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by

T.W. Anderson and Cheng Hsiao*¥*

1. Introduction

Error components models are widely used in the econometric analysis
of cross section and time series data; it is a common practice to
assume that the large number of factors which affect the individuals in
the sample and the values of the dependent variable observed for
them, but which have not been explicitly included as independent variables,
may be appropriately summarized by random disturbances. Wallace and
Hussain [1969] and Swamy and Arora [1972] have analyzed this type of model
when no lagged dependent variables appear as explanatory variables.

Very often we would like to use such a model to study behavioral
relationships that are dynamic in character (Balestra and Nerlove [19661).
As it turns out, the problem becomes complicated. Amemiya [1969] and Balestra
and Nerlove [1966] have proved the consistency of the maximum likelihood
estimator when the length of the time series T tends to infinity within
this context. Maddala [1971] has investigated some aspects of the appli~

Nerlove [1971] has performed Monte

cability of "covariance techniques."

Carlo studies to explore the small-~sample properties of various types of
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estimates. However, we feel that more attention should be paid to the
properties of various estimators in the way in which the time series ob-
servations T or the cross sectional units N tends to infinity. 1In
particular more attention should be paid to the typical case where a
panel involves a large number of individuals, but only over a short
period of time. In this case the relevant limiting distributions have
the number of individuals increasing but not the time dimension. Hence,
contrary to the dynamic model for a single time series, the assumption
about the initial observations plays a much more crucial role in inter-—
preting the model and devising consistent estimates. In this paper we
hope to clarify these issues. We shall consider a number of different
models arising from different assumptions about the initial observations.
The focus will be on (i) the interpretation of the model, and (ii) the
asymptotic properties of the estimators under various assumptions.

In Section 2 we consider the interpretations of models under
various assumptions and introduce the maximum likelihood and the covariance
estimators. In Section 3 we consider the properties of the maximum likeli-
hood and covariance estimators when the initial observations are assumed
as fixed constants. Section 4 considers the case of random initial obser-
vations with a stationary distribution. Section 5 considers the case
of random initial observations with different means, Section 6 with a
common mean. Section T clarifies the relationship between pseudo and con-
ditional maximum likelihood estimates. Section 8 suggests simple consistent
estimators which have the advantage of being independent of the assumption

of initial observations. Conclusions are given in Section 9.



2. The Model

v, = A<WH,....<MHV_ ,
A simple model commonly used in the empirical research of a sample &ww
consisting of time series observations on a cross section is of the wowBW\
u, HAC.. 300 g, v. ’
i il iT
. Tx1
(2.1). Vi T NHdm + Vg » 1% 1,...,8 , t=1,...,T ,
e =(1,...,1)" .
Tx1
where
We can rewrite (2.1) as
Vig T % YUy o
(2.3) y. =ZB+v, , i=1,...,N .
= = ph SRS DAl |
mn» mcuﬁ o ,
Premultiplying (2.3) by
Ea . u =0
ijt
(2.4) Q=1 - =ee'
2 : . ~ ~T T<<
[¢] if i=9J ,
(2.2) MAQMQJV n*
0 otherwise , we obtain the covariance estimator (CV) of B8 as
2 2 . N N
A0 =0 if i = t=s ~ -
u . . (2.5) Boy = [ 12102170 7V zlay, .
wﬂcuaﬁumv = -C j=1-1t~-1 j=1~1~-1
0 otherwise |,
If we assume that o, and u are normally distributed, we can write

i it
down the exact likelihood function of ¥y from the density function of

2oy is an 1 x k vector of explanatory variables, 8 is & k x 1
vector of parameters to be estimated. We are interested in cases where
v,. Maximizing the logarithm of the likelihood function, we obtain the
T>2, N>2. Let - 2
maximum likelihood estimator (MLE) of B8, o, and A.
vy, = A%ww.....KHev. . If Z, are exogenous, Wallace and Hussain [1969] have proved that
Tx
1 the CV is consistent and asymptotically normally distributed when N

(2! .2 Y tends to infinity or T tends to infinity or both. Furthermore, the
L1 i1*%i22 2%y ’
T>K



CV is asymptotically equivalent to the MLE as long as T tends to
infinity (and N is fixed or tends to infinity).

Wmen 2y,
more complicated. Not only may the CV and the MLE be inconsistent, but

contains endogenous variables, the problem becomes

the interpretation of the model is also not independent of our assumption
about the initial conditions. In this paper we shall focus on (1) the
interpretation of the model and (2) the asymptotic properties of the
estimators for a dynamic model. We shall assume that mwd consists of
¥i -1 only (namely k = 1) because the principle of analysis remains
the same, yet the presentation can be greatly simplified. Therefore,

instead of (2.1) we shall analyze

(2.6)

We also assume that _m_ < 1 and that the mean of the observed variable
is known (and taken equal to waov.m\
Based on different assumptions about the initial observations
Yio in (2.6) we have essentially three different types of the model.
The first type of the model is a conventional one where we assume that
Yio are observed fixed constants (Amemiye [1067]
{1966], etc.