (yielding probability 1 - ) of altruists), but that
each individual has a belief, g; of the likelihood of selfish players, which may be different
than the true Q.1°

In particular individuals’ beliefs can differ from each other, giving rise to heterogeneous

beliefs.

For individual ¢, denote by ¢; the belief individual : holds that a randomly selected
opponent is selfish. We assume that each individual maintains its belief throughout all
10 games that it plays. Because this converts the simple centipede game into a Bayesian
game, it is necessary to make some kind of assumption about the beliefs a player has
about its opponent’s beliefs, etc. etc. If there were no heterogeneity in beliefs, so that
g; = q for all 7, then one possibility is that a player’s beliefs are correct — that is, g
is common knowledge, and ¢ = Q. We call this rational expectations. One can then
solve for the Bayesian equilibrium of the game played in a session (which is unique), as
a function of ¢, 4,¢, and ¢. An analytical solution is derived in Appendix A for the case
of e=0

To allow for heterogeneity, we make a parametric assumption that the beliefs of the
individuals are independently drawn from a Beta distribution with parameters (a, 5),
where the mean of the distribution, ¢, 1s simply equal to ﬁ
to specify higher order beliefs. One possibility is to assume it is common knowledge
among the players that beliefs are independently drawn from a Beta distribution with
parameters {a, #) and that the pair (e, 8) is also common knowledge among the players.
This version of a “rational expectations” model of higher order beliefs leads to serious

computational problems when numerically solving for the equilibrium strategies. Instead,

There are several ways

1°This is related to the idea of homemade priors propesed by Camerer and Weigelt (1988), where
they posit that subjects’ beliefs about the distribution of types may differ from the distribution of types
announced in the instructions of the experiment.
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we use a simpler!! version of the higher order beliefs, which might be called an egotism
model. Bach player plays the game as if it were common knowledge that the opponent
had the same belief. In other words, while we, the econometricians, assume there is
heterogeneity in beliefs, we solve the game in which the players do have heterogeneous
beliefs, but believe that everyone’s beliefs are alike. This enables us to use the same basic
techniques in solving for the Bayesian equilibrium strategies for players with different
beliefs that one would use if there were homogeneous beliefs. We can then investigate a
weaker form of rational expectations: is the average belief equal to the true proportion
of altruists? (i.e. is ;55 = @Q7)

Given the assumptions that we made regarding the form of the heterogeneity in beliefs,
the introduction of errors in beliefs does not change the computation of the equilibrium
for a given individual. It only changes the aggregate behavior we will expect to see over
a group of individuals. For example, at an error rate of ¢; = .2, and parameters «, 8 for
the Beta distribution, we will expect to see aggregate behavior in period ¢ which is the
average of the behavior generated by the solutions in Figure 11, when we integrate out ¢
with respect to the Beta distribution B(a, ).

5 Maximum Likelihood Estimation of (¢, 3,Q,¢, )

5.1 Derivation of the Likelihood Function

Consider the version of the game where a player draws belief q. For every ¢, and for every
€;, and for each of that player’s decision nodes, v, the equilibrium solution derived in the
previous section vields a probability that the decision at that node will be TAKE, condi-
tional on the player at that decision node being selfish, and conditional on that player not
making an error. Denote that probability ps(e,q,v). Therefore, the probability that a
selfish type of that player would TAKE at v is equal to Ps(e;, ¢, v) = 4+ (1—5)ps(e, q,v),
and the probability that an altruistic type of this player would take is Fy(e;, ¢, 1) = £.
For each individual, we observe a collection of decisions that are made at all nodes reached
in all games played by that player. Let Ny denote the set of decision nodes visited by
player i in the ** game played by 7, and let Dy; denote the corresponding set of deci-
sions made by ¢ at each of those nodes. Then, for any given (¢, 8, ¢,v) with v € N;; we
can compute P,(¢;,q,v) from above, by setting ¢, = ee~®¢~1), From this we compute
71 Dyis €, 6, ¢}, the probability that a selfish ¢ would have made decisions D;; in game ¢,
with beliefs ¢, and noise/learning parameters (¢, §), and it equal the product of p.(e, g, v)
over all v reached by in game t. Letting D; denote the set of all decisions by player 1,
we define 77(D;;¢€, 8, ¢) to be the product of the 7 (D€, 6, ¢) taken over ali ¢, One can
similarly derive ##(D;; ¢, 4, q), the probability that an altruistic ¢ would have made that
same collection of decisions. Therefore, if @ is the true population parameter for the
fraction of selfish players, then the likelihood of observing D;, without conditioning on

L'While it is simpler, it is no less arbitrary.
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v’s type is given by:

ﬂ—i(Di; Qaea 61 q) = wa(Di;eaévq) + (1 - Q)Wzg(Di;‘g? 67 q)

Finally, if g is drawn from the Beta distribution with parameters («, 3), and density
B(g; e, B), then the likelihood of ohserving D; without conditioning on ¢ is given by:

1
Si(Di;Qaeaéaaaﬁ)ZJQ wﬁ(DtQacsé'JQ)B(anu@)dq

Therefore, the log of the likelihood function for a sample of observations, D = {Dy, ..., D)
18 just

I
L(DJ Qv E,5,CE,}3) = Zlog['sz(Dz: Qa 6761(176”'

For any sample of observations, ), we then find the set of parameter values that
maximize L. This was done by a global grid search using the Cray X-MP at the Jet
Propulsion Laboratory.

