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ABSTRACT

This paper defines a risk assessment mechanism and
compares its incentive properties with those of deterministic
incentive mechanisms, particularly the Groves mechanism.

Many risk assessments involve prediction for rare or
unique events; in such cases there is limited opportunity for
feedback and evaluation of the assessment process. To develop
a feedback mechanism, the paper requires assessments to be made
for indicator events. linked to the rare or unique events of
ultimate interest. Assessments are made by several a66e680Ts,
or assessment techniques, acting in competition. The feedback
mechanism is a transfer function based on the probability
assessments of all the assessors and the outcome of the
indicator event.

The incentive properties of risk assessment mechanisms
are in some ways similar to those for deterministic mechanisms
and in some ways quite different. The paper defines one risk
assessment mechanism that looks like a Groves mechanism: it
directly reveals probability and for risk neutral assessors has
an unbiased or truthful dominant strategy which is
discontinuous and which cannot solve the budget problem. The
paper also defines a class of risk assessment mechanisms which
do not look like a Groves mechanism; mechanisms in this class
have unbiased dominant strategies which are continuous and

which do solve the mcnmmﬁ problem.
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INCENTIVE COMPATIBILITY IN RISK ASSESSMENT

Talbot Page

The purpose of this paper is to apply ideas from the theory of
incentive compatibility for public goods demand revelation to the
problem of probability revelation in risk assessment. There are several
reasons for doing this: to extend the theory to a new case, which is
probabilistic and where there need not be public goods; to provide
a mechanism of feedback for learning and validation; and to generalize
the notion of scoring rules. The link between the theory of incentive
compatibility for public goods and risk assessment is achieved by a
structural analogy between two models, one for public goods and the
other for risk assessment. The analogy is neither a generalization
nor a specialization -- different variables play parallel roles and
there are some changed roles, too. Because there are both parallels
and differences, part of the basic theorems of Groves and Loeb (]975)
and Green and Laffont (1979) characterizing demand relevation for
public goods carry over to the risk assessment model, but there are
surprises as well.

Transfer functions can be viewed as the centerpiece of models
of demand revelation for public goods. In this paper we take the
same view toward transfer functions for risk assessment. The motivation
for doing so is practical as well as conceptual. There are now a large
number of risk assessments, which are increasingly used in decisions

with potentially large scale consequences. In risk assessment much
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of the focus has been forward looking —- developing estimates of

probabilities for future events, or for the likelihood of the existence

of some state which is not yet known. There has been relatively little
backward looking -- looking back to evaluate previous risk assessments
in the light of new information when it becomes available, The transfer
function provides a means for increasing the emphasis on feedback.

In risk assessment we are interested in developing estimates of
the probability of some event, which might be rare (a reactor core
meltdown) or unique (chemical X is a carcinogen). There is a principal
who makes use of these estimates for some decision. The principal has
no direct information of his own on the probability of the event, but
relies on the probability estimates provided by agents or assessors.
The assessors have information on the state of nature and form inferences
on the probability of the event. In general we assume that the assessors

have differing amounts and qualities of information.

As part of an introduction, we can speak loosely of three goals
for a principal in an assessment process: (a) to produce a "good"
consensus estimate among N assessors; (b) to identify, over a
limited number of assessment rounds, assessors who have better
information or inference skills (or "assessment technique"); (¢) and
to provide incentives, relative to the principal's budget, to make it
worthwhile for the agents to gather information and form probability
judgments, a costly exercise. (The desirata —- "good" consensus
estimator, "identifiability" of the "best" assessors, and "sharp"
incentives - - can be made precise only within contexts of specified
models.) As a means toward some mix of these goals, the principal

agrees to reward the assessors by a transfer mechanism, which is a



function of the revealed probability estimates and whether or not the
predicted event occurs (in the appropriate time interval). For
the first goal, a "good" consensus estimate is defined as good
for some decision purpose. The idea corresponds to the public
goods model, where willingnesses to pay are elicited in ways
leading to Pareto optimality and the truthfulmess of the revelations is
"incidental." For the third goal, it is useful that the expected
transfer to an assessor be a "sharp" rather than 'flat" function of
his revealed estimate. The idea corresponds to the desiratum of
:H5&H<»&wa rationality" in the public goods anmH.H

It is assumed that the assessors have a single goal; to do "as
best they can" in response to a given transfer mechanism. The focus
of the paper will be on this latter question —-- how the assessors
might respond to or manipulate various possible transfer mechanisms.
A rationale for the focus is that no matter what mix of goals the
principal might have, he will be unable to pick a transfer mechanism
until he knows something of how the agents might respond to it.

The most basic result in the paper is the development of a new
and more formal framework for risk assessment. More specific results

are:

(1) The idea of a Groves mechanism is applied to the risk
assessment model and a new mechanism is defined for revealing best,
truthful probability estimates. There are both parallels and contrasts.
For one thing there is no public good in the risk assessment model.

(2) 1In the risk assessment model, there are other direct

revelation mechanisms, besides the Groves-like one, with truthful dominant
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strategies for agents with Huvmwﬂr separable utilities (risk neutrality).
This is in contrast with the public goods model, where the Groves
mechanism is the only direct revelation mechanism with truthful
dominant strategies for agents with linear, separable utilities (no
income effects). However, finding other mechanisms with truthful
dominant strategies in the risk assessment model is not a new result.
These mechanisms are built on proper scoring rules, which have been
known for forty years. New results are: the mechanisms built on proper
scoring rules can be defined to achieve budget balance and to eliminate
the requirement of risk neutrality; and the requirement of risk
neutrality can also be eliminated for the Groves-like mechanism while
preserving its truthful dominant strategies. But it does not appear
possible to achieve budget balance for the Groves-like mechanism in the
risk assessment model.

(3) Even though the Groves-like mechanism and proper scoring rules
look very different, there is a close connection between them. One
of the proper scoring rules, the Brier rule, is shown to be a special
case of the Groves—-like mechanism from the point of view of a risk

neutral assessor.

(4) Under slight restrictions, a Nash equilibrium is shown to
exist for the parimutuel betting rule. This widely used transfer
mechanism is especially interesting from the point of view of risk
assessment because not only is it the most prominant example of
assessment mechanism in actual operation, it is also closely related

to Bayesian inference.
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(5) The expected value maximizing strategy is derived for the

parimutuel mechanism. For a particular model of the assessors'’
information, this mechanism is shown to be more efficient than the
Brier rule in identifying the best assessor over a limited number of
assessment rounds. This is an interesting result because the Brier
rule has been used to distinguish among assessment abilities of
weather forecasters. It is interesting for another reason as well:
the parimutuel mechanism has a non-truthful dominant strategy. Thus
it is possible to find a manipulative mechanism superior in a least
one respect to a truth revealing dominant strategy mechanism. But
as a final surprise, for this same model of the assessors' information,
the Groves-like mechanism, which also has a truth revealing dominant
strategy, identifies the better informed assessor more efficiently
than either of the other two mechanisms. Equivalence in expectation
between the Brier rule and a special case of the Groves-like
mechanism one does not imply equivalence in other aspects of the
rules' behavior.

Concern with incentive compatibility in risk assessment goes
back at least to 1950, when Brier (1950) proposed a forecasting
verification system which would be immune to manipulatiom, or
as he put it, "playing the system." Savage (1971) devoted his
last paper to the problem of eliciting truthful revelation of
each assessor's best judgmental probability estimate (truthful
revelation rules for expected value maximizing assessors came to be
known as proper scoring rules). Recently Grether has developed
a procedure, not depending on risk neutrality, for truthful

revelation of probability estimates.

The work just cited can be viewed in the context of 2 person
games —-- a single assessor versus nature, with the game established and
overseen by the principal. There appears to be little previous work on
the problem addressed in this paper, which can be viewed as an N + 1

person game, where N assessors may affect each other's transfer,

and where there may be strategic manipulation of the mechanism in terms
of one assessor against each other. Page (1977) stated this problem
of manipulative competition among N risk assessors and considered a
Bayesian transfer rule because it might have useful properties for the
principal. However, the strategic analysis was not carried far and
there appears to be little existing work on the strategic interactions
among competing assessors.

