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CRAMER-RAO BOUNDS FOR MISSPECIFIED MODELS

Quang H. Vuong

ABSTRACT

In this paper, we derive some lower bounds of the Cramer-Rao type for the covariance
matrix of any unbiased estimator of the pseudo-true parameters in a parametric model that may be
misspecified. We obtain some lower bounds when the true distribution belongs either to a
parametric model that may differ from the specified parametric model or to the class of all distribu-
tions with respect to which the model is regular. As an illustration, we apply our results to the nor-
mal linear regression model. In particular, we extend the Gauss-Markov Theorem by showing that
the OLS estimator has minimum variance in the entire class of unbiased estimators of the pseudo-
true parameters when the mean and the distribution of the errors are both misspecified.
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1. INTRODUCTION

The purpose of this paper is to derive some lower bounds of the Cramer-Rao type when the
parametric model of interest may not contain the true distribution, i.e., when the model is
misspecified. That this situation is frequent arises from the fact that any (finite) parametric model
which is sufficiently simple to estimate is likely to be misspecified given the complexity of the
economic phenomena. To avoid possible misspecification, alternatives to parametric modelling
which are of increasing interest are semi-parametric modelling (see, e.g., Stein (1956), Chamberlain
(1984)) and non-parametric modelling (see, e.g., Rosenblatt (1956), Ullah and Singh (1985)).

If one however retains parametric models because of their simplicity, a first and important
question is what can be estimated if misspecification is present. When the distance between
distributions is measured by the Kullback-Leibler (1951) information criterion, a well-known answer
is that one can estimate the closest distribution in the specified parametric model to the true
distribution. For, under some regularity conditions, the quasi maximum-likelihood estimator, which
is obtained by maximizing the likelihood function associated with the parametric model, is known to
be a strongly consistent and asymptotically normal estimator of the pseudo-true parameters
characterizing the closest distribution (see, e.g., Huber (1967), White (1982)).

Another important question which naturally follows is how well can the closest distribution
or equivalently the pseudo-true parameters be estimated. Indeed, its answer is a prerequisite to the
study of efficiency or asymptotic efficiency of estimators in possibly misspecified models. When the
parametric model is correctly specified this second question has a widely known answer, which is
that the covariance matrix of any unbiased estimator of the true parameters is at least as large, in the
positive definite sense, than a bound called the Cramer-Rao lower bound (Rao (1945), Cramer
(1946)).! The main result of this paper is to obtain a similar result for unbiased estimators of the
pseudo-true parameters under general misspecification and hence when nothing is known a priori
about the true distribution. It turns out that this new bound reduces to the usual one when the model
is known to be correctly specified.

The paper also gives some Cramer-Rao bounds for unbiased estimators of the pseudo-true
parameters when the true distribution is known to belong to a parametric model which may differ
from the original parametric model. Though the assumption that the true distribution belongs to a
parametric model is restrictive, these bounds are not without interest. Indeed, they will be used to



derive the general bound when the true distribution is unrestricted except for smoothness and
regularity conditions. Second, on theoretical grounds, it is interesting to study the importance of the
information that the true distribution belongs to a parametric model on the estimation accuracy that
can be achieved when estimating the pseudo-true parameters. Third, on practical grounds, when
interest centers on some true parameters, it is sometimes more convenient to estimate a parametric
model that differs from the parametric model to which the true distribution is known to belong. For
instance, this latter technique was exploited by Gourieroux, Monfort, and Trognon (1984a, b) where
interest centers on the first two moments of the true distribution.

Finally, we illustrate our results by studying the homoscedastic normal linear regression
model under various types of misspecification. First, we consider cases where the mean is correctly
specified but the distributional assumption on the errors is violated. For these cases, we derive some
lower bounds under the assumption that the true distribution of the errors belongs to some other
parametric family. Because of this parametric assumption, our approach is here more restrictive than
the one considered in the semi-parametric literature. Then we consider cases where misspecification
arises from incorrect specification of both the mean and the distribution of the errors. For these
cases, we derive some lower bounds for unbiased estimators of the pseudo-true parameters when the
errors are jointly normal and when the errors are unrestricted except for smoothness and regularity
conditions. In particular, we extend the well-known Gauss-Markov Theorem by establishing the
optimality of the ordinary least-squares (OLS) estimator in these situations. Hence our results
complement recent generalizations of the Gauss-Markov Theorem that have appeared in the semi-
parametric literature when the mean is still correctly specified (Hwang (1985), Kariya (1985), and
Andrews and Phillips (1985, 1986)).

The paper is organized as follows. In Section 2, we define what we mean by regular and
semi-regular models. These models are considered throughout the paper. In Section 3, we derive
some Cramer-Rao bounds when it is known that the true distribution belongs to a parametric model
which may differ from the specified parametric model. We also study how these bounds change
with the available information. In Section 4, we derive a general bound when the true distribution is
restricted only to belong to the class of distribution with respect to which the given parametric model
is regular. In Section 5, we illustrate our results with the simple homoscedastic normal linear
regression model. In particular, we shall establish the optimality of the ordinary least-squares
estimator of the pseudo-true parameters in a normal linear regression model which is misspecified
with respect to the mean and the distribution of the errors.

2. REGULAR AND SEMI-REGULAR MODELS

Let Y be an x 1 observed random vector defined on an Euclidean measure space (Y,o,v).
For instance, in the case of a continuous random vector, Y, , and v are respectively IR", the Borel
o-algebraon R", and the Lebesgue measure on R”. To fix ideas, Y may be the vector of »
independent or dependent observations on a scalar random variables. Let H, be the true (joint)

cumulative distribution function (cdf) of Y.



To estimate or approximate the true cdf H,, we specify a parametric model for ¥, i.e., a
parametric family of joint cdf’s Fg= {F4; 6 € ® c IR*}. We shall not, however, require that H,
belongs to Fg. Thus the model Fg may be misspecified. On the other hand, we shall restrict
ourselves to parametric models that are regular with respect to a cdf or a family of cdf’s for Y. We
now list a set of regularity conditions. Let G be a cdf for Y.

Assumption Al: () © is compact, and for every 6 € © the cdf Fg has a density f (y; 6) with respect to
nu.? (b) The density f (y; 0) is strictly positive for all (y; 8) € Y x ®, measurable in y for every 6 € O,
and twice continuously differentiable on © foreveryy € Y.

Assumption A2: (a) For every 6 € ©, the functions | log f(-30) I, | dlog f (-5 6)/ 06 | and
I 9%log f (- ; 6)/ 9006 | are dominated by a function M () independent of 8 and square-integrable with
respectto G.

Assumption A3: (a) The function z£(6) = _f log f (y; 0) dG (y) has a unique maximum on © at an
interior point 8 (G). (b) The k X k matrix A{;(e*(G )) is non-singular where

2 .
Ag(e)sj-‘g—%}%&—@ 4G ). @2.1)

Assumption A4: There exists a neighborhood N of 6 (G) such that for every (0, ByeN XN the
function [f (-3 6)I™! | 3f (- ; 8)/ 98 | is dominated by a function M y(-) independent of & and square-
integrable with respect to G.

Let us note that, contrary to Assumptions A2 - A4, Assumption A1 does not depend on G.
Assumptions A1l - A3 or similar ones are frequent in the theory of maximum-likelihood (ML)
estimation of possibly misspecified parametric models (see, €.g., White (1982)). The value 0.(G)is
called the pseudo-true value of 8 for the model Fy when G is the true cdf H, (see, e.g., Sawa (1978)).
Assumption A3 - (a) requires that the closest distribution in Fgto G be unique or identified under G
when the distance between cdf’s is measured by the Kullback- Leibler (1951) information criterion
(KLIC):

KLIC (G, Fq) =] log 7%% 2()dV(). 2.2)

where g (-) is, when it exists, the density associated with G .
The relatively unusual Assumption A4 is a local uniform Lipschitz condition on the family
Fy. It clearly implies the following assumption:



Assumption A4 : There exists a neighborhood N, of 6,(G) such that for every 6 € N _the function
fC:0G NI 1 9f (-5 8)/ 90 | is dominated by a function M (-) independent of 6 and square-
integrable with respect to G.

When G = F, for some 6 € ©, Assumption A4_or similar ones often appear in the derivation of the
Cramer-Rao bound (see, e.g., Rao (1973, pp. 324-325)). This assumption essentially allows
differentiation under the integral sign of the expectation of any statistic with finite variance under
F¢.* Moreover, as seen below, it is used to establish the usual information matrix equivalence when
the model Fy is correctly specified.

We are now in a position to define what we mean by a parametric model that is regular with
respect to a cdf or a family of cdf’s for ¥. Let @° denote the interior of ©.

DEFINITION 2.1 (Regular Models): A parametric model Fg={Fg;06€ © cR k1 is regular with
respect to a cdf G if Assumptions A1 - A4 hold. It is regular with respect to a family G of cdf’s if it
is regular with respect to every cdf in G. It is regular if it is regular with respect to Fd=

{Fo;0€ 0.

The following lemma summarizes some useful and known properties of parametric models
that are regular with respect to a cdf. For any cdf G, let:

BL©)=] 2108 ge(y; 0) 9 loggeﬁ” 9 46 ). 2.3)

LEMMA 2.1: Let Fg={Fy; 6 € ® cIR*} be a parametric model for ¥ which is regular with respect

toacdf G. Then
(i) z£(®) is finite and twice continuously differentiable on @, and for every 6 € ©:

02£®) _3logf(:6)

o = R a6 o) <o (2.4)
P£@
YT =A5(0) < oo, (2.5)

BL(8) < «, and A£(6,(G)) is negative definite (n.d.).
(i) If G =F g for some 6, ©°, then 8 (G) =6;, and
AL(8y) +BL(By) =05 (2.6)
Equation (2.6) is recognized to be the familiar information matrix equivalence under correct
specification of the model Fg. The framework adopted here is however quite general as the

examples of Section 5 illustrate. Its generality arises from the fact that the family G of cdf’s with
respect to which Fy is assumed regular need not be equal nor included in Fq . Since the family G will



be the family to which the true cdf H,, is thought or restricted to belong, it follows that the true data
generating process characterized by H, may be quite different from the one implicit in the
specification of the model Fy. Moreover, the family G may be itself parametric as in Section 3, or
quite broad as in Section 4 where it is taken to be the class of all cdf’s for Y with respect to which
the given parametric model Fy is regular.

