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ABSTRACT

In this paper, we propose a classical approach to model
selection. Using the Kullback-Leibler Information measure, we propose
simple and directional likelihood-ratio tests for discriminating and
choosing between two competing models whether the models are non—
nested, overlapping or nested and whether both, one, or neither is
misspecified. As a prerequisite, we fully characterize the asymptotic
distribution of the likelihood ratio statistic under the most general
conditions.
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1. INTRODUCTION

The main purpose of this paper is to propose some new tests
for model selection and non—-nested hypotheses. At the same time, we
shall propose a classical approach to model selection. Since all our
tests are based on the likelihood ratio principle, as a prerequisite,
we shall completely characterize the asymptotic distribution of the
likelihood ratio statistic under general conditions. By general
conditions we mean that the models may be nested, non-nested or
overlapping and that both, only one, or neither of the competing
models may contain the true law generating the observations.

Unlike most previocus work on model selection (see, e.g., Chow
(1983, Chapter 9), Judge et al. (1985, Chapter 21)), we shall adopt
the classical hypothesis testing framework and propose some
directional and symmetric tests for choosing between models. This
approach, which has not attracted a lot of attention, dates back to
Hotelling (1940). A notable and recent exception is White and Olson
(1979) where competing models are evaluated according to their mean
square error of prediction. In this paper, we shall follow Akaike
(1973, 1974) and consider the Kullback-Leibler (1951) Information

Criterion (KLIC) which measures the distance between a given

distribution and the true distribution. If the distance between a
specified model and the true distribution is defined as the minimum of
the KLIC over the distributions in the model, then it is natural to
define the "best’ model among a collection of competing models to be
the model that is closest to the true distribution (see also Sawa
(1978)).

We shall consider conditional models so as to allow for
explanatory variables. Then, if wc = {f(ylz;0); 6 ¢ 6} is a
conditional model, its distance from the true conditional density
:cﬁ<_nv. as measured by the minimum KLIC, is moawom :oﬁw_wv_ -

E%[1o0g £(ylz;0,)] where E%[-1 denotes the expectation with respect to
the true joint distribution of (y,z) and 6, is the pseudo-true value
of & (see, e.g., Sawa (1978), White (1982a)). Thus, an equivalent
selection criterion can be based on the quantity moﬁwom wﬁw_nu¢av_“
the ""best’” model being the one for which this quantity is the largest.

Given two conditional models wo and m« = {glylziy)s ye I}
which may be nested, non-nested or overlapping, we shall propose tests
of the null hypothesis that mcﬂwow wA<_N“®aVH = mo_wom mA<_N“<oVH
meaning that the two models are equivalent, against
mchwom flylz;0,)1 > mcmwom g(ylziv,)) meaning that Fg is better than
G., or against E’[log £(ylz:0,)1 < E°[1og g(ylziv,)] meaning that G,

v

is better than F Tests of such hypotheses will be called tests for

9

model selection. Since the true density h is not restricted a

0
ylz
priori to belong to either one of the parametric models wo and n*.

then by necessity, the concern of this paper will solely be with



asymptotic results.

The quantity EC[log £(ylz;0,)] is unknown. It can
nevertheless be consistently estimated, under some regularity
conditions, by (1/n) times the log-likelihood evaluated at the pseudo
or quasi maximum likelihood estimator (MLE) (see e.g., White (1982a),
Gourieroux, Monfort and Trognon (1984)). Hence (1/n) times the log-
likelihood ratio (LR) statistic is a consistent estimator of the
quantity E0[log £(ylz;0,)1 - E®[log g(ylziv,)]. Then given the above
definition of a "best” model, it is natural to consider the LR
statistic as a basis for constructing tests for model selection.
Since the two competing models may be nested, non-nested or
overlapping, and since both, only one, or neither of the two models
may be correctly specified, then it is necessary to obtain the
asymptotic distribution of the LR statistic under the most general
conditions. To do so, we shall use the by-now well-known framework of
White (1982a) in order to handle the possibly misspecified case.

Since Neyman and Pearson (1928) advocated the LR test, it has
become one of the most popular methods for testing restrictions on the
parameters of a statistical model. It is well-known that minus twice
the LR statistic has a limiting central chi-square distribution under
the null hypothesis (Wilks (1938)), and a limiting non-central chi-
square distribution under a sequence of local alternatives (Wald
(1943)) with a non—-centrality parameter equal to that of the Wald
statistic (Wald (1943)) and Lagrange Multiplier statistic (Aitchinson

and Silvey (1958), Silvey (1959)). However, as Foutz and Srivastana

(1977), Kent (1982), and White (1982a) pointed out, when the largest
model is misspecified, the LR statistic is no longer necessarily chi-
square distributed under the null hypothesis where the null hypothesis
must be appropriately redefined in terms of the pseudo-true values
satisfying the specified restrictions.

Parallel to this literature on nested hypothesis testing, the
LR statistic has also been advocated as a basis for testing non-nested
models (Cox (1961, 1962)). In particular Cox (1961, 1962) and White
(1982b) showed that, if n denotes the sample size, then :nu\n times
the LR statistic properly centered and normalized has a limiting
standard normal distribution under the hypothesis that one of the
competing models is correctly specified. This result and the result
of the previous paragraph suggest that the asymptotic distribution of
the LR statistic as well as the speed at which it converges to that
distribution depend on whether or not the models are nested or
correctly specified.

In the first part of this paper, we shall completely
characterize the asymptotic distribution of the LR statistic under the
most general conditions. In particular we show that the asymptotic
distribution of the LR statistic and the speed at which it converges
to that distribution depends on whether f(ylz;e,) = glylz;yy). In
addition since the asymptotic distribution of the LR statistic depends
on wAw_Nhe-v = g(ylz;v4), we propose a test of that condition, which
we call the variance test.

The paper is organized as follows. In Section 2, we present



the basic framework which is that of White (1982a) and Vuong (1983,
1984). 1In Section 3, we derive the asymptotic distribution of the LR
statistic whether or not the models are nested or misspecified. We
show that: (1) if WA<_thuv = g(ylz;y,) then 2LR has a limiting
weighted sum of chi-square distributions; (ii) if mAw_Nnocv #

g(ylz;v,) then :xm\n

LR properly centered around
moawomAwA<_N“e-v\mA<_nn<.vvu has a limiting normal distribution with

non-zero varlance em. In addition, for the first case, we
characterize the conditions under which 2LR is asymptotically chi-
square distributed.

In Section 4, we show that mﬁ<_unoov = mﬂw_nh<.v is equivalent
to the hypothesis that the variance em = 0, This allows us to
construct a test of the hypothesis wAw_Nho.v = mA<_un<ov based on a

consistent estimator nw of em. We show that

a2

n has a limiting

weighted sum of chi-square distributions under the null hypothesis
em = 0 and we also characterize the cases for which this limiting
distribution reduces to a chi-square distribution.

In the next three sections, we apply the previous results to
derive LR based tests for model selection in all possible situations.
The case where the models are (strictly) non-nested is considered in
Section 5. There, we propose a new and very simple directional test
based on =|~\~Shs. for selecting the best of two models. The
statistic has a limiting standard normal distribution under the null
hypothesis that the two non-nested models are equivalent, whether or

not both, one or neither is misspecified. We also discuss the

relationship between our approach to model selection and that of
Akaike (1973, 1974).

In Section 6, we consider the case where the models are
overlapping. This case is seen to be more complicated than the nested
case since, under the null hypothesis that the models are equivalent,
the asymptotic distribution of the LR statistic depends on whether or

2

not vy = 0. We propose two procedures. The first procedure is used

when em is possibly null under the null hypothesis that the models are

equivalent. The procedure is sequential and is based on the variance
statistic of Section 4 for testing EW = 0 followed by the normal LR
test of Section 5 in case of rejection of 3m = 0. The second
procedure applies when SW is always null under the null hypothesis
that the models are equivalent. This happens, as we shall show, when
one of the two overlapping models is correctly specified. Then a
model selection test can be based directly on twice the LR statistic.
Finally Section 7 considers the more familiar case of nested
models. We show that testing restrictions on €, is actually identical
to testing that the two models are equivalent against the hypothesis
that the largest model is "best.” Thus, when the competing models are
nested, our model selection approach coincides with the classical
hypothesis testing approach. Then we propose a test based on twice
the LR statistic which reduces to the familiar Neyman-Pearson LR test
when for instance the largest model is correctly specified. We also

propose a new test based on the variance statistic of Section 4 for

testing restrictions on 6, which can also be interpreted as a model



selection test.

Section 8 summarizes our results, suggests some directions for
further research, and contains our view on the general purpose of
model selection and hypotii¥sis testing in econometric modelling. In
particular, we discuss the important distinection between our tests for
model selection and the non—nested hypotheses tests proposed by Cox

(1961, 1962). All the proofs are collected in the Appendix.

2. BASIC FRAMEWORK

Let xn be a m X 1 observed random vector defined on an
Euclidean measurable space Ax.n.cxv. For instance, in the case of a
continuous random vector, X, o, cx are respectively R"™, the Borel o-
algebra, and the usual Lebesgue measure. The process generating the

observation xn. t =1,2,... satisfies the following assumption.

bmmmmnwmwbbwneuoumsaos<mowoam xa. ﬁup.n....wam»snocmsamanmua
identically distributed (i.i.d.) with common true cumulative

distribution function H® on (X,0.9,).

Though there are more general assumptions on the true data
generating process than Assumption Al (see, e.g., Gallant and Holly
(1980), Burguette, Gallant and Souza (1982)), Assumption Al is the
simplest assumption that still allows for the presence of exogenous
variables. Following Vuong (1983), the vector x« is partitioned into
xn = A«M.va. where «w and Z; are respectively [ and k dimensional

vectors with m = ( + k. Let Am.ow.cwv and AN.QN.cNV be the Euclidean

measurable spaces associated with ww and N«. We shall be interested
in the true conditional distribution mw_NA._.V of m« given Nn. It is
convenient to think of Y, as being the endogenous variables, and of Z,
as being the exogenous variables.

We now consider two competing parametric families of
conditional distributions for u« given Z,:
Fg = (Fy,(*1:; 0); 06 0< ®P) and G, = Gy -l s yel e rY.
No assumption is here made on the relationship between the two
competing conditional models Fg and o< in the sense that they may be
nested, overlapping, or non-nested. Moreover, both, only one, or
neither may be correctly specified, i.e., may contain the true
conditional distribution for Hw glven Z,. Each conditional model
satisfies, however, the following regularity conditions (Vuong (1983))
which are similar to those of White (1982, Assumptions A2-A6) with the
exception that they bear on conditional models. These regularity
conditions are presented without discussion., They are stated in terms
of the conditional model Fy. It is understood that similar

assumptions are made on the conditional model oa.

Assumption A2: (a) & is a compact subset of 5:. and for every O in 6
and for all z the conditional distribution mw_NA._N“ov has a density
with respect to f" f(-lz;0) = %«_NA._ﬁS\%«.. (b) The
conditional density wAw_Nmov is a strictly positive function that is

measurable in (y,z) for any 6, and continuous in 6 for all (y,z).



Assumption A3: (a) For Am0|mH50mev all (y,z), llog f(ylz;+)| is
dominated by an =o|»=emmqmvwm function independent of 6. (b) The

function z.(0) = %Hom wAw_N"cvnmoaxv has a unique maximum on & at 8,.

The value 8, is called the pseudo-true value of 6 for the
conditional model me (see, e.g., Sawa (1978)). Similarly y, denotes

the pseudo—-true value of y for the conditional model a«.

Assumption A4: (a) For (H%-almost) a1l (y,2), log £(ylz;+) is twice
continuously differentiable on 6. (b) For Amolmwsomnv all (y,2),
lalog £(ylz;8)/ae - alog f(ylz;0) /a8 | and la%10g £(ylz;0) /2000 | are

dominated by mo:»unmmﬂmcum functions independent of 6.