5.2 Treatments and Hypotheses

Several estimations were performed. In our experimental design, there were 3 treatment
vartables:

(1) The length of the game {either 4-move or 6-move);

{(2) The size of the two piles at the beginning of the game (either high
payoff, ($1.60,%.40), or low pavoff, ($.40, 5.10));

(3) The subject pool (either Caltech undergraduates (CIT) or Pasadena
City College students (PCC)).

In addition to the statistical comparison of these, we were also interested in testing
three other hypotheses:

(1) Rational Expectations. [s.the estimated value of @ equal to the
mean of the estimated distribution of priors, 3%5?

(2) Learning. Is the estimated value of § positive and significantly dif-
ferent from 07

(3) Heterogeneity. Is the variance of the estimated distribution of priors

significantly different from 07
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5.3 Estimation Results

Table 4 reports the results from the estimations. Before reporting any statistical tests,
we summarize several interesting features of the parameter estimates.

First, the mean of the distribution of beliefs about the proportion of altruists in the
population in all the estimations was in the neighborhood of 5%. Second, the amount
of heterogeneity of beliefs was estimated to be small in magnitude. Figures 12 and 13

graph the density function of the estimated Beta distribution for the pooled sample of
all experimental treatments for the four and six move experiments, respectlvely Second,
if one looks at the rational expectations estimates (which constrain g = ——= to equal Q)
the constrained estimate of the Beta distribution is nearly identical to the unconst1a1ned
estimate of the Beta distribution. Consequently, the rational expectations estimates of
it are nearly identical across all treatments. Therefore, if we are unable to reject rational
expectations, then it would seem that these beliefs, as well as the true distribution of
altruists are to a large extent independent of the treatments. The biggest difference across
the treatments is in the estimates of the amount of noisy play. While the estimates of é
are quite stable across treatments, the estimates of € are not. This is most apparent in
the comparison of the 4-move and the 6-move estimates of e. We discuss this below after
reporting statistical tests. Finally, observe that in the § = 0 estimates (no heterogeneity
of beliefs), the estimate of p is consistently much larger than the estimate of (2, and the
recovered error rates are higher.

5.4 Statistical Tests

Table 5 reports likelihood ratio x? tests for comparisons of the various treatments, and
for testing the hypotheses of rational expectations, learning, and heterogeneity.

The test for rational expectations is not only unrejectable in most cases, but is impres-
sively unrejectable. The one exception is for the CIT subject pool, where the difference
is significant at the 5% level, but not the 1% level.

In the test for learning, the null hypothesis that 6 = 0 is clearly rejected for all
treatments, at essentially any level of significance. Results from these estimations are
reported in Table 4. We conclude that learning effects are clearly identified in the data.
Subjects are experimenting less and/or making fewer errors as they gain experience. The
magnitude of the parameter estimates of & indicate that subjects make roughly half as
many errors in the last game, compared to the first game. '

To test for heterogeneity, we estimate a model in which a single belief parameter, ¢,
is estimated instead of estimating the two parameter model, a’'and 3 (See Table 4, rows
marked § = 0). While this is not strictly nested in the Beta distribution model (since
the Beta family does not include degenerate distributions), the homogeneous model can
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Treatment & | B i Q —InL
unconstrained | 42 | 2.75 | .939 | .856 | .18 | .045 | 327.35

[aa83
On

Four { p=gq 441 2,75 | 941 | .941 | .18 ; .045 | 327.41
Move | 6 =0 68| 2.50 | .965 | .95 | .21 .00 | 345.08
=10 - |- 972 1 850 1 .23 .02 | 371.04
unconstrained | 40 | 2.00 | .952 | .904 | .06 | .03 | 352.07
Six pH=gq 381 2.00 }.950 | .95 .06 | .03 | 352.76
Move | § =0 34| 1.75 | 951 | 908 | .05 | .00 | 371.01
=10 - | = 976 1 .85 1.22 | .03 | 442.96
unconstrained | 42 | 2.75 | .939 | .974 { .14 | .03 | 464.14
PCC 1 p=g 40 [ 2.75 1 .936 | .936 : .11 | .04 | 464.57
=10 - |- 952 | 882 1 .18 | .05 | 508.60
unconstrained | 42 | 1.25 | .971 | .880 | .22 | .04 | 340.27
CIT Ip=gq 28 | 1.00 | .966 | .966 | .22 | .04 | 342.57
og=10 - |- 994 175 .27 | 01 1 424.83
High Payoft 64 | 2,25 | .966 | .900 | .22 | .05 | 107.11
All 4-More 48 12.25 | .955 | 938 | .22 | .05 | 435.73
All Low 281 1.75 | .941 | 938 | .14 | .05 | 702.80
All Sessions 40 1 2,00 | .952 | 930} .18 | .05 | 813.38
Table 4