When G is a parametric model G, = {G; ye I'cR”}, it can be for instance taken to be
regular, i.e., regular with respect to Gf . For the result of this paper, a more useful class of
parametric models G, is that of semi-regular models. Formally, let:

Assumption BI: (a) T is open, and for every y e T the cdf G, has a density g (y; y) with respect to v.
(b) The density g(y;7) is strictly positive for all (y,7) € Y xT', measurable in y for every ye T', and
once continuously differentiable onT foreveryy € Y.

Assumption B2: For every ye T, there exists a neighborhood N, of y such that for every YeN p the
function [g(- ; Y)I™ | dg(-; ¥)/ dy! is dominated by a function M, () independent of y and square-
integrable with respect to G.

Assumption B2 corresponds to the local Lipschitz Assumption A4 that must hold for every
Gyin G,. For, y(G,) can be taken to be y which is justified since G, is the closest distribution in Gy t0
G, A semi-regular model is defined formally as follows.

DEFINITION 2.2 (Semi-Regular Models): A parametric model Gy={G,;ye T cR”}is semi-
regular if Assumptions B1 - B2 hold.

The essential difference between semi-regular models and regular models is that the former
models need not satisfy the domination conditions of Assumption A2 and the uniqueness
requirement of Assumption A3.% In particular, there may exist more than one solution iny e I' to the
equation G;=Gy for every y e I. Nonetheless, semi-regular models enjoy some properties of regular

models, as stated in the next lemma.

LEMMA 2.2: Let G,={G,;ve T cR”} be a parametric model for ¥ which is semi-regular. Then,
forevery G € G, and every ye I such that G =Gy :

JARELDID 45.)=0, @7

803Y) 9108805 45 (y) < oo, (2.8)

By = | L £

though B&(y) may be singular.



3. CRAMER-RAO BOUNDS UNDER PARAMETRIC INFORMATION

Given a possibly misspecified parametric model F, for Y, the question of interest is how well
can the closest distribution in Fg to the true cdf H, be estimated. When the parametric model Fg is
regular with respect to H, and when the distance between cdf’s is measured by the KLIC (2.2), it
follows from Assumption A3 - (a) that an equivalent question is how well can the pseudo-true
parameter 0. (H ) be estimated.

In this section, we shall derive a lower bound of the Cramer and Rao type for any unbiased
estimator of the pseudo-true parameters 6 (H,) under the assumption that the true distribution H
belongs to a parametric model G, which may differ from the specified parametric model Fy .
Specifically, G, will be assumed to be semi-regular. Thus, its number of parameters will be finite.
As the examples of Section 5 illustrate, however, this does not prevent the number of parameters of
G, to increase with the sample size.

Following the usual derivation of the Cramer-Rao lower bound, we first define the concept
of unbiasedness.” To allow for possible misspecification, we propose the following definition.

DEFINITION 3.1 (Unbiasedness): Let G be a family of cdf’s for Y with respect to which the
specified parametric model Fg= {F¢; 6 € ® cR*} is regular. Let ¢(-) be a mapping from © to
® cIR*, and let T(Y) be a statistic taking its values in ®. Then 7(¥) is an unbiased estimator of
$(6 (G)) under G if and only if:

[10)d63)=00,G), VG € G. G.1)

As usual, the function ¢(-) introduces some flexibility in the choice of the parameters of
interest. Specifically, we may be interested in subsets or more generally in functions of the pseudo-
true parameters 6 (G). Let us note that the requirement that Fg be regular with respect to G implies
that 6 (G) is identified under any cdf G in G (see Section 2). If G is identical to Fg, then it follows
from Assumption A3 - (a) and Jensen inequality that 6 (G) =6 when G = F,. Hence, Equation 3.0
becomes equivalent to:

[70)dFo ) =6(6), VO € ©. (3.2)

Thus Definition 3.1 extends the usual definition to the case where the parametric model Fy may be
misspecified.

In this section, the family G is a parametric model G, = {G,;ye I ciR? } whichis semi-
regular. The following lemma is useful. It gives some additional properties of parametric models
that are regular with respect to a semi-regular model. Let,

o/ O =[log £ (v 0) dG»), (33)

BLOY) = j alogé’e(y;e) o log égy(y;“y) 4G (). (3.4)



Note that z/ (0,y) = z{;v (0) as defined in Assumption A3.

LEMMA 3.1: LetFg={F4;0¢e © cIR*} be a parametric model which is regular with respect to a
semi-regular model G,={G,;ye I cR”}. Then

(i) the partial derivatives 9z (8,y)/ 96 exist and are continuously differentiable in both 6 and yon

© x T with:
A CR)
L 223500 _ AL (0) < oo, 3.5
3006 GT( ) < 3.5
o*z/ (8.y)
2 = BL (8,y) < oo, 3.6
200y Gy( Y) < (3.6)

(ii) the function 6 (G ) is continuously differentiable in y e T with

00 (G
5—(7,*) =~[A6 (0,(GYI BE(©,(G:v) G.7

where A{;y (8,(Gy) is negative definite for every ye I.

We can now state the main result of this section. Let Varg T(Y) denote the variance of the
statistic T(Y') under the cdf G. Since B§(y) is not insured to be non-singular (see Section 2), we shall
use generalized (g-) inverses (see Rao and Mitra (1971)). Finally, to simplify the notation, we shall
sometimes use 6, instead of 6 (G) when there is no ambiguity.

THEOREM 3.1 (Cramer-Rao Bound Under Parametric Information): Let Fo={Fg;0€ ® cR*} be
a parametric model for ¥ which is regular with respect to the semi-regular model G,=

{Gy;ve T cRP}. Let ¢(-) be a continuously differentiable mapping from © to ® < R*, and T(Y) be
an unbiased estimator of ¢(8,) with finite variance under any c¢df G in G,. Then, forevery G € G,,
and every ysuch that G,= G,

Varg T(Y)=LBs(Y) (3.8)

in the positive semi-definite (psd) sense, where

90(8,)
00

(0
[ALO® )1 BE®, ) [BEWT BE (v, [AL® )™ % (3.9)

LB;(y) =

and [B&(Y)]™ is any symmetric reflexive g-inverse of B&(y). In addition, all the matrices exist and
LB (y) is independent of any choice of symmetric reflexive g-inverses.®?



Since the lower bound LB (y) depends only on Fy and G,, Theorem 3.1 says that the
covariance matrix of any unbiased estimator of ¢(6 ) is not smaller than a quantity that is
independent of any method for estimating the pseudo-true parameters 6. Though this may appear
surprising, it is in fact a direct consequence of the well-known Cramer-Rao lower bound. Indeed, we
are acting as if the true cdf H,, belongs to the parametric model G, so that H,= G for some ye T
Since the pseudo-true parameters 6, =6 _(G,) is a particular function of the true parameters v, it
follows from the Cramer-Rao lower bound that, under suitable regularity conditions, we have:

vare, 712 25D 155 WY vyer, (3.10)

where ¢°(y) is the composite function ¢(6,(G,)). Then, the inequality (3.8) follows from the chain
rule and Equation (3.7). It only extends the inequality (3.10) to allow for non-singularity of the
information matrix B(y) and possibly more than one parameter value y such that G,=G.

Given the previous remark, it follows that all the results on minimum variance unbiased
estimation apply (see, €.g., Rao (1973), Section 5a). For instance, the lower bound (3.8) is attained if
and only if the parametric densities g (- ; y) are of the form:

2@V =exp AT ) + K@) + 1)}

for some vector function A() and function u(-) and t(-). That is, the model G, is exponential and the
estimator T'(Y) is a sufficient statistic fory.

As another immediate consequence of Theorem 3.1, we obtain the familiar Cramer-Rao
result by considering the special case G, = F?. Since G, contains the true distribution H , this case
corresponds to the usual one where Fy is assumed correctly specified. Let Vary T(Y') be the variance
of the statistic T(Y) under the cdf Fy. Let

Al @ =] —3-—19—5—-—913901—9)— dFo(y), (3.11)
B/ (@) =] 218L030) alogafe?y;e) dF o(y). (3.12)

COROLLARY 3.1: LetFg={Fg;0 € ® cR*} be a regular model for Y. Let ¢(-) be a continuously
differentiable mapping from @ to ® c R*, and T'(Y) be an unbiased estimator of ¢(6) with finite
variance for every 6 € @°. Then, for every 6 € 8°:

Vare T(r) > 220 a¢(e) B/ @)1 a¢(e) (3.13)

where B/ () exists, is non-singular, and A/ (8) + B/ (8) = 0 for every 8 € @°.



The importance of Theorem 3.1, however, is that it applies whether the models Fg and G, are
nested, overlapping, or strictly non-nested.'® To obtain a better understanding of this result, one may
consider the following two questions. First, one may ask how the lower bound (3.9) varies when one
considers another parametric model F, = {F ,: oo A cIR*} instead of Fo.!! Specifically, suppose
that one knows that the true distribution belongs to a parametric model G, and that one is interested
in estimating some functions of the true parameters. But, suppose that for computational simplicity,
one prefers to estimate another parametric model Fy. Can this model Fq be chosen so as to maximize
the estimation accuracy of the functions of interest? The answer is in fact trivial and is given in the
following corollary. To indicate the possible dependence of the lower bound (3.9) on the model Fg,
we use the notation LB (Y, Fg).