On a related subject, calibration and the evaluation of judgmental
probability assessment, there has been a great deal of work.
Lichtenstein, Fischhoff, and Phillios (1981) provide a recent summary,
and their own work on the subject needs particular mention here, as
does the work by Winker and Murphy, who have contributed especially on
the evaluation of probabilistic weather forecasting. As a means of
identifying the "best" assessor Roberts (1965) suggested a Bayesian

scoring rule, but he did not consider its strategic properties,

a few of which are discussed by Winkler (1969).
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I. Analogy Between Models of Incentive Compatibility for
Public Goods and Risk Assessment

Definition. A risk assessment mechanism is a function

f= Anw....nzv. where n» is the transfer to 1i; nH is a function of
Pyse+-Py and X; Py is 1i's revealed probability estimate; and X is
the assessed event. The strategy space for each i is [0,1], and X can

be either 0 or H.N
The analogy between a model of incentives compatibility and a

model of risk assessment is drawn in Table 1 and the subsequent

paragraphs.

Table 1

Public Goods Model Risk Assessment Model

Utility function uo(ie,) (e, K, X)
for the principal i i

Q<o e < 0

1
Utility function i - 1 =
for wmwun 1 VT (g R)=t g, (K) Utz )=t 4ey (25)
cwu <0

Transfer HHIM#AQH- L uﬂZV HPHHHAvH goes .ﬂz.uc
mechanism
Decision function Kod (W, , .. ,Wy) Kod(DPyyene ,1)
for the principal v N P1e *PN
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As part of the analogy vy Anmcwmumm willingness to pay in the
demand revelation model) corresponds to Py (revealed probability
estimate in the risk assessment model). Underlying LA is vy (1's true
valuation) which corresponds to ﬂu (i's true or "best” probability
assessment). In the public goods model K is a public good for the N
agents; K appears in dH without the subscript, but not in v°. 1In
the risk assessment model the situation is reversed. K is a
private good appearing in t° but not in the aw. The public goods
model is an N person non-cooperative game among the N voters or
agents, overseen by the principal who receives (or pays) the
transfers. The risk assessment model is an N+l person mon-cooperative
game, like the N+l person game developed by Harsanyi and recently
applied by Milgram and Roberts (1982). The extra player 1s nature,
which "decides" on the existence of some (possibly unique) event X. The
state of X is not known to the N assessors at the time of their
revelations. The state of X is revealed after the p, are revealed
and the transfer nu is based on the observed state of X along with
the Py

For example, each of N forecasters makes a probability prediction
of rain tomorrow. The following day the forecasters are given
transfers as functions of the revealed predictions AvH.....vzv and
whether or not it rained. The dimensionality of K in the demand
revelation model corresponds to the dimensionality of X in the risk
assessment model, in the following way. If K is dichotomous (K = 1
means the public good is chosen, K = 0 means the status quo is

preserved), only a single value for willingness to pay is elicited
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II. Existence of a Groves-like Mechanism

from each agent, Similarly if X is dichotomous (X = 1 means

rain; X = 0 means no rain), only a single probability is elicited. The idea of the Groves-like mechanism is Wm follows. Each of
If K is continuous in the demand revelation model, then an entire N assessors makes his own assessment of the probability of the event
willingness—~to~pay schedule is elicited. Similarly if X is X. Each i reports a probability Py of the event without knowing the
continuous a probability density function is elicited. others' reported assessments. For each assessor 1, the consensus of
In the demand revelation model, it is assumed that agents ~ the other N-1 assessors is defined and specified Q. Then if
know their true valuations (the <Hv at no cost. In contrast, to the event occurs, i wins if Py > 9y (his reported probability is
form a probability judgment requires assessment activity. To keep higher than the others' consensus) and i loses 1f Py <4qy- And if
matters simple we will assume that i can form at least a crude the event does not occur, i wing' if P; <4q; and i loses 1f py > gy.
best guess mw at no cost. But for i to refine his judgment mw How much he wins in each case is determined by the others' consensus.
"more" assessment activity z; is required. The more information The amount of a win and the resolution of ties is provided by the
which is gathered and processed (the higher NHV. the more costly definition:

the assessment activity to i. We will say a few words later about

N
Definition. Define q = MU P as the consensus of all the

c
"better" judgments of probability of X and the costs of attaining i=1 i

mu\AH - n»v as the consensus of all but i,

N
them in Section VII. assessors and q = MU vu
J#d

N
where for 811 i 0 < € < 1l and MU ¢y = 1. Then the Groves-like risk
i=1

assessment mechanism nw = mwﬁvw.....nz.wv is defined by

1~ a4 if X =1 and Py w.aw
if X =0 and Py < qy

0 otherwise

For short we will refer to this transfer function as mechanism f.

N
1
Hnntmmwaamnﬂwnnmmmown H\zmsm nwumlnwm. MU wu.

3#
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We can think of the cy as the credibility weights used in defining
the consensus estimates. To stress the parallel the following theorem
is proved for assessors with Hhammﬂ. separable utility (risk
neutrality for the risk assessment model, no income effects for

the public goods model).

Theorem 1. Mechanism f has a truth revealing dominant strategy

for each risk neutral, expected value maximizing assessor. Moreover,

truthful revelation is the unique dominant strategy.

Proof. We will show that truthful revelation is the unique dominant

strategy for any risk neutral assessor i. For convenience, omit the

subscript from Pys 9y nw and ww Amw is 1's truthful best judgment of

P(X=1)). If p 2> q, i's expected transfer from his point of view is
E(t) =P - Pq; and if p < gq, E(t) = q - Pq. For any P there are three
possible cases: q >P, 4 <P, and g =T. We consider the three

cases and all the possible subcases in Table 2.

Table 2
Subcase Strategy Expected Transfer

(1a) p=p<q truthful revelation q - Pq
C —
mmmlw (1b) p<p<q biased down 4 - Tq
a>P (1c) P<p<q biased up q - Pg

(1d) 7p<qsp biased up T - Pq
Case 2 (2a) q<P=p truthful revelation T - pa
Q<P (2b) q<p<p biased down T - Pq

(2¢) p<qp biased down q - Paq

(2d) q<p<p biased up P - Py
Case 3 (3a) q=p=p truthful revelation P - P~
q4=7 (3b) p<q=p biased down -7

(3¢) q=p<p biased up T - 92

12

The expected transfer in subcase (1d) is smaller than for (la),
(1b), and (1c) because in case 1 q > F; and the expected transfer
in (2c) is smaller than in (2a), (2b) and (2d) because in case 2

q < P. So in each case truthful revelation is a least as good and
sometimes better than any alternative strategy. This implies that
truthful revelation is a dominant strategy. From the enumeration of
cases, 1t is clear that no other strategy is at least as good as
truthful revelation in all cases. Thus truthful revelation is the

unique dominant strategy.

Q.E.D.

Like the Groves mechanism the decision of who wins (who pays in
the public goods model) is split from the decision of how much a winner
gets (how much is paid). The decision of whether or not i wins depends
on all the vu and on X. How much depends only on vu for j # 41, and
on X. Each i's expected return is discontinuous with the point of
discontinuity at the point qy- The close parallel (and difference)
between the two mechanisms is shown in Figure 1.3

A major difference between the two models is that Theorem 1 can be
strengthened by modifying mechanism f and dropping the assumption of
linear, separable utility. In its place we substitute the weaker

4

assumption of monotoxicity of preferences over lotteries. This is

done in Theorem 2.

Theorem 2. Define 1 and q as in Theorem 1, and define

nm. = HWCU.H-UNo...LuZ.NVn by
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p
1 wp. 1- 9y
. if X=1 and p;, > q
0 w.p. nw i i
nu - J 1 wp. q4
if X = 0 and 1 <ag

0 w.p. 1l- 9y

0 otherwise

L

Then, if i's preferences over lotteries are monotonic, mechanism

f' = Amw....mwv has a truthful dominant strategy, and truthful

relevation is the unique dominant strategy.

Proof. Construct a table of subcases, which looks

like Table 1 except for the heading on the third column. This time the

entries in the third column refer to probabilities of winning a lottery.
For each subcase there is a lottery of winning 1 unit with same
probability s and of winning 0 with probability 1 - s. For each
subcase the values for s are shown in the third column. Inspection of

Table 1 shows that for any i with monotonic preferences over lotteries

truthful revelation is the unique dominant strategy.

Q.E.D.

Theorem 2 turns on the fact that the transfer to i in Theorem 1
is bounded between zero and 1, a fact obvious from the definition

of f. The following definitions will prove useful.

Definitions. For a given transfer mechanism g = Aﬂw.....nsv
N N
define b = inf. t 3 ¢+ = gup. t,; B = inf. M t,; and m+ = sup. M t,,

1 1 =1 1 =1 1




15
where Py can vary over [0,1] and X can either be O or 1.