This ensures the existence of the usual matrices:

o a21o0g £(Y,12,;0)
Ap(0) w E ||, (2.1)
| 2030
alog £(Y 12 _;0) 3log £(Y |2 _;8)
Bo(6) m E° - et (2.2)
| 20

where moa.u denotes the expectation with respect to the true Jjoint
distribution of xn = Axn.Nnv. Similar matrices >mﬁ<v and mmAav are

defined for the conditional model o«.

Assumption 5: (a) 6, is an interior point of 8. (b) 6, is a regular

point of >mﬁov.
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Assumptions A1-A5 can be thought of as the simplest regularity
assumptions for maximum likelihood estimation under general conditions
in the presence of explanatory variables. The (quasi) maximum
likelihood (ML) estimator mu for the conditional model Fy is a amn
measurable function of Axm.....xnv such that

8) = sup L0, (2.3)
0:0

where rMon is the (conditional) log-likelihood function for the model
mo"

£ n
L (0 = ,MH log f(Y |z,;0). (2.4)

A similar definition applies to the ML estimator %u for the

conditional model n« with respect to the log-likelihood function:

g = .
L(y) = MMH log mAuw_Nﬂ.«v. (2.5)

Given Assumptions Al1~AS5, it follows from White (1982a) among

A

others that the ML estimator o: exists, is consistent for @,, and is

asymptotically normally distributed with asymptotic covariance matrix
>MHAe-vmon.v>mHA®-v. Moreover the asymptotic covariance matrix can

-1,A A 1A
be consistently estimated by >w=A®=vmm=A¢:V>waﬁe:v where >waaev and

mmonv are the sample analogs of A.(8) and B.(8). That is:

2

3°1og £(Y 12 ;0)

L Ay (2.6)

2000

- Mw
A, (8) m =
fn n &y
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dlog w:n_N%s dlog £(Y 1Z,;0)

n
1
B, (8) w = . Y (2.7)
fn n ﬂMH 20 20

Similar properties hold for the ML estimator ﬂ: of 7ve.

In the next section, we shall need the joint asymptotic
distribution of »: and ﬂ:. Since A4 holds for both models Fg and n«.
then it can be shown that for (H'-almost) all (y,2),
lalog £(ylzi-)/ae - alog g(ylzi+)/ay'| is dominated by an H-
integrable function independent of @ and y. This ensures that the

p X q matrix

of3108 £(Y,12,;0) 23log g, 12,:7)

’
B = . = .
£g(0:7) = Bgp(r.0) = E 20 oy’ (2.8)

exists. Moreover, from Jennrich’s uniform strong Law of Large Numbers
(1969, Theorem 2), it follows that mmmAc-.anv is consistently

estimated by its sample analog:

|z, ;6 Iz ;%
n dlog wah Nn.ouv dlog mﬁmu A .<=v

B, (8.,0)=1 (2.9)
wmaga..ssv “n _\Mnu a0 m.«. : :

The next lemma gives the joint asymptotic distribution for the

A

A
quasi ML estimators o: and v,.

emma 2.1: Given Assumptions Al-AS:

D
N - N0} )

where

12

a.lce,)B (00871 (0,) ; >N$.EE$.;.;N:L
R o a 4 . (2.10)
>m AouvmmwA<c.auv>n (ry) >m A<cvmmA<uv>m (r,)

Moreover, the asymptotic covariance matrix M“ can be consistently
A
estimated by Mus which is defined as in Equation (2.10) where A and B

"

are replaced by their sample analogs evaluated at the ML estimators c:

4 A
and y.

3. THE LIKELIHOOD RATIO STATISTIC

All the tests for model selection that are proposed later in
this paper will be based on the likelihood ratio (LR) statistic. In
this section, we shall therefore obtain the asymptotic distribution of
the LR statistic under the most general conditions.

The LR statistic for the model wo against the model m« is

defined as:

AA gA gA
rwsA@=.<:v = L (0) L3(y. )

n
= M log t_n (3.1)
t=

>

\l
where as and v, are the ML estimators of 8, and y, defined in the

previous section.

Lemma 3.1: Given Assumptions A1-A3:

Lp 44 a.s. £y, 12,;0,)

) .<=v - E|log mSJ\_Nﬁ“.«.V . (3.2)

n n 'n
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This result is important because it motivates our LR-based
tests for model selection. To derive the asymptotic distribution of

the LR statistic, we use the following lemma.

Lemma 3.2: Given Assumptions Al1-AS:

(1) if £(-]+;0,) = g(+l-;v,), then:

LR (8.5 = -B(8 ‘A )
W87 = BB -0 0@ -0,

n A ' A
+ MA<= - Te) >mA<.VA*= -1, * ovawv. (3.3)
(i1) if £(-l+;0,) # g(-l+;y,), then:
A A 1
LR, (8, 7)) = LR, (8,.7,) + O (D). (3.4)

The condition wa._.“o-v = mA._.h<.v is to be understood as
meaning that f£(ylz;0,) = g(ylz;vy,) for n%-almost all (y,2). Lemma 3.2
shows that the asymptotic distribution of the LR statistic depends on
whether or not f(+|.;0,) = g(-l+;v,). This latter condition will be
considered in the next section. Let us note that if the two models wo
and n< are strictly non—nested, as defined later, then one must have
£(<}+;0,) #g(:l+;v,). On the other hand, if the models Fg and o« are
nested or overlapping, then one may have f£(-:|-;0,) = g(-l-;v,).

If this latter condition holds, then the first part of Lemma
3.2 states that the LR statistic is asymptotically distributed as a
quadratic form in :p\nAws - 8,) and =~\~A%s — v4) which are
asymptotically normal as shown in Lemma 2.1. It is therefore

important to consider the distributions of quadratic forms in normal

14

random variables. Such distributions have already been studied (see,

e.g. Johnson and Kotz (1970, Chapter 29)). We call such

distributions, weighted sums of (independent) chi-square

distributions, for which we give the following definition.

Definition 3.3 (Weighted Sums of Chi~Square Distributions): Let

[

Z = ANa.....N ) be a vector of m independent standard normal

variables, and let A = Arp.....

Then, the random variable

2
Q(z) A27

=1

rsv. be a vector of m real numbers.

(3.5)

is distributed as a weighted sum of chi-square distributions with

parameters (m,A). Its cumulative distribution function (c.d.f.) is

denoted by zaA.urv.

Let us note that the distribution of Q(Z) depends only on the

non-zero parameters ru. In other words, the c.d.f. xEA.h»v is

identically equal to the c.d.f. zaA.h ) where A is the vector of non-

zero r».m. and m is the number of such rw.m. Moreover, the mixtur

e

the non-zero parameters »» are equal to one, in which case the number

of degrees of freedom is equal to m.

The next lemma shows that any quadratic form in m random

variables that are jointly normally distributed with zero means and

some covariance matrix 0 is distributed as a weighted sum of chi-~

squares with some parameters m and i.

This results allows @ to be
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singular, and slightly differs from Moore (1978, Theorem 1).

Lemma 3.4: Let Y be a vector of m random variables distributed as

N(0,Q) with rank @ = r {( m. Let Q be a m X m real symmetric matrix.

Then the quadratic form
’
QY) = Y QY ~ zsA.“»v (3.6)
where A is the vector of eigenvalues of on.n

We can now readily obtain the asymptotic distribution of the

LR statistic under general conditions. Let sm

denote the variance of
HomamAun_NnnOnv\mAwn_Nnnaovu where the variance is computed with
respect to the true joint distribution mo of Aan.Nﬂv. That is:

2 <m1o log Aw _N
g(Y _Nﬂ..«a

mc log

mAg__Nna.vnoﬁn_Nc. uw
- {E {10 (3.7)
e 1z,;v,) € (Y dzgire

To ensure that such a variance exists, we make the following

assumption.

Assumption A6: For Amolmpsomnv all (y,z) the functions

| 1og waw_uu.v_n and | log mAw_Nn.v_n are dominated by mctw:ommnmvpo

functions independent of @ and vy.

Theorem 3.5 (Asymptotic Distribution of the LR Statistic): Given

Assumption A1-A6:

16

(1) if £(-]-;0,) = g(-]+;v,), then

D

NH >>
LR, (8,7 = M, (-:d,), (3.8)

where A, is the vector of p + q eigenvalues of

-1 -1
-Ba(8,)A,(8,) S =B (04, 1a)AL (1)
W= o . , (3.9)
wmwA«-.o-v>m 9 mmA<.v>m (vq)

(11) if £(-|-;0,) # g(-l-;v,), then

£(Y,12,;0,)] D
) - gl/2g0 EE S 0,0 . 4310
NﬁKﬂ_Nﬁn<0v *

2R & Aan.«s log

Theorem 3.5 characterizes the asymptotic distribution of the
LR statistic under general conditions. It shows that the asymptotic
distribution of the LR statistic as well as the speed at which it
converges to that distribution depends on whether or not wA._."cuv =
{C EFL P

The limiting weighted sum of chi-square distributions that
arises when f(+]«; = g(-]+;v,) is somewhat unusual. It is
therefore useful to characterize the conditions under which this
limiting distribution reduces to the familiar chi-square distribution.
This is the purpose of the next result. For this result, we shall

however assume that the information matrix equivalence holds for both

conditional models we and n«. i.e.:

Ap(8,) + By(8,) = 0 and A (1) + By(r,) = 0. (3.11)
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As mentioned in White (1982a, Theorem 3.3) and Vuong (1983, Lemma 3),
the information matrix equivalences hold under correct specification

of the conditional models given mild additional assumptions.

Theorem 3.6 (Asymptotic Chi-Square Distribution of the LR Statistic
given Information Matrix Equivalences): Given Assumptions Al-AS,
suppose that Equation (3.11) holds. If f(.|-;8,) = g(+]+;v,), then
ernams.ﬂrv converges to a central chi-square distribution if and only

if:
By(1,) = Bp(7,.0,)8; 1e,)B, g (8er7s) =0, (3.12)
in which case the number of degrees of freedom is p - q.

As seen in Section 7 below, Condition (3.12) will be satisfied

when the conditional model o< is nested in the conditional model wo.

4. THE VARIANCE STATISTIC

In the previous section, we showed that whether the LR
statistic 1s asymptotically distributed as a normal or a weighted sum
of chi-squares depends on whether or not f(.|+;0,) = g(-|-;y,). As
mentioned there, this latter equality may hold when the conditional
models mo and m< are nested or overlapping. It is therefore important
to know 1f such a condition is satisfied. Since 6, and vy, are
unknown, we shall propose in this section a test of such a condition.

The proposed test is based on the following property.

18

Lemma 4.1: Given Assumptions A2, A3, and A6, £(:]-;8,) = g(-|-;v,) if
and only if v = 0.
The importance of Lemma 4.1 is that to test the crucial
83:3:2;£?vumTTxtogogmgzagﬁwggng
2

condition that the variance vy is equal to zero. We define the

following null and alternative hypotheses:

mwn sm =0 vs. mw“ sm # 0. (4.1)

Then a natural statistic that we can use to test mm against :m is the

sample analog:

_ ~
F(Y1Z 0,

5
MH Ho ~ .Aa.nv
t=1 8(Y 1Z,57,

==

Moreover, let us note that sm

is also the variance of the limiting
normal distribution of the LR statistic (see Theorem 3.4 - (ii)).
Thus the variance statistic mw will play two important roles: first,
to be a basis for a test of em = 0 or equivalently wA._."eav =
mA._.“<.Vh second, to be an estimator of the asymptotic variance of
the LR statistic when f£(-|-;0,) # g(-|-

An alternative variance statistic that will play a similar

role and that is even easier to compute than sw is:
r iz, 8]
n H
o~ u||h|thrlb|
2 =1 M log = . (4.3)
n n
t=1 g(Y 1z 57 )
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Note that from Equations (3.1) and (4.2), we have:
~2 M 1 a2 M
o o=w Aarmnﬁo=.<:vv 2 v (4.4)
The next lemma states that these variance statistics are strongly
consistent estimators of their population analogs.
Lemma 4.2: Given Assumptions A1-A3, and A6:
a.s.
W @25 W (4.5)
5 @:8. £y, lz £Y,12450,)
i) @ - (4.6
(ii) & s. log g (Y _N«.<. )
To construct a test of :w against HY, it is necessary to
derive the asymptotic distribution of the variance statistiec nw or mw.