COROLLARY 3.2: LetFg={Fg;0€ ® cR*} and F,= {F ;00 € A cIR*} be two parametric
models for ¥ which are regular with respect to the semi-regular model G,= {G,;ye T cR”}. Let
®(-) and ¢ (-) be continuously differentiable mappings from © to ® and A to ® c IR* respectively.
Suppose that:

¢(6,(G)=5(0,(G), VG € G, (3.14)

Then, for every G € G, and every ysuch that G,=G,

LBg (Y, Fg)=LBg (Y, Fy). (3.15)

Condition (3.14) ensures that one can identify and estimate the same functions of the true
parameters under either parametric models Fg and F,. Equation (3.15) says that the lower bound is
independent of the choice of the parametric model Fe. In fact, this result is obvious since one is
estimating the same functions of the true parameters.

A second question is how the lower bound (3.9) varies with the model G,. Since the true
distribution H is assumed to belong to G,, the issue is how the lower bound (3.9) varies with the
available information. The answer is given in the following corollary. To indicate the dependence
of the lower bound (3.9) on the model G,, we use the notation LB (Gy, ).

COROLLARY 3.3: LetFy={F4; 0 € © cR*} be a parametric model for Y which is regular with
respect to the semi-regular models G,= {G,;ve 'R} and Gg = {G g;BeB cIR®}. Suppose that
there exists a continuously differentiable mapping A(-) from I" to B such that:

G'Y=G’7t(’¥)’ V'YG T. (3.16)

Then, for every G € Gy, and every ysuch that Gy=G,

LB (Gy, ) < LB (Gp, M(Y)- (3.17)

Moreover, the equality holds if p = b and B&(y) is non-singular.'?
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Condition (3.16) essentially requires that the model G, be nested in the model Gy. Thus the
model G, contains more information about the true cdf H, than the model Gg. Itis therefore
expected that the estimation accuracy that can be achieved when estimating the pseudo-true
parameters 6_or the functions ¢(,) is improved when it is known that the true distribution belongs to
G, than when it belongs to Gg. This intuitively explains the inequality (3.17). On the other hand,
disregarding the non-singularity of B&(y) which is a weak condition, the second part of Corollary 3.2
says that if Gy and Gy are nested but with the same dimension (p = b) then there cannot be any
improvement in the lower bound. In particular, if Gy={G,;ve I' cIR®} where T" contains T so that
G, contains G,, then

LB (Gy,Y) =LBs (G, ) (3.18)

for every G e G,, and every y such that G,=G. Inother words, the additional information gained by
going from f}y to G, is irrelevant. This somewhat surprising result can nonetheless be explained by
the local nature of the lower bound (3.9).

4. A GENERAL LOWER BOUND UNDER MISSPECIFICATION

In the previous section, the true distribution H, was restricted to belong to a parametric
model G,. In this section, we shall drop such an assumption. Specifically, we shall derive a lower
bound for the covariance matrix of any unbiased estimator of the pseudo-true parameters 0, (H o)
when H, is unrestricted except for smoothness and regularity conditions. More precisely, H, will be
restricted only to belong to the class of all cdf’s with respect to which the specified parametric model
Fy is regular. Given the identification requirement of Assumption A2, such a class is a natural one to
consider.

As in the semi-parametric literature (see, e.g., Stein (1956), Chamberlain (1984)), our
approach is to consider a least favorable parametric model containing H,.!> This model will be
constructed so that the specified parametric model Fy is regular with respect to it. In addition, it will
be semi-regular so that Theorem 3.1 applies. The next lemma exhibits such a parametric model.

LEMMA 4.1: Let Fg={Fq;0 € ® cIR*} be a parametric model for ¥ that is regular with respect to
a v-absolutely continuous cdf G. Then there exists a neighborhood N, of 8, such that:

(i) the parametric model Gy= {G4; 6 € Ny R*} is semi-regular, where

dGe(y) . 1 ACHY)
7 —g(v,e)——c(e) {1+expll ————f(y;e*)]}g(y), 4.1
c© =] {1+exprt - L2 1346, (4.2)

f@;6)
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(ii) Fyis regular with respect to Gg.

Since the neighborhood N, contains 6 , and since Go = G, it follows that the model Gg

contains G, as required.”* We are now in a position to state the main result of this paper.

THEOREM 4.1 (A General Cramer-Rao Bound): Let Fg={Fo;0 e ® cR*} be a parametric model
forY. Let G(F,) be the class of all v-absolutely continuous cdf’s for ¥ with respect to which Fg is
regular. Suppose that G(Fy) is not empty. Let ¢(-) be a continuously differentiable mapping from ©
to ® c R*, and T (Y) be an unbiased estimator of ¢(8,) with finite variance under G(Fy). Then, for
every G in G(Fy):

Varg T(Y)>LBg 4.3)

where

3¢(

LBg = [AL® )1 BEO AL®O)T — = ¢( ) (4.4)

and all the matrices exist. Moreover, for any G € G(Fy), let Si denote the set of all semi-regular
models G, containing G and with respect to which F is regular. Then S¢ is non-empty, and

LB; = max LB;(G,, Y) “.5)
where the max is taken over all models G, € S and ye I such that G,=G.

Recall that psd matrices are note totally ordered in the psd sense. The meaning of Equation
(4.5), however, is that the general lower bound LBy; is at least as large as the lower bound LB (G, V)
associated with any parametric model G, in Sg, and that it is attained for at least one model in S .
As the proof shows, the bound LB;; is attained when G, is the model G, of Lemma 4.1 Thus this
model Gy is indeed a least favorable semi-regular model containing G and with respect to which the
specified model Fy is regular.

Let us also note that the assumption that G(F,) be non-empty makes sense. For, from
Assumption A3 - (a), it requires that there exists at least one cdf G under which the closest
distribution in Fy to G or equivalently 6 (G) is identified and hence estimable. In addition, such an
assumption is satisfied if Fy is regular with respect to itself, in which case the class G(F,) must
contain F.

Third, it is interesting to note that the general bound (4.4) reduces to the familiar Cramer-
Rao bound when the model Fy is correctly specified. Specifically, suppose that G = F¢ for some
0 e ®°. Then, for any such cdf G, it follows from Lemma 2.1 - (ii) that the general lower bound
becomes
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which is the usual bound (see Corollary 3.1).
Finally, we can obtain results similar to Corollaries 3.2 and 3.3 when the true distribution is

no longer restricted to belong to a parametric model. Specifically, we shall consider two parametric
models Fy and F,, for Y. To indicate the dependence of the general lower bound (4.4) on the model
Fy, we use the notation LB (Fg). We have:

COROLLARY 4.1: LetFy={Fy;6€ ® cR*} and Fy={F ;€ A cR*} be two parametric
models for Y. Let G(Fg) and G(F,) be the classes of v-absolutely continuous cdf’s with respect to
which these models are regular. Let ¢(-) and ¢ () be continuously differentiable mappings from @ to
® and A to ©® cR°. Suppose that

0(0,(G)=5(,(G)), VG € G(Fg) N G(Fy). | 4.7
(i) If G(Fg) = G(F,), then for every G € G(Fg) N G(Fy),

LB (Fe) = LBg (Fy). (4.8)
(i) If G(Fg) = G(F,), then for every G € G(Fg) N G(Fy),

LB;(Fg) <LBg (Fy,). 4.9)

As in Corollary 3.2, Condition (4.7) ensures that one can identify the same functions of the
true distribution H,= G when considering either model Fg or F,. Part (i) says that if both models are
regular with respect to the same class of cdf’s, then there cannot be any improvement in the lower
bound associated with either one of the models. Part (ii) says that if the class of cdf’s with respect to
which one model is regular is larger than for the other model, then the lower bound associated with
the former must be at least as large as for the Iatter.

5. EXAMPLES
In this section, we illustrate our results with the simple normal linear regression model.
Specifically, let Y = (¥4, ...,Y,) where ¥; is the i-th observation on a scalar random variable.

Suppose that one postulates the following normal linear regression model:
Y,=zB+g,i=1,...,n (5.1)
where e= (g, . . . , &) is normally distributed N (0,67 ), and z; and P are k,-dimensional vectors.

Throughout, Z is treated as a non-random matrix of full-column rank.’ Then, the specified model Fy
for Y is defined by the (joint) densities:

£ 0) = @no ™2 exp[—?@ ~ZB) & - ZB)], ' (5.2)
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where 0 is the k -dimensional vector (8, 6?). We shall take the parameter space @ to be of the form
B x [a ,b] where B is a compact subset of IR *»and 0<a <b. Thus Assumption A1 is satisfied, and we

have:
1 ..
§Z(y—ZB)
dlogf (30) _ , (53)
9 g —2—:; o - ZBYy —ZPB)
1 .. 1 ..
-— 77 s Z'(y —ZB)
Plogf:0) _| & o* (5.4)
o0a” | _L Z8vZ - Pt L : ' '
L o-zpz; §ot-— O -ZBb 2P

For various reasons (see below), the joint density of ¥ may not, however, be of the normal
form (5.2) with some 6 in ®. It follows that the normal linear regression model Fg may be
misspecified. Then it is useful to characterize the joint distributions for Y with respect to which the
normal linear regression model is regular. This is the purpose of the next lemma. For any cdf G, let
I; = Eg(Y;) and 62 = Varg (Y;), where we have omitted the dependence on G for notational simplicity.
Letp=(Q,,...,u,) and My =1 - Z(ZZY'Z.