Definition. If B = u+ we say that the principal's budget is

controlled at level B.

Budget control corresponds to the condition of "balanced budget”
for the public goods model. Budget control or balance means that the
principal knows the cost of the transfer mechanisms beforehand; it
also facilitates comparisons among transfer mechanisms. It is easy
to see that the Groves-like mechanism does not have budget control.

For a counter example, note for N=2, if X=1 and 1 2] > Pys Mnu =1 - P,

which varies with Py

16

IIT1. Mechanisms with Truthful Dominant Strategies,

Budget Control, and Continuity

We know that in the public goods model the Groves mechanism
is the only direct relevation mechanism with a truthful dominant
strategy. The situation is quite different for the risk assessment
model. Here there are an infinite number of direct revelation
mechanisms with truthful dominant strategies. These other mechanisms
are not "Groves-like" -- they are continuous and have budget control.
These mechanisms are based on proper scoring rules.

Definition. A risk assessment mechanism is a scoring rule if
it can be written in the form nH = mﬁvu.xv. (The transfer to each
agent depends only on what he reveals and X.)

Definition. A proper scoring rule is a scoring rule nu = mﬁvw.xv
for which the expected transfer mAwﬁuw'xvv is maximized at P, = mu.
for each i.

Definition. An assessment mechanism g is normalizable if the
range of g is bounded. If b = 0 and v+ = 1 we will say g is
normalized.

Definition. An wmmmmmsmcn mechanism g is individually rational if
b > 0.

Because we are assuming each i can form at least a crude guess

of the probability of X costlessly, 1 camnnot lose when b~ > 0. The

condition of "individual rationality" means i has an incentive to
join in an assessment process (except for very pathological cases where
he has no incentive to either join or not join). An advantage in

working with normalized mechanisms is that the zero floor
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provides "individual rationality." The unit ceiling for normalized
proper scoring rules will prove useful below. (Note that the

Groves-like mechanism is normalized.)

Examples. 1) L, - wﬁvu.xv =1-(p- wi

2 2
@)ty = g0 = Ip, - x|/ p,2 + (- py
The first is the Brier scoring rule, which has been extensively
used in the evaluation of weather forecasters. The second is the
spherical rule. It is easy to show that both are proper and normalized.
It is well known that there are an infinite number of proper scoring

rules (and an infinite subclass can be normalized, maintaining properness).

Theorem 3. Let mﬁvu.xv be a continuous, normalized proper scoring

rule. Define

N
1
= ' = - —
£y Z85(pyseeesp X)) 2 8(p5X) + 1 - 25 ) wﬁvu.xv.
j#d
Then g' = Anw.....nzv is a risk assessment mechanism with truthful
dominant strateiges for risk neutral assessors. Further, g' has

budget control, is continuous, and provides "individual rationality."

Proof. To show that truthful revelation is the dominant

stragety for any i, note that the expected transfer to i is
3) E(t)) = mAmAwu.xvv + wﬁv.up.....v»uu.vu+p‘...vzv

for some function k. Since k does not depend on Pys the Py which

maximizes MAmAvH,MVV also maximizes mAnHv. Because g is a proper
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scoring rule, we know the max:mization of mAnuv is at Py = Py

As g is continuous so is mw. As mﬁvu.xv <1 (all j), we know
1 N
1> M g(p,,X) and since g(p,,X) > 0, we know g! > 0
I.vTHu*H 3 ] - i =

no matter what are the vu and X, meeting the condition of "individual

rationality." To show that g' has budget control, note that

L e
t, = 8(p,X) + N - — g(p.,X) = N.
=1 1 4oy 1 N-1oge1 g 3

Q.E.D.
The normalization "wraps around" partial sums in such a way
that the total sum comes out constant. The idea is
similar to the one used by Walker (1981) to define an incentive
compatible mechanism for public goods. The normalization which
defines g' is not directly useful to the Groves-like mechanism f

because it would introduce all the v» in the residual function k.

As in Theorem 2 we can discard the assumption of risk neutrality
for proper scoring rules in favor of the weaker assumption of

monotonicity.

Theorem 4. Let g be a normalized proper scoring rule, and define

the mechanism of transfer to i, by

1 with probability wAvH»Nv

0 with probability 1 - g(p,,X)
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Then if i's preferences over lotteries are monotonic, i has a

truthful dominant strategy.

Proof. Because g is normalized 0 < g < 1 and g can be defined as

probability, the proof is vwnmwwmw to Theorem 2.

While Theorems 2 and 4 generalize 1 and 2, the presence or
absence of risk aversion tends to be less important an issue when there
are R assessment rounds and i's average transfer converges to the

average of his expected nnmnmmmﬂm.u

20

IV. Link Between the Groves-like Mechanism and the Brier Rule.

So far we have said little about 1i's beliefs concerning the other
vu at the time i reveals his own py- For the Brier rule these beliefs
have no impact on i's expected transfer. For mechanism f, they do.

But in the special case when 1 has a diffuse prior over 9y (the consensus
of others' revealed probabilities) the two mechanisms are very closely

related. Define mechanism f' as identical to the Groves-like

mechanism f except all the transfers are doubled.

Theorem 5. When i has a diffuse prior on 4 the expected

transfer to i for mechanism f' is the same as for the Brier rule, for

all p, and mu.

Proof. For a diffuse prior on 9y i's expected transfer

mﬁﬁwv is, for any particular Py and mu

Py 1
E(ty|p; > @)dq + | E(t |p; < @)dq.
0 Py

' = 91 = %%
By the definition of f and f£' we know mAnu_vu W.pHv va Nvunw

and mﬁnu_vw < nuv = Nau - Py, Making the substitutions leads to

2 - -
mﬁnwv = -p; + NvHvH +1 l,v&.

2
Recall that the Brier rule is defined by mQJ.LC =1 - QH - X)

for 1 =1,...,N. The expected transfer to i under this rule is

- _ 82 - 2 2 - —
P, (1 (py Cv+C|v»stuwvn«f +2p.p, +1-p,.
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The expectations for the two mechanisms are identical.

Q.E.D.

Thus, from the point of view of an expected value maximizing

assessor who has a diffuse prior on the consensus of others' judgments,
the Groves-like mechanism f' and the Brier rule are equivalent. However,
a diffuse prior on q, is a rather unlikely benchmark. If i had no
information on any of the other wu. it would seem more natural to

assume a diffuse prior om each vu. which would tend toward a

concentrated distribution for 9y by the central limit theorem. Moreover,
it would seem plausible for i to assume that others would have some

of the same information about the likelihood of X as i himself has.

In this case 1 would adopt a prior for each vu concentrated around ww.

A tractible case of a concentrated prior is considered in the next

section.

22

v Sharpness in Expected Transfer.

For the mechanism f' suppose i has a prior on aw concentrated
around Py> where i's subjective density function vﬁanv is a triangle

peaked on 4y and defined by

2q/p if g <p
h(g) = -

20 -q/(1-p) ifqg>p

where again the subscript i is omitted. For p M.m. i's expected transfer

is

P p

E(t) = | 2p(1 - @)(2a/p)dq + | 2(1 - p)a(2q/p)dq
0 1 P

+ J 21 - p)q(2(1 - q)/(1 - P))dq

- @3a -5 + 2% - w35

And for p > P

P P
E(t) = | 25(1 - @)(2a/p)dq + | Z5(1 - @) (21 - @)/ - P))dq
0
P

+ 0291 - p)(2(1 - Q)/Q - p))dq
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- 252 - 437> - 2% + /BP0 + 2/3 +

'lmMII 2

T—F (p-po+p/3-p+p

- vw\uv

2 E(t|p<$) = 4 - 8p/p
2
op

So

22
3
P

and E(t|p 2 p) = =41 - p) - 81 - P/ - p)

At the optimal p = p the left hand second derivative is -4 and the
right hand second derivative is -4 - 4p. But the second derivative
for the Brier rule is -2 everywhere. Thus compared with the Brier
rule, mechanism f' (with the triangular prior) has a sharper radius of
curvature at the optimal p = m. From the point of view of the
assessor who maximizes his expected transfer, mechanism f' has a
greater incentive than the Brier rule for an accurate assessment.
Because there is no budget control for either mechanism
£' or the Brier rule, there is mo direct budget comparability from
the point of view of the principal. But we might expect about half
the assessors for mechanism f to get nothing (those i on the "wrong"

side of nwv. Further, those 1 on the "right" side of 9y receive a

24

linear function of 9y scaled from 0 to 1. For the Brier rule
everyone receives a quadratic (concave upward) function of their

own p, scaled from 0 to 1. Thus it is possible that for many cases
mechanism f and even the twice-as-expensive f' may cost less than

the Brier rule. 1In Section VII we return to the question of sharpness,
but first we consider the problem of identifying the "best" assessor

over a series of assessments.
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VI. On the Definition of the Best Assessor

This section develops a notion of the best assessor. "Best"
becomes definable in a context of a model of the assessor's information.
I1f defined sensibly, the vﬂwnm»vmw would like to identify the best
assessor, the second best, and so on. He would also like to uncover the
information structure which relates the assessors' revealed estimates
to each other. 1In practice the principal may have to settle for much
less.