Results from maximum likelihood estimation.®

“Rows marked u = g report parameter estimates under the rational expectations restriction that
a_-hg—_Q Rows marked & = 0 are parameter estimates under the hypothesis of no learning. Rows marked
o = () are parameter estimates under the assumption of no heterogeneity.

- 2 log likelihood

Hypothesis Treatment | d.f. ratio
Rational expectations (i = ¢) 4-move 1 12
6-move 1 1.38

Heterogeneity {o = 0) 4-move 1 87.38*
6-move 1 181.78~

Learning (6 = 0} 4-move 1 35.46"
G-move 1 37.88%

4-move vs 6-move 5 51.16%
4-high vs 4-low (Payoff Treatment} 5 2.54
PCC vs CIT All 5 17.94%
4-move 5 9.63

6-move ) 3.42

Table 5

Likelihood ratio tests

“significant at 1 % level.



be approximated by the Beta distribution model by constraining (a + 3) to be greater
than or equal to some large number. In this sense, homogeneity is approximately nested
in our heterogeneity model. Therefore, we treat the homogeneous model as if it is nested
in the heterogeneous model, and report a standard x* test based on likelihood ratios.
All statistical tests were highly significant (see Table 6). Note that by setting () and all
¢; to one, then one gets a pure random model where individuals TAKE with probability
%. Hence for any probability of taking less than or equal %«, the pure random model is a
special case of the homogeneous model. Thus the above findings mean we can also reject
the pure random model.

a 18 |z |0 ¢ |8 |-t
PCC 4 | 74.0 | 3.75 | .95 | .096 | .210 | -04 | 216.47
CIT 4 AlL|36.0 |15 |.96].866|.22 | .05 214.35
PCC6 | 40.0 |25 |.94].906 | .06 | .04 | 231.28
CIT 6 R0.0 | 2.25 | .97 [ .902 | .06 | .03 | 116.58

Table 6
CIT-PCC
Estimates, broken down into 4-move
and 6-move treatments.

Parameter | Treatment d.f. i -2 log L ratio
€ 4-move vs 6-move | 1 39.28¢
CIT vs PCC 1 3.90
o 4-move vs 6-move | 1 5.76
CIT vs PCC 1 02

Table 7

Chi-squared tests for differences in € and ¢
across treatments (under assumption that 4 = @)

“gignificant at p = .01 level

The payoff level treatment, variable is not significant. This is reassuring, as it indicates
that the results are relatively robust.

The other treatment effects, CIT/PCC and 4-move/6<move, are both significant. One
source of the statistical difference between the PCC and CIT estimates apparently derives
from the fact that 2 of the CIT data was for 4-move games, while only % of the PCC data
was for 4-move games. Consequently, we break down the statistical comparison between
PCC and CIT into the 4- and 6-move game treatments (See Table 6). The subject pool
affect is not significant in the 6-move treatment and is barely significant at the 10% level

in the 4-move treatment (See Table 5).
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In order to pin down the source of the treatment effects we performed several tests.
The first one was to test for differences in learning effects across treatments. This test is
done by simultaneously reestimating the parameters for each of the different treatments,
subject to the constraint that § was the same for each treatment, and then conducting a
likelihood ratio test. Second, we tested for differences in the noise parameter, e. The y?
tests are reported in Table 7. The results reflect the estimates in Tables 4 and 5. The
only significant (1% level) difference is the estimated error rate ¢ in the 4-move versus
6-move games. The CIT/PCC difference in ¢ is significant at the 5% level, but this is
due to reasons given in the previous paragraph. The difference between ¢ in the 6-move
game and 4-move game is barely significant at the 5% level.

5.5 Fit

In order to get a rough measure of how well our model fits the data, we used the un-
constrained parameter estimates from Table 4 to obtain predicted aggregate outcomes.
Table 8 displays the predicted frequencies of each of the five possible outcomes of the
4-move game, and compares these frequencies to the observed frequencies. This compar-
ison is also broken down into which period, ¢, ¢ =1 ..., 10, to a game was played. Table
9 displays similar numbers for the 6-move games. The obvious striking feature is that the
model fits very well, and picks up the time trends nicely. One difference is that we seem
to obtain a better fit to the 4-move data than to the 6-move data. The sum of squared
errors for the 6-move games is 50% higher than for the 4-move games (.012 vs .008).
The tables can also be used to help identify where the model seems to be doing badly.
In the 4-move games, the model overestimates p; and pg and underestimates p, and ps.
Basically, what happens over time is that data is becoming most heavily concentrated in
the ps,p; outcomes. This is being picked up in the model by “learning”: as ¢ declines
the model predicts more outcomes at these terminal nodes. However, our exponential
decay specification does not allow ¢; to decay very much in the late rounds. We suspect
other specifications of the learning curve (e.g. linear) might improve the fit.