LEMMA 5.1: Let Fg be the normal linear regression model (5.1) with ® =B x [a,b], and G be a cdf
forY. '

(i) Assumptions A2 - A3 hold if and only if Eg (¥;*) < = for every i, and WZ(Z'Z)™?,
-:l— (3 of + WMz e ©°, in which case

i=1

B.G)Y=(Z 2 Zl, (5.5)

1 2 ’
GX(G) =~ (X o7 +1Mzp). (5.6)
i=1
(i) Assumption A4 holds if the moment generating function of Y 'Y exists, i.e., if there exists a
10>0,V t € (~toto), EgleT Y] <oo.

The condition of Part (ii) is relatively strong since it implies that the moment generating
function of the random vector Y exists, and hence that all the moments of Y exist (see, e.g., Lehmann
(1983, p. 30), Monfort (1980, p. 149)). Hopefully, this condition is only sufficient unlike the
condition of Part (i). In addition, many distributions for ¥ do satisfy that condition. For instance, it
is clearly satisfied if ¥ is multivariate normal or multivariate logistic. Thus, the class G(Fp) with
respect to which the normal linear regression model Fy is regular is in fact quite large.
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As mentioned earlier, there are many reasons why the normal linear regression model (5.1)
may be misspecified, some of which are now studied. In the first two cases, misspecification arises
because the errors are not homoscedastic independent normally distributed but the mean of Y is
correctly specified. Our approach is here more restrictive than the one considered in the semi-
parametric literature since it still assumes that the true joint distribution of the errors belongs to some
parametric family of distributions. For these cases, we readily obtain from Theorem 3.1 some lower
bounds for unbiased estimators of the true coefficient § of the normal linear regression model. On
the other hand, in the other two cases, the mean of Y is also incorrectly specified. The pseudo-true
parameters B, are therefore of interest. In this situation, we extend the Gauss-Markov optimality
property of the OLS estimator when the errors are and are not normal. Our results complement
recent generalizations of the Gauss-Markov Theorem that have appeared in the semi-parametric
literature where the mean is still correct (see Hwang (1985), Kariya (1985), and Andrews and Phillips
(1985, 1986)).

CASE A: Suppose that the true distribution of Y is given by Equation (5.1) where the g;’s
are independent and identically distributed with some common distribution that is different from the
normal distribution. For instance, suppose that the true distribution of ¢; is logistic. Then, Ho=G 1y
for some ye I where

dGyy n «/_3'_ exp [-n(y; —z b (s V3)]

——=50;7=

, ). i
dv 1 ms (1+expl—n(y; —z;b)/ (sV3)])? P

y=(,s),and T, =B®x (Va V¢ ).

Since H, is known to belong to the parametric model Gy, = {Gy; Y€ I';}, we can use
Theorem 3.1 to obtain a lower bound for the variance of any unbiased estimator T (Y) under Gy of
the pseudo-true parameters 6 (G ) associated with the closest distribution in Fg to G.17 As a matter of
fact, for this simple case, it is easier to use Equation (3.10) since one can explicitly obtain the
function 6 (G,) and hence the derivatives 06 / dy. For, from Lemma 5.1 and footnote 16, it follows
that

B.(G1, 0X G 1) = (", 5?) (5.8)
where y= (b', s?). Therefore, letting ¢(-) be the identity mapping, we obtain for every ye I'; :

Varg T(Y) 2 [Bg. (01, (5.9)

where Bé‘l, (y) is non-singular, and

dlog g:(y;Y) dloggi(y; )
! = g1V dVG)
oy oy

& (=]

] O log g1(y; )

; .10
a’Y&Y’ gl(y’ Y) av (y): (5 )
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as can readily be checked. Let us note that the lower bound (5.9) is not equal to the lower bound that
would be obtained if the normal linear regression model (5.1) is correctly specified.

CASE B: Suppose that the true distribution of Y is still given by Equation (5.1) but that the
error ¢ are jointly normally distributed with zero means and covariance matrix V which is not
necessarily of the form . This occurs if the errors are no longer homoscedastic or independent.

Thus, let Gy = {G4y; Y€ T’} where

——dfvzy =g,0: M =02 1V I exp {—-;- O -2Zb) V(v - Zb)}, (5.11)

v= (b (vech V)Y, ye B°x V, and V is the set of positive definite matrices of which the mean of the
diagonal elements belongs to (a,c).!® Let us note that the number of parameters of the model Gy is
equal to ko +n(n + 1)/ 2 where n is the sample size. Hence the number of parameters in G, is
increasing with the sample size. The results of Section 3 nonetheless apply.

Since EG"(Y) =Z7b, it follows from Lemma 5.1 that the pseudo-true parameters are for every

Ye FZ:

(B2, GHGo) = 3 vi) € B (a,¢) (5.12)

i=1
where v; is the i-th diagonal element of V. It follows that:

90,Gy [I 0

where I is the (kq X k) identity matrix, e is the (N x 1) vector of ones, and J isthe n xn(n + 1)/ 2
matrix such that (v,,, .. .,v,,) =J vech V. On the other hand, it follows from Richard (1975) that for

everyyeI',:
9”log g3 )
55,00 =] == 2 20:9 dvo)
Zviz 0

] ) (5.14)
0 ER V1I®V™hHR

as can be verified, where R is the n(n + 1)/ 2 x n? matrix such that vech V =R vec V. Let us note that
Bé; (y) is non-singular even though the sample size » is strictly less than the number of parameters of
Gy

From Theorem 3.1, it follows that if 7(Y) is an unbiased estimator of the pseudo-true

parameters 6 (G,,) = (b, 711- Y, v;) under G, then for every ye T, :

i=1
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@Z'vizy1? 0

s e (5.15)
0 SeJRVTIOVHRT Je
n

Varg T(Y) 2

When interest centers on the pseudo-true parameters B _(G,,), which are equal to the true parameters
b by Equation (5.12), it follows that a lower bound is (Z'V™'Z)™!. Let us note that the GLS estimator
B =(Z'v-zy'Z'v-'y is not an estimator since V is unknown, though its variance is equal to the
lower bound. One can think using instead a feasible GLS estimator where V is consistently
estimated. Consistent estimation of V is however difficult in this case since V is unrestricted and
hence characterized by n (n + 1)/2 parameters where » is the sample size. On the other hand, the
OLS estimator B = (ZZ)'Z'Y is always unbiased for B (G,,) = b, but not necessarily optimal since we

must have:

VarG”B =(ZZ2)y'zvz(Zz)y' > (Z'v1z)!, (5.16)

forevery Gy € Gy, €., forevery (b,V) € B®x V, as can be directly verified using the Cauchy-
Schwarz inequality (Lemma A in Appendix).

CASE C: In the previous case, the normal linear regression model (5.1) was misspecified
only because the true covariance matrix of ¥ (or equivalently &) was not necessarily of the postulated
form ¢?7. On the other hand, the mean of Y (the functional form) was specified correctly as being of
the linear form ZB. In many circumstances, this may also be violated. To study this situation, we
may want to consider the following flexible model in which we have only retained the normality
assumption. Specifically, let G3,={G3,;y€ I's} where

dGsy
dv

=g;0; Y=oy VI eXP{—% O -wWVle -w (5.17)

y= (W, (vech V)Y, T3 =M x V, M is the set of vectors of R"” of which the mean of the components
belong to B®, and V is defined as before. Let us note that, for every G3yin Gy, we have:

EG”(Y) =u, VarG,l(Y )=V, (5.18)

where the true mean p is now unrestricted.
It is easy to see that the assumptions of Lemma 5.1 are satisfied. Thus it follows that the

pseudo-true parameters for every ye I'; are:

B (Gsp=(ZZ)'Zp, (5.19)

1.2 ,
62 Ga) = (X vi + WMa), (5.20)

i=1
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where y= (W ,(vech V)). Therefore the closest distribution in the specified normal linear model Fq to
the true distribution when this latter one belongs to G, is the multivariate normal distribution
N(ZB,, 021), where B, =B (G 1), 6>=06%(G3). We note that the "approximate” mean Zf_ is the
orthogonal projection of the true mean on the column space of Z (see also White (1980a)).

From Theorem 3.1, we can readily obtain a lower bound for the covariance matrix of any
estimator T (Y) of the pseudo-true parameters 6, that is unbiased under G, For, letting Z be the
identity matrix in Equation (5.14), we have for every ye I'y:

v 0
Bg (Y)= ) 1. (5.21)
N 0 R V1®V™hHR
which is non-singular. Since
zZzyz ;o0
B Gy | &2 O (5.22)
Y 2uMzlin 5 elJln
we obtain for every y= (i, (vech V)) € [;:
Zzy'zvz@z'zy1 %(Z'Z)‘IZ'VMZu
Varg T(Y)) = 5 . 4, 2 . o (5.23)
7 —~WMZVZ(Z Zy!  SUMVMzp+ e TRV ®VHRY Ve
n n
One may ask if this lower bound is attained. A positive answer is given by the OLS
estimator = (Z'Z)'Z'Y. Indeed,
EcPB)=(Z2y'Zu=B(G), VarcB) =22y ZVZ(Z'z)™ (5.24)

forevery G € Gs,. Then, from Equations (5.23) and (5.24), we obtain the following optimal
property: The OLS estimator is a uniformly minimum variance unbiased estimator (UMVUE) under
Gy, of the pseudo-true parameters B,. This result extends (to the case where the normal linear
regression model is misspecified but the errors € are still normal) the well-known result that the OLS
estimator is best unbiased (BUE), i.e., has minimum variance in the entire class of unbiased
estimators of the true parameters b =, when the normal linear regression model is correctly
specified (see, e.g., Rao (1973, p.319)). It is also worthnoting that Z is an UMVUE of Z B, under
G Asnoticed earlier ZB_ is the closest vector in the column space of Z to the true mean of Y.

