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1. Introduction

The problem of determining the optimal procedure for the replacement
of capital or military equipment has been a constant concern of industrial
firms and military organizations, Numerous studies have been made in
the field from early days. .

Following the pioneer work of J.S. Taylor [24] and Harold Hotelling
[14], Gabriel Preinreich [21] infroduces the important concept of the replace-
ment chain, which shows that the economic replacement of a machine is
affected by the entire chain of successive renewals over the firm's planning
horizon. Armen Alchian [2] considers the replacement problem in the
explicit functional framework and shows the simple algorithm of the solution.
Dynamic programming technique is successfully applied by Richard WmHHEmb.
[3], and further extended by Stuart Dreyfus [6]. Dreyfus presents a general
solution to the probliem of evaluating the decision to keep or to replace
involving a finite, fixed time horizon model.

Conceived and developed in conjunction with the investment and inventory
theory, the sindy of optimal umwwmn.mnbmbw has riever really extended its benefits
te the study of consumer mﬂww._&mm._

The primary objective of this paper is to study the replacement problems
within the inter-temporal utility maximization framework. z A consumer has
a finite, fixed time rowwno#.ﬁ%gw and derives utility from the consumption .0».
both durables and non-durables. In the paper we choose housing as an example
of 2 consumer durable,

The paper is organized as follows: Section 2 presents a short survey

of the literature of replacement theory. Section 3 introduces a fairly detailed

exposition of the model, in which replacement occurs once. Section 4

derives and characterizes the optimal consumption sequence. The well-
known ¥isherian result is observed, i.e., the optimal consumption sequence
is increasing (decreasing} provided the ratio of interest rate to the subjective
time preference is larger {smaller) than unity. Section 5 considers the
problem of comparative dynamics, i.e., changing some parameters such

as the price of a new house or the market rate of interest and observing

the corresponding changes in the consumption sequence.” It is noted that
the change in the price of a new house shifts the whole consumption sequence
either upward or downward depending upon what happens to the final stock

of wealth as the price changes. The ambiguity of the results presented
arises because of the presence of "wealth effects'! which correspond closely
with comparable "income effects” in static analysis. The chariges in the
market rate of interest have a less simple effect upon the consumption .
sequence than the price change. The effect of price change and interest rate

change upon the optimal replacement time is also examined in Section 5.

2. A Survey of the Literature in the Replacement Theory

The theory of replacement has been founded upon the objective of

" spacing equipment replacements so as to maximize the " goodwill, " or

the present value of quasi-rent stream less the present value of all ‘
capital outlays, associated with a chain of successive equipment renewals
in the ?.m:ﬁméo.in of an muwanﬂmsmzu,m investment horizon, 4 Depending
upon the nature of the horizon we may separate the replacement problem

into the following three categories: (1) finite chain, (2) infinite chain,

{3) fixed time horizon,

(1) Finite Chain. The entrepreneur's horizon extends over a finite

chain of machines, i.e., he plans the introduction of 2 machine which is



to be replaced some given finite number of times in the future. The
problem is stated 25 one of maximizing an expression of the form (1)
below with respect to ‘m.w {(} = 1,2,+.+,n), the period of the respective
machine's service,
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To simplify the notation we adopt L, such that Ly = M_.uym.w k=12,""",n,

G - the good will of a finite chain (n) of machines
C(Ly, m.um - the quasi-rent of the machine purchased at time Hd
of age a

m.w:...m. O.wv - the scrap value of the jth machine at time Hd

O.m - the cost of the jth machine

r(t) - the rate of interest.

For brevity we assume the entrepreneur makes the replacement with the
identical type of machine and we also assume the constancy of the scrap

valie and the rate of interest. Thus we have the following "'goodwill"

function,
L : L
! -rt -rLy z -rt -rLp
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Following Preinreich, instead of differentiating the above expression with
respect to m.u {j = L, ++,n) we differentiate the conceptionally identical

but operationally easier form below with respect to Hu {§ = 1,2, ,n}

T,
] 3 _rt ..H..H.u.
(3) m.wn.\, Qe d + (8 + Gy j)e  I-C
(o]

Here the subscript j = 1,2, * ", n indicates the number of links in the chain

{rom the end of the horizon, Thus T, corresponds to L

n and T, corresponds

. 1
to &H ahove.
Assuming the second order condition is satisfied, the maximizing

condition is mD.m_:m.Hh. =0, i.e.,

6

(4) Dﬁ&; = 8+ G, L)

j=1

Beginning with Qo = 0, the above equation determines .H.w. the economic life

of the last machine in the chain. Substituting this into ﬁwv.ﬁmgm Gy, which



is in turn inserted into (4) to find T We continue this operation to

N..

mﬁm .w...m mﬂm Q.w mo._.uH‘P....s. q@ro EmeEwNmumnougwﬁobEvm»mﬁmm

that the quasi-rent at the time of discarding must be equal to the interest
on the scrap value plus interest on all future "goodwills."

Given the quasi-rent declines as the machine ages, we observe
each b.nmnwu..um will have a longer optimum life than its predecessor in the

chranological chain. 8 The '"goodwill,! or the present value of guasi~-rent

less all the capital outlays increases as the nurmber of replacements increase. ¢
One special case of this finite chain is when the entrepreneur considers

a machine isolated from the future course of events after its scrapping, in

other words he takes no account of the machine that wiil replace it, i.e.,

n=1, We have the quasi-rent function in the usual form below.