In the 6-move games, the model underestimates p3. One reason for this is fairly clear.
In order to obtain a high value of the likelihood function, the model is forced to estimate
a low error rate, simply because there are almost no observations at the first terminal
node.'? This suggests that one might do significantly better in fitting the 6-move data
using an error model where the error rate is dependent on the node—in particular, with
a-lower error rate at the first node. However, in the absence of a theoretically sound
justification for.doing.so, such parameter proliferation at this stage of the analysis would
seem to be of questionable value.

121n fact, there were no such observations in the first 9 periods and only 2 in the last period.



6 Conclusions

Overall, the data from the centipede game offers strong support for the theory of games.
In addition, the version of rational expectations, or on average “correct beliefs” could not
be rejected. While we observe some subject pool differences they are small in magnitude
and barely significant. Learning is clearly going on and can be measured. Subjects
make roughly half as many mistakes with experience then they made in early play. The
payoff treatment had no significant effect-suggesting that our results are reliable. The
model could still probably be improved by letting the error rate depend on the node.
Homogeneity of beliefs is strongly rejected.

Recall that the only significant difference between the four and the six move experi-
ments was that the estimated error was significantly lower in the six move experiments
than in the four move experiments. A model in which the error rate is a function of the
expected utility difference between the choices an individual is forced to make might well
account for the observed behavior in both the four and the six move experiments. This
might be a promising direction for future research.
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Appendix A

In this appendix, we prove that there is a unique sequential equilibrium to the N move
centipede game with two sided incomplete information over the level of altruism.

There are N nodes, numbered i = 1,2,..., N. Player 1 moves at the odd nodes. and
Player 2 moves at the even nodes. We use the terminology “player i” to refer to the
player who moves at node i. Let the payofl if player i takes at node i be (a;,b;) where
a; is payoff to player ¢ and b; is payoff to player i — 1 (or ¢ +1). Also, if i = N + 1, then
(ai, b;) refers to the payoff if player N passes at the last node. Define n; = fﬂf’bﬁ We
assume that a;12 > a; > biyy, and that #; is the same for all i. We write n = 7;. (A
similar solution can be derived when the #; are different).

Now a strategy for the game can be characterized by a pair of vectors p = (p1,...,pn)
and r = (rq,...,7n), where for any node 4, p; is the probability that a selfish type takes
at that node, and r; is the conditicnal probability, as assessed by player ¢ at node 1, of
the other player being selfish. Let ¢ be the initial probability of selfishness. So r, = ¢.

Lemma 1 If peR™ and reRY are a sequential equilibrium, then

(a) Foralli, p;=0=p; =0 for all j <i.
(b) pn=1. Also, p;=1=i=N ori=N — 1.

Proof:

(a) Assume p; = 0. Clearly p;_; = 0, because at node i — 1, the value
to player ¢ — 1 of passing is at least @;41, which is by assumption
greater than a;_, the payoff from taking.

(b) By dominance, py = 1. Suppose p; = 1 for i < N — 1. Then by
Bayes rule 741 = 0, so p;41 = 0 is the best response by player 1 + 1,
since 1’s type has been revealed. But p;1; = 0 = p; = 0 by part (a),
which is a contradiction.

Define k to be the first node at which 0 < p;, and & to be the first node for which ;o= 1.
Clearlty k£ < k. Then k and % partition the nodes into at most three sets, which we refer
to as the passing stage (¢ < k), the mizing stage (k <1 < k), and the taking stage (k < 1).
From Lemma 1 it follows that there are no pure strategies in the mixing stage. From
Lemma 1(b), it follows that the taking stage is at least one and at most two moves.

Lemma 2 In any sequential equilibrium (p,r), for1 <i < N —1,
(o) O<pi<l=rpg=1-—n
(8) ripp<l-n=p =0
(¢) ripp>t~-n=p=1
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Proof.

(a) Assume 0 < p; < 1. Let v; be the value to player i at node &
given equilibrium play from node 7 on. Write vy4q = ang1. Now if
t =N ~1, then vity = vn41 = aygqr = @iqe. If 1 < N — 1, then
by Lemma 1, 0 < p; = 0 < pi4a, which implies vipy = @i42. Now
in both cases 0 < p; implies v; = a; = r;piprbiyq + (1 — ripig1)aipn.
Solving for r;pi11, we get riPis = %—% =1-7.