CASE D: We shall now relax the last assumption, which is the normality of Y or
equivalently . Specifically, we consider the (non-parametric) model G(Fg) which is the class of all
cdf’s for Y with respect to which the normal linear regression model Fy is regular. Then, if
u=Eg(Y)and V = Varg (Y), then it follows from Lemma 5.1 that the pseudo-true parameters are
given by

B.(G)=(ZZ)'Zp, (5.25)



18

G2G) = (X i + WMz, (5.26)
i=1

for every G as in Equations (5.19) - (5.20).
From Theorem 4.1, we obtain a lower bound for unbiased estimators under G(Fy) of the

pseudo-true parameters B (G ).

LEMMA 5.2: Let F, be the normal linear regression model (5.1) with ® =B x [a,b]. Let G(F) be the
class of all cdf’s with respect to which Fy is regular. If 7(Y) is an unbiased estimator of B (G) with
finite variance under every G € G(Fy), then:

VargT(Y)2LBg =(Z'2)'ZvZ(ZZ)" " (5.27)

From Equation (5.24), we know that the OLS estimator B is an unbiased estimator of the
pseudo-true parameters B (G) under every G, and that its covariance matrix is equal to the lower
bound (5.27). Hence, we obtain the following general optimal property when the mean and
variances of Y may be incorrectly specified and the errors are not necessarily normal: The OLS
estimator is an UMVUE under G(Fg) of the pseudo-true parameters B,. This result extends, to the
general misspecified case, the celebrated Gauss-Markov Theorem, which states that the OLS
estimator is BLUE, i.e., has minimum variance in the class of linear unbiased estimator of the true
parameters b = B, when the mean of the linear regression model Fy is correctly specified (see, €.g.,
Rao (1973, p.223)).

An important special case of the normal linear regression model is one in which there are no
explanatory variables so that Z = e (the vector on ones). The model (5.1) becomes:

Y,=B+g,i=1,...,n, (5.28)
where the ¢;’s are iid N (0,6%). The pseudo-true parameters are:

Vii (5 29)
1

:|>~

13

1 n 2 n
B(G)==3F W, 0(G)=
n = =
where G is any cdf for Y with respect to which the model (5 .28) is regular, and p; = Eg(Y;) <ee,
v; = Varg(Y;) <o (Lemma 5.1). Then, we obtain the following optimal property of the sample mean:
The sample mean Y, = % Y Y; is an UMVUE of the mean of the true means, ie., of -rll— > W, under
=

i=1

the class of all joint cdf s for Y with respect to which the model (5.28) is regular.

6. CONCLUSION
In this paper, we have derived some lower bounds of the Cramer-Rao type for the covariance

matrix of any unbiased estimator of the pseudo-true parameters in a parametric model that may be
misspecified. Specifically, we have obtained some lower bounds when the true distribution
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generating the observations belongs either to a parametric model which may differ from the specified
parametric model or to the class of all distributions with respect to which the model is regular.

These two extreme situations contrast with those considered in the semi-parametric literature where
the true distribution is unrestricted except for the true mean being of a known parametric form and
for some additional non-parametric restrictions on higher moments such as symmetry.

As an illustration, we have applied our results to the homoscedastic normal linear regression
model with fixed regressors. In particular, we have generalized the widely known Gauss-Markov
Theorem, and established that the OLS estimator is best in the sense of minimizing the covariance
matrix of any unbiased estimator of the pseudo-true parameters when misspecification of the model
arises from misspecification of the functional form and non-homoscedasticity and non-normality of
the errors.

Some final remarks are in order. First, it is clear that our results apply to parametric models
that are much more complicated than the normal linear regression model. For instance, one can
obtain some similar lower bounds for unbiased estimators of the pseudo-true parameters in a normal
linear regression model with lagged dependent variables and correlated errors.? Other interesting
examples are limited-dependent variables models and simultaneous equations models.

Second, our lower bounds can be used to evaluate the efficiency of an unbiased estimator of
the pseudo-true parameters. For instance, in the normal linear regression model, the efficiency of the
OLS estimator was established by showing that its covariance matrix is equal to our lower bounds.
As for the usual Cramer-Rao bound obtained under correct specification, our bounds may not be
sharp in the sense that, for some other models, there may not exist an unbiased estimator of the
pseudo-true parameters of which the covariance matrix is equal to these bounds. Following
Bhattacharya (1946), one can however obtain some new and sharper lower bounds in those
situations.

Finally, one may use our lower bounds to evaluate the asymptotic efficiency of consistent
and asymptotically normal estimators of the pseudo-true parameters. Our general lower bound
obtained in Section 4 suggests that the quasi-maximum likelihood estimator of the pseudo-true
parameters is asymptotically efficient since its asymptotic covariance matrix is equal to that bound
(see, e.g., White (1982)). As in the correct specification case, however, careful definitions of
asymptotic efficiency must be proposed so as to avoid super efficiency (see, e.g., LeCam (1953), Rao
(1963)). For instance, the concept of uniform convergence must be appropriately defined in the
misspecification context. These are clearly topics for further research.
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APPENDIX

Throughout, the norm of a real vector is the euclidean norm, and the norm of a matrix is the
one defined in, e.g., Rudin (1976, pp. 208-211). This is denoted by IAl. We shall also use the
following generalization of the Cauchy-Schwarz inequality.

LEMMA A: Let U and V be two real random vectors on R™ and R " with finite covariance matrix
Var U and Var V. Let Cov (U ,V) be the covariance matrix of U and V, and Cov (V,U) = Cov(U V.
Then, Cov (U ,V) is finite, and

Var U = Cov(U,V) [Var VI~ Cov(V.,U) (A1)

where [Var V]~ is any symmetric reflexive g-inverse of Var V. Moreover, the right-hand side is
independent of any choice of symmetric reflexive g-inverses.

PROOF OF LEMMA A: By the usual Cauchy-Schwarz inequality, Cov (U ,V) is finite. Let A by any
m x n real matrix, and consider the covariance matrix of U + AV

Var(U +AV)=Var U +AVar V A +A Cov(V,U)+Cov(U,V)A. (A2)

Choose A =Cov(U V) [Var V] where [Var V1~ is any symmetric reflexive g-inverse of Var V.
Since ([Var VI =[Var V1" and [Var VI~ [Var V]Var V] = [Var V] by definition, we have:

Var(U + A V)=Var U — Cov(U V) Var VI~ Cov(V,U), (A.3)

which establishes the desired inequality.
To prove the second part, we note that since Var V is psd, there exists ann X n matrix P
such that PP'=PP =1 and P'(Var V)P =D where

D, 0
D= ] (A4)

0 0

and D, is a positive diagonal matrix of dimension r =rank Var V. Let W = P'V. Then Var W =D so
that the last n — components of the random vector W are (almost surely) equal to zero. Let W, be
the first » components of W. Then

Cov(U W)= (Cov(U.,W,),0), Cov(U,V)=(Cov(U,W,)0)P ’ (A.5)
since V' =W'P’ = (W, ,0)P". From Vuong (1986b, Lemma 3), any symmetric reflexive g-inverse of

Var V is of the form [Var V]~ = PHP  where the top-left block of H is equal to D,™ = [Var W, 1™
Hence

Cov(U,V) [Var V]I~ Cov(V,U)=Cov(U ,W,) [Var W,]'1 Cov(W,,U). (A.6)
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This establishes the second patrt.

PROOF OF LEMMA 2.1: Part (i) is straightforward from Assumptions A1l - A3 (see, e.g., White
(1982)). That 6 (G)=6,if G =F 0, follows from Jensen inequality and Assumption A3 - (a). The
proof of Equation (2.6) is slightly different since Assumption A4 is relatively unusual. We shall
prove that Assumptions A2 - A4_imply the more usual assumption that J f(y;6)dv(y)canbe
differentiated twice under the integral in a neighborhood of 6, so that in that neighborhood:

3 (7 6) A7
| L0 dv(y) =0 (AT

(see, e.g., Silvey (1959, Assumption 13)).
From Assumption A4 , forevery8e N,

| |
13 #O:9) 030,600 ¥y €Y, (A.8)

where M (*) is (square) integrable with respect to G. Since G =Fg, it follows that

f M (y)f (Y5 8) dv(y) <. Hence the left-hand side of (A.8) is dominated by a v-integrable function
independent of 6 because 6 (G) = 6,. Thus by the Lebesgue Dominated Convergence @LDOC)
Theorem (see, e.g., Rudin (1976, p.321)), we can differentiate I f:;0)dvy)=1onN:

J'aLgé;—de(y)w, VoeN., (A.9)

Then we note the identity for every (y,0) € Y X ©:

Pf(3:0) _ Plog f(y:6) dlog f(y:0) dlogf(y;0) , |
3090 000 OO T e () (A.10)

But, from Assumptions A2 and A4, forevery (y; ) € Y XN :

| 3%log £ (y; 0) | |8210gf(y 0) | f(y, A 33 8,) |
I_aeae IfO;0)<| ———aeae Ilf(y )+ ———>— Y ®- 9)}

SMOE @;0)+MOIM )f 0;6)10-6_1 (A.1D)

where =0 (G), 5, € (6,6), and M () and M () are square-integrable with respectto G = F 0,= Fe..
Hence, the right-hand side of (A.11) is v-integrable. For 6 sufficiently closeto 6, 1 6—6_ 1 is
bounded above. Hence the left-hand side of (A.11) is dominated in a neighborhood of 6, =, by a
v-integrable function independent of 6. On the other hand from (A.8) and Assumption A2, for every
e N :
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| 910g £ (y:0) dlogf(y:0) | Blogf(y 9) af(}’ 9)
T s |JO0= ™20 |

<M @M, 5)f (3 0), (A12)

‘which is also v-integrable. Using now (A.10) - (A.12), it follows that in a neighborhood of 6_ = 6y,
| 9%f (y; 0)/ 9096 | is dominated by a v-integrable function independent of 6, Hence, by the LDC
Theorem, we can differentiate (A.9) under the integral sign in a neighborhood of 6, =0, so as to get
(A.7). Equation (2.6) follows by letting 6 = §, in (A.10) and integrating it with respect to v.