(5) Qi) = =x(t) - M(t).

-3 - known market price of the product
x(t}) - rate of production
M(t) - combined rate of all expenses except depreciation and interest.

Substituting {5) into (3) and (4) we obtain

T
A.Sou .\‘ ?xE, E::%im:mmée-o
o _

(7} =zx(T) - M(T} = r&.

The work of J.8. Taylor [24], later simplified and refined by H. Hotelling

10

[14] comes into this category with some modification. Instead of maximizing

the ""good will" they try to minimize "unit cost'" w of the form below. 11

e
.\ Mt)e "Edt - 56T 4
.0

8 w =

T

.\.. =(t)e “Tat

Lol

Differentiate the above equation with respect to T and set it equal to

zero, we obtain the minimizing condition of the form
{9)  w(T)=(T) - M(T) = r5.

It iz clear that the respective optimal life of a machine arrived at in the above

“two Emﬁwo&w‘ i.e., the solutions to equation (7} and wc.pcm.wmob {9}, are quite

different in general.

2, Inifinite Chain, If the entrepreneur's horizon extends over an infinite
chain of machines, then the future '"goodwill" at each perioed must be the same
due to the nature of infinity. Thus we are to maximize the expression of the:

form below in each period with respect to .,H.u. (i=1,2,""")

.H_h. -rt IHa.H.,w
ﬁ._.OwQ.H. \4 D:&@ nw.n+Am+mv® IO

[+

And the maximizing condition
(11)- DaH.mv = r(S5+ G)

Thus it is clear in the infinite chain case that each machine in the chain will

have the same optimal life {T). Substituting (11) into {10) we OmewsHN



,H

1 . )

_ :\ e Tfacr st - c1 1
«-rT

I-e o

(12) (T} = r [S +

which states that the quasi-rent at the time of replacement must be equal
to the interest on its scrap value plus interest on all future Yooodwills)?
which is of course constant.

3. Fixed Time Horizon. "Some types of services may not be

needed for an indefinitely long period, and some agencies may view them-
selves as being appropriately concerned only with the truncated future,

: 13
perhaps only with the next 20 or 30 yeaws."

If the entrepreneur's time

horizon is thes fixed, then what will be the optimal replacement policy?

Should he replace the machine at all? If he replaces, how often and when?
The ma.mowwﬂwﬁou from the analysis of the finite chain will partially

help us in answering the mamber of replacements to be made but it does

not answer the guestion of when to replace. Let T be the fixed time horizon,

then if T is equal or greater than the optimal herizon associated with some

fixed number of machines, T, then the optimal number of machines reguired

is greater than or equal to m, 14 i, e.,

15
(13} T > T = nfT) > 1

where T{n) - optimal time horizon associated with 7 number of machines

TE) = =0 T,

i
i=1
dﬁ:%.u - optimal nurnber of machines associated with the time horizon T.

le

Suppose an optimal number of replacements ﬂA..,Wv is chosen given
fixed horizon |,H.... then the optimal life length of each machine ?.B.wv can be obtained
by differentiating the form below with respect to my j = 1,+=,n(T) and setting
them equal to zmero.

n(T)-1 M ) M -*M,
(14) & = MU { Qi - M;)e "tat + Se e 51
o M

where M. = B .m, 1i=1,2,""*,n{T); M 20, M _= T
i j=171 ¢} n{T)

41 D?Pvzwbu.
(15) - =0 =>Q(my)= s+ ﬁ,\, aye T + BRME | S LS PO

r

5= 1,2,7*+,n(T}-1.

The maximizing condition is semewhat similar to the condition {4} of the
finite chain cage, the quasi-rent of the jth machine at the time of replacement
must be egual to the interest on the scrap value plus in the interest on the
future ""goodwill. "

In contrast to the finite chain case, all we can say about the sequence

5 3n(T)
. . ¥
of the optimal life of a Emnr..EmM Bu.w is that it takes on of the three
. F e .

forms dmwoaﬁwq

(1) Constant sequence, i.e., Bu. = .Eﬁ.m

(2) monotonically increasing seguence, i.e., S.w.: > Emd:

(3) meonotonically decreasing sequence, i e. . B...irw < b.u.mam..._.

R. Bellman {3] introduced a functional m@ﬂmﬁ.os technique of dynamic

programming to the theory of replacement concerning the infinite chain. He

defines



(16) fér,t) = overall return obtained from a machine of age t at time T,

using an opiimal replacernent policy.

At each time T, the entrepreneur chooses one of two alternatives. He may
either keep {K) the machine for another Hime period, or he may purchase {P)

a new machine. Thus, the functional equation for f{T,t) is
K:Qr,t) + af(r+1,t+1}

{17} f(r,t) =Max .
P Sir,t) - Clr}+9Q(r,0) + af{r+1,1)

where )
K - atands for the policy to keep the present rachine
P - stands for the policy to scrap the present machine and

to purchase a new machine

0(7,t) - quasi-rert of machine of age t at time 7

a - a discount factor af (0,1}

‘§(r,t) - scrap value of machine of mmm.ﬁ at time T

Ce{r) - the cost of purchasing a new machine at time 7.