In a practical problem such as risk assessment for chemical
carcinogens there might be five or ten experts assessing the potential
carcinogenicity of 30 or 40 chemicals. Each expert makes a
Probabilistic prediction that a chemical will come out positive in a
"definitive" rodent bioassay, costing $750,000 and taking three years to
perform. The predictive probabilities Py might be used to help
decide on the degree of precautionary control to take for each
chemical during the time of testing. Or, for the part of the problem
we are now interested in, they might be used, in conjunction with the
outcomes of the bioassays, to identify the better predictive techniques.
One assessor might rely heavily on the Ames test, another on a
structure-activity model, and so on. The principal would like to
identify the predictor with the best "track record," to rely more
heavily on this technique or to invest more in its development. But
the principal is severely constrained in his source of informatiom.
Because the rodent bioassays are so expensive only 20 or 30 are

undertaken nationally in a year.
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It would be desirable for the principal to estimate & parameter
of bias and a parameter of central tendency for each assessor's
estimate, along with estimates of the statistical dependencies among
the assessors' estimators. As such parameters depend on the underlying
maintained model, it would also be desirable to identify this
underlying structure of information.

However, there is just not much information in the observation
of 30 or 40 yes-no events, which can be accumulated in 3 or 4 years
of a testing program -- not enough to support the estimation of many
parameters and to identify or validate an underlying model. From a
lack of information, the principal may have to settle for a crude notion
of "best" and identifiability.

The key idea is this. If each assessor's "technique" (information
quality and inference skill) remains constant over a series of
assessments, then there is some possibility of detecting assessors with
better techniques, even though each assessment is made over a unique
and non-repeatable event and there are a limited mumber of assessments
altogether. For a single assessment, the one with the best information
and inference skill might easily be unlucky in a single prediction,
and others with worse information and skill might be lucky. However,
over a series of assessments, it may be possible to identify the best
assessor with increasing probability.

Suppose that there are R assessments to be made and each event
NH is unique. Concretely, Mﬂ is a Bernoulli random variable, with
wnAxH =1) = mn. This probability can vary from round to round and
can be anywhere on the closed unit interval. What remains constant

is the capability of each assessor. For simplicity assume just two
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assessors, 1 and 2. In round r, i's information on mn is equivalent
to observing a binomial random variable with parameters Awn. sz.
(The two binomial variables are drawn independently.) For this model
we have a clean definition of the "best" assessor. If M, > M, than
the first assessor has more or better information than the second,
and his better capability is preserved over all R rounds. 0f course
i does not know WH and M,, in fact he might not even know z». The

J
*
principal does not know M, or Zw. and of course not Py either. The

1
principal wants to identify the best assessor after R rounds. If
the assessors report truthfully, this model then is also a clear

definition of the "best consensus estimates" for the probability of

X :
T

op), + Q- avvmﬂ where a = ZH\AZH + ZNV

In other words if the assessors reported truthfully and if o were
known, this consensus would be a sufficient statistic for the total
ZH + ZN observations from the Bernoulll process with parameter wn.
If the principal could estimate o accurately, and if he could elicit

truthful reporting, he could do no better than use® and (1 -a) as

weights, defining the observable consensus
Q=@ P1r + Q- nvvwﬂ

An estimate of o can be obtained by least squares, by

minimizing over o
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R

nWH O = 0Py = (= 2dpy,)

2

The minimization yields

~ Mnnu B vNHVAvHﬂ - vmﬂv
a = 3

Ly, = py,)

The principal would also have an operational definition of the best

~

assessor: 1f after R rounds, o > .5 assessor 1 is declared best; if

a < .5, assessor 2 is declared best; and if a=.5 atie is declared.

There are two major problems with this approach.

First, it is difficult to untangle how the assessors might attempt
to manipulate this criterion of best. Suppose the principal uses
this operational criterion of best and attempts to elicit truthful
reporting, round by round, by rewarding the assessors according to
repeated use of an assessment mechanism with truthful dominant
strategy in a single round. If the assessor declared best is more
likely to get promoted, hired as a comsultant, or if the principal
is likely to invest in the "best" assessor's technique, then each
assessor may abandon the goal of maximizing the sum of his transfers
in favor of maximizing the probability of being declared the best.
If so, assessor 1 will reveal AnHH.....vHHV to maximize Pr(a > .5) and
assessor 2 will reveal Ava.....vnnv to minimize this probability.
Or each assessor may attempt some mix of the two goals. In either
case each assessor has an incentive to maripulate this criterion of

"best."” And if we do not know how the assessors may manipulate the
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criterion we do not know how good the criterion is.

Second, the appeal of the criterion depends heavily on the
structure of information underlying mwn and mwu. For example suppose
assessor 1's information on WnAN = 1) is generated by observing a
binomial random variable with parameters Amn. sz where

* *
a_ = 1+ H\zwvvn if (1 + H\szvu <1 and a = 1 otherwvise.

Then even with truthful reporting q, is no longer an unbiased estimate
of Wﬂ and the estimator m is no longer a least squares estimate for
ZH\AZH + ZNV. The operational definition "Assessor 1 is best if

a> .5" loses much of its appeal.

This last problem is severe, because in actual risk assessments
the principal knows little about how information is generated by the
assessors. Thus he has no clearly dominant way of defining the "best"
assessor. To achieve results we need to assume that the assessors'
capabilities remain in some sense constant over a series of assessments,
but beyond that we would like to assume as little as possible about
what the principal knows of the information structure of the assessors.

A second approach suggested by Roberts (1965) illustrates
another way that one assessor's capability could remain consistantly
better than the others over a series of assessment rounds. In the

second example there are also N assessors. The best assessor i' knows

*

*
p. for each round r, and none of the others know p.. Thus without

T
specifying how much better i' is than j we have specified an information
structure in which one assessor has consistently better information
than the other, round by round. We have succeeded in specifying

practically mothing about N - 1 assessors' structure of

information at the expense of specifying a great deal about the
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information of one unknown assessor. Again the principal wishes to
identify the best assessor after R rounds.

The principal forms N hypotheses mw. where mw is the
hypothesis that i is best. The principal also forms a prior notion
of the probability that i is best, whmwv where Mwﬁmwv = 1.

As before i reveals Py, @8 his prediction of the event xu = 1.

Write s if the event happens Axn = 1); and 84 = 1- Py

ir = vun
if the event doesn't happen Auﬂ = 0). Writex = Axw....vxwv. the
observed record of the R events once they are known. Then if the
assessors are revealing truthfully, m Sir equals mAx_eHv. the

likelihood of x given 1 is the best assessor. The posterior

probability that i is the best assessor is

P(x|8,)P(6,) P(6,) ' s
@ R0 =L - LI
umprx_ouvaouv

ir

w PONE 5y,

In this situation Roberts suggests that the principal might
define the best assessor as the one with the highest posterior
probability after the R rounds. Equivalently, the principal could
compare posterior odds, pairwise among the assessors, and select
the assessor with a ratio always greater or equal to 1, matched
against each of the others. If the principal has no information to
distinguish the assessors initially, he sets the initial priors
equal AwAmwv = 1/N). This case reduces to comparing pairwise
the likelihood ratios for assessors. In attempting to identify

the best assessor Roberts recommends looking at the posterior odds
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as "clearly interesting,” but as Roberts puts it "a complete analysis

' Roberts does not

of the decision problem does not appear easy.'
consider the strategic properties of the criterion.