We make the following assumption.

Assumption A7: For A=e|mwaounv all (y,z) the functions

'
2108 f(ylz;-) /2620 | and

loglf(ylz;+) /g(ylz; )1 - a
lloglf(ylz;-) /glylz;*)1 - a%log g(ylz;+)/ayay | are dominated by HO-

integrable functions idependent of © and 7.

Theorem 4.3 (Asymptotic Distribution of the Variance Statistics given

sm = 0): Given Assumptions A1-A7, under mw“ em = 0, we have:

A2 2 D 2

ne = s + ovauv - zv+nA..rov (4.7)
where »m is the vector of squares of the p + q eigenvalues 1, of W.

20

Theorem 4.3 says that, under the null hypotheses mw. the two

M and :ew are asymptotically equivalent, and have a

limiting distribution which is again a weighted sum of chi-squares.

The parameter »m

statistics ni

are, as expected, all non-negative. This contrasts
with the parameters A, of the limiting weighted sum of chi-squares for
the LR statistic which may be negative (see footnote 3).

As for the LR statistic, it is of interest to know when the
limiting wieghted sum of chi-squares distribution of the variance
statistics reduce to the familiar central chi-square distribution.

The next result characterizes this situation. As for Theorem 3.6, we

assume that the information matrix equivalences (3.11) hold.

Theorem 4.4 (Asymptotic Chi-Square Distribution of the Variance
Statistics given Information Matrix Equivalences and sm =0): Given
Assumptions A1-A7, suppose that Equation (3.11) holds. Then, under :w"
em = 0, the following are equivalent:

(1) :nm converges in distribution to a chi-square,

(1i1) ssN converges in distribution to a chi-square,

-1
(118) By, (8,,7,)B; (1,08 0(7,,0,)B; (8,) s idempotent,

-1, ..
{14) 1s idempotent,

in which case the number of degrees of freedom is p + q — 2 rank
mmmA¢..<cv.

As shown in Section 7 below, conditions (iii) or (iv) will be
satisfied if o< 1s nested in mo or if mc is nested in o«. Conditions

(111) or (iv) can, however, be satisfled even when the models are
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non-nested or overlapping. In particular, it is easy to see that
these conditions are satisfied when the conditional models wa and o<
are asymptotically orthogonal as defined by Gourieroux, Monfort and

Trognon (1983), i.,e., when:
Bpg(8er74) = 0, (4.8)

in which case the number of degrees of freedom of the limiting chi-
square distribution of nnw or :mn is p + q.
5. STRICTLY NON-NESTED MODELS

In section 1, we suggested a classical approach for selecting
among competing models. In this section, we shall discuss this
approach in more detail. In particular, using the results of Section
3 and 4, we shall obtain a very simple test for selecting among two
non-nested models. Then we shall discuss the fundamental differences
between our model selection approach and the more familiar one
introduced by Akaike (1973, 1974).

Following Akaike (1973, 1974), Sawa (1978) and Chow (1981),
our approach is based on the minimum KLIC which measures the distance
between the true distribution and a specified model. For a

conditional model F this measure gives:

e’

0

NanAmx

. 0 (i _ 0 ,
jz:Fg) = E [log h (Y, 12.)] - E'[1og £(Y, 12, ;0,)1, (5.1)

where uoa._.v is the true conditional density of «a given Nn. and 8,

are the pseudo-true values of 6 defined in Assumption m.u From
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Jensen's inequality, the measure (5.1) is always non-negative and is

0

equal to zero if and only if soA._.v = f(+|+;08,) H -almost surely,

i.e., if and only if the conditional model F, is correctly specified.

1]
Moreover, since the first term in the right-hand side of Equation
(5.1) does not depend on the conditional model mc. then an equivalent
measure is moﬁwom £(Y. }2,;:0,)].
[l Al
Given a collection of competing conditional models, it is
natural to select the model that is closest to the true conditional

distribution. Given the above measure of distance, we shall consider

the following hypotheses and definitions:

- mA«__N_uo.v
o' E [log mﬁxﬁ_an<-v =0, (5.2)

meaning that Fgo and Q« are equivalent, against

0 mﬁu__Nahe.v

H.: E |1 > 0, (5.3)
€ g(Y 12,57,)

£

meaning that me is better than aa. or

0 nA« _N_ho.v
H : E|log

<o, (5.4)
g e, 12,57,)

meaning that wo is worse that o«. Tests of Hy against mw or :m will
be called tests for model selection. There are, of course,
alternative definitions, some of which will be discussed later in this
section.

0 0
The indicator E"[log £(Y 1Z,;6,)1 - E"[log g(Y {Z ;v,)] is

unknown since 8,, y,, and the joint distribution :c of Amn.va with
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respect to which the expectation mom.u is evaluated are all unknown.
But it is clear that we can consistently estimate this unknown
indicator by (1/n) times the LR statistic (see Lemma 3.1). Thus the
LR statistic is a natural statistic for discriminating between two
models.

In this section, we shall consider the case where the models
m.e and m.« are (strictly) non-nested. Since Cox (1961, 1962) initial
work, non—nested models have attracted a lot of interest from
econometricians (see, e.g., Mackinnon (1983) recent survey and the
special issue of the Journal of Econometrics edited by White (1983)).

We shall first give a formal definition of strictly non-nested models.

Definition 5.1 (Strictly Non-Nested Models): Two conditional models

Fo and n< are strictly non-nested if and only if:
6
wc NG =4d. (5.5)

For instance, this is the case when mc and o< are standard
linear regression models with different distributional assumptions on
the errors, say normally or logistic distributed. Alternatively, the
competing regressions models may have the same distributional
assumption on the errors but different functional forms such as the
linear or the exponential form.

Since the conditional models we and n« do not have any
conditional distribution in common, it must be the case that
nﬁ._."oav # mA._.h<-v. It follows that the second part of Theorem 3.5

applies. Moreover, from Lemma 4.2, the asymptotic variance em can be
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consistently estimated by mw or by mw under the null hypothesis that

the models we and o< are equivalent, i.e., under mo. Thus we have the

A ~
following straightforward model selection test. Let L and o, be the

o2 and an respectively.

positive square roots of o n

Theorem 5.2 (Model Selection Tests for Strictly Non-Nested Models):

Given Assumptions Al1-A6,

D

(1) under H: =-H\nr==ﬁw=.w=v\n= - N0, 1), (5.6)
2.8,

(11) under H,; =.~\~rm=nw=.n=v\n= 5 b, (5.7)
a.s,

(i11) under H_. 5|H\~rz=Am

g Ve, = - (5.8)

n*¥n
(iv) properties (i)-(iii) hold if n: 1s replaced by a_.

Theorem 5.2 provides a very simple directional test for model
selection. Specifically, one chooses a critical value ¢ from the

standard normal distribution for some significance level. If the
X -1/2 A A A
value of the statistic n */ rmsgs.;v\s: is higher than c then one

rejects the null hypothesis that the models are equivalent in favor of

Fg being better than G . If 1/

then one rejects the null hypothesis in favor of m« being better than

AA
rmsAes.asv w, is smaller than -c

IH\N A A \)
F Finally if In LR (6 .7,) ss_ < c then one cannot discriminate

9°
between the two competing models given the data. Similar inferences

can of course be made based on the other statistic
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ln\N AN T
n "'°LR (8 .y ) /a .

Let us note that these statistics are extremely easy to
compute. Indeed from Equations (3.1), (4.2) and (4.3) these statistics

are:

- A A
o2 8.9 LR (8 .7,
~ = , (5.9)
w A 2
n zu_ _Ntc ) 1
{ - mmrx

log
t=1 (Y, 1z

2 H\N
:.<= u
n.<=

- A A
22 8 (8 .<= LR (8 .7)
= . (5.10)

e: A 22
(f |10 mmwwWmewu. J1/2
= 30 4 AT

Hence both statistics are equal to the difference in the maximum log-
likelihood values for the two models suitably normalized. The
normalization in Equation (5.10) is directly obtained from the sum of
squares of m, = Homﬁwaxn_Nnnwsv\mnua_Nnnﬂzv_. while the normalization
in Equation (5.9) is obtained from the sum of squared deviations of n,
from its sample mean which is equal to MrzsAas.ﬁrv. Alternatively,
these statistices can be readily obtained from an additional linear
regression. For instance, it can be shown that the statistic (5.9) is
numerically equal to [(n - nv\auu\n times either the usual t-statistic

on the constant term in a linear regression of Bn on only the constant

term, or the usual t- statistic on the coefficient of o, in a linear

8

regression of 1 on Bn.
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We now contrast our approach to the more familiar approach
initiated by Akaike (1973, 1974). First, as in the model selection
literature, our statistics (5.9) and (5.10) can be thought of as

defining a criterion for selecting among competing models. Omitting

A

the normalizing factors @ and m:

A
uncorrected log-likelihood rmﬁosv of a model. Thus to decide which

, our criterion is based on the

model is "best” one can directly compare the maximum values of the
log-likelihoods of the competing models and choose the model with the
highest log-likelihood. Our criterion is very intuitive. It
contrasts with the previous model selection criteria that are based on
the maximum log-likelihood gorrected for the number of estimated
parameters (Akaike (1973, 1974), Sawa (1978), Schwarz (1978), Chow
(1981)). Such a difference arises for the reason that these latter
model selection criteria were initially derived, not as estimates of
moﬁpom WAMn.Nnhe-v_. but as approximations to the alternative

A
eriterion E, mmompom mAmn_N«hcsv_u where E, [‘] is the expectation

n %4

A

with respect to the (asymptotic) distribution of the ML estimator a:.

and moﬁ._ is the expectation with respect to the true (joint)
distribution of Aun.va where Mw is treated as a constant (see Sawa
(1978, Rule 2.1 - (11)), and Chow (1981)).°

Lien and Vuong (1986) pointed out, however, that each of these
well- known model selection criteria can be thought of as a consistent
estimate of mcHHom wAun_Nn“o-v_. In addition, each of these model

selection criterion appropriately normalized is asymptotically

equivalent to the LR-statistics (5.9) and (5.10) under the null
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hypothesis that the models are (KLIC) equivalent, i.e., under mo.

More generally, let
LK 8,7 = LR (8,,7) - K (F,.G) (5.11)
n(On:7y) = LR (O, 7) - K, (Fg.G 541

where Naﬁma.aqv is a correction factor depending on the

characteristics of the competing models wc and n*. We have:

Corollary 5.3 (Equivalent Model Selection Tests of Strictly Non-Nested

Models): Given Assumptions Al1-A6, suppose that

-1/2 -
n nsAwe.a<v = ovﬁuv. (5.12)

D
(1) under Hy: n AR @7/ - Mo,

Ou

(i1 der H 125 8% ey
chms w.s rmbﬁ¢=.<=v s: |w+a~

A A a.s.

S Vo -
(iii) under mm. n rmaﬁo:.qsv w, - -,

This result follows by noticing that:

-1/2. % A A =12 A A A L R -
n rqu°=.<=v\”r =n LR (6 .y )/, + OvAHv. (5.13)

. PN
It also follows that @ can equivalently replace wj in Corollary 5.3.