PROOF OF LEMMA 2.2: To prove Equation (2.7), it suffices to show that we can differentiate
Ig (y;7v) dv(y) = 1 under the integral. This is done as in Lemma 2.1 since for every ye T and every
? €Ny

» Y | <M /)20, (A.13)

QU
oQ
<
"

(Assumption B2.) To prove the second part, we note that for every ye I,

| 9log g(y;7) dlogg(y;y) | I 1 gy |
I 3y a7 lg(v Y)S{g(y;y) 3y Ig(v s

SMIWMEO: Y (A.14)
where the right-hand side is v-integrable. Hence B (y) is finite for every ye T

PROOF OF LEMMA 3.1: (i) From Lemma 2.1, it follows that foreveryye I', and 6 € ©,

92/ (6,7) _ [ dlogf(¥;6) o

=5 =] L dGyy) <o, (A.15)
%2/ (0,y) _ [ 9*log f(y;6) _af - A.16
9696 -1 d00 200 =45 O < (410

To prove that the second partial derivatives are continuous in both 6 and v, we note from
Assumptions A2 and B2 that for every (8, %) € ® xN,, we have fory, € (7,7):

3 log f (7:9) | l 7 fazlogf(v 6 | ”g(y V) + g_(y'iyl@_y)}
I

|
|~ 00 L e oy

SMOEO;N+MOIMOEGN 1Y -vI (A.17)
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where M (") and M () are square-integrable with respect to G,. Hence, for v sufficiently close to v, the
left-hand side of (A.17) is dominated by a v-integrable function independent of 8,7). From the
LDC Theorem and (A.16), it follows that 822/ (,y)/ 9630" is continuous on © x T

To prove that 92/ (8,y)/06dy exists and is continuous on ® x T, we note from Assumptions

A2 and B2 that for every (8,7) e ©XN,:

| d1og £ (738 gy 7) | .
T o }sM(v)My(v)g(v,v), (A.18)

where M (-) and M (') are square-integrable with respect to G,. Hence, the left-hand side of (A.18) is
in a neighborhood of y dominated by a v-integrable function independent of 8,%). By the LDC
Theorem, we can differentiate (A.15) under the integral sign with respect to vy so that for every

0, ©XTI:

f(:6) 980V -
o o dv(y) <o, (A.19)

%2/ (0.) _ f dlog
000y

which is equal to Bé’ﬁgy (6,y). Moreover, using again the LDC Theorem, the domination condition

(A.18) implies that 8% (6,y)/ 9800’ is continuous in both 6 and .
(ii) Since for every ye T, 6 (G,) maximizes the function z/ (6,y) = z{‘;7 (), and since

0,(G,) € ©° (Assumption A3), it follows that we must have,

f
2 (eg(ycp,v) 0. vyer (A20)

Since 6 (G ) is unique, (A.20) defines 6, =6,(G,) as a function of yover I". From part (i), the function
dz/ (0,y)/ 96 is continuously differentiable on ® x I'. Hence, by the Implicit Function Theorem (see,
e.g., Rudin (1976, p.224)), 6, as a function of yis continuously differentiable on I" if 0%/ .9/ 0006’
is non-singular. But 3%/ (8,,y)/ 0606 = A&'}Y (8,) (see Equation (3.5)) which is non-singular by
Assumption A3 - (b). Thus, by differentiating (A.20) with respect to v, we obtain Equation (3.7)
using Equations (3.5) and (3.6).

PROOF OF THEOREM 3.1: Since the model G is parametric, the unbiasedness condition (3.1)
becomes:

[T6)803% dve) =66,G ), VyeT. (A21)
By Assumption B2, forye T'andy € Ny

IT() ag—g?’—ﬂﬁ I<ITQ) I MO)G;W, VyeT, (A22)
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where M (") is square-integrable with respect to G. On the other hand T () is square-integrable with
respect to G since Varg T(Y) <. Hence, the left-hand side of (A.22) is dominated by a function

independent of y that is v-integrable. From the LDC Theorem. we can differentiate (A.21) under the
integral signs and get:

[T §‘°—gag79——ﬁ dG(y) = NE) B, yyer (A23)

’

00 dy

where 6_=6 (G,). Using Equation (2.7), this is equivalent to:

: 96(0) 30
Covav{T(Y), 0 log gY(Y’Y)] - q;(e,*) 5 rer (A24)

In addition, from Lemma 2.2,

Varg, [8—195-57@—”)-} =B§ ()<, VyeT. (A.25)

Hence, by Lemma A, Vye I":

90(0) 90
* * B -
e _—87' (B (]

0. 3066,
ay 090

VargT(Y) 2 (A.26)
where [B& (y)I” is any symmetric reflexive g-inverse of B (y). The desired result follows from

Equation (3.7).

PROOF OF COROLLARY 3.1: Recalling Definition 2.1, it follows from Jensen inequality and
Assumption A3 - (a), that 8 _(Fe) =0 forevery 6 € @°. Since Assumption A4_holds for every G =Fj,
0 e @°, it follows that the parametric model F§ = {F; 6 € ©°} is semi-regular (see Definition 2.2). It
now suffices to apply Theorem 3.1 with G = F§, and to note that for every G € F¢ and 6 € @°, such
that G =Fy:

AL®)=470), (A.27)
B&(®,.0) = B&(6) =B/ (), (A.28)
using Equations (2.1), (2.8), (3.4), (3.11), and (3.12). Moreover, from the information matrix

equivalence (2.6) and Assumption A3 - (b), the matrix B/ (9) = B£(6) is non-singular. The desired
result follows from Equation (3.9).
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PROOF OF COROLLARY 3.2: Since 6 (G) and o (G,) are differentiable on I’ (Lemma 3.1), it
follows from Equation (3.14) that

99(8,) (A.29)
where 6, =6 (G,) and o = o (G,). The result immediately follows from Equations (3.7) and (3.9).

PROOF OF COROLLARY 3.3: Let 0, =6 (G,) and 8 =8 (G p) be the pseudo-true parameters for
the model Fg when G =G,= G p With B =A(y). From the assumptions, we have:

0,(Gp=08 Gy, VYET. (A.30)
Hence,
90(6) 90(® ) _
2 [ALO) = —= [AL® O A31
= [A5(8)] m [AL® )] (A31)

In view of Equation (3.9), it suffices to show that

BE®_y) BEWI BE(1,0) <BLE @ .B) BEB)I BE BB (A.32)

for any choice of symmetric reflexive g -inverses. We note that

dlogg(y;y) _ o\ dlogg (v; )
oy oy ap

where 0/ 9y is evaluated at vy, and B = A(y). Since 6, =8, (A.32) becomes

Fo my O | N o NN Ly ; e pif
363(9*,6) oy [ 3y B&(B) ay} 3y B¢ (B,O*)SBég(G*,B) [BEB)]™ BE/(B.6)). (A33)

As in the proof of Lemma A, let P be an orthogonal matrix that diagonalizes Bé (B) into a diagonal
matrix of which the first » diagonal elements are strictly positive with » =rank B&(B). Define

_aloggp) | M
W=P —aB —[0 }, (A.34)

Since E;(W)=0whenG =G p (Lemma 2.2), it follows from (A.6) that the right-hand side (RHS) of
(A.33) satisfies:

. - ol Y; 0
RHS =Covg[ ﬂ)gfag—’e*) , W,} [ VarGW,] 1Cov(;[ w,, _—9g_J;9(——*_)J . (A.35)
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On the other hand, let P, be the b Xr matrix of which the columns are the first 7 columns of P.
From (A.34), it follows that the left-hand side (LHS) of (A.33) becomes

dlogf(¥;6)
20

dlogf (Y36,
20

LHS = Covc{ ,W,} Py (P, (VargW,) PyT” P,,cova[ w,, } (A.36)

where P = P,oM 9y. Thus, from (A.35) - (A.36), the inequality (A.33) holds if

P[P (VargW, )Py Py<[Varg /A (A37)

for any choice of symmetric reflexive g -inverses, i.e., if

VargW, = (VargW,)Py [Py(Var, W,)PyI” PVargW,. (A38)

Defining V =W, and V =P,W,, the inequality (A.38) follows from Lemma A.
To prove the second part, we note that for B = A(Y):

.

B&() = oy

= o OA

- A.39
BE® 5 (A.39)
so that p <b if B§(Y) is non-singular. Moreover rank oA/ dy=p and p <rank Bf; (B) < b. Hence, if
p =b, all the matrices in (A.39) are non-singular. It follows that (A.33) holds with equality, and the
desired result follows.

PROOF OF LEMMA 4.1: Since Fy satisfies Assumption A1, we need to show that Gy satisfies
Assumptions B1 - B2, and that Fg satisfies Assumptions A2 - A4 for every cdf in Gg. The proof is
done in five steps, one step for each condition.