A third approach is for the principal to define "best" on the
basis of a transfer mechanism with truthful dominant strategy for a
single round. In this approach the principal chooses such a mechanism
and announces that each round the assessors will be rewarded according
to this mechanism, and at the end of R rounds the assessor with the
highest total of transfers will be declared the "best." If R is large
enough the law of large numbers takes over, and i maximizes his
average transfer by maximizing his expected transfer each round.
Similarly he maximizes his probability of having the highest average
transfer at the end of R rounds by maximizing his expected transfer
each round. By the principal choosing his criterion of the best
assessor as the one with highest average transfer after R rounds the
principal brings into harmony the assessor's two goals —— maximizing
expected transfers round by round and maximizing the probability of
being declared the best assessor. By choosing a mechanism with a truth
revealing dominant strategy the principal provides an incentive for
truthful revelation round by round. We return to this approach in
Section IX.

A fourth approach is for the principal to exploit the properties
of a strategic mechanism to reveal the best assessor. In this approach
the principal chooses a strategic mechanism and announces that each

round the assessors will be rewarded according to this transfer and

32

at the end of R rounds the assessor with the highest average transfer
will be declared the best. The idea is that assessors with more
information and inference skill will be able to exploit the strategic
opportunities of the rule more efficiently than others and will rise
to the top more quickly.

If this speculation is correct there may be a tradeoff: worse
consensus estimates round by round but more efficient identification
of the best assessor after R rounds. ("Worse" and "more efficient"
are relative to a mechanism with truthful dominant strategy round
by round.) These notions are made more precise for two models of

information generation in Section IX and the Appendix. This speculation

1s investigated for the perimutuel mechanism, which is strategic,

but first we need to know something of its strategic properties.
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VII. Strategy in the Parimutual Mechanism

This section derives some of the strategic properties of the
parimutuel mechanism and compares the mechanism with others having
truth revealing, dominant strategies.

Definition. A parimutuel mechanism is a transfer function

in the form:

Pi%4
if X =1 and not all p, = 0
q i
(5) t, = 4 (1-p,)c
i i’ 71
i-q if X = 0 and not all Py 1
n”H otherwise

where 0 < c, <1, alld; Jc,=1;and q=] pe,.

i
Clearly M t, = 1 for all Py and X; thus the mechanism is

budget controlled. The transfer is in the form of Bayes Theorem -- if

in terms of Robert's model the principal sets e, = mAmuv. then

ty is the principal's posterior probability that 1 is the '"best"
assessor. The mechanism is also the same as a parimutuel betting
rule. In a two horse race, where q is the consensus probability

of X =1 (or (1 - q)/q is the odds ore sees on the totalizer
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for X = 0); cy is the function of the total betting pool put down

by 1i; Py is the fraction of i's wager placed on X = 1; and nH is

the fraction of the total betting pool won by u.m

When there are repeated applications of the parimutuel mechanism

the connection between (5) and (4) is as follows. Set ¢, = wﬁmwv for

the first round; for round r set c, equal to nH of the preceding round.

i
Then i's transfer in the final round tr is mﬁm»_uv. We will call
this special case of the parimutuel mechanism a Bayesian mechanism.
Assessor i's credibility ¢y evolves over time and his final transfer
is his final credibility. For the Bayesian mechanism 1 is rewarded
tir and he attempts to maximize mAnwnv. Unfortunately the analysis of
i's strategy is complicated. His global strategy is coupled round
by round, and it can be shown that maximization of expected fimal
transfer is not in general consistent with wawbunwnm the expected
transfer round by uocba.u
The following three theorems characterize some of the properties
of a single round parimutuel mechanism. Expected transfer maximization

is assumed as a background condition. Proofs are in the Appendix.

Theorem 6. (Due to James Gerard and Joshua Foreman.) For the

paramutuel mechanism with two assessor's, 1's reaction function is

1 - vunua +4muwu )

where j # i and

P, =
c; (1 +VPP, ) _ 1~py p = 1-p;
i = 3
Py Py

as long as 1's strategy is not O or 1 and oAn»A 1. Further, if mwnvw ,

then there is a truth revealing Nash equilibrium at vwmmw and vwwmm .
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(Calculation of reaction functionms for a grid of varying ¢y and ww

shows that there is usually a unique interior Nash equilibrium, but
there are examples of multiple interior equilibria.)

Theorem 7. Choose any arbitrarily small h (0 < h < .5).
When each assessor's strategy space is restricted to Hv, 1 - &un

there exists a Nash equilibrium for the parimutuel mechanism.

(The restriction is to remove the two points of discontinuity,
at Py = 0, all i; and Py = 1, all i.)
Theorem 8. For the parimutuel mechanism, i reports Py greater

than the consensus of others if P; > 93 Teports p; < q if

Py < 9,5 and reports Py =9y if P; = 4.

Reaction functions are plotted in Figure 2 for a case of two

assessors, where ww = ,2, and dw = .6 and ¢y = .4. As can be seen

for this case the Nash equilibrium is not far from the point of
truthful revelation, its displacement according to Theorem m.m The
displacement is not always small, however, as shown by the corollary
to follow.

Definition. An assessor follows a zero-one knife edge strategy
if he reports 0 when ﬂw < ;> 1 when ww > 9 and mw when mw =q.

Corollary. For the parimutuel mechanism 1i's strategy comverges
to a zero-one knife edge strategy as c; 0.

As cy declines, convergence to a knife edge, zero-one strategy
for i is rapid. This can be seen in Figures 3 and 4 where regions of
the zero-one strategy and the bluntness of the knife edge are shown
for ¢, = .1 and c; = .01. 1In racetrack betting, N can be 10,000

or more and each ey is correspondingly small. Thus an expected value
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Figure 2

REACTION FUNCTIONS
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(.20, .60) is the point of best judgments (P,, mwv
(.24, .66) is the Nash equilibrium of revealed Avw, vwv

= .4 c, = .6
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Figure 3

Regions of Zero-One
Strategy

nM = .1

Figure 4

Regions of Zero-One
Strategy

¢y = .01
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maximizing bettor at a parimutuel track has a strategy which is
virtually knife edge, zero-ome. And in fact parimutuel betting
commonly follows this pattern (all of one's wager on one horse, for
each race).

To put the expected transfer for the parimutuel mechanism on the
same figure as those of mechanism f' and the Brier, scale the
parimutuel mechanism by multiplying its transfers by N.

Figure 5 makes the comparison when mw = 4, ey = .1 and Py = .6.

(As noted in Figure 4 the information sets differ for the three
mechanisms.) Clearly, at the point of revelation (0 for the parimutuel,
and .4 for the others) the slope of the expected transfer function is
steepest for the parimutuel mechanism (the others being zero). In a
sense this suggests that the parimutuel mechanism provides the
strongest incentives for i nm sharpen his judgment of ﬂw. Actually,
however, for the parimutuel mechanism i's incentive is to sharpen

his judgment of Py "just enough" to decide which side of the knife

edge to choose (if ¢, is sufficiently small to elicit a zero-one

i
strategy, as it is in this case).

Sharpness for the Brier mechanism and mechanism f' is more directly
comparable. For mechanisms with truthful strategies (such as these)
local convexity at mw defines a notion of sharpness for i. As shown
in Figure 5 and derived analytically in Section V, the radius of
curvature is smaller for mechanism f'., This means that being a little

off in one's judgment of ﬂw makes more difference in the mechanism f'

compared with the Brier.
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Figure 5

Expected Transfer as a Function of
Revealed Probability
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(a) Parimutuel (budget controlled to N)

(b) Brier (adjusted for budget control at N)
(¢) Brier

(d) Mechanism f'

For the three mechanisms ww = .4, dm = .6 (3#i);

N=10; and c¢, = 1.

i

At the time i reveals Py» his information includes

9y for (a) by i has no direct information on Py for (d).

For (d) i has a triangular prior on q;, peaked at ww.
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To further compare the (scaled) parimutuel mechanism, with
mechanism £, define <y to be the same for both mechanisms and define
c, to be the same for both mechanisms and defined so that cy 15 small
for large N. Then for large N the gap between q and 9 is small.