Example of correction factors that satisfy (5.12) are N:ch.o«v =
P - q and mnAmo.o<v = wHom n - wHom n, which correspond to Akaike
(1973) and Schwarz (1978) information criteria.

Corollary 5.3 implies that one can also use the corrected log-
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likelihood ratio rmaﬁws.ﬂsv as a basis for a model selection test.
Then, in terms of the uncorrected LR statistic, one would not reject
H, whenever -c + :rn\nwnAwe.n*v\ﬂa < =|~\~rm=Aw=.%av\ﬂs <

c + slu\nnaAmc.n«v\nn where ¢ is obtained from the standard normal
distribution. It is clear that the main effect of the correction
factor nsame.a«v is to translate the critical region (-c¢,+c) in the
appropriate direction. Which correction factor is preferable depends
on how well the exact small sample distribution of :lu\nrmaAwa.%nv\”n
is approximated under :e by the asymptotic N(0,1) distribution.

A second fundamental difference between our approach and the
previous literature on model selection is that our approach is
probabilistic. Though Amemiya (1980) and McAleer and Bera (1983) have
argued that an important difference between non—nested hypothesis
testing and model selection is that the former framework allows "a
probabilistic statement to be made regarding model selection,” while
the second does not, this criticism no longer applies to our approach
which puts model selection in a significance testing situation,
Indeed, by appropriately normalizing the LR statistic, we were able to
construct a directional test of the hypothesis that the competing
models are equivalent against the hypothesis that one of the two
models is "better.” As a consequence we do not necessarily have to
choose a "best’” model if the competing models turn out to be
statistically equivalent.

Our definitions have the desirable property that a correctly

specified model is necessarily at least as good as any other models.
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They are nonetheless arbitrary. Indeed, there exist many criteria
other than the KLIC that can be used to measure the distance between
two distributions. Clearly, an analysis analogous to the one given
here can be worked out for each of these other criteria. For
instance, using the mean square error (MSE) of prediction, White and
Olson (1979) obtained a symmetric and directional normal test for
choosing between two non-linear regression models. When the errors
are normally distributed, the KLIC and the MSE of prediction lead,
however, to identical definitions of equivalence. Moreover, as Lien
and Vuong (1986) showed, the White and Olson test and our LR-based
test become asymptotically equivalent when the competing models are
normal linear regressions.

Finally, one may not be so much interested in the truth of a
model, but may be concerned by the number of parameters in a model.
To take into account the parsimonious nature of a model, one may add
to the criterion (5.1) a penalty k(:) depending on the number of
parameters in the model. In this case, the model ma is said to be

better than, equivalent to, or worse than the competing model o« ir

and only if

£y _lz ;e,)

mnnn_N«“<.v - [k(p) - k(q)] (5.14)

A = E%)log

is positive, equal to zero, or negative respectively.l® Let mo. mw.
and mm denote the hypotheses A = 0, A > 0, and A < 0 respectively. As

before we can consider the statistic (5.11) where the correction

factor is now:
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xnﬁmo.o<v = nk(p) - nk(q). (5.15)

Theorem 5.4 (Alternative Model Selection Tests for Strictly Non-
Nested Models): Let uaAmc.n<v be as in (5.15). Given Assumptions
A1-A6,

u
. ...H\Nl ))
(1) under A: o V2R 8,5 /6, > MO,

- o AN A a.s
(11) under H: _\nrmer=.<=V oy, >+
- A A a.s.
(1i1) under mm“ n u\nrmsac=.<=v b, o =

Theorem 5.4 generalizes Theorem 5.2 to allow for any kind of

penalty function in the definition of equivalent models. As in

A
corollary 5.3, @ can replace w, in that theorem. A fundamental

difference is that the null and alternative hypotheses are now
different from those considered up to now. Also, unlike Corollary
5.3, the correction factor (5.15) does not have to satisfy Condition
(5.12). The remarks following Corollary 5.3 nonetheless apply, and

o~

for instance, one cannot reject H. whenever -c + aqa\nnsAw¢~a*v\”= <

0
~-1/2 A A -1/2
n2R (60 /6, <o+ 0 R (R L6 ) [

In the next sections on overlapping models and nested models,

we shall not discuss the generalizations of Corollary 5.3 and Theorem

5.4. It is clear that similar results can be established.
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6. OVERLAPPING MODELS

In this section, we shall apply our model selection approach
to the case where the two competing models are overlapping. A simple
example of two overlapping models is that of two standard linear
regression models with some common explanatory variables. Another
example is the dichotomous logit and probit aonmwm.uu As in the
previous section, we shall propose some significance tests for
discriminating and choosing between two models. We first give a

formal definition of overlapping models.

Definjtion 6.1 (Overlapping Models): Two conditional models mc and n«

are overlapping if and only if:

(1) mo n n< t#d, (6.1)

(1) Fy ¢ n« and n« 4 Fg- (6.2)

Condition (1) says that mo and n« must have some common conditional
distributions for w« given Nn. while condition (ii) says that neither
model must be nested in the other.

As in the previous section, our objective is to construct
tests of mc against H. or mm. Given the definitions (5.2)-(5.4) of
these hypotheses, a natural test statistic is again the LR statistic.
The overlapping case is, however, more difficult than the strictly
non-nested case for the following reason. Contrary to the strictly

non-nested case, the asymptotic distribution of the LR statistic and

the speed at which it converges to the distribution is unknown under
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the null hypothesis mo. Indeed, since ma n o« # d, then one may have
£(-1-;08,) = g(+|+;y,). From Theorem 3.5, it follows that, under

0 0
Ho: E [log £(Y 1Z,;0,)] = E [log g(¥ 12 ;v*)]:

(1) 1f £(-]+;0,) = gl-l*;7,),

D

A A
2LR (8,7, > M, (-4, (6.3)

ptq

(11) 1if £(<]+;0,) # gl-d-:v,),
120 & A E N(O,02) (6.4)
n alpry) 2 el )

Since one does not know a priori if wﬁ._.hcuv = mA._.n<-v holds, one
does not know the form of the asymptotic distribution of the LR
statistic under the null hypothesis mo. We distinguish two cases:
the general case and the case where one knows a priori that at least
one model is correctly specified.

For the general case we propose a sequential procedure which
consists in testing first whether wﬁ._.monv = mA._."<ov and then in
using the appropriate null distribution of the LR statistic to
construct a model selection test. From Lemma 4.1, we know that
£(-1-;0,) = g(+l-;y,) if and only if 3m = 0. Thus, for the first step,

a natural test can be based on the variance statistics nm and aw of

which the asymptotic properties are derived in Section 3. We call
such a test, the variance test since it is used to test f(.|.;0,) =

g(+1l+;y,) against £(+|-;8,) # g(-l+;v,), or equivalently:

HO: o2 = 0 against HY: o} # 0.2 (6.5)
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Once it is known whether or not sm = 0, then one can use the

appropriate null distribution of the LR statistic to test xo against

mw or :m. The second step simplifies since one need not in fact carry

when w? = 0. Indeed H” is included

out a test of me against :m or H 0

g
in mo since if f£(-l-;8,) = g(+|+;y,) then the models Fg and aa must

necessarily be equivalent. On the other hand, when em # 0, then one
may have moﬁwom wAnn_Nw“e-vu = mo—Hom maww_Nnn<cvu so that a test of

:o against :m or mm chnunuupcmomuﬁpmaocn.mo:m<mq.::m= 9m *o.

then (6.4) holds so that the simple normal test based on
-1/2 A A lu\u AN
n bwnAcs.<:v w, or n rmsﬁo.<=v\s= discussed in the previous
section can be applied.
To summarize, the sequential procedure is:
1]

A

=aw. Hn mn omzuonowﬁoumonma.asosooaowznmnumnasm

models wo m:a n« owu:oavoa»uoquswsmnonm»<m=«=oaw«m.Hw

mm is rejected, then proceed to

(i1) Test =o against Hg or H

no?
n

(1) Test :w against H, using the variance test based on or

g using the normal model selection

-1/2 A A
test based on the statistic n rzzAc=.<=v w, or

lu\n A A ~
n LR (8 .7 )/o_ as discussed in Section 5.
n’'’®n

As a test of the null hypothesis of interest mo that the
models are equivalent, this sequential procedure has an exact
significance level which is asymptotically bounded above by the
maximum of the asymptotic significance levels ay and oy used for the
variance test (i) and the normal LR-test (ii).}3 For instance if

QG = ay = 10%, than the exact significance level of this procedure, as
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a test of mo. is asymptotically no larger than 10%.

We now consider in more detail the variance test to be used in
the first step. Let »: be the vector of p + q eigenvalues of Q: where
m: is the sample analog of W as defined in Equation (3.9). For
instance, ﬁ: is obtained by replacing in Equation (3.9) the matrix

A

A
mmmA@..<.v. say, by its sample analog mmmnaes.anv defined in Equation

Ay ry
(2.9). Let ra be the vector of squares of »n.

Theorem 6.2 (Variance Tests for Discrimination): Given Assumptions

A1-A7,
(1) under mm. for any x > 0,
~ Ay, 3-3.
m1A=s= {x) - zu+nﬂxnwnv - 0, (6.6)
a.s.
(11) under mn. :uw 2 tw,

(11i) properties (i) and (ii) hold for :aw.

The variance test consists first in choosing a critical value

22,

n 1 - a% for some significance level a, and then

that M R
X so v+an

14

in rejecting Y ir nns > x. Part (i) ensures that the asymptotic

0 n
size is a, while Part (ii) says that the test is consistent. Similar

conclusion applies to the test based on :mw. Let us note that

computation of the statistic :mn and n&

n n is straightforward given

their definitions (4.2) and (4.3).

A

As mentioned in Section 4, computation of the eigenvalues r:

somewhat simplifies if the information matrix equivalences (3.11)
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A

hold. Moreover, the eigenvalues »a need not be computed when

condition (iii) or (iv) of Theorem 4.4 holds, in which case both :nw
2
n

and n&° converges, under :m. to a chi-square distribution with degrees

A A
of freedom equal to p + q — 2 rank B A°=.<5v. As mentioned in

fgn
Section 4, condition (i1ii) - (iv) of Theorem 4.4 are satisfied when we

and n< are orthogonal models, in which case both :nw and 5mw converge
to a chi-square distribution with p + q degrees of freedom under the
null hypothesis :o.

As pointed out earlier, the difficulty in selecting among
overlapping models arises from the fact that mﬁ._.“c.v may or may not
be equal to mA._.naav under the null hypothesis :o"

E%l10g (Y 1z,;0,01 = %l10g g(Y.1Z,;7,)] so that the form of the
asymptotic null distribution of the LR statistic is a priori unknown.
This is not, however, the case if one knows a priori that at least one
of the two overlapping models is correctly specified, as this is

frequently assumed in the model selection literature. Let us note

that we do not say whether it is me or m« that is correctly specified.
Lemma 6.3: Given Assumptions A2 and A3, suppose that
#ylz) e Fy, UG (6.7)
4] L' °

then the following statements are equivalent:
0
(1) Hi(ylz) e Fg NG,
(i1) £(-1-,0,) =g(-l+;vy),

0 0
(111) E[log £(Y 1z.;0,)] = E [log g(Y 12,;7,)].
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From (i) and (iii) it follows that, when at least one model is
known to be correctly specified, then the models me and n« are (KLIC)
equivalent if and only if the other model is correctly specified. That
(1) implies (iii) is obvious. The intuition behind the reverse
implication is based on the fact that when the model wo. say, is
correctly specified then moawom wﬁw«_Nehc.v_u monwom soama_Nnv_.

Thus, when condition (iii) holds, mcﬁpom mAna_Nw“<.vu =
E°[log soAmn_Navu and therefore o< must be correctly specified.