Step 1: First we show that the parametric model Gg = {Gy;0 e N} satisfies Assumption B1,
where N _ is the neighborhood of 8, of Assumption A4. Inview of Equation (4.1), it suffices to show
that C () exists and is continuously differentiable on NV .. Since f (¥; 6) >0 for every (y,0) e YXO,
we have:

f@:6)
1<l+exp| 1- <l+e,VyeY,VOe®. A 40

Integrating (A.40) with respect to G, we obtain

1<C@®)<1+e,V0eO. (A41)

So C (8) < e. Moreover, from Assumption A4, we have forevery0e N_:

1 lare:0 | icH.)
7500 | o0 {exp[l 0 g <e M (3)8»), VyeY, (A42)
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where M () is square and hence simply G -integrable. Thus the derivatives of the integrand of C(6)
with respect to 6 are dominated by a function independent of @ that is v-integrable. By the LDC
Theorem, we obtain that forevery0e N _:

2O __[_1__ 300 exp[ 1_1&@_} Gy <o (A43)

06 f@:6) 00 f©:6)

Moreover, since the integrand of 9C (8)/ 96 is continuous in 6 and since (A.42) holds for every
8e N, then oC(6) 00 is continuous on N .

Step 2: A useful result is that if M (y) is a square-integrable function with respect to G, then
it is also square-integrable with respect to G, for every 6 e N . Indeed, from (A.40) we have:

05 M20)8 03 0) < Ges , , . (A.44)

Hence fM 2(y)dG (y) < e implies that fM 2(y)dG o(y) < oo forevery 0 € N .

From this result, it follows that Assumption A2 is satisfied for every Gy, 6 e N, since the
functions | log f (- ;0)1, 1 dlog £ (-;6)/ 06 |, and 10%log f (- O/ 2000’| are dominated by a function
square-integrable with respect to G and hence with respect to G also.

Step 3: We shall show that the model G¢ satisfies Assumption B2. For every
(v,6) € YXN_, we have:

exp[l— ANE G)}
dlogg(yi0) ___ 1 CEO) _ 1038 1 9f0:0) (A4S)
FY) C®O 09 1+expl1_ ; e)} F5:0) 8 ,
£0:8)
Thus, for every (y,6,8) e YXN XN :
JACH)
1+e¢
1 (8 __C® xp[ fo; 9>}
50:9 0 CO® | o e e))J
f(;0)
1-
1@ , exp[ f@;%} 1 3f(:0)
) 00 . B ;0 00
c®) 1“”{“;8.’(?))] 06,
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Using Assumption A4, and the inequalities (A.40) - (A.41), we obtain for every (6, e N XN

1 lag0:6) is(1+e)2{ 2@ {HM*@)}, Vye, (A46)
[ I

where M (*) is square integrable with respect to G and hence with respect to G (see Step 2).
Moreover, since 9C (8)/ 90 is continuous on N , (see Step 1), for every 6 € N, there exists a
neighborhood N4 such that

I Ay | -
i a%ée) < a(©), VB e Ny, (AA4T)

where a(6) may depend on 6 but not on 8. Hence, for every 8 € N, and every & € Ng:

|
g(yl 5| Bg%ye 6) | l<(1+e)2{a(9)+eM O} Vye Y, (A48)

where the right-hand side is independent of & and square-integrable with respect to G. Thus
Assumption B2 is satisfied. In view of Step 1, the parametric model G¢ is therefore semi-regular as
are all the models of the form {G¢; 6 € N} where N, is an open subset of N .

Step 4: We shall show that there exists a neighborhood N of 8, such that Assumption A3 is
satisfied for every cdf G4, 0 € N,. Define

2/ ®.0)=[1og £ (v; 8) dG (), (A.49)

which exists and is twice continuously differentiable in its first argument 8 because of Step 2. In
addition, a look at the proof of part (i) of Lemma 3.1 reveals that only Assumptions A1, A2, B1, and
B2 were used. These assumptions are satisfied here (see Steps 1, 2, 3). Hence, for every

(8,6) € ®XN , the derivatives

0z/ (8,0) [ dlogf(y;0)
20 -] 20 4Go0) (4.50)

are continuously differentiable in both  and 6 on @ x N . With

2 ®.0) _ [ dlogf(y;6) o, A51
3698 - qa0 Q0I0)=4E, ®< A
R CE)) dlog f(y;8) dlogg(y;6) — BRI (B o A.52
3896 -] 0 LA N

Then, we note that

g(r;0)=g0), Vyey, (A.53)
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so that

4 ®0,)=logf(;8)dG ) =2£@), VB € ©.

Since F, is regular with respect to G, it follows that § =, is the unique maximizer of z (8.,0,) over ©,
and being in ®°, we have:

f
92 6.8) _, (A.54)
%

Moreover 8%z (6,8, 0098 = AL &(8,) which is negative definite.

Thus, since 9%/ 8, 0)/ 9898 is continuous in (8.,0) (see above), there exists a neighborhood
of (8,.0,) of the form N, x N, included in N, X N, over which 922 (8 ,0)/ 9608 is negative definite.
Therefore for every 8 € N,, the function 2/ (8,0) is strictly concave in feN,.

For any 6 € N,, let us now consider the equation in BeN;:

27 (8.0) _ A.55
% (A.55)

Since az/ (8,0)/ 38 is continuously differentiable in both & and 6 on Ny x N, it follows from (A.54)
and the Implicit Function Theorem that there exists a neighborhood N, of 6, (included in N») and a
continuously differentiable function y(-) on N3 with values in N, such that

f
0z (51!6(9),9) =0, VOe N, (A.56)

Since for every 8 € N3 c N,, the function 2/ ®,0) is strictly concave in 8 e N, then y(0) is the unique
maximizer of z/ (8,8) over & € N,. Moreover, by construction of Ny X N, %27 (y(6),0)/ 0600’ is
negative definite and hence non-singular for every 6 € N3 as required by Assumption A3 - (b).

We now show that there exists a neighborhood N, of 8, (included in N5) such that for every
0 e N,, w(®) is also the unique maximizer of z/ (8 ,6) over B e ®. First, we note that the function
2/ (8 ,9) is continuous in both 8 and 6 on ® x N,. Indeed, from (A.40) - (A.41), we have for every
©,0)e OxN,:

llog f(y;8) g(y:0) I<(1+e) I logf(y;8) 1 g), VyeY,
<A+e)M@y)O®), VyeYy, (A.57)

using Assumption A2 . Thus the continuity of 2/ (8,0) follows from the LDC Theorem. Then,
suppose that there does not exist such a neighborhood No. This means that

Vn,36,€N;,36,€©-N.,10,-6, 1< %,zf(‘é,,,en)sz(\y(en),en). (A.58)
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(Recall that for every 8 € N3, y(8) is the unique maximizer of z/ (8,0) over § € N;.) Now, the
sequence {6, } converges to 6,. In addition, ® - N, is compact because © is compact and N, is open.
Since {8,} € ®—N,, there exists a subsequence {8,,} converging to & _ (say), and 8, e ®-N,. Since
2/ (8 ,0) is continuous on © x N, and y(6) is continuous on N5, we obtain by taking the limit of (A.58)

asm —> oo

2/ (8,,0,)227(6,.0). (A59)

Since 8, € ®— Ny, and 0, is the unique maximizer of z/ (8.0,) over § € ®, we obtain a contradiction.
Hence, for some neighborhood N, of 6, Assumption A3 is satisfied for every cdf G4, 0 € Ny,

Step 5: It remains to show that Assumption A4 is satisfied with respect to every Ge, 6 € N.
From Step 3, this means that for every 6 € Ny, there exists a neighborhood N (6) of y(0) such that for

every 3.0)e N ,(0) XN (6), the function [f (- : B)171 1 9f (- : 6) 96) is dominated by a function

independent of § and G g-square-integrable. Recall that () has its value in N, cN_. Hence N, is
also a neighborhood of () for every 6 € No. Let N (8) =N . The result follows from Assumption
A4 because any function that is G -square-integrable is also G ¢-square-integrable (Step 2).

PROOF OF THEOREM 4.1: To prove the first part, we use Lemma 4.1 and Theorem 3.1. Let

G € G(Fg). From Lemma 4.1, there exists a neighborhood N (G ) of 6, =6, (G) such that Fy is regular
with respect 10 G¢(G) where Go(G) = {Gg; 0 € No(G)},dG g/ ov=g(y; 6), and g (v; 6) is defined by
Equations (4.1) - (4.2). Since Go(G) c G(Fy), T(Y) is also an unbiased estimator of ¢(9*(G )) with
finite variance under every G € Go(G). Since Go(G) is semi-regular and Fy is regular with respect to
it, Theorem 3.1 applies. Thus, we have that for every G € G(G), and every 6 such that Go5 =G

Varg T(Y)2LBg (0). (A.60)
But G is an element of G¢(G ) by construction of Go(G ), and G4 ¢ =G . Thus, we have
VarGT(Y) ZLBG(O*) (A.61)

Let us now compute LB;(8,). From (A.43), we note that 9C(8,)/ 00 = 0 so that we obtain
from (A.45):

dlogg(y8) 1 dlogf(:6)

2 2 90 (A.62)
Therefore, from Equations (2.3), (2.8), and (3.4), we have:
1
BE®) =71 BL(@®), (A.63)

BBO,8) = B®)). (A.64)
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Hence, from Equation (3.9), we obtain:

a(8,)
20

90'(®
LB;(8,)= [AL(0 )1 BSO,) IAEO)T™ J%%—) (A.65)

where we have used the definition of a g-inverse. The desired result follows from (A.61) and (A.65)
by putting LBg =LB;(0,).

To prove the second part, we note that S¢ must be non-empty since it must contain the
semi-regular model G¢(G). Let Gy={G,;veT'c IR?} be another element of Sg, i.., another semi-
regular model containing G and with respect to which Fg is regular. Let ybelong to I" such that
G,=G. Putting U = dlogf(¥;0) 00and V=0logg(y; ¥)/ 9y, it follows from Lemma 2.2 and
Lemma A that

B4(8,) 2BE®,) [BEMI BEX8) ‘ (A.66)

for any choice of symmetric reflexive g -inverses. Then, the desired result follows from (A.65) and
Equation (3.9).