Neglecting the gap between q and 9y and the exceptional cases, we can

put the two mechanisms side by side:

Scaled
parimutuel Mechanism f
1
3 l1-g if X = 1 and Py > q
an 1
HHM q if X = 0 and Py <q

The two mechanisms have the same orientation, but for the same
budget bound N there is a far greater opportunity for a big win in
the parimutuel mechanism. For the parimutuel mechanism i has a
chance at a large fraction of the principal's budget ceilign N. For
mechanism f, 1 can never do better than 1. However, mechanism f is
cheaper for the principal than the scaled parimutuel mechanism because

the former never obtains its budget bound while the latter always does.
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VIII. Rational Expectations

So far we have specified little about how one i might gain
information about mw through the revealed vu. For mechanism £
we have noted (see note 3) that to establish an incentive to follow
a truthful dominant strategy the principal needs to keep i at least
somewhat uncertain of vu at the time of 1's own revelation. For the
mechanisms built on proper scoring rules there is no such strategic
consideration on the part of the principal. Nonetheless, if the
principal wants to identify the best assessors, he may not want some
less informed 1 to improve vwmAWu by observing a more informed j's
vu which reveals information on du.

In some ways the parimutuel mechanism is the most interesting
for developing models of rational expectations. The consensus estimate
q -- equivalent to the payoff odds on the totalizer of a racetrack --
functions like a price signal in a market. Individuals in a market
do not see others' individual actions, but they see an aggregative
summary in market prices. Similarly, in the parimutuel mechanism
individuals do not see others' revealed assessments individually, but
they do see and react to the aggregative q. In parimutuel betting the
consensus q (or the equivalent) is prominantly displayed on a
totalizer and a limited form of recontracting is allowed while ¢
shifts in response to vmnnwnm.m And 1in the same way than an
individual may gain information from an aggregative price, i can

modify his judgment mw in response to the q he sees on the totalizer.
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Developing a rational expectations model requires specifying the
process of tatonnement or recontracting and the flows of information
among assessors. While doing so would be beyond the scope of this
paper, it is worth suggesting that Theorem 8 provides favorable
conditions for such models. A less informed bettor j, if he knows he
is less informed, is more likely to revise WW farther toward q than
a well informed assessor. (Theorem 8 holds for the full consensus q
as well as the others' consensus nu.v The more an assessor approaches
q the less effect he has on it. A more informed i presumably is less
influenced by q in forming and modifying his ﬂw. And by holding to
his better informed ww he pulls q in direction of mw. (If he believes
the true probability of X = 1 4s greater than the consensus q, he
bets on X, tending to increase q, and the reverse if dw < g.) While
there are other factors to consider, it appears there is a tendency in
racetrack betting for the uninformed to follow the lead of the informed,

with the resulting q weighted toward the du of the Hbmouamm.wo
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IX, ldentifying the Best Assessor

In this section a Monte Carlo simulation is used to estimate the
probability of identifying the best assessor under three mechanisms --
the Brier, the parimutuel, and the Groves-like — for a simple model
of the assessors' information. The model is chosen to reflect the
practical problem of risk assessment for potential carcinogens. For
this problem there are a small number of assessors, a limited number
of assessments, and the possibility of bias as well as variance in
each assessor's best judgment. The model of the assessor's information,
simple as it is, appears to preclude direct analytical treatment.

As in Section VI define the best assessor i' in terms of an
underlying model of information generation, where i' has more informa-
tion on wu than any other i. Write i's average transfer after

R
MU n»ﬂ where n»u is the transfer to i in round r,

r=1
and formalize a notion of identifiability as follows:

R rounds nu =

|

Definition. The best 1' is identifiable in R rounds if

wnamu v dw. all j # i) is maximized by i = 1°'.

Definition. The probability of identifying i' (the best 1) is

muaMH. >E,, all j ¢ 1i').

Befere we compare identifiability for the three mechanisms, we
briefly ask what 1is the role of strategic revelation for identifiability
in the parimutuel mechanism. For an analytically tractible example,

we find that strategic revelation is essential to identifiability.
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In the example, there are many assessors (N is large as in race
track betting) and ey is reset to 1/N each round. A poorly informed
assessor j forms a judgment of WH by observing two observations on
a Bernoulli process with parameter mnn the best i' forms his judgment
of WH by observing an infinite number from the same process (i' knows
*

P.).

For this extreme example of disparity of information among the
N - 1 poorly informed j and the best informed i', we find that if
the assessors, contrary to their incentives under the parimutuel
mechanism, somehow reported truthfully, the best i' would not be

identifiable, for any R. (Note that this version of the parimutuel

mechanism is not the Bayesian mechanism, where the nH evolve over

time. However, if the assessors respond to their incentives to report
strategically, i' becomes identifiable, and the probability of
identifying i' goes to 1 as R goes to infinity. Details and derivations
are in the Appendix.

The underlying reason for nonidentifiability in the parimutuel
mechanism is that with truthful reporting q comverges to w. and when
q= w the expected transfer becomes 1 no matter the reported Py
(see definition (5) and scale by N). Similarly, for mechanism f if
q, converges to m there is no identifiability as R » « (note that 1if
awn w. H.mmuﬂmnnmmnﬂwnmmmﬂﬁm m | WN nos&nnmutwmnnwmﬂvaHnmm

*
vHv. In contrast, if 9 =P then 1' can still be identified for the

Brier mechanism. A specific example is given in the Appendix.
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« .
However, when ay ¢ p the situation is quite different. The

*
case where we expect qy ¥ p can arise as follows. A chemical is

*
either a carcinogen (X = 1) or mot (X = 0); and p is also either O or 1.

Assessors develop information on the possible carcinogenicity of the
chemical but their information is imperfect and hence 0 <7p; <1
(only perfect information would lead to ww =0 or ww = 1) and

thus each consensus 9 is also interior. For the simulation model,
we assume there are R chemicals to assess and each assessor i has
information which suggests either xﬂ =1 or NH = 0. The imperfec-
tion of 1's information is characterized by false positive and false

negative probabilities for i:

mww = Pr (i's information suggests Nu = H_xﬂ = 0)

mzH = Pr (i's information suggests xﬁ = o_xH = 1)

Suppose there is one i = i' with clearly superior information:

Al
for this i www. < MMu and mz». < MZu

In this model there is an underlying prevalence rate for

for j # 1i'.

carcinogens and each assessor 1 uses this rate to calculate mw

according to the Bayes Theorem. The principal does not know the

wzw. mmH or the prevalence rate, but declares the assessor with the

highest average transfer after R rounds to be the best assessor.
Under these conditions a Monte Carlo simulation can be used

to estimate the probability of identifying 1'. For this model of

information the qualitative results appear similar for various

values of the prevalence rate and error rates, and the following

numbers are illustrative.
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In the testing programs of the National Cancer Institute and the
National Toxicology Program, the rate of positives for chemicals in
rodent bioassays is about 30 percent. (This prevalence rate is higher
than what is suspected as the prevalence of carcinogens over all
chemicals, because chemicals selected for testing are among the more
suspicious.) Suppose for the best assessor the false positive
probability is 10 percent and false negative probability is 15 percent;
and for the others the false positive rate is 15 percent and false
negative probability is 20 percent. By supposition there is some
difference, but not a great difference, between the best assessor and
the others. Finally suppose that there are thirty chemicals to assess
and ten assessors. These numbers appear plausible for the problem of
assessing potential carcinogens.

For the Brier mechanism the probability of correctly identifying
i' as the best assessor after 30 rounds is estimated by the simulation
to be .31. But if the principal chooses the parimutuel mechanism
the probability of correctly identifying the best assessor after
30 rounds is .59. The difference tends to confirm our earlier
intuition that a strategic mechanism may reveal the best assessor
more efficiently than a mechanism with truthful dominant strategies.
But as a final surprise the Groves-like mechanism f does better than
either. If the principal chooses this mechanism the probability of
identifying the best assessor after 30 rounds is .64. Thus, for this

model of the assessors' information, the principal need not give up

truthful reporting for greater efficiency in identifying the best

assessor.
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These differences in identifiability among the three mechanisms
are remarkable and suggest further research. It would be interesting
to investigate further the conditions of identifiability and their
impact on individual incentives. It would also be interesting to
investigate a multiround version of mechanism f, where after several
initial rounds ey in round r is set equal to the sum of his previous
transfers divided by the sum of everyone's previous transfers. Then
the ¢y would evolve through time as in theBayesian mechanism. Because
i has truthful dominant strategy no matter the value of 9y, changing
cy has no effect on i's strategy (unlike the Bayesian mechanism). If
there is identifiability, by allowing i's credibility to evolve over
time, better consensus estimates might be obtained -~ because the
credibilities of the better informed assessors would tend to increase,
and decrease for the more poorly informed assessors.