From (ii) and (iii) we have that the models Fg and o« are
equivalent if and only if £(-|:;8,) = g(+|+;v,).}° The importance of
this second equivalence is that under the null hypothesis :o. we now
always have f(.|.;8,) = g(-|+;y,) so that the asymptotic distribution
of the LR statistic is given by the weighted sum of chi-squares
obtained in Theorem 3.5 - (1). Thus in this case we can bypass the
above sequential procedure, and directly construct a model selection

test based on the LR statistic.

Theorem 6.4 (Model Selection Test for Overlapping Models): In
addition to Assumptions A1-A5, suppose that at least one model is
correctly mm@ouwwmamua Then:

(1) under :o. for any x 2 O,

A A
Pr(2LR (8,v,) < x) - M, (xid) = 0, (6.8)

A A @.S.
(11) under H.: NrmaAou.asv - e,

A a.s.

>
(1i1) under :mu ursto:.<:v .¢os.
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The LR-based test is carried out by choosing critical values
A

from the weighted sum of chi-squares =v+nA.nvav. Since the LR-based
test is two sided, two critical values N and ¢, are chosen, one from
the upper-tail and one from the lower-tail of this distibution., As
for the normal LR-based test of Section 5, the test is directional in
the sense that :o is rejected in favor of :w or mm according to
hether 2LR (8. .7 e.y 17
whether 5A¢=.<=v > ey or 2LR (8 ,v,) ¢ c, respectively.

Let us also note that the burdensome computation of the

A

eigenvalues »: simplifies when one model is correctly specified.

Indeed, under :e. when one model is correctly specified then the other

must also be correctly specified (see Lemma 6.3) so that, from the

information matrix equivalences (3.11), the matrix W reduces to:18
I B, (8,,74)B (1)
P g e Ve Tg e
W= _1 . (6.9)
nmmmA<..covmw (8,) «Hn
A
In addition, the eigenvalues A need not be computed when the two

overlapping models are orthogonal in which case the off-diagonal
blocks of W are identically null. The distribution then reduces to
the distribution of a difference between two independent chi-squares

with p and q degrees of freedom,

7. NESTED MODELS
We now consider the more familiar case of nested models., We
first relate our probabilistic model selection approach to the

classical nested-hypothesis testing situation. Then we propose a LR-
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based test for selecting between two nested models. This test reduces
to the classical Neyman—Pearson (1928) LR test when the largest model
is correctly specified. We also propose a new test for nested
hypotheses based on the variance statistics of Section 3.

We first give a formal definition of nested models.

Definition 7.1 (Nested Models): Two conditional models wo and a< are

nested if and only if:

n< < Fg or Fg © m«. Aq.uv

We shall assume throughout this section that m« is nested in
me. i.e., that oa < F,. We make the following regularity assumption

on the parameterizations 6 and vy.
Assumption A8: There exists a c2-function d(+) from I to & such that:
gC-|l+;9) = £(+]+;d(y)) for any y in T. (7.2)

Condition (7.2) states that any conditional density g(:|-;y) is also a
conditional density f(-]:;0) for some 6 in 6. Since ¢(I} is included
in 6, then the conditional model o« is indeed nested in mo.

Let us note that the pseudo-true parameter @, is not
necessarily equal to d(y,) since @, may not even belong to d(I). The
next result relates the condition 6, s d(I) to the condition that mc
and m< are equivalent, and to the condition that wA._.“o.v =

gl-lesvy.
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Lemma 7.2: Given Assumptions A2, A3, and A8, the following statements
are equivalent:
(1) o, = d(y,),
(11) o, & d(IV,
(111) E%llog £(¥,[2.;0,)1 = EOllog g(Y 127,01,

(1v) £01+50) =gCleiry.

Lemma 7.2 is important since it shows that our model selection
approach coincides with the classical testing approach when the models
are nested. For, the condition :wu

the condition that 6, satisfies some restrictions,and thus corresponds

9, & J(I) can be interpreted as

to the parametric null hypothesis of the classical testing framework
in implicit form. On the other hand, the null hypothesis in our model

selection approach is H From (ii) and (iii), we have that mw and mc

0
are equivalent, as must be their respective alternatives

mw : 8, ¢ d(I and Hp U mm. Thus testing mw mmmwamn :M Hmmn=»<mpo=n

to testing :o against mw 7] mm. In other words, testing whether or not
8, satisfies some restrictions is equivalent to testing whether or not
the smaller model is equivalent to the larger aoamw.uo

As a matter of fact, the alternative to the null hypothesis me
is :w. i.e., that the model Fo is better than na. Indeed me can never

be worse that m< since we must have:
0 0
E'flog £(Y {Z,;0,)]1 > E [log &(Y 12Z;;7,)]1, (1.3)

so that :m can never occur. Thus, we in fact have the equivalence
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)
" and :w.

As argued earlier, the LR statistic is a natural statistic for

between H

selecting among models. Thus, we shall consider a LR-based test of mo
against mw or equivalently of mw against mw. From Lemma 7.2, we

always have f(.]-;0,) = g(-|-;v,) under the null hypothesis H,. Thus,
there is here no ambiguity as to the asymptotic distribution of the LR

statistic which is the weighted sum of chi-squares obtained in Theorem

3.5 - (1). We need a preliminary result relating the matrices mm. >m.
Be, Ap and wmm under the null hypothesis H,.
Lemma 7.3: Given Assumptions A2 - A5, and A8, then under :w"
’ '
(1 ad (v,) ad(y,) ad (v,) 3d(vy,)
i B n*'v = B AOQV ; A A.%.v = A AOQV PR
4 ay f m*. g dy £ ay
[
ad (1,)
(i1) mmwA<o.euv = 3y monuv,
’
ad (v,)
(111) q £ p, rank ay = q.

Let us note that Lemma 7.3 says in particular that the
dimension q of the parameters y cannot be greater than the dimension p
of the parameter 6. This is expected since n« is nested in me.

, ) z
anmoo=<msum=«noamw»=m au = dly,)s e: »m:On:nnmmwmmnum:
the constrained (quasi) maximum likelihood estimator of 6, subject to
the constraints that 8 belongs to d(I"., Then the usual LR statistic

of the unconstrained vs. the constrained model is:

LR )@. A A
n(8,.8) = LR (8.7,
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n £Y 12 h».,v
= Nwa log wﬁwn_Nnnunv. (7.4)
where the second equality follows from Assumption A8 and the
definition of Q:.

The next result is similar to Kent (1982) Theorem 3.1, and
gives the properties of the model selection or nested hypothesis test
based on the LR statistic. In particular, it greatly simplifies the
computation of the non-zero eigenvalues of the general matrix W in

Theorem 3.5 by replacing W by a matrix W of lower dimension.

Specifically, let:

3d’ (v4)
ar

adly,) _
¥ = Bo(8,) ; >m (14)
oy

-1
- AT (8,) ], (1.5)

>
and let wn be the vector of p eigenvalues of the sample analog Eu on

H.

Theorem 7.4 (LR Tests for Nested Models): Given Assumptions A1-AS and

A
A8, the eigenvalues wn are almost surely all real non—negative and:

(i) under :w. for any x ) 0,

A A @.8.
?Srzn.os.q% £ x) - zvc:wuv - o0, (7.6)

o A a.s.
(ii) under H,, ersaos.usv -5 to,

The test is one sided. It is carried out by choosing a

A
critical value from Zv .“psv and by rejecting the hypothesis that the
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models are equivalent or that oo belongs to d(I") if twice the LR
statistic is greater than this critical value. The test applies
whether or not the larger model is correctly specified.

As noted by White (1982a), if the information matrix holds for

the larger model then one obtains from Lemma 7.3 and Theorem 3.6:

Corollary 7.5 (LR Tests for Nested Models given Information Matrix
Equivalence): Given Assumptions A1-A5, A8 suppose that >mA®.V +
Bo(6,) = 0:

D
0 A 2
(1) under mo. nrwnAos.usv =" xuu
" A a.s.
(i1) under H,, 2LR (6,.8) - +=.

q’

The well-known Wilks (1938) result follows since the information

matrix equivalence A.(@,) + Bo(8,) = 0 holds if the larger model is

correctly specified (see footnote 18).

Using the equivalence between mw and :c. we have motivated the

LR statistic as a basis for constructing a test of mw against mM under

general conditions. But from Lemmas 7.2 and 4.1, we also have the

equivalence between mw and mw : sm = 0. This suggests that, to test
the parametric hypothesis =M against mw we can equivalently test mn

against mM.

Thus, we have a new test for nested hypothesis based on the

variance statistics ”w and aw as defined in Equations (4.2) and (4.3).
a2 P
Let V: be the squares of the eigenvalues w:.
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Theorem 7.6 (Variance Tests for Nested Models): Given Assumptions
Al1-A8:
(i) under :M. for any x ) 0,
~ Ay, B:8.
quve= {x) - zvaxnbav - 0, .7n
a.s.
(i1) under mo. =nw -+,
(1i1) properties (i) and (ii) hold for :hw.

As for the LR test of Theorem 7.4, variance tests are one-

slded. They are carried out by choosing a critical value from

zvﬁ.anv and by rejecting the hypothesis that 6, belongs to d(I) if

A ~2 A)
na or se: is larger than this critical value. These statistics ne
and :mM are readily computed. Indeed from Equation (4.2) and (4.3) we

have using Assumption AS8:

>.
£y, 1z ;0 )
I —t 7t n | _1.24

no_ = log wawe_Nenaav srwnAon.ﬂ:v. (7.8)

ot
"
[

>.

n (Y |z ;o)

~2 £ %390

nw = log . . (7.9)
M an_N«.o‘av.

where Q: is the constrained ML estimator. For instance, uﬂw is the

sum of square residuals in a linear regression of
A
m o= Hom_mﬁxn_Nw"oav\mAun_Nn“uzvu on the constant term.2?

If, however, the larger model is correctly specified, then the
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A

eigenvalues A

A need not be computed since in this case the limiting

distribution reduces to the central chi-square distribution with p - ¢

degrees of freedom, as other classical statistics.

Corollary 7.7 (Variance Tests for Nested Models given Information
Matrix Equivalence): Given Assumptions Al - A8, suppose that

84(8,) + By(o,) = 0:

D
A2 2
(1) under Hj, ne, - xvln.
a.s.
(11) under HY, :nw - 4w,

(i11) properties (i) and (ii) hold for :ﬂm.

As mentioned earlier, the information matrix equivalence

>mﬂe.v + Bp(8,) = 0 holds if the larger model is correctly specified.

8. CONCLUSION

In this paper, we have proposed a new and general approach to
model selection whether the competing models are nested, overlapping
or non-nested, and whether the models are correctly specified. This
approach has the desirable property that it coinecides with the usual

re nested. It is

classical testing approach when the models

0

probabilistic and is based on testing if the competing models are as
close to the true distribution against the hypothesis that one model
is closer than the other. Since the maximum log-likelihood of a model
is a natural estimator of the distance between the model and the true
distribution as measured by the Kullback-Leibler information

criterion, all our model selection tests, with the exception of the
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variance tests discussed above, are LR-based tests. As a
prerequisite, we have therefore fully characterized the asymptotic
distribution of the LR statistic under the most general conditions.

In Section 5 on non-nested models, we have contrasted our
model selection approach to the more familiar one originated by Akaike
(1973, 1974). 1In Section 7 on nested models, we have shown that
classical nested hypothesis tests are in fact model selection tests.
We now express our view on the general purpose of model selection,
specification testing, and non-nested hypothesis testing in
econometric modelling.

First, it is important to note that model selection tests, as
we have defined, can be thought of as specification tests. Indeed,
given a statistical model, it is natural to question its validity. If
one has in mind some reasons for possible misspecification of the
initial model, one has in fact a list of competing models. To
simplify, suppose that there is only one competing model. Then, by
carrying out the model selection tests proposed in this paper, one may
be able to conclude that the initial model is misspecified.
Specifically, if one rejects the equivalence between these two models
in favor of the competing model being better, then the initial model
must be misspecified. Moreover, rejection suggests in which direction
the initial model must be modified since the test indicates that the
alternative model is closer to the an:«:.nu On the other hand, in the
other two situations where the equivalence cannot be rejected or the

equivalence is rejected in favor of the initial model being better,
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one cannot infer that the initial model is correctly specified. This
is usual in specification testing where acceptance of the null
hypothesis does not in general imply correct specification of the
model under test.