(b) Hripip <1-—mn, then at node z, v; = rip;pibipy + (1 — ripig1 iy =
Gite—TiPi+1(@ivz—biy1 > @ipo—(@ipn—a;) = a;. Sov; > a; = p; = 0.

() If ripigs > 1 —n, then piyy > 0 => pyyp >0 (by 1). Hence, v;4o =
;1. By similar argument to (b), v; < a; = p; = 1.

Lemma 3 For generic ¢, for any sequential equilibrium there are an even number of

nodes in the miving stage. Le., k = k+ 2K for some integer 0 < K < % For any
k< K,

(a) ripo =1 —(1—,;:9‘3“ 1

() meygp=1-7""

Proof: We first show (a) and (b), and then show F = k + 2K.
(a) For any node 7, Bayes rule implies
(1 = pisa)ri _ i = Pigar
(I=pip)ri+(L=r) 1 —pipar

Ti1ta = (1)

By assumption r; = ¢. And since in the passing stage p; = 0, it follows that T = ¢. Now
if both ¢ and ¢ + 2 are in the mixing stage, it follows from Lemma 1 that ¢ + 1 is also,
implying 0 < piy1 < 1. So by Lemma 3, ripiy; = 1 — 5. Hence, (1) becomes

==y (1—=r)
Ti+z—m-1——“_n (2)

By induction, it follows that as long as & < %(_A- — k), then &k + 2k < k is in the mixing
stage. So

I = I—gq
T1E+2k:1_T:1_ T}k .

(b) As above, as long as both 7 and ¢ — 2 are in the mixing stage, we get

(1 —rizg)
Uy

T,.':_!_H
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Solving for r;_,, we get

Ti—o = 1 - 77(1 it T',').

Now from Lemma 2, it follows, since py =1,

Hence, by induction, as long as k < -i;(_i; — k), we have

Moeae =1 —nf(1—rg)) =1 — "

Finally, to show that there are an even number of nodes in the mixing stage, assume,
to the contrary that there are an odd number. Then we can write k¥ = k + 2k + 1 for
some £ > 0. Thus £ = & — 1 — 2k. So by part (b) we have rz = 1 — n*+1. But by

(a) we have ry =1 — (1 — g) = ¢, implying that g = 1 — 1]""‘1 For generic g, this is a
contradiction, 1mpIy1ng that £ = k+ 2k for some k > 0. If k > 2 , then E>kE+N>N,
which contradicts Lemma 1(b). Hence k£ = k + 2k for some 0 < k < &¥ |

Theorem 4 For generic q, there is a unique sequential equilibrium (p, ) which is char-
acterized as follows: Let I be the smallest integer greater than or equal to . Ifl—-q < qf,
set K=I—-1,k=1andk =21 —1. If1—q > ¢!, let K be the largest integer with
1—g<y¥, k=N, and k=% —2K. The solution then satisfies

(6) ifi >k, thenripy =0 and p; = 1
(¢) ifk<i<k,
K

(i} ifi=k thenripg =1~ nK, and p; = LLWK‘I

(i) ifi=k+2k, with1 <k < K, then riz1 =1 —95*, and

— 1-5
Pi = [ ER1F

(i) ifi =k +2k+1, with0 <k < K, thenr,+1=1—-(1k—_+‘§),

.
Pz'=—1'§1—_%

7

and

Proof: The formuli for r; and p; in parts (a)(b) and (c) follow by application of the
previous Lemmas together with Bayes rule. In particular in (a), p; = 0 follows from the
definition of k, and riyq = ¢ follows from p; = 0 for j < i together with Bayes rule. In
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(¢}, all the formuli for r;; follow from Lemma 3. In (c) part (i), we set k& =14+ 1 in (1)
and solve for p; to get
The1 — Tkt

Pr =

T The1 = TE-1TEH
But rj = ¢ and rpy =1 — 7%, So

mq_l_‘_??]\’

Pr qnh

In parts (i1) and (iil) of (c), we apply Lemma 2a to get that p; = %Z_Zif Substituting in

for the values of r;_y give the required formuli.

Thus, it only remains to prove the assertions about & and k. We first prove two
preliminary inequalities. First, note, £ > 1 implies, by Lemma 2,

P11 =0 = rmoapp<1-—7

= q(_ﬁ- <l-n

= q + ?717\" . 1 g 7?]{ . nk-l—l
= ] - q 2 771‘(4‘1

Hence,

l—g<pftis k=1 (1)
Second, note £ = N — 1 implies, by Lemma 2

=1 = rmpp,21-—1

K
nt —1
_q_i_K_ >1—7p
7? -
= l—g<pt*
Hence,
l—g>npf ' k=N (2)

Let I = [£]. There are two cases.
Case I: 1—¢<n!