Another line of research is suggested by noting that under
mechanism f, for any fixed q; assessor i gets the same transfer for all
1 reported greater than 95 and the same transfer for all Py reported
less than 94 The insensitivity of 1i's transfer to Py (within the
appropriate ranges) suggests an elicitation technique which might have
practical value.

In many cases of actual risk assessment incentive compatibility

1 In many cases the stated problem is not

is not the apparent issue.
the willingness of assessors to report truthfully their best judgments,
but to make them in a quantified form. Experts often express reluctance

in reporting numerical probability assessments because they feel that

two decimal places (or even one) overstate and misrepresent the

48

“accuracy" they attach to their judgments. A Bayesian would say that
stating a subjective probability to two decimal places does not imply
firm conviction of its "accuracy" -~ nonetheless the reluctance on
the part of the experts is real.

A possible resolution of this problem is to elicit judgments
in the following way. A trial consensus estimate is put on a board
for all to see. Each assessor is asked if he believes that the
true likelihood of the event being assessed is higher, lower, or
equal to that trial value. The trial value is shifted up or down
until a median estimate is ownmﬁumm.ww From this benchmark, as the
second step numerical estimates are elicited, to whatever degree of
accuracy the assessors feel comfortable with. In this elicitation
technique, the truthful dominant strategy of mechanism f remains but
the incentive to follow it is weakened. The Appendix and further
simulation tentatively suggest that even at this first stage, where
only trichotomies are elicited, useful consensus estimates can be
generated and i' can be identified under all three mechanisms. These
and other speculations could be sharpened in terms of specific models

of information generation and by direct experiments.
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X. Summary and Conclusion

In this paper we have developed a model of risk assessment based
on a structural analogy with a model of public goods demand revelation.
This analogy provides a new and more formal way of viewing the problem
of risk assessment. With the framework we have introduced a new
mechanism with truthful dominant strategy for revelation of best
judgmental probabilities. This mechanism, analogous to the Groves
mechanism for public goods, is then compared with proper scoring rules
(especially the Brier rule) and the parimutuel mechanism. There are
several surprises in the comparisons, not the least of which is that
the new mechanism appears to perform relatively well compared with
other existing mechanisms.

The paper adopts an approach to probability in between those of
a strict Bayesian and a strict frequentist. For a strict Bayesian
every event is unique and probabilities are subjective degrees of
belief which can be validated only in a limited way. Validation of
personal probabilities is internal in the sense that it refers to
consistency with Savage's (or someone else's) axiom system defining
“rationality" and does not depend on whether or not the predicted
event actually occurred. Such validation is limited because for a
given event widely differing personal probabilities are comnsistent
with the axiom system.

For a strict frequentist, the notion of probability is
undefinable when we are dealing with unique events, as we often are in
risk assessment. An event must be held constant anu repeatable many

times for its probability to be definable. In the paper, we let the
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predicted events be unique and varying one from another but hold
constant something else, the predictive capability of each assessor.
With each assessor's "technique" held constant over a series of
predictions of unique and varying events identification of assessors
with better techniques may be possible. In this way an assessor's
predictive capability can be validated beyond its consistency with
an axiom system to reference with the outcomes of predicted events

and yet this validation does not require repeatable events.
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APPENDIX

Proof of Theorem 6. We assume that i observes vu or that recontrac-
ting is possible. For convenience write vu as q and nu as Awlowv and
omit the subscript i. Let k = q(l-c)/c and m = (1-q)(1-c)/c and

rewrite condition (5) as

1 +kp ") ifX=1

Q +on@-p)Ht {£X=0

(As we are computing the reaction function for interior p and q, we
do not bother with the definition of t for the two singular points
(p»q,X) = (0,0,1) or (1,1,0) .) For each fixed c,q, and w. the expected

transfer is a function of p; write the expected transfer T(p) and

- -1.- - -1.-1
10 = A+ H T+ a-Na+nd-p)
By direct calculation
= -
T' = P - Q-pm 3 p#-korm+1
(p +k) 2 (1-p+m)
™ = 2pk + 2(1 -p)m p#fkorm+ 1.

(p +5u @a-p +5u

- A2
By definition k >0 and m > 0, as by assumption 0 <c <1
and 0 <g<1l. So T'(p) <0 for p e (-k, ml). Because T is
everywhere concave over (-k, m+l), T' =0 for only one p in this
interval, and this p defines a maximum. Setting T' = 0 yilelds

the first order condition

1-pc-q -c) _ = 1-
@) pc+a(l -0) PQ where Q= |n|n~

Because the LHS is always positive for p, q and ¢ in the open

unit interval, only the positive root on the RHS applies. Solving

for p,
1-q(1-c)Q +4mﬁ
(8) p= = <
c(l +4mo )
— - — = = g 1]
When vH vw , substitution of vH vm vw into each assessor's

reaction function and check of the four possible boundary cases confirms

that P; =P and P, = Py is a Nash equilibrium.

Q.E.D.

(I wish to thank James Gerard and Joshua Foreman for the original

proof of Theorem 6.)
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’ N
Proof of Theorem 7. Write q = MU vunu\ﬁwln.v. the consensus
ifi .

of everyone but i. Substitution of g, into (5) shows that as far as i
is concerned he is playing against a single (aggregate) player 9 with
credibility Awln»v. Omit the subscript i1 and define the RHS of
condition (8) as S(q). S(q) is i's reaction function if his reaction

is inside (h, h - h). Define

h if S(qg) <h
R(Q) = 1-h if S(q) 2 1-h

S(q) otherwise

Since S(q) in continuous in g, R(g) is also continuous. 1f T is
maximized over p e (-k, m+ 1) by p® <h (by p® >1 -h), then T is
maximized by h (by 1 - h) over p ¢ [n, 1 - ru because T is everywhere
concave over the bigger interval,

Thus R(q) 1is i's reaction function for the strategy space
[h, 1- h], including boundary reactions. Return to the original
notation and write R{(q) as NHAUH'....vwlw.vH+H.....vzv for i's

reaction function. Similarly, construct reaction functions R for each

h|

of the other assessors and form the composite function R = Aww.wm....wzv.

Then R is also continuous and maps ﬁr. 1l - ruz into itself. As

[h, 1 - 5uz is convex and compact, Brouwer's fixed point theorem applies.

This means there exists at least one point Avw.vw....'vzv which leads
to no change under application of the composite reaction function. By

definition this is a Nash equilibrium.

A4

Proof of Theorem 8. Say P, < q,. Then P > Q,, and from (7),
i i i i

omitting the subscript 1,

for some € > 0; so

Hlvnlnnwlnvn ‘ﬁﬂl.n Hlml
pc + qQ1 - ¢c) M q

@alm

p(l - €) = q+¢eq(l - c)/e

(8) p>gq+eqll -c)le>gq

When mw >qp, € < 0 and the inequalities in (8) are reversed.
Then ﬂw =q;, €° 0.
Q.E.D.

Proof of Corollary. Observe in condition (8) that for fixed

Py >q4 and hence fixed € > 0, py Boes to its upper boundary as

ey > 0. Similarly if Py <4y, Py goes nounmwotmnvocbamﬂ%wm

ey 0.

Q.E.D.
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Nonidentifiability in the Parimutuel Mechanism

In the first model described in Section IX 1' (the best i) knows

wn AWH can change from round to round); each other j observes a

*
binomial random variable with parameters Avﬂ. 2), where each of the
N - 1 observations for the N -1 j's 1s drawn independently.

*
Assessor j's best judgment of p, is:

*2
1l w.p. P

* *
.5 w.p. NvuAH - vﬂv (j observes (1,0) or (0,1)

(j observes (1,1)
* 2
0 w.p. (1~ vﬂv (j observes (0,0)
The parimutuel transfer to i in round r, nMH. is defined as in (5)
except all transfers are multiplied by N to achieve budget control

at level N.

Suppose, contrary to their strategic incentives each assessor
reports truthfully. By the Bernoulli law of large numbers, with N
large, the fraction of N reporting 1 approximates (omitting subscript r)
WN (N - 1)/N; the fraction reporting .5 approximates Nwﬁw - mVAz - 1)/N;
and the fraction reporting 0 approximates (1 - wvmﬁz - 1)/N. The
fraction reporting w 1s of course exactly 1/N. With large N and

1
n» = 1/N (all 1) the consensus q = mM“vw converges to

WP E -1 + (HPA-PHO -1+ @A - N-1) +}_
N

*
P

By the definition of the parimutuel mechanism (5) it is clear

* .2
that when X = 0 an expected number of (1 - p)“(N - 1) bad assessors

Ab

will have higher transfers than i', and when X = 1, and expected

* %
number of (2p - vNVAz - 1) bad assessors will have higher transfers.