The previous paragragh does not imply that specification tests
as originated by Hausman (1978) and White (1982a) are unimportant.2?
First, as we have seen in the overlapping case, our model selection
tests simplify if the information matrix equivalence holds or if at
least one model is correctly specified. Second, and more importantly,
specification tests are useful when one does not have any precise
alternative models in mind. There is, however, a difference between
model specification testing and our approach to model selection.
Indeed, in model specification testing, one first performs various
available specification tests, and then investigates the power of the
tests s0 as to interpret the implicit alternatives to the initial
model specification. On the other hand, in model selection, one must
first have some ideas about possible form of misspecification to
formulate alternative models. Then one carries out some model
selection tests to decide if the initial model is correctly
vaOHWHma.Nu

We now turn to the important comparison between our model
selection approach and the non-nested hypotheses approach as

originated by Cox (1961, 1962). In the conditional framework of

Section 2, the Cox statistic for testing the model wo using the

evidence provided by o< is based on the modified LR statistic:
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A
£ A<_N ;0 A 24 hand, and :m. mw. or :m holds on the other hand. The hypotheses mw
- Lip 8,7, - ﬁM J 108 |ILIF> £ylz ;o )ay. (8.1)
Y maw_Nn.<= mw. and mm corresponds to whether the left—hand side of (8.2) is

negative, zero, or positive. Similar definitions apply to mm. mm. and
It is easy to see that the implicit null and alternative hypotheses of

:m ::ma wc nmdmbwmomnv< n«. nw<m=o=ﬂamw»nu«uo:mowwn:»<mwm=nw:a

the Cox test are:
better models, we can provide in the following table the conclusion

f(ylz; 0,)

% A% log P Py ?oc_uv - H.$~_NheavHE::A:NEN =0, (8.2) assoclated with each of these nine possibilities:
zY $7a)

where no.uv is the true marginal density of Nn. and :M is the negation :w mM mm
of mM. It is clear that if we is correctly specified so that
Hé indecisi F
o > ndecisive e 2 n< Fg > Q«
b (ylz) = f£(ylz;e,), then Equation (8.2) is satisfied. On the other
f mw G, 2 Fy £ 150 =gl lesyy impossible
hand, the null hypothesis mo may hold even though the model me is Y (=> wo = m*v
misspecified so that the Cox-test does not have power against this :m n« > Fg impossible impossible
type of misspecification. Along the same lines, let us note that when
n< is nested in Fg, the parametric hypothesis mwn 9, = d(y,) is where, for instance, m< > Fgy indicates that m« is at least as good as
included but not necessarily equal to mM. Hence, contrary to our wc. and o« > mo indicates that n« is (strictly) better than mo.
approach, Cox's approach does not coincide with the classical We now explain such a table which relies on the remark that
hypothesis approach when the models are nested, This is so because the hypotheses mw. mw~ and :M can be rewritten respectively as:
Cox’s null hypothesis mM is different from our null hypothesis mc.
Though MacKinnon (1983) has argued that non-nested hypothesis moﬂwom HvQn_Nn“es: m momwom mQ...._N»ou.?_:
tests should be interpreted as "model specification tests using the
evidence provided by non—nested alternative hypotheses,” it is well- fiylz;0,)
H: N 0
+ .
known that Cox-type tests have also been used as discrimination or ﬁN %wuom mﬁw_nn<ova<_N.c-vw (z)dydz. (8.3)
model selection tests. This is done by reversing the role of wc and
G_ in which case one has nine possible outcomes (see, e.g., Fisher and Similarly, mm. :m. and mm can be rewritten as:
McAleer (1979)) according to whether mm mM. or mm holds on the one

0 {0
E'[log mAmn_Nn“<ovu s E"[log wAmn_an<.v_
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glylz;ivy,) 0
+ ‘N hmpow MNMAManwmﬁq_nu<-v= (z)dydz. (8.4)

By Jensen’s inequality, the second terms in Equations (8.3) and (8.4)
are both non-negative, and equal to zero if and only if mA._.“cuv =
WA._.h<¢v. This explains why the three possibilities Amm.mmv.
Amm.mwv. and Amm.mmv cannot occur ammwsvnOn»omwwwv.nu As a

consequence, when one rejects, say, mM in favor of :M

in a Cox test,
one need not reverse the hypotheses since one already knows that me is
better than o«. Moreover, from the second column of the table, one
need not either reverse the hypotheses when mM cannot be rejected
since wc is at least as good as Q<. This follows by noticing from
Equations (8.3) and (8.4) that (i) Amm.mwv implies that F, is at least
as good as o«. (11) Amm.mwv implies that f£(:1+;0,) = g(+l+;y,) and
hence that Fg and o« are equivalent, and (1iii) that Amm.mwv cannot

f

occur, But let us note that if one cannot reject mo 80 that mo 2 o«.

there is no way using the Cox test to determine if F_ is (strictly)

)
better than n«. The situation becomes worse if mw is rejected in
favor of mw. Indeed, as the first column of the table indicates, even
if one reverse the hypotheses, one may conclude that the combination
Amm.mwv holds, but this combination is indecisive since all we know is
that monwom wAm«_N«»o-vu - mcawom mAwﬁ_Nn“<.v_ is less than the second
term in Equation (8.3), but larger than minus the second term in
Equation (8.4).

Though non-nested hypothesis tests have sometimes been

advocated by the fact than an economic researcher would be more
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interested in the truth of a particular model than in choosing from
among a given set of models” (Datsoor (1981)), we believe that this

6 Indeed,

leads to a non-optimal strategy in econometric aoamwusm.n
instead of testing the specification of each model in a list of
competing models using the evidence provided by the alternative
models, as this is done in non-nested hypothesis testing, it is more
economical to choose the best model among this list and then, if one
is still interested in the truth, to perform either some specification
tests on the best model or to expand the list of competing models so
as to perform some further model selection tests. That this latter
strategy is internally consistent is ensured by the fact that our
definition of a "best” model is compatible with that of a model being
correctly specified.

Much work remains to be done. First, an important task is to
apply the proposed tests for model selection to some special cases
such as the linear and non-linear regression models. Comparison
between the resulting tests and the available Cox-type tests would be
useful. Second, asymptotic power comparison between our model
selection tests, when treated as model specification tests, and
current specification tests would be interesting. Third, it would be
useful to compare our approach to the comprehensive approach advocated
by Atkinson (1969, 1970) which requires to nest the competing models
in a larger model. An interesting case is that of a linear as a log-
linear functional form as considered by Box and Cox (1964). Fourth,

it would be interesting to compare the performance of our model
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selection teats to the tests using the encompassing prineiple as
advocated by Hendry (1983), and Mizon and Richard (1982). Fifth, the
above model selection tests have been obtained under nua assumption
that there are only two competing models. It is therefore important
to generalize our procedures to the case where there are many
competing models. It appears that the likelihood ratio principle can
still be invoked by taking the supremum of the log-likelihood over all

the alternative models.
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APPENDIX

Except when explicitly mentioned, all the matrices >w. mw. >m.

B, and B

g are evaluated at the pseudo-true values 6, and v,.

fg

Proof of Lemma 2.1: Given Assumptions A1-A5, we obtain using the

Taylor expansions of the normal equations:

3
aL (8,)
- qp1/277n % . 1/28 _
0=n 39  tAr (e -8, + ovAuv. (A.1)

|H\~2.m3.v 1/2,8
0=n .|hWﬂ1|| + >m A C AR PO 0p(1), (A.2)

(see, e.g., Vuong (1983), proof of Theorem 3)). On the other hand

from the multivariate Central Limit Theorem (see, e.g. Rao (1973)):

Ho .
\N ?ps.v\gu Bp B
nl - N(0, ). (A.3)

oL (r,) fay Ber

w

The desired result follows from (A.1) - (A.3) by noticing that >m and

>m are non-singular (see, White (1982a, Theorem 3.1)).

Proof of Lemma 3.1: Obvious from, e.g., Vuong (1983, Theorem 1).

A
Proof of Lemma 3.2: Taking a Taylor expansion of rmﬁacv around c:. we

— A
have for some e: »aasmmmmsmsnﬁo..enun

£,4 2. f =
aL (8 ) 3L (8 )
f _f 8 —n n° Y 14 _ ' n n A
L6y =L (8) + —557(8, ~8) +3(8 -6, 200" (0, - 8,).

(A.4)
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But the second term is null by definition of »5. Since
012218 (8,) Jaeae’ = A, + o (1), if follows that:
n{ O £ p{1) ws that:
f £ n4 L
L (8y) = Lp(8,) i 208, - 0,) Be(8) - 8,) +0,(1). (4.5)
Similarly, we have:
g _ W’ b) ' A
LaGyy) = LoGr)) + 50y, - vy) >mA<= = 7s) *+0p(1). (A.6)
Since LR (8,,7,) = rMAo.v - rmA<-v. we obtain:
A A n,A VoA
LR (@,.7,) = LR (8,.7,) - 5(8, - 8,) A (8 - 8,)
nA A
+ 200, - 1) >mA<= - 7e) + ovﬁuv. (A.7

Part (i) follows from the fact that LR (8,,7,) = 0 if f(-|-;0,) =
g(-l-;y,). On the other hand, if f£(-|-;0,) # g(-l+;v,), then
1/2

A
LR (8,.7,) is not zero. But we always have n"/“(6 - 6,) and

'S
:H\NA<= - 7¥,) being ovAHv. This establishes Part (ii).

Proof of Lemma 3.4: From Moore (1978, Theorem 1), we know that

’
Y QY ~ zaa.“»v where A are the eigenvalues of nu\nobu\n where np\n =

m.cu\nm. and P is an orthogonal matrix that diagonalizes @ into D,
i.e., P@P =D and mm. =P P= HE. It remains to show that the

eigenvalues of bu\»pbu\n are the eigenvalues of Q. Let us order the

eigenvalues and eigenvectors so that:

D= , P =1[P; P, (A.8)
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where UH is an r X r diagonal matrix of which all the diagonal
elements are strictly positive (since @ is p.s.d.). Then, using the
orthogonality of P and the properties of determinants, the eigenvalues

of pa\nobw\n solve:

0 = Ip/2pap’pt/? - AL |

1/2 ' 1/2 -r
Ip3/“P,QP, D} AL (A.9)

Similarly the eigenvalues of Q@ solve:

o
#

1
|paP D - ALl

’ |—
IPqp,D; - AL 12", (A.10)

which is equivalent to (A.9) by pre and post multiplying by UW\N and

~-1/2
b /e,

Proof of Theorem 3.5: Part (i) follows from Lemma 2.1, Lemma 3.2 -
(i) and Lemma 3.4 by considering the quadratic form associated with

the block-diagonal matrix:
Q = (A.11)

Then, one can check that oMH is equal to W as given in Equation (3.9).

From Lemma 3.2 -~ (ii), we have:

£y, 1Z,;0,)

-1/2 A A 1/2.0
n rx=Ao=.<:v - n/'"E |log me_Nﬁ“.?v
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£y 1z, ;0,)
)

_ /2 0f) gttt
= ot/ LR (8,,7,) - E*|logoy iy : + o (D).

A

But from the multivariate Central Limit Theorem, the first term in the
right hand side converges in distribution to zAc.EWV where sm is the
variance defined in Equation (3.6). This variance 5m is finite given

Assumption 46 and the Cauchy-Shwartz inequality. Part (ii) follows.