PROOF OF COROLLARY 4.1: Part (i) follows from part (ii) by reversing the roles of Fg and Fy,.
To prove part (ii), we use Equation (4.5) and Lemma 4.1. For, let G € G(F), and G, be the semi-
regular model defined in Lemma 4.1 with respect to which Fy is regular. Since, by assumption,
G(F) = G(F,) it follows that Gg c G(Fy). Since G is semi-regular and contains G by construction,
then Gg € Sg (F,) where Sg (F,,) is the set of all semi-regular models containing G and with respect to
which F,, is regular. Now, from the proof of Theorem 4.1, we have that LB (Fg) = LB (G, 0,) Where
6,=0.(G) and Ge. = G . On the other hand, from Equation (4.5), LB (F,) = max LB;(G,, ) where the
max is taken over all Gy e S (Fo) and vyis such that G,=G. Since Gge S(F o), the desired result
follows.

PROOF OF LEMMA 5.1: To prove the "if" part of (i), let M be such that 1Bl <M forevery B e B.
Since 6 € Bx[a,b] and

ly —ZB12<(ly 1l + M1Z 1Y, (A.67)

it is not difficult to show using Equations (5.2) - (5.4) that:

|1ogf(y;e)|s%1og2nb+-21;(|y|+M|Z|)2, (A.68)
| .oy |
Iﬂ%—gg’—@-‘S%IZI(IyI+MIZI)+§'-1a—+ZII—2—(IyI+MIZI)2, (A.69)
| Rlog7f3:0) | a1

22 < +—(ly! MHYIZ 1 A.70
| ™ 2000 <2 g7 1+ @+DIZh (A.70)
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Since Eg (Y% < =, it follows that 1y 12 and therefore the right-hand sides of (A.68) - (A.70) are G -
square integrable. Thus Assumptions A2 holds. Moreover, it immediately follows from Equation
(5.2) that

25(9)=—— 10g2ﬂ62-§‘7[20 +@-ZB - ZB), (AT1)
i=1

where 62 = VargY; < e and p=Eg(Y) <. Then, it is easy to show that z£(0) attains a unique
maximum over © at 8 (G) = (8(G).05(G )Y as defined by Equations (5.5) - (5.6), which belongs to e°
by assumption. Finally, from Equation (5.4), we obtain

AL®,G)) = . 0 | (A72)

which shows that AL (6,(G)) isnd. Therefore Assumption A3 is satisfied.

To prove the "only if" part of (i), we note that if Assumption A2 holds, then log f (y; 6) and
its first and second partial derivatives with respect to 6 must be G -square integrable for every 6 € ©.
From Equation (5.3), it follows that Z'y and |y — ZB1% must be G -square integrable. This implies
that 1y 12 must be G-square integrable so that E¢ (¥;*) < o for every i. It is also clear that Assumption
A3 - (a) implies that 6 (G) must belong to €°.

To prove (ii), we note that if Y'Y = 1Y 12 has a moment generating function, then for every
Be ﬂ?k", 1Y — ZB 12 has also a moment generating function, i.e., there exists ; >0, Vite (-t
Eg(e''Y ~?P™ <o, Then, we note that

| 1 1 ~ b1 1 < o |
— ly —ZBI1%- ly —ZB 12 —| Iy -ZBI? 2_1y-zB1?
fch y-Zp ez Y zZB17 |= I[ 202 252 ZBI +2 (ly =Zp1=—ly ZBI){,

1 ~
162=a21 ly —ZBI12+ — 1Z121B-B 17,
2626 y -2 262 P-P

<1 15%-0 2, M2 g0
<— lo"- Iy —=ZBI*+ — 1Z1I7, (A.73)
2a a

where we have used that 1Bl <M and 6®>a, 6>>a. Hence:

~ ni2
——;gg)) =[§;] exp{ —2—(11—2 ly —ZBIZ—Eé; ly —ZB|2},

<K exp{ Py lo2-c%l |y - Zﬂlz} (A.74)
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where K = (b/a)"? exp(M*1Z 1%/a). LetN¢be a neighborhood of 6*(G ) with radius &> 0. 1t follows

~

that if (6% 0?) € N¢ X N, then 152 — %1 < 2 so that, using (A.69) and (A.74), we obtain:

.8y |
L iaf(ay’e)}sxf 5”;——%—'—+—2—‘11—2-(1y|+(a+M)IZ|)2} exp[fily—ZBlz} (AT5)

Since the moment generating function |y — Z 1% exists, it follows that Eg(ly — ZB12me*"? 7% <o
for every integer m and any ¢ € (~f1.t1) ( see, e.g., Monfort (1980, p. 148)). This implies that

Es(ly —ZB1me'" ~'P") < oo for every integer m and every ¢ € (—1,¢7). Using this latter property, and
letting € be less than ¢,/ (2a %) jt follows that the right-hand side of (A.75), which is independent of §,
is G -square integrable. Thus Assumption A4 is satisfied.

PROOF OF LEMMA 5.2: The result follows from Theorem 4.1 where the mapping ¢() is such that
¢(0) = B. Thus, using (A.72), we have:

20(0 ,
—%(9—,*1 [AL(O )T = [62(Z'Z) ™ 0l. (A.76)

On the other hand, using Equation (5.3), the submatrix of B£(6,) corresponding to the parameters B
is:

dlogf(¥;8) dlogf(¥:0,)

[B£(®)1ps=Ec

op op’
=c*ZEqy-2ZB) (Y -Z B)Z. (A7)
Since we have:
Eg(Y —ZB) (Y —ZB) =V + MzuuMz, (AT8)

as is readily established using Equation (5.25), we obtain:

[BL(0,)gp=O2Z VZ. (A.79)

The desired result follows from (A.76), (A.79), and Equation (4.4).
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FOOTNOTES

This research was supported by National Science Foundation Grant SES-8410593. Iam
indebted to D. Rivers for helpful discussions. This paper is dedicated to those who have made
this past year enjoyable. Remaining errors are mine.

This lower bound is also sometimes credited to the french statisticians Frechet (1943) and
Darmois (1945).

The compactness assumption is used only in Section 4. Otherwise © can be open.

For a detailed discussion of these three assumptions, see White (1982). Note that we assume
here square-integrability instead of simple integrability of the dominating function M (") in
Assumption A2. Also, the non-singularity of the matrix A£(8,(G)) can be replaced by the
weaker assumption that 6 (G) is a regular point of AL(8) (see White (1982, Theorem 3. 1).

It appears more convenient to impose the additional regularity condition A4 on the model Fq
rather than to impose some regularity conditions on the unbiased estimators, as this is
sometimes done in the correctly specified case (see, €.g., Lehmann (1983, p. 122)). As a matter
of fact, the full force of Assumption A4 relative to Assumption A4, is only used in Section 4.
As can be seen from the proof, Assumption A4_is used only to establish part (ii). In addition,
we have the stronger result that Equation (2.6) holds in the neighborhood N_of 6, = 6y, ie.,
VeeN,,

Plogf(0:0) .. A1ogf (930 £y _
JERELOZD 1 (y; 0 avey) + | SELFE £ 030 dv0)=0.
Had © been open instead of compact in Assumption A1, then it would follow that a parametric
model Fy which is regular is necessarily semi-regular. On the other hand the regularity of Fg
implies the semi-regularity of FJ as seen in Corollary 3.1.

It is not necessary to restrict ourselves to unbiased estimators. As usual, our results can be
adapted to biased estimators under the mean squared error loss function (see, e.g., Lehmann
(1983, p. 128)).

As can be seen from the proof, the local Lipschitz assumption A4 is not used. On the other
hand, Assumption B2 is important.

Note that we cannot in general replace the inequality (3.8) by

VargT(Y) = sup LB (Y)

where the sup is taken over y such that G =G . Indeed the psd matrices LB (y) are not
necessarily ordered.

For definitions of these concepts, see Vuong (1986a).

I owe this question to D. Rivers.

As the proof shows, if B&(Y) is non-singular, then one must have p <b as expected since Gy is

nested in Ggp.
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The only difference is that the model considered here will be k-dimensional, while in the semi-
parametric literature, it is in general one-dimensional.

Another model that contains G is one in which the densities are of the form

fO:0)g0) f(;6)C(6) where C(6)is a normalizing constant. Unfortunately this model is not
necessarily semi-regular. In addition Fy is not necessarily regular with respect to it.

A more general framework is one in which Z is random. This corresponds to the case of
stochastic regressors. Then, an appropriate framework is that considered in Lien and Vuong
(1986) which builds on conditional specification (see Vuong (1983, 1984)). More general
frameworks with stochastic regressors are studied in White (1980b, 1984) and White and
Domowitz (1984) among others. Note that in the non-random case, misspecification arising
from possible correlation between the regressors and the error terms (see, e.g., Hausman,
(1978)) cannot be properly handled.

Note that Eg (¥;) =z/b and Varg (¥;) = 5. The parameter space I"is equal to Bx (Va Vb ) so
that Assumptions A2 - A3 are satisfied (see Lemma 5.1 - (i)).

One can readily check that the model G, and all the models considered below are semi-regular
so that our results apply.

In what follows vec and vech are the operators that stack the columns of a matrix and a
symmetric matrix (see, e.g., Henderson and Searle (1979)). For simplicity, the covariance
matrix V is restricted to be non-singular, though our results holds even if V' is singular.

Note that in this case, LB is equal to the lower bound (5.23) for the pseudo-true parameters
B.(G) where G belongs to Gz, which is clearly nested in G(Fg). Note also that the lower bound
(5.23) is at least as large as the lower bound (5.15) which is obtained when G belongs 10 G,
From Corollary 3.3, this is expected since Gy, < Gay.

In this case, we treat the initial conditions as fixed. See also footnote 15.
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