From Lemma 3, we have K % — K < [%] —1=12> K+ 1.. Thus we have

<
1—q < n! <%+ But from (1), this implies & = 1. Now since & > N — 1, it follows

34



that K =T —1,and k =k +2K =21 - 1.

Case IT: 1 —¢>9nf

Now p; > 0 = ﬁ'ﬁij\:& >0=1—q< 5" Supposel-—gq < pftt

have & = 1, and by the same argument as Case I, K = —1 = 1 — ¢ < p&*!
contradiction. Hence we must have

. Then, from (1), we
=7, a

TF]{+1 < 1 _ q < ??I\’

So K is the largest integer with 1 — ¢ < ™. But now, from (2), it follows that k£ = N.
|

In the centipede games described in the text, the piles grow at an exponential rate:

There are real numbers ¢ > d > 1 with a; = ¢b; and a1 = da; for all 2. Son = C;'{f 5o In
our experiments ¢ = 4, and d = 2, so n = %

for the two and three inning games (¥ = 4 and N = 6) for these parameters.

The figures in the text show the solution

It is interesting to note that since the solution depends only on 7, the above solution
also applies if there are linearly increasing payoffs of the form a;11 = a; 4 ¢, and b4 =
bi + ¢ (with ¢ > 0), as long as a; > b3y = b + ¢. Hence picking a;, b;, and ¢ so that
z;:gi = ';j:gi;g = %, (e.g., ay = 60, by = 20, ¢ = 30) one can obtain a game with linearly
increasing payoffs whose solution is exactly the same as the solution of the game with

exponentially increasing payoffs treated in this paper.
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Appendix B

Bxperiment Instructions

This is an experiment in group decision making, and you will be paid for your par-
ticipation in cash, at the end of the experiment. Different subjects may earn different
amounts. What you earn depends partly on your decisions, partly on the decisions of
others, and partly on chance.

The entire experiment will take place through computer terminals, and all interaction
between you will take place through the computers. It is important that you not talk
or in any way try to communicate with other subjects during the experiments. If you
disobey the rules, we will have to ask you to leave the experiment.

We will start with a brief instruction period. During the instruction period, you will
be given a complete description of the experiment and will be shown how to use the
computers. You must take a quiz after the instruction period. So it is important that
you listen carefully. If you have any questions during the instruction period, raise your
hand and your question will be answered so everyone can hear. If any difliculties arise
after the experiment has begun, raise your hand, and an experimenter will come and
assist you.

The subjects will be divided into two groups, containing 10 subjects each. The groups
will be labeled the RED group and the BLUE group. To determine which color you are,
will you each please select an envelope as the experimenter passes by you.

[EXPERIMENTER PASS OUT ENVELOPES]

I you chose BLUE, you will be BLUL for the entire experiment. If you chose RED,
you will be RED for the entire experiment. Please remember your color, because the
instructions are slightly different for the BLUE and the RED subjects.

In this experiment, you will be playing the following game, for real money.

First, you are matched with an opponent of the opposite color. There are two piles of
money: a Large Pile and a Small Pile. At the beginning of the game the Large Pile has
40 cents and the Small Pile has 10 cents.

RED has the first move and can either “Pass” or “Take”. If RED chooses “Take”,
RED gets the Large Pile of 40 cents, BLUE gets the small pile of 10 cents, and the game
is over. If RED chooses “Pass”, both piles double and it 1s BLUE’s turn.

The Large Pile now contains 80 cents and the Small Pile 20 cents. BLUE can take or
pass. If BLUE takes, BLUE ends up with the large pile of 80 cents and RED ends up
with the small pile of 20 cents and the game is over. If BLUE passes, both piles double
and it is RED’s turn again.
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This continues for a total of six turns, or three turns for each player. On each move,
if a player takes, he or she gets the large pile, his or her opponent gets the smail pile,
and the game is over. If the player passes, both piles double again and it 1s the other
player’s turn.

The last move of the game is move six, and is BLUE’s move (if the game even gets
this far). The Large pile now contains $§12.80 and the small pile contains $3.20. If BLUE
takes, BLUE gets the large pile of $12.80 and RED gets the small pile of $3.20 cents.
If BLUE passes, then the piles double again. RED then gets the Large Pile, contalning
$25.60 and BLUE gets the Small Pile, containing $6.40. This is summarized m the
following table.

PAYOFF CHART FOR DECISION EXPERIMENT
Move # Large Small | Red’s Blue's

1 2 3 4 5 6 |Pile Pile |Payoff Payoff
T A0 10 40 10

P T .80 .20 20 .80

P P T 1.60 .40 1.60 40

P P P T 3.2 .80 .80 3.20
P P P P T 6.40  1.60 |6.40 1.60
P P P P P T|1280 320 !3.20 12.80
P P P P P P|2560 640 2560 6.40

[EXPERIMENTER HAND OUT PAYOFF TABLE]
Go over table to explain what is in each column and row.