Proof of Theorem 3.6: From Lemma 3.2 - (1), nrmaﬁwb.ﬂuv is

asymptotically distributed as a quadratic form in

H\N At [ ¥ ]
n Ams - oo.<= ~ v,) which is asymptotically normal zAc.MHv (Lemma
2.1). Thus, from Rao and Mitra (1971, Theorem 9.2.1), nrstws.ﬂsv is

asymptotically distributed as a (central) chi-square if and only if:

yeyay =)af. (A.12)
where Q is given in (A.11), in which case the number of degrees of

freedom is tr OM.

We now use the fact that:

Y - (A.13)
where
mw wwm >m 0
B = mmw ww ; A= 0 >m . (A.14)
Noticing that 2 loa™! = @71, condition (A.14) becomes:

8o leq 18 = Ba !B, (A.15)
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Using now the information matrix equivalences (3.11), we obtain after

some matrix multiplications that (A.15) is equivalent to:

-1 -1 -1
B, - B B ; B - B
£~ PraPg Pt Beg®s (% ~ Par®r Prg)
-1 -1 -1
- B B ; - B
(Bg ~ ByeBr Brg)Bg Bgr Bg = BgeBr Prg
B, - B, BLIB . ; 0
4 fg g gf °
= » (R.16)
0 H le + WWWWW wﬂm

Hence NrmaAm

A
=.<=V has a limiting (central) chi-square distribution if

and only if (3.12) holds. Its number of degrees of freedom is then:

-1
B
I BrgPe
tr DM = tp 1 =p-q. (A.17)
-B_.B -1
gl f q
Proof of Lemma 4.1: From Definition (3.7) of em. it follows that

0 = 0 if and only if:

£ 12,:0,) a.s. 20

g 1257,

£(1,12,:0,)
log g = constant,

log
e2574)

i.e., if and only if: f£(:l-;8,) = Kg(+l+;y,) for some constant K.

Since f(-|-;8,) and g(-l+;v,) are densities, then K = 1.2

Proof of Lemma 4.2: Given Assumptions A1-A3, and A6, it follows from

the Cauchy-Scwartz inequality and Jennrich’s uniform Strong Law of

Large Numbers (1969, Theorem 2) that
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2« 1Z,:0)7% a.s. 0 £y, |z .8
wom - E Hom (A.18)

uniformly in 6 on 6. The result follows from Lemma 3.1 and the strong

- A
consistency of e: and v, to 6, and vy,.

2

Proof of Theorem 4.3: Since wy, = 0 is equivalent to WA._.u@-v =

g(<l+;y,) (Lemma 4.1), it follows from Theorem 3.5 - (i) that:

A
LR (o

P
n'Tn) = owauv. Thus, from Equation (4.4), we have:

~2 _ M2 -1 o~
55: = nw, +n Ov:,v = D, + OUAHV.

ni?

Hence, we need only to study the null asymptotic distribution of n

Using a Taylor expansion around Aoo.acv. we obtain:

wm ﬁ w (e, V n wasav dlog mwaoov A
log — 7

1o . (6~ 8,)
mwa<.v MH g g, (1q) 26 n .

f.(8,)]0log g, (7,)
M.Mw t'% t' 7s’ ] A
2 1 . (Y, — To)
ﬁ og mﬁ A*Qv @.% *5 <l

P " A A [
+ Aes - c..« - <¢V< Ao .«n - T (A.19)
where, to simplify the notation, we have used weﬁe.v and mwA<ov for

wamn_quaov and mﬁne_mnh<-v respectively, and where:

<oon ’ <c«=

v

<<o: yyn
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- - 2 -
7 } PM: mpom n Ao ) . dlog wnAQPv . PW 1og u.onzv 9“log mﬂAouv
86n  nL, a0’ Ny g, ()| 00’
5 ] «. 1 dlog weﬁobv . dlog m«Awbw
[:1%) vén nt 206 ay’ '
— 2 -
7 } PW 3log mn?:.v . dlog wns ) _ .HIW maﬁenv 3"log g, (v,)
yrn oL, m* Ny WnAﬂav aydy

- - P a

for some e: and Tn in the segments He..asu and ~<¢.«=H respectively.
But, f(:]-;0,) = g(-l:;v,) under :m (Lemma 4.1) so that the

first three terms in (4.19) are null. Moreover, given Assumption Al-

A7, Jennrich'’s uniform strong Law of Large Numbers, the second term in

<ee= (or «<<5v goes almost surely to zero since f(-l+;8,) = g(-|-;

et ovauv. <4< mm + ° 1), v e«: = <<c= =

Aw - 6,) and aH\nA - ¥4) are both 0_(1)
n . Tn ~ Y= p ’

=B
1/2

under mm. Hence <09,~

-B, + .
g ovAuv Since n

it follows that under :M

A 2
ne, = 0@ + ovﬁuv
At t A ] A 1 A [
=08 - 0,7, - 7 IVO - 8,7, - 7,) + op(1) (4.20)
where
wm |wwm
V= . (A.21)
- B
mmm -3
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From Lemmae 2.1 and 3.4, it remains to show that the
eigenvalues of <M (or Mu\n<MH\~v are equal to the squares of the
eigenvalues of W = oMH (or MHH\NDMHR\NV where Q is defined in Equation

(A.11).

that orthogonalizes Mu\noMu\N so that mMu\noMu\nx. = N, then
- rf Y2 o V2%' -

From Lemma 2.1, Equation (A.20), and Rao and

It is easy to check that V = DMP Hence if R is the matrix

=M~\~<Mu\n=~. This completes the proof.

Proof of Theorem 4.4:
Mitra (1971, Theorem 9.2.1), it follows that Enw_ (or umwv has a
limiting (central) chi- square distribution if and only if

M<M <M = M<M in which case the number of degrees of freedom is

tr <M.

Using the information matrix equivalences (3.11), we have:

-1

- B__.B H 0
Hv mwmmm gf f
vy - . (A.22)
0 ; Hn - m w wmwm
-1 -1 -1 I g1
M M B Qu - Bg mm wwmmw ) ; mm wm g G - mwm mm 2 )
V) =
-1 ~ s 1p g1y . gt _ -1
wm mmwmw C m m mn p) 5 BT wm w mmm a )
-1 2 . gl _ -1
M M M B :u mwm m m». m L i B. B mm e S ByrBy mmm
vy v
-1 -1 -1 -1,2 ., -1 -1 ~1,2
By mmwm S mwmmm mmmmw ) Il mm AHa - ByBy mwmmw )
-1 and

Hence ) v} v) =} V] if and only 1f I, - By £aPg BerBr

Hn - wmwmw wmmm are both idempotent. Or equivalently M<M <M =
-1
M<M if and only if wn.m s mmwm and mmwwm mwmwm are both

B
g

-1

)

2
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idempotent.

|~
is idempotent if and only if mmwmn. mmmm is

a
B . =
mwm g g 8&f

u
mn m..EEm.mwoazmomaazu.nvm:c:._..mBBwN.N.:.
g n.m:x mmm g

-1 -1
follows that if Amwmmm )(B wmw ) is idempotent then (B
u

But, mn.m wmw w

idempotent. Indeed, rank Am :m 1) = rank BegB rank

H ..w
ww £ :m )

1

By the same argument, if w is

-1
mm wmwmw

(i1),

is also idempotent. n.m m
This establishes the

idempotent then B is also idempotent.

fg

between (i), Finally, from (A.22):

equivalence (111), and (iv).

tr <M =

—1
4 Bc BegBr ).

gls p7l) -
p+aq- nlmwm wmwwn_ ) - tr(B n,m e

+q-2tr(B, g lp _p1
pP+q £aBg BgrBr)

:n.,n to be chi-square

|Hv

Since B mnum ~1 must be idempotent for

rgBg CgrBe
distributed asymptotically, then nlwwmwmm

m
mmww

degrees of freedom is

wm = rank
rank B This establishes that the number of

Aw ) =

gf”
p + q - 2 rank mmw.
Straightforward from Theorem 3.5 (ii), and

;8,) # g(-1+;y,) and w2 > 0.

Proof of Theorem 5.2:

Lemma 4.2 since f£(-.|

Proof of Corollary 5.3: Obvious from Equation (5.13) and Theorem 5.2.
Proof of Theorem 5.4: To prove Part (i), note that under mo A=0
A A

so that by subtractiving nA from rmasz.;v we obtain after
multiplication by n~1/2

-1/2 £y, 1z, ;0

n- T A A 1. -1/2 AA 1/2.0 i8)

R =% , ml"f
% LR (6.7, A [n LR, (8 ,7,) - n"/“E°llo B, 12, 57,) 11.

n n
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Since wA._.“euv # g(+l+;y,) because the models are strictly non-
nested, Part (i) follows from Theorem 3.5 - (ii) and Lemma 4.2 - (1).

To prove Parts (ii) and (i1i1), note that

£y lz ;e 1/2

o'~ A A _ tu\n _ H\n 0 4 n r

a LR (6.7, = > LR Ao .<= e P B(T,1Z,57,) A
L w, t

The first term is ovauv from Theorem 3.5 - (1i), and the second term

goes almost surely to +« under mw and to -« under mm.

Proof of Theorem 6.2: Part (i) follows from Theorem 4.3, since the

A
c.d.f. =v+nA.“»v is continuous in A, and since :a
A

surely to W so that the eigenvalues r: converge also almost surely to

Part (i1i) follows from Lemma 4.2 - (i). Part (iii) follows by

converges almost

A

.

the same argument.

thbhbhbﬁﬂbﬂh.wntmu:mwuvﬁo<onnwnA»»vnoﬁwvuaﬁuuwvuwﬁpwv.
Without loss of generality, we assume that moA._.v e wc. i.e., that
scA._.v = nA._.noov for some 8, in 6. Then, as is well known, it
follows from the uniqueness of 6, (Assumption A3 - (b)) and Jensen's
inequality that 8, = @,. Thus 01y = (-1

(11) = (1): Since h%(-1¢) = £(+1+;0,), then
n0 1) = gl-l+;v,) using (i1), so that HO-1e) e G,. and hence
HOC- 1) e Fg N G,

(1) = (110): since H'C-1+) ¢ G, then B’C-14) = g(+1+57,) as
above. Since h(.].) = £(+1-;0,), then £(+|+:0,) = g(-|+;y,), which

implies (iii).
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(111) = (41): Since K%(-|+) = £(+1-;0,), then (iii) implies

that:

f(ylz;o,)
% % log 2(ylz:0,) f(ylz;6,)dyldz = o0,

Then (i1) follows from Jensen'’s inequality.

Proof of Iheorem 6.4: Under Hj, it follows from Lemma 6.3 that
£(+}+;0,) = g(+l+;ys). Then, Part (i) follows from Theorem 3.4 - (i),

the continuity of the c.d.f. M *;A) in A, and the strong

pt+q
convergence of »: to the eigenvalues A, of W. Parts (ii) and (iii)

follow from Lemma 3.1.

Elhrmmﬁmw.m":mmwﬁwvwgogmn:uvl:vHvCiu.v
(1i1) = (i1).

(11) = (1): Since 8, g d(IN, 37 & I' such that 0, = d(}).
Thus, from Assumption A8, log g(-|:;¥) = log £(:]-;0,) which implies
£%l10g g(¥,12,;9) = °l10g £(¥,12,;0,)1 2 E%ll0g £(¥,1Z,;0)] for any
6 in © and, in particular for any 6 in d(I'), i.e., for any 6 = d(y)
for y ¢ I'. Then, using again Assumption A8, we have
moﬁwom mA«nuwnn«vn > E cnwom gy, | a“<vu for any vy e I', which impiies
that ¥ = y, from Assumption A3 - (b), and hence that 0, = dly,).

(i) = (iv): Obvious given Assumption AS.

(iv) =5 (iii): Obvious.