However, as R increases nH.w converges to

L

R

HN..M..F Ety,. .

With truthful reporting g, comverges to Wﬂ. and MAnH.Hv converges

to 1. (This last result follows from (5) in Section VIII (scaled by N).
As the budget is controlled to N and the other j are m%ﬂmmnnuo to each
other, they split the remaining budget equally in expectation, each

J recelving an expected transfer of (N - 1)/(N - 1) = 1 per round.

In consequence i' has the same expected transfer as each j. With this

equality in expectation i' remains unidentifiable for any number of

rounds, even though his information is clearly superior to the others.

Next suppose that each assessor exploits the mechanism as best he
can. Each maximizes his expected transfer each round. For
0 < p. < -5 the corresponding Nash equilibrium is easily computed to
have a consensus estimate (omitting the subscript r)
q= WAN - WVAz - 1)/N. Because q > w (for large N and m < .5),
long shots are overbet, with a discontinuity in q, as a function of m.
at m = .5. The discontinuity is an artifact of the model. If j
made more than two observations on the Bernoulli process there would be
more jumps but smaller omes. It can be shown that as the number of
j's observations increases the gap between the Nash equilibrium q and
m goes to zero. Also it seems clear that when X is more than

dichotomous (more than two horses in a race) the amount of overbetting

on long shots decreases.
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An empirical study on racetrack betting by Hoerl and Fallin (1974)
indicates that longshots are in fact overbet, but the overbetting is
small with q (odds on the totalizer) an excellent predictor of the
order of finish.
Returning to the Nash equilibrium of the example, we find i'

_ *
reports Pyr = 0, because Pyt = p < q. The expected transfer for i' is

*
1 _a-»9», 1
l1-g * * *2
Cuvv+m &b
l1-p

* * * * %
With probability vw 4+ 2p(1 -p) = 2p - vN. badly informed assessor j

will have ﬂm > q and will report vu = 1, When j reports.1l his

* * 2
expected transfer is p/q. With probability (1 - p)°,

is less
P5

than q and j reports vu = 0. When j reports O his expected transfer is

a - wv\AH - q). So j's expectation over the two possibilities is

@b - b+ -2 -P/A - D=5y e+ T

*
For large N, mAnH.nv converges to 1/(1 - p ) and mAnqu
*
converges to 1. As p < .5, mﬁnw.nv > manunv for large N. Hence i'

is identifiable with strategic revelation.

) A8

Having q close but not equal to m has advantages for a racetrack
operator who is more Interested in filling the stands and betting lines
than a "good consensus estimate" or "identifiability of 1". (The
principal is more interested in the third goal, strong individual
incentives for the assessors to take part in the assessment exercise.)
With q close to w. there is protection of the Saturday duffers who can
bet randomly and have almost fair bets. (With strategic revelation,
if q = w. random betting does just as well as any other, see (5).)
But with q not equal but close to w. there 1s an edge in favor of the
insiders. The duffers have the thrill of betting and almost holding
their own against the insiders even with worthless information. The
insiders systematically do better, as they exploit the difference
between q and w. although they probably succumb to the house percentage
eventually. And for the parimutuel mechanism there is the prospect
of a big win. The parimutuel is designed, perhaps inadvertantly,
for strong gambling incentives among the bettors.

Expectations for i' and j can also be calculated for the Brier and
Groves-like mechanisms for this same model of information generation.
Truthful reporting leads to an expected transfer to i' in the Brier
mechanism of WN - w + 1 and an expected transfer to j of
AH.wVWN - AH.me + 1. Because former is greater than the latter,
there is identifiability in the Brier mechanism for this model of
information. For mechanism f the expected transfer to i' and to j
is the same, w - mm. so there 1s no identifiability for this model

of informstion. For this model of information the percent difference

between the expectations of i' and j can easily be shown to be
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greater under strategic reporting in the parimutuel mechanism than
under truthful reporting in the Brier. This suggests that the pari-
mutuel mechanism may be more efficient in identifying the best assessor
in a limited number of rounds. The conjecture is confirmed for a
different model of information generation in Section IX, where the
small sample properties (for small N as well as small R) and

statistical dependencies among the nu within rounds are dealt with

by Monte Carlo simulation.
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Footnotes

For a definition of individual ratiomality in public goods demand

revelation see Green and Laffont (1979) p. 121.

Later, for the parimutuel mechanism we will need to restrict i's
strategy space. For the public goods model i's strategy space for
vy is the real line. The definition could easily be generalized
for more than a dichotomous X.

As another parallel note that if i knew for sure that 9 > mw.
revelation biased down would be just as good as truthful revelation.
For truthful revelation to have an expected value strictly greater
than that for any other strategy, i must attach some probability

weight to both q >Pp and q < P, weight to both cases 1 and 2.

In the same way even though truthful revelation is the unique
dominant strategy for the Groves mechanism, overstatement of

willingness to pay is just as good if i 1is certain that

z z
MU t.v vy mua=uamnmnmnm9munﬁm MH tw < v;. For truthful
T2 it

revelation to be strictly better each individual must attach some

probability weight to his pivot being both above and below his

true valuation.

Monotonicity is defined as follows. Let A be the lottery where 1
wins a with probability p and wins b with probability 1 - p;
and let A' be the lottery where i wins a w.p. p' and b w.p. 1 - p'.

Then if i prefers a to b, 1 prefers lottery A to A' <=> p > p',

5

For an application of Theorem 4 let g be the Brier mechanism. Then
i wins 1 w.p. - vnm + ~vwww +1-7p, and 0 w.p. vhu - wp;p,; + Py
This mechanism is similar to, but sharper than the one proposed by
Grether. In Grether's mechanism, after Py is elicited two random
variables Y and Z are drawn, each uniform over [0,1]. If Y < Py»

i wins 1 if X = Hm if Y W.vu i wins 1 1f Z > ¥Y; otherwise i wins
nothing. Thus i wins 1 w.p. Alvwm + Nvumw + 1)/2 and 0 otherwise.
Taking as a measure of sharpness the second derivative

w.r. + Py» the Brier mechanism is twice as sharp as Grether's.

If the stakes were doubled in Grether's mechanism there would be
equal sharpness in the expected transfer. But then the expected
transfer in Grether's mechanism would be larger than for Brier's,

and thus the principal would have to spend a higher expected budget

to achieve the same sharpness.

Joshua Foreman pointed out to me the close connection between Bayes
rule and the parimutuel mechanism. In Page (1977) the transfer
mechanism (5) was called a Bayesian game. In application of the
parimutuel betting rule the betting pool is first reduced by a
fraction equal to the "house percentage," before it is divided

among the winners according to (5).
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11

12
Winkler (1969) has shown, however, that for N = 2 when 1 is

rewarded Homﬁnuw\nuwv is has a truth revealing, expected value
maximizing strategy and the mechanism boils down to a logaritlmic
proper scoring rule. This reward structure lacks individual

rationality, as b = -,

For the parimutuel mechanism with two assessors in a Nash equilibrium,
if it is interior, the consensus odds ratio (1 - q)/q 1is the
geometric mean of 1's revealed odds (1 - vHV\vu and j's true

odds (1 - MWv\me it is also the geometric mean of j's revealed
odds and i's true odds. Moreover, the revealed consensus lies
between mw and dw. This result follows immediately from the first

order condition (7) of the Appendix.

It is possible to define a parimutuel mechanism in which i is
ignorant of q at the time he reveals Py: In such a case i would
base his strategy on his Bayesian priors of the other p,. However,

J
existing parimutuel mechanisms reveal q during the betting period.

For a formal model of polls and voting behavior where the uninformed

follow the lead of the informed see McKelvey and Ordeshook (draft).

It is widely believed that the presense or absence of monetary
transfers strongly affects behavior in experimental settings.
However, in two papers dealing with judgmental probabilities
Grether (1979, 1980) found the role of monetary incentives

"surprisingly weak."

An alternative to the median is as follows. The trial value is
gshifted until the number reporting "higher" equals the trial value.
Then this benchmark value is the same as what would be obtained

as a Nash equilibrium for the parimutuel mechanism with small cy
and knife edge, zero-ome strategies. In the simulation the median
benchmark yielded slightly higher probabilities of identification
compared with this alternative. Gib Bogle suggested the median

benchmark.
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