The experiment consists of 10 games. In each game, you are matched with a different
player of the opposite color from yours. Thus, if vou are a BLUE player, in each game,
you will be matched with a RED player. If you are a RED player, in each game you are
matched with a BLUE player. Since there are ten subjects of each color, this means that
vou will be matched with each of the subjects of the other color exzactly once. So if your
label is RED, you will be matched with each of the BLUE subjects ezactly once. If you
are BLUE, you will be matched with each of the RED subjects ezactly once.

We will now begin the computer instruction session. Will all the BLUE subjects please
move to the terminals on the left side of the room, and all the RED subjects move to the
terminals on the right side of the room.

[SUBJECTS MOVE TO CORRECT TERMINALS]

During the instruction session, we will teach you how to use the computer by going
through a few practice games. During the instruction session, do not hit any keys until
you are told to do so, and when you are told to enter information, type exactly what you
are told to type. You are not paid for these practice games.
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Please turn on your computer now by pushing the button labeled “MASTER” on the
right hand side of the panel underneath the screen.

[WAIT FOR SUBJECTS TO TURN ON COMPUTERS]

When the computer prompts you for your name, type vour full name. Then hit the
ENTER key.
[WAIT FOR SUBJECTS TO ENTER NAMES]

When you are asked to enter your color, type R if your color is RED, and B if your
color is BLUE. Then hit ENTER.
[WAIT FOR SUBJECTS TO ENTER COLORS]

You now see the experiment screen. Throughout the experiment, the bottom of the
screen will tell you what is currently happening, and the top will tell you the history
of what happened in the previous games. Since the experiment has not begun yet, the
top part of the screen is currently empty. The bottom part of the screen tells you vour
subject number and your color. It also tells you the subject number of the player you
are matched against in the first game. Is there anyone whose color is not correct?

[WAIT FOR RESPONSE]

Please record your color and subject number on the top left hand corner of your record
sheet. Also record the number of the subject you are matched against in the first game.

Fach game is represented by a row in the upper screen, and the player you will be
matched with in each of the ten games appears in the column labeled “OPP” (which
stands for “opponent™) on the right side of the screen. It is important to note that you
will never be paired with the same player twice.

We will now start the first practice game. Remember, do not hit any keys until you
are told to do so. :

[MASTER HIT KEY TO START FIRST GAME]

You now see on the bottom part of the screen that the first game has begun, and you
are told who you are matched against. If you are a RED player, you are told that it is
your move, and are given a description of the choices available to you. If you are a BLUE
player, you are told that it is your opponents move, and are told the choices available to
your opponent.

Will all the RED players now choose PASS by typing in P on your terminals now.
~ [WAIT FOR SUBJECTS TO CHOOSE]

Since RED chose P, this is recorded on the top part of the screen with a P in the
first RED column, and the cursor has moved on to the second column, which is BLUE,
indicating that it is BLUE’s move.

On the bottom part of the screen, the BLUE players are now told that it is their turn
to choose, and are told the choices they can make. The RED players are told that it is
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their opponent’s turn to choose, and are told the choices that their opponent can make.
Notice, that there is now a Large Pile of $.80 and a Small Pile of §.20.

Will all the BLUE players now please choose TAKE by typing T at your terminal
now.

[WAIT FOR SUBJECTS TO CHOOSE]

Since BLUE chose T, the first game has ended. On the bottom part of the screen, you
are told that the game is over, and that the next game will begin shortly. On the top
part of the screen, BLUE’s move is recorded with a T in the second column. The payoffs
from the first game for both yourself and your opponent are recorded on the right hand
side of the screen in the columns labeled “Payofl”. Your own payoff is in your color.
That of your opponent is in the opponent’s color.

Please record your own payoff on the record sheet that is provided.

[WAIT FOR SUBJECTS TO RECORD PAYOFFS]

You are not being paid for the practice session, but if this were the real experiment,
then the payolff you have recorded would be money you have earned from the first game,
and you would be paid this amount for that game at the end of the experiment. The
total you earn over all ten real games is what you will be paid for your participation in
the experiment.

We will now proceed to the second practice game.
[MASTER HIT KEY TO START SECOND GAME]

You now see that you have been matched with a new player of the opposite color, and

that the second game has begun. Does everyone see this?
[WAIT FOR RESPONSE]

The rules for the second game are exactly like the first. The RED player gets the first
Imove.

DO RED-P, BLUE-P, RED-P|

Now notice that it is BLUE’s move. It is the last move of the game, The Large
Pile now contains $3.20, and the Small Pile contains $.80. If the BLUE player chooses
TAKE, then the game ends. The BLUE player receives the Large Pile and the RED
player receives the Small Pile. If the BLUE player chooses PASS, both piles double, and
then the game ends. The RED player receives the Large Pile, which now contains $6.40,
and the BLUE player receives the Small Pile, containing $1.60.

Will the BLUE player please choose PASS by typing P at your terminal now.
[WAIT FOR SUBJECTS TO CHOOSE]

The second practice game is now over. Please record your payoff on the second line
of your record sheet.

[WAIT FOR PLAYERS TO RECORD PAYOFFS]
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[MASTER HIT KEY TO START THIRD GAME]

We now go to the third practice game. Notice again that you have a new opponent.
Will all the RED players please choose TAKE by typing T at your terminal now.
[WAIT FOR PLAYERS TO CHOOSE]}

Since the RED player chose TAKE on the first move, that the game is over, and we
proceed on to the next game. Since RED chose TAKE on the first move, BLUE did not
get any chance to move.

Please record your payoff for the third game on the third line of your record sheet.

[WAIT FOR PLAYERS TO RECORD PAYOFFS]

This concludes the practice session. In the actual experiment there will be ten games
instead of three, and, of course, it will be up to you to make your own decisions. At the
end of game ten, the experiment ends and we will pay each of you privately, in cash, the
TOTAL amount you have accumulated during all ten games, plus your guaranteed five
dollar participation fee. No other person will be told how much cash you earned in the
experiment. You need not tell any other participants how much you earned.

Are there any questions before we pass out the quiz?
[EXPERIMENTER TAKE QUESTIONS]

0. K., then we will now have you take the guiz.
[PASS OUT QUIZ)
[COLLECT AND MARK QUIZZES)
[HAND QUIZZES BACK AND GO THRU CORRECT ANSWERS]

We will now begin with the actual experiment. If there are any problems from this
point on, raise your hand and an experimenter will come and assist you. When the
computer asks for your name, please start as before by typing in your name. Wait for
the computer to ask for your color, then respond with the correct color.

[START EXPERIMENT]
[CHECK THAT COLORS ARE OK BEFORE BEGINNING EXPERIMENT]
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APPENDIX C

Experimental Data

The following tables give the data for our experiments. Each row represents a subject.
The columns are

Col 1:  Experiment number
Col 2:  Subject number
Col 3:  Subject color (1=Red, 2=Blue)
Col 3+ j7: Outcome of game j. Letting k& be the entry in this column, and m
be the number of moves in the game {m = 4 for Exp. 1-4, m = 6
for Exp. 5-7), then

- <m= game ended with 7" on move k&
"] =m+ 1= game ended with P on move m

We use the following matching scheme: In game j, Red subject 7 is matched with Blue
subject [(z + 7 — 1)mod n] + n, where n is the number of subjects of each color in the
experiment. Thus, with ten subjects of each color, in the first game, Red i is matched
with Blue 10 + 7. In the second game, Red i 1s matched with Blue 11 + ¢, where 11 +
10 is subject 11.

11 1 3 3 3 3 2 3 2 2 2 3 111 2 3 2 4 4 4 4 3 3
12 1 4 2 4 4 4 4 2 4 4 2 112 2 4 3 4 3 1 3 4 3
13 1 3 3 2 2 3 3 3 4 3 2 1 13 2 3 2 3 2 2 3 2 3
1 4 1 4 3 3 4 3 2 3 3 3 2 1 14 2 4 3 4 3 3 2 3 3
15 1 21 3 13 3 3 3 2 2 1 15 2 2 3 2 4 2 1 3 4
1 6 1 5 3 4 3 5 4 4 3 3 3 116 2 5 1 3 2 4 3 3 1
17 1 4 2 2 3 4 3 2 3 2 3 1 17 2 4 3 3 4 3 4 2 3
18 1 2 1 5 4 1 3 3 4 3 3 1 18 2 2 2 4 1 3 3 2 2
19 1.3 3 4 3 2 2 3 1 3 2 119 2 3 1 2 3 3 2 3 4
1 10 1 4 2 4 2 3 1 3 3 25 1 20 2 4 3 5 3 5 3 3 4

Experiment 1

{Four move, PCC)
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(Four move, CIT)

3 2 2 2 2 2 2 2

2

11 2
23 4 1 3 3 1 2 2

4
4
4

4

3

2

™

[

134 3 5 1 3 3 3

14
15

3

o |

™

o™

]

3

3

2 3 2 3

4

4

2

2 2 1

1

3 3 2 2

4

o]

™

™

3

4

1

17 3 3 3 3 3

4
4
4
4

3 3 5 4 2 1 3

7

4

18 3 3 2 2 2

19 3 5

3

2 3 3 2

5

3 3 3 3 3 2

9
4 10 3 2

4

1 20 3 3 4 4 4 4 3 3 3 4

1

Experiment 4
(Four move, High payoff, CIT})
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Experiment 5

(Six move, CIT)
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