(111) = (i1): Suppose that @, ¢ (I, then 8, # & = d(y,)-
But from (iii) and Assumption A8, we have mcmwom wA«n_Nn"oqv~ =

mcﬁwom wAw«_Nnnqvu. which contradicts the uniqueness of 6, (Assumption
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(b)).

Proof of Lemma 7.3: First, we note that, under Assumption AS,

L]
dlog &(-1-;y) /oy = 8¢ foy = alog £(-1-;d(y))/a6. But under H), we
have @, = d(y,) (Lemma 7.2), which establishes Part (ii) and the first

equality of Part (i) using the definitions of B mn. and B_,. In

g gf
addition:
E _ad P.pwm .29, 39y a10g £,
avay, %7 aes8’ oy aydy 9%

where we have omitted the arguments of the wcuoeuonu. and where &w is

the k-th component of d. Since monowom mA«n_Nnmo-v\mcu = 0 and since
= ¢(y,), then the second equality of Part (i) follows. Finally,

Part (iii) follows from this equality and the fact that >waoov and

>mA<-v are non—- singular matrices (see, White (1982a), Theorem 3.1)).

Proof of Theorem 7.4: Since under mw. we have £(+|+;0,) =g(|+;y
(Lemma 7.2), then Part (i) follows from Theorem 3.5 - (i) if we show
that the non-zero eigenvalues A, of W are the non-zero eigenvalues of

W. But, using Lemma 7.3, the eigenvalues of W solve:

[ _5 471 _ . _p 84,1
Behp - M, mw».\»m
0 = det , ’
ad -1 . 2d _9d -
ay Brle b ey mn.o ~>_w Mg
[ _p 71 . _p 89,1
ww>m 4 mww*.>m
= det , ,
ad_
- i AL
| "or q
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|Hm.nl~ ;. -B l&ub

- - me
mlm M, + By >m.:

0 i =AML ’

where the second equation follows from the first equation by adding to
the second-row matrices the first-row matrices premultiplied by the
full row-rank matrix eq.\m.« (Lemma 7.3 - (iii)), and where the third
equation follows from the second equation by adding to the first-
column matrices the second-column matrices postmultiplied by |mq.\m<.
Hence, the eigenvalues of W solve:

= Adet{-Ba;t + mlﬂ»mﬁwn*n ML), (4.23)

which establishes that the non—zero eigenvalues of W are the non-zero
eigenvalues of W as defined by Equation (7.5). Equation (A.23) also
shows that the eigenvalues of W are all real and non-negative since

[ad/ay 187 124" fay] [ad/ay 1(13d  fay1a lad/ay D)™
(8d ' /ay] which is n.s.d.

Part (ii) follows from Lemma 3.1 and mw = :m.

Proof of Corollary 7.5: If >m + mw = 0, then it follows from Lemma

7.3 - (i) that under KO, Ay + By = 0. Part (1) follows from Theorem

3.6 and Lemma 7.3 since Condition (3.12) is satisfied. Part (ii) is

identical to Theorem 7.4 - (1i1).

Proof of Theorem 7.6: Since mw = mm. Part (i) follows from Theorem

4.3 since the non—zero eigenvalues of W are the eigenvalues of W (see
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;)

the proof of Theorem 7.4). Parts (ii) follows from Lemma 4.2 since =>

is equivalent to H Part (iii) is proved similarly.

rg

Proof of Corollary 7.1: As noticed in the proof of Corollary 7.5,

given the assumptions of Corollary 7.7, we have both information

Then Part (1) follows from

-1
mmmm
to Hn (using Lemma 7.3) and hence is idempotent. Parts (ii) and (iii)

matrix equivalences (3.11) under :o.

Theorem 4.4 - (iv) by noticing that the matrix mmmeuw is equal

are identical to Parts (ii) and (iii) of Theorem 7.6.
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weighted sums of chi-square distributions. I would like to thank
especially H. White whose comments much improved this paper. I
am also grateful to C. R. Jackson without whom this paper would
not have been written and to L. Donnelly for stimulating
thoughts. Remaining errors are mine.

The notation ovaHv indicates a quantity that converges in
probability to zero, while the notation ovAHV indicates a
quantity that is bounded in probability as n goes to infinity
(see, e.g., Mann and Wald (1943)). As a matter of fact, Equation
(3.4) holds whether or not f(.1-;0,) = g(:l+;y,). The point is
that, if wA._.“auv = mA._.n<.v. then the asymptotic distribution
of the LR statistic will be given by Equation (3.3).

As noticed earlier, only the m non-zero eigenvalues A are

relevant, 1i.e., :s

(50 = :EA.“PV. Moreover, these eigenvalues
are all real, and that they are all non-negative if Q is positive
semi-definite.

Since rank W = rank } m r, then the limiting distribution in
(3.8) is equal to zwﬁ.h «) where i, is the vector of non-zero
eigenvalues of W. Let us also note that some eigenvalues A, may

be negative since the matrix defining the quadratic form in

Equation (3.3) is not p.s.d. (see footnote 2).
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In fact, Property (3.10) holds whether or not mﬁ._.mcov =
g(+1+;v,) (see also footnote 1). However, sm = 0 if and only if 3.
£(1+;08,) = g(-l+;v,) (see Lemma 4.1 below). Thus, one must 9,

instead rely on the asymptotic approximation (3.8).

Given the definition of 8., it is clear that NanAmw_N"wev is the 10,
minimum distance between the true conditional distribution
#(-1-) and any conditional distribution F(-l-;8) in Fy. 11.
The case when qe and o< are not nested but do have a non—empty

intersection is treated in the next section on overlapping

models. for a long time, non-nested hypotheses were defined as
hypotheses that cannot be obtained from the other by a suitable
limiting approximation (Cox (1961, 1962)). Noting that there
were no satisfactory definitions of this concept, Pesaran (1985)
recently proposed formal definitions of globally non-nested,
partially non-nested, and nested hypotheses based on the KLIC. 12.
It can be shown that Pesaran’s definitions are equivalent to our

Definitions 5.1, 6.1, and 7.1. Our definitions appear toc be more
intuitive and natural.

Note that, from Equation (4.4), it follows that:
M2 850/ <o VR B
n'®n’¥n’ /¥y 2 n'®n*Yn’ ¥p*

Thus, even though under the Pittman approach the tests will have

the same asymptotic power, this inequality suggests that the test 13.
A
based on o, will be asymptotically more powerful than the test

~

based on o, according to other definitions of asymptotic power
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such as Bahadur (1960)'s definition.

I owe this point to Hal White.

The reason for this multitude of criteria is that Sawa (1978) and
Chow (1981) question the validity of Akaike’s initial derivation.
Note that a correctly specified model is no longer necessarily
best. More generally, k(p) may depend on n.

In the univariate dichotomous case, Cox (1970) points out that
the logit and probit models are approximations of each other. If
the explanatory variables are all discrete, Lee (1981) points out
that in the bivariate dichotomous case the probit and logit
models are either identical or nested. Morimune (1979) proposes
some Cox-type tests for discriminating between the logit and the
probit models. As argued in Section 8, these tests are
conceptually different from the ones proposed here.

The variance test can be avoided by testing only some
implications of the hypothesis f(-|-;8,) = g(-l+;y,). This is
done by first characterizing the conditions that 6 and y must
satisfy for £(-]|:;8) to be equal to g(-|l-;y). (See Lien and
Vuong (1986) for an illustration.) In general, tests of some
appropriately selected conditions are easier to perform than the
variance test, and can be done using only m: or %:. The

difficulty is to derive these conditions.

To see this, Note that H_is a composite of Hy and H_ - HY. Let

[}
2 -1/2
n

Prlreject mo_mo_ = PriA N m.mou =

A A
& = {nw; > ¢;} and B = (In rzA°=.<=v\ns_ > ¢y}, Then



14,

15.

16.

17.

18.
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(0] W
max{Pr{(A N m.m%.ml» n m_mo - H))
Ei?;_mkalw_mo - mn:. But from Theorems 5.2 and 6.2,
0] o
?;_mov - @, and mlw_mo - H) S a,.

Johnson and Kotz (1969) give values of xaax"»v for m = 4 and some

values of x and A with a Fortran IV program for calculating 19.

:sAx“»v which can also be used to compute the upper-tail

A

probability 1 - ae:“»wv. Paul Bjorn told me, however, that

M
u+nA
there are some problems with this Fortran program.

It follows that mw = mo and mn = mw (1] mm. The variance test of

Theorem 6.2 can therefore be thought of as a discrimination test
since the null and alternative hypotheses correspond respectively 20.

to the equivalence and non-equivalence of the models. Contrary

to the LR~ based test proposed below, the variance test is not
directional in the sense that when one rejects mo. one does not
know if it is in favor of mw or H_.

g

It is worth noting that if one rejects H, using the LR-based

0

test, then one knows if it is in favor of mm or H Since it is

g

assumed that at least one model is correctly specified, then 21.

rejection in favor of :w will imply that wc is correctly
specified and o« is incorrectly specified. A similar research

applies in case of rejection in favor of mm.

In fact, the computation of both ey and ¢, can be replaced by the

A A
computation of only the upper-tail probability of nrz=A®=~<=v 22.

A
(5a,).

from the distribution M n

p+q

It is assumed throughout this and the next sections that the 23.

70

information matrix equivalence holds whenever the model is
correctly specified. This actually requires a mild additional
assumption (see, e.g. White (1982, Assumption A7), Vuong (1983,
Assumption A6)).

Classical nested hypothesis testing actually assumes that the
larger model is correctly specified. Only recently this
framework has been extended to the misspecified case (see, e.g.,
White (1982a)). Let us also note that the equivalence between
model selection tests and nested hypothesis tests does not hold
if one introduces a correction factor as in the criterion (5.14).
Though the variance tests are asymptotically equivalent, they are
not asymptotically equivalent to the LR test under :M. In
addition, these tests are not asymptotically equivalent under mw
to the robust Wald and LM tests proposed by White (1982a) for
testing the parametric restrictions mM. The relative asymptotic
power properties of all these tests of mw in the misspecified
case is left for future research.

Rejection of the equivalence in favor of the competing model
being better does not, of course, imply that the alternative
model is correctly specified. Note also that rejection of the
equivalence in favor of the initial model being better implies
that the alternative model is misspecified.

For subsequent work on specification tests, see Newey (1983),

Ruud (1984), Vuong (1983,1984), among others.

Another important difference is that most specification tests use



24.

25.

26.

27.
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only estimators of the model under test while our model selection
tests use estimators of both the initial model and the competing
model. This difference is similar to the one between the score or
lagrange multiplier test and the LR test in the familiar nested
hypothesis framework. Though the current specification tests and
our LR based tests may have identical local power properties, our
model selection tests are likely to have nicer global power
properties (see, e.g., Bahadur (1967)).

See White (1982b) and Aguirre-Torres and Gallant (1983). White
(1982b) showed that the test based on HM is asymptotically
equivalent to the J and P tests proposed by Davidson and
MacKinnon (1981). Originally, Cox (1961, 1962) used a different
but asymptotically equivalent statistic which is given by
Equation (8.1) where mA<_Nn"ﬁ=v is replaced by mﬁw_Nn"<ko=VV.
This latter statistic was used by Pesaran (1974) and Pesaran and
Deaton (1978). It is clear that Equation (8.2) still holds.
Another Cox-type test for non- nested hypotheses is the one
proposed by Morimune (1983).

See also Datsoor (1981) who observes that :am and nam cannot both
go in probability to += in the linear regression context.

For a similar point of view in a Bayesian framework, see also

Klein (1983). But, see also McKinnon (1983b).

0

is Y for :N|mpsom«

Throughout, we assume that the support of mw_u
all z. Then the open set N, = {y;f(ylz;0,) # Ke(ylz;0,)} must be

empty. The result follows by integrating with respect to ow.
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