Fox brevity assume the constancy of the scrap value and assume the @Gm.mu..s
rent and the cost of new machine do not depend upon the chronological year,
then the indicator T may be dropped from (17)

An optimal policy will have the form: keep a new machine until it is
T years old and then purchase a new one, thus the following system of equations

is derived

£(0) = Q(0) + af(l)

£{1) = 1) + af(2}
(18) .

£§T-1) = Q(T-1) + af(T)

£(T) S - C 1 0(0) + affl)

10

Solving for f{0) recurrently, we obtain

. 1 T-1 al
19 K0) = —= D Qtla' + —— (5 - G)
-2 t=o 1-at

The entrepreneur chooses T such that it maximizes the right hand side of
equation {19). Let us call this maximizing life length % and the associated

ngHS mm..ﬁE Hmmﬁmnmdwmz.Hrmﬂim,rmdxmwwmmoﬁoémdmmuﬁuwmmmwob

o

NH: - a} . T-1

(20)  £.(0) ~ £, (0)= - n owat +5 -
T T+1 {1 - m.‘H.v:. _ m..H_+u.v AWMHW v

_ Dn.mwmﬂ.
1 .- aT+1
or
. l-a T-1 .
21) Ty = - feoy-£, (O} + ——— t _
o TWC ol vTH mﬂm.psw + 8 ov
iom.B B

where h..w.w.wé is the return associated with the policy of keeping the machine

for T +1 years.

FEquation {21) is the discrete analogue to equation {12) wvo<w.mm
The fixed time horizon case is studied by 5. Dreyfus [6] in 2 manner

similar to the above. He mm<o.m an expleit example where technological

changes are taken into account.
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3. The Model

‘Presently the consumer owns a house, but he plans to H..mwwm.nw it
by another some E.wﬁm in the future. He wants to determine the optimal
sequence of saving and consumption, and the optimal timing of the wm.wwm.nws
ment in bis finite, fixed time horizon. He derives utility from the house
in which he lives, from the rest of goods and services he consames, and
from the final stock of wealth. Thus the consumer's &wm...uocbmm& present
value of utility noPWmmnm. of the sum of his discounted instantancous utility
and the discounted utility of his final stock of wealth. We assume that the
use value of a house can be approximated by the size and quality of the
housé¢ and the environmental considerations such as the nature of the school
district, tax rate, zoning, neighborhood, ete, We also assume that the use
value of a house would decline over the. years due to general wear and tear
and ohsolescence.

We use the following notations:

Q
[l

consumption of goods and services excluding housing at time ¢
h, - the use value of house at time t

Cnﬂ.n. hyd - utility at time t

M - rate of consumer's time preference

Wp o - final stock of wealth

4A.E.~H.v - utility of the final stock of wealth

s - T-component vector of saving

t* - wmﬁwmnmﬁ,pmﬂw time, i,e., at time +* he sells his old house

and buys a new one
P - price of a new house

¥(s3,t¥,P) - discounted present value of utility.

12

Then the discounted present value of utility is given by

. T
% wl.n i-T

(1. 1) ¥(s,t7,P) = ﬁM_Eoﬁ.%a )T VWL )
where -0 (t-1% .

h%e ©) o= 1,17
(1.1a) L % ‘ .

L mplt-tT) .

he Cto= 41, T
h© - use value of the old house at the time of its purchase wM =<0
R - use value of the new house at the time of its purchase e [1,°+-,T-1]

o - ‘depreciation rate of a house,

The consumer maximizes his discounted present value of utility (1. 1) with
respect to the saving in each periocd and the replacement time for the given

price of a new house, subject to the following constraints:

(1.2) ‘.Oﬁnﬁnr sy - d, - my | t = 1,e0s,T

wheve

¥y = income at time t, exogenously given

s; - saving at time t
d; - mortgage payment at time t
q b= L, tF
{1.2a) &w = .
£({P) to= 54,00, T
q - a given constant such that d > 0 and f(P) is an increasing mﬁsmﬁwob of

P such that £0) = 0, dffdP > 0,17



13

m, - malintenance cost of a house at time ¢, exogenously given

L

Eo?-wwv o= ol t0

(1.2b) m =

m' {t %) t= 41,0, T

Swe: ~ maintenance cost of ith house of aget i = 0,1

um~ﬁ+:+3m»L :_mmw =1, 000, T
(1.3) S, = ) )
T + (I + )8 +{E, - a(P)} t = t°
t t-1 .
where
5, - stock of saving at time t
T - martket rate of interest
HN* - equity of his old house at time t*
o o
1.3a} E° =H,6 - D
m = ﬁ* ._n*
H.HO% - .,.Dm.n.w.m.w value of his old house af time t* such that mMe is a function
£ *
of the use value of the house and the price of the new house, i.e.,
o o
(1.3b) H.Hw* = mavﬁ%.“ﬂ;
Uo.,._n - outstanding debt on his old house at time ¥
+ ,
(1. 3¢) p° = (1+mp° -7
£ ”.L.IH.
* 5 _ t-1
= {1+ 1) U0|QM§+HV >0
. £=1

¢(P) -~ downpayrmment on the new house such that

L =4’ me, 900 = 0.

14

Thus, given the initial sfock of saving 5, and the deht UM. We can express

mﬁ as the following

; t
t -k -
1+0)'s + % 1+ s t=l, -0, £5-1
o] k
k=1
{1.3%) Mw =
t L t-Xk t-t* ___o
(L+) 8 + Z (1 + 1) g, {1+ 1) {H, - (™)}
o k +F
k=1
g=t¥, e 0., T
(1.4) W =8_+H_ -D
T N T T
where
é.H - final stock of wealth
mH ~ final stock of saving
m..H - market value of his new house at time T, assumed as a fraction of

the cost per use value muliiplied by the total use value at time T,

i.e.,
1.4 $ - F t
(1. 4a) Hy = y(®/adh,,  Ye(0,1)
U__H, - outstanding debt on the new house at time T
1 ST . T t-t¥-1
{1.4b} U.H = (1 + 1) P-o®} -®» =T 471 > 0
t=t¥=1

20
or given t, time period allowed to complete the debt payment,
(L.4by . D = {P -9(P)} B(t")
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where {B) Perform the above operation for every ¢ = 1,...,T-1 for the given
B(t¥) 1 -(1+ Hv.Huﬁeu ) £0,1] P and choose t¥ which maximizes the discounted present value of utility,
1-(1L+1x)-¢ We note that the characterization of the optimal consumption sequence
. % 22
is invariant under different values of t", hence it suffices to perform the
an maximization step {A) above to characterize the optimal consumption sequence.
- 1
ar B >0, We form the following Liagrange function:
21 - : | : :
L 1-t o\ 1-T T
{1.5) Cyz 0 vt {1.9) L = m Ulyy -5 - dy - myhe (Le) 4 (L) V(1478 -
{1.6) 5, >0 T “k ’ g% )
£ £ 040 e 4 (1 T ES < s@) ]+ vip/nhnt
it k. £ T
(1.7} Wy 2 0 T "
T-t¥ , tt -1,
S faenT Y P og@y - HP) 2y (14n) Y]
: : tet 41
(1.8a) dﬁnwﬁrﬁv > 0, <3<.H.U > 0 for qurﬁ > 0, é.H >0
(1.8b) G U(CLh) > 0, — U(C, B = 0, —— U0,k _ b aS, +BW
. = U(C,, > 0, ——— U{C >0, — )} == @,
8Cy vt ahy v 8C, Tt ’ i T
d : ) . wherew,8 are the Lagrange multipliers associated with 8 | > 0, W_ > 0,
e W} > G, for C,h >0, W_2> 0. £ T=
dw T "t = ] .
F The first order condition is given by
{1.8c) — U(C,h) <0, ——5 V(W )< 0 forC,h <0, W_<20. au av 1+r\E-t .
[, 4 2 T A ’ T — / -
W . for t = 1,2,...,T
aCy W (1.10} mﬂn > n:..q.H. Ay+tx or

{Equality holds for S ._..<<.H. > 0)
. i
4. Derivation and Characterization of Optimal Consumption Sequence

. For the interior maximum nwmmh i.e., S .,.".s.H. =~ 0, we derive
The maximization can be performed in two steps: from (1.8) and {1.10) above the following three mﬁmﬁm of characterization
(A) Maximize the .&mnnﬁ:ﬂmm present value of utility with respect to depending upon the relationship between the housing consumption and the

S¢r t = 1,0+, T for given P and ¢ consumption of other goods and services in the utility function, i.e., whether



i7
mmd
their consumption is independent [——— = 0], or non-complements
9C0h,
82y 8u
—————— < 0], or nomn-substitutes | ——— > Gl
8Cohy 8C.8hy

82U
Casea ———=0
3C4dht

2T
The optimal consumption mmaﬂmbnmmnﬁw is strictly increasing,
t=1

constant, and strictly decreasing for r > 4, © = ¢, r <y, respectively.

T U
Caseb —— < 0
3Ct8h x
E ¢ T
The optimal consumption sequences MO% . wﬂwM are both
=1 t=t¥+1

strictly increasing and non-decreasing for r > 4, r = g, respectively.

3%u
Case ¢ — o O

8Ct8h w
toht . - . .
Hrmoﬁwwamwnaﬂmﬂgmyﬁcﬂmmﬂﬂmﬁnmm MOM . MO w wﬁmwcnr
#_Tw HW%Z

non-increasing and strictly decreasing for ¥ = y, r <y, respectively.
We note in all of the three cases, the importance of the relative
magnitude of the interest rate to the rate of subjective time preference in
determining the optimal consumption sequence. In general if the interest
rate is greater than the rate of time preference, it is preferable to save
more now and earn the interest which can be mﬁm.ﬂn later without undue

sacrifice, The converse also holds,

18

5. Comparative Dynamics

<5.1>  First we consider the effect of change in the price of a new house

5L
P on the optimal consumption sequence MOWM and the optimal replacement
t=1

timing t*;

From {1.10} above we derive the following

m P
.d\_mO% L+ H/wuu o L
{1.11) = H+t¥ Houm.i.E._HVowbmu.an» ,T.

% ac, ¢

We differentiate (1, 11} with respect to P to obtain

. 2 s
(1.12) Cljap (TGN M e YT
9Ci gp mmq\moww \L +u

> 0

.H.Vcwwa i, j=1,""",T.

for5 > 0, W
£
which states that the price change will shift the whole consumption mwmc.mﬂnm..
Thus if we know what happeéns to the level of consumption in any one period,
we know for the rest of periods. Proposition 1 and its corollary show us if
we know what happens to the final stock of wealth as the price chaanges, then
we can tell the corresponding nr.mbmm,m in the optimal consumption sequence

and the present value of utility.

Proposition 1

For given t¥ assume S _, W 2
t

T > 0, then QE.H\&U.VI 0 implies

(1) dC /AP » 0 ¥t, (i) d¥/dP > 0  (all equality holds for dW_/aP = 0)
El 1 1

where ¥(s,t%,P) = 3 U(T,, h)(1+) = + V(Wp)(l+w) T
=1 t .



20

19
Proof: (i} To show dC /AP » 0 ¥ t=1,2,:++,T restrictions on the nature of the utility functions and the end conditions,
: t = —hy tey 2 b
we obtain the following two propositions with opposite results.
. cood o : . ’
méH\mmu = 0 implies ap v ;N.Hv < 0 by strict concavity of
- Propesition 2-1
au f1er)T-t d (su
. — = v -— < 0 - 4 3
<3‘<‘HT From (1.10) mO» v A:ﬁv t, thus dp moﬂ =0 vt Assume: (1) the optimal final stock of wealth associated with the
2 different prices of a house are the same and positive, and the stock of
o any 83U . acy . . . .
However. —= = 0 and MMmI < 0 ngﬂww-mlmulw 0 vt. saving at the time of replacement associated with the different prices
2
: O.E.D are positive; (2) the consumption and housing services are independent
items ih his utility function; (3) the consumer's tifne preference equals
the market rate of interest; (4) the new house yields higher use-value
(ii} To show d¥/dP > © than the old house, then the increase in the price of a house would naot
. delay the replacement time, provided that (5) the final stock of wealth
iff tiat . 1) with t to P to obtai .
Differentiate (1. 1) with respect to o oA does rot fall for the given replacement time: i.e.,
: av T oy ag | i-t° av dWg X 1-T o
(1.13) —_— = Z - +u e oo it Assume (1} W, . (P} = W, (P,)>0; munn :S >
dp =1 mOﬁ dpP Q.ﬂw» dP T 1 T2 e .
1 2
52
i @ gean, ¢ ¢
By the result above mOw\mﬁv > 0 ¥t and by hypothesis mé.ﬁ_\&.u = G, ¢dhy
we have d¥/dP > 0. (3) T o=
0.E.D. .
C-p(T-b1-tH(P)) o p [£F(P+1-tE]
(4) he 17 5 ho%
Corollary 1 y . AW
For given t¥ assume mw%.sﬂ. = 0, then QEH\QW < 0 implies . (5 4ap m.mu..n mwww,mc

() 4C,/dP < 0 V¢, (i) dy/dp < 0.

In general, it is not possible to find the directional change of the optimal
replacement time (t¥) as the price of a new house changes. The change of
the replacement time in either direction would have both a positive and

negative effect on the utility., However, by having some additional

then P| < Pz implies t* (P;) » t%(Py).
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Prooi;

(i} Teo show that the present value of utility would not fall, i.e.,

Y[EHP,), Pyl = Y[E(P)), Py] for Py » Py
T

. 1t 1-
where ¥(t7,P) = & U(Cy,h)(1 +p)" ~ = VW) +u)
t=1 ’

T

P Y[t P, Pyl = ¥, ] Ve, 1= 12
By assumption (1) and (5), and by Proposition 1 .ﬁm.:.wdm .

¥[t*(P)), Py ] < ¥[t*(P}), P2l

Thus by definition of t*(P) we obtain:

(.14 Y[F(P ), Py ) < Y[R (F,), Pyl

(ii} To show ﬁ*ﬂﬂmu :Nn*»ﬁwv. assume the contrary, i.e., »%AHU.ZAA"*QUNT

Assumptions (1), (2) and (3) ensure the optimal consumption sequence:

‘H_ N,H .
WOWW msm Wﬂ,ﬁw m.nmm&mﬂﬁnwu.mb&noumwm:wocmwﬁgm-ﬂ&mﬁm Om .pm
t=1 t=1

the consumption at time t associated with Pj price.

Case 1 Assume T = ﬂwﬁuww > n*ﬁut. let U.M be the use value of a house

at time t associated with Pj price. Then ?w > Tw ¥t=1,r+-,T. Thus

¥t (P P 1 > ¥R, Pyl

a2

Case 2 Assume T > ﬁ%ﬁuwv = .n%ﬁu_v + b where b is any arbitrary

positive integer such that the inequality above is satisfied.

We have

(17 nl = rw t= 1,000, t%(P)) (arez A in Fig, 1)
1 _ B2 = ¢F vee T i i

{2} WN = Fw._.‘a t=t G,UH.TwH“ ,T-b {area B in Fig. 1)

(3y 1l >h? by assumption (4), which implies that

T-bt+l™ &%Auu:.ﬁ.m

1 w o = hZ = &% Lo, £€5(P )b
wiﬂ-v-ﬁ.%ilf i (Pyht, =, P

{area C in Fig. 1)

Time ro«..w.,o.e 4 tH
\ ; !
hy
%e.r
t

A7

FIGURE 1

(Shaded area corresponds to the use value
from the new house)

Thus we obtain
T t={P)+b
1,1 1-t 1 .1 -
20 ve,nhoew s 20 uiel e a0t
t=t™(Py)+1 t=t*(P )+ 1 1

T

.H_ .

H H wlﬁ NN ..

+;M ‘Eoﬂ.f-c::éw; M Soif::tm ﬁ
ﬁn,ﬁ..%ttui ﬁﬁ@uti
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Hence emw%ﬁuwv‘puww > e?.).uﬁum.v.muwf contradicting (1.14) above, Thus

e

we conclude .n.*tut = t¥(P;).

G E. D,

Proposition 2-2

TUnder the identical assumptions (1) through (4) in Proposition 2-1,
the increase in the price would not hasten the replacement time, provided

that {5) the final stock of wealth declines for any given t*, ie.,

Assum {1y Wo.(P,) = W . (P>0; 8, .5, >0
s5UMe T 1 e w,.ﬁut £5(P2)
_ofu
(2) 8C Bhy
{3) =y

Lol T-Br1-E5(P)] o o melt™ (P2)t1-to]

(4)
dW.r

0
ap <

t* figed

(51

then P, < P, implies 3@2 < t(P,).

Proof. Similar to Proposition 2-1, use Corollary 1 instead of Proposition 1.
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<5, 2> Secondly we consider the effect of change in the rate of interest

. 72 . . .
on the optimal consumption sequence WO%Mw and the optimal replacement

.g“
timing t7: .

From (1.10) above we derive

BU/aC, q +r
{1.15)

= = 1, -1.
BUT8C 4 1 +t.v for mﬁ%,é,ﬁ > 0and ¥Vt , T

Differentiate {1.15) above with respect to r to obtain

dcy acz ¢ act T dcy
(1.16) e N T A...A.ﬁ 3 i A...A.Emwmﬂ
Ci=1 i=1
Ty 2
1+ fa .G\mn“w o 2 3
where a_ = : > t = 2,3+, T; a3 = 1.
t N/ \a?ureck

Thus it is clear that if the optimal consumption in the first period rises as
the interest rate rises, then the consumption in each following period will
also rise. On the other hand if the optimal consumption in the final period
m.wEm as the interest rises, then so does the consumption in each preceding

period. Thus we obtain Proposition 3 and its Corollary.,

Propesition 3,

. . dC
For given t™ assume S5 _, W, > 0, the ! 2 0 implies
£ T dr
. dCy |
{i) - > 0 t = 2, T
ay
{ii} = 0,

dr



Froof,
ac, .
63} Era 0 t=2,---,T is immediate by the
equation {1.16).
. dy
(ii) To show PR 0.

Differentiate {1.10) above with respect to r

, T-t T-t-1
2 dg dw 1
94y T I T +r I+r 1
. = R v
(.17 mOw. dr v dr AH +tv AT ) AH+KV o +tv t
acy
By the result above we have ol 0 t=2,--¢,T, thus
T -t T-t-1
(o vz 1ae) gl R T T TR
) dr A1+ : 1+ t\ 4y o :
dWep
which implies a 0. Differentiate {1.1) with respect to r to obtain
119y O¥ M U 4G o 1t L dWT .VTH
19 37 = 5e. dr (W F VeEm bt
t=1 t
Thus we have & > 0.
dr

Q.E.D.
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Corollary 3

dCt s
M.O.H. given t* assumeé mw%“ ﬁw.H > 0, then i < 0 implies
o 9C Lo
(i) ar < 0 t = I, ,T-1 {ii) EERS 0,

As in the previous section =5.1> the changes in the final stock of
wealth has a significant implication to the changes in the consumption

sequence and the present value of utility.

-Proposition 4.

. * S AW .
For given t° assume S |, W_ > 0, then < 0 implies
. 7 T . dr
5 % _ o . dCr _
(i). I < t=1,2, ,T-1, G = 0,
Looay
(ii) ar < 0.
Proof.
Recall
22U a aw \ S
. Ci , AW fy 4 L+
(117 — —E -y —Z ) I vt
act  ar dr A1 +pf Lap Ty
AW 8%u dc;
Thus < 0 implies > 0 t=1,"+-,T-1 and
dr = 8CZ  dr
3%u  dc a = acr :
—_— L > 0, vwanmulnllﬁ < 0 t=1,++,T~1 mb&,llmA 0. By
wOm‘ dr dr : dr
i oy
the equation {1, 19) above, we have — <« 0,
dr
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Mow the question we would like to ask is what factors are involved

25 - . .
in the determination of the sign = of dCy/dr and dC/dr. Expzessing

the mmﬁ.wﬁmo.w (1.17} explicitly we have,

dC, m..é...h
{1.20) Uy —— = ag —z=— + (T - tib
T .
- STt S oo e
= mﬁw -2y £ (I 4+ 1} ar t
82y . ot r\f ot .
where (a) U, =——— < 0, a; = <<
tt " o2 t AH vy
t .

() b= V/y'" 140

T
(c) B = T(l+1)" N5, - DY) + Mﬁ A TL S IR
t=1

.Nnn
+ (T - £9)1 + Hye-ﬁ-:mw\ B+ a m (T -t - 141
1=

T
i#*z. 2 P - %IN
(14 Tt g M R R SRR
t=t*+1

T

dWr | T-t 4G
{d) e a B - M: + ) = }

Colliecting terms and presenting them in a matrix form, we have Ax = b, or

28

- T-1 T-2 4 r 14 - .
d.:.m.mhﬁt.v mw:+i oAy o 2 (B+(T-1)b}
T-1 T-2 4C2
a,(1+x) U, ta, (147} T2y 7 m.m.aiﬂ.lwzvv
(L.21) =
. &.O m.m,Lhm.Euv
T-1 T-2 T
i N.H.:.+l m..HC._‘Hv e .G.H.H+NH X Bt | aTh
The determinant of A and the typical cofactor of A are given U%wm
. T T
T-k
1. 22 =

(1.22) lal oo, + b a, (1+71) moY,

t=1 k=1 t# k.

T
M\v - . * . waanm *
where Ji Cﬁu G: GNN G.HH
t=1
T-i s R
(1.23) A .= -a(lir) I u,, i |, i, j=1,2,%+, 7T
i} J .o, tt ’
t=£l, §
B . T-k )
Ay = 1 U, + 3 alltn) m U, i=1,2,--,T

t=fi ki thik

Solving for &O.W\QH. we have

dC: aj .

(f.24y —1= [(BO U, +5b(T-jiq U, +bY a(l4x) " 1 U (-1}
d : -1 i-j
P oy e

j=1,2,7",T.
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Thus

o u,(@i-11
(4,1 o

dC a
1 1
(1.25) = = {(BOU,+bT-1}) 0 U, + b3 a(l+r)
&~ Al w1 g1 Al

T-i

It is clear that the necessary condition for nmou,\mw. to be non-negative is to
have B > 0. ‘Recalling the equation (1, Ncnnu on B, we note the difficulty

in sipgning B due to the unknown sign w.wwﬁmg of saving Amnu. It can be said,
however, that the increase in the initial stock of saving 5, or the increase

in the market value of the old house MM*‘ or the decrease in the initial debt
UM will have a tendency to wn,nﬁmmmm B and hence the consumption. On the
other hand the necessary condition for mO.H_\&w to be Do,ﬁ-vom:mdm is to have
B< 0 as can be seen by choosing j = T in the equation (1. 24).

' Concerning the relationship between the interest rate and the re-
placement time we introduce the following proposition, which states that if
the debt payment period is relatively long and the final outstanding debt is
exogenously given comstant, then the increase in interest rate will hasten the
27 5 ’

replacement, €.,

Proposition §
Assume (1) t to be such that {tF+1-7T) Infl+r)>1

(2 plir)) = UMAHNV =D

. . * %
then Ty <T, implies t ?.Z >t ?.Nv

30

Proof.

1
D

i) T
(i) To show ar

= 0.
£* fixed

Differentiate equation {1.4b) with respect to r to obtain

. &UW 1
(1.26) = (P - ¢) = {t*)
dr (L+ryEtl 140y 5
where
e _ b3 - . H!ﬁ% A
g{t¥) = {t +t-THY + r} - B{t")
T-t*3%
Befy. 120
1-{1sx) - £
Since £(T) = 0 and by the assumption {1) @m._. < 0, we have £{t") = 0
dt™
. 4Dy,
t7 & [1,T], which implies & = 0

(ii) By differeatiating U.HH. with respect to t* we have

1

.w_U,H dB
(1.27) - = (P -@)—0 > 0.
B e

Thus by the constraint of assumption {2} we must have

< r_.

t :.w”_ >t AHNV for Ty z

6. Concluding Remarks

We formulated 2 model in which the consumer maximizes the dis-

counted present value of utility with respect to the consumption time path

and replacement timing. We note that the derived optimal time path
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crucially depends upon the ratio of the interest rate to the subjective time
preference. We also note such an optimal time path will shift either
upward or downward depending upon the magnitude of the "wealth effect
as the price of a new house changes. The ambiguity F.<o~<m& here seems
to be = typical one associated with any utility analysis.

Optimal replacement time is characterized in terms of its sensitivity
to the changes in parameters suchyas the price of a new house and rate of
interest. K is shown that one nwbho.» unequivocally determine the direction
of change in the replacement timing as the parameters change. The "wealth
effect’”, debt constraints, and "financial position' must all be taken into
account.

Fiven though the analysis here is confined to the situation where
replacement takes place exactly once, the model can be easily generalized
to handle n replacements. (n= 0,1,+-+,T}; however only ww.oﬁcmwwwo.h 1 and
its no.ﬂo:,wn.w‘ can be established for the general model.

The author believes that further study concerning the optimal number
of replacements and the changes in the parameters Quu.wnm‘ interest rate)

will yield fruitful return in the study of consumer durables.
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Footnotes ) 8.

Some studies have been made concerning the optimal life of consumer
durables (A.H. Fox [11], A. A. Alchian [2]). But alas, those studies
are not dealt . with in the proper framework of wswmﬂlnmsﬁuou.mw utility

maximization,

The relevance of such study to the dermmand for consumer durables has
been neglected in the past. However such study will certainly shed
some light on the hitherto obscure relationship between the components

of the demand for durables,

In contrast to the firm and organization, probably it is more appropriate
te assume a finite, fixed time horizon for the consumer theory. Expected : 9.

rermaining life length may constitute the upper bound for the horizon,

See G.A.D. Preinriech [21}, p. 44 for the discussion of H, Hotelling 10.

and Preinreich.
. 11,
The ﬂcmmwudmbﬁ function given in this form, D:,d, a) can take into

aceount technological improvement, and obsolescence factor.

If we assume the scrap value changes with the time of scrapping,
i.e., 8§ = maH,.WT then the expression {4) will become

O.,H_.v = {8+ Qh.lpv - m.AH.wT which results in earlier scrapping under
the usual assumptions of D__“H% < 0, mﬂaﬂ.ﬂv < 0.

Note: G here corresponds to the "goodwill" expression G in eguation

{2) above,

The sequence of the life of a machine M.H w is monotonically de-

=1

creasing until it reaches the limit T> 0. The sequence of the

n

"goodwill" WOQW is monotonically increasing until it reaches the

j=1

limit G, such G is associated with the limit ﬁ If T is zero, then

the sum of the wumwnwﬁm;.mxwmsmmm mmn.wﬁmdnm may be finite, i.e.,

0w
A
M .H_u = T « =, in such a case, a project involving the time horizon

j=1

longer than T may find the machine concerned is not appropriate,

This, of course, does not necessarily follow if the time horizon is

fixed,
See the criticism by Priinreich [21} of this formulation,

By assuming the rate of production to be unit constant, i.e., x(t) = 1,
equation (8) yields something similar to Smith's [23] constant annual
cost stream. Additional wmmauﬁ.um.on on the interest rate and the scrap
value in the nature of both being insignificant, i.e., r = § = 0, will

reduce equation {8) into the objective function used by Brems [4], Fox

T
' C 1
[11], Clapham [5], i.e., w = T ﬂ.mag?v dt.

[¢]

By assuming
operating, maintenance cost to be linear in the age of the machine,

i.e., M(t) = at, we will have the so-called "square~root formula'



12,

13.

14,

15,

16.

Naturally the same expression can be obiained by maximizing
oW

. -rkT
e
k=0

T
G = A Oiye Tt ar ¢ seTT - ov,. See Lutz 2nd Lutz [17],

[=]

Alchian [2] and Smith [22].

.This problem is first posed by Alchian [2] and later by S. Drevfus

[6]. Dreyfus uses the functional equation technique of dynamic

programming. The quotation is from Alchian (2], p. 12.

Proof goes as follows: Let G(a,b) be the maximum goodwill associated
with b number of machines and time horizen a.. Then we have

O_”.mm.s. Eﬁ;.w.lv”_ 2 G[Tm,n] for T > T(H). We want to show n{T} > ..

Assume the n,ou.._mu.m.w%,. i.e., Dﬁmv %= n; <0, Then ﬁﬁmuuﬁﬂmﬁ =
n -
1 .
G[T(n1),n;] « G{T(n),n], where Ting) = 2T, < T(n}). Thus contra-
. . . o i=1

diction is ogwwmm& and we conclude n{T) = T,

¥T=> .H.gq “U. bﬁl._”...u = 7n, then the optimal replacement timing is
exactly the same as the finite chain case. An interesting case is

T > T(H) implies n(T) > T. In particular if T = T(R), then it can
be shown that .H.H > m, <wnw~...,.imwuw R Hm > m, Yi=1,%"-,
iﬂw - hti, where m; is the optimal life of ith machine in the fixed
horizon case,

T > T{n), then we assume 2...“3. to be strictly larger than n. Other-
wise the optimal policy would be Emﬁﬂnm_. to the finite case, except
when T = T{A) and i...“m..v = n. In such a case the entreprenecur will

have T - T(&) of "doing-nothing'' period.

17.

18.

19.

20.

21,

Rewriting the equation {15) we have

) nﬁ.‘iqu. ) ~rt
as)  am) = ar 0 dmea
o
Ac (S - G+ Q[0 =1, k1
Thus given three possible cases (1} mo=m g, {2} mom

£3) my < m g, we have three forms of the sequence.

Note the equation (12) can be written as

Ty = f; M\HDEm.ﬁ at + 8 - .

1 -7
el

If the consumer owns a house completely then d and the initial out-

standing debt, ..DMn are both egual to zero.

We assume that the date (t* + 1) when the consumer completes his
debt payment is farther than the time horizon T. Note t is given by
4t
t t-t¥-1
(1 4+r} {P - (P} - £f(P) (1 + 1) T =0,
t=t¥+1
Thus f{P) can be expressed by the following -

f(p)y = {P - ¢{P)] { T 1.
1-(137)”

Substitution of the above into (1. 4b) yields {I. ﬁu_v.

We would only consider the case where C,>0 Vt. This is possible by
assumption (1.8b) (8/8C;) V{0, hy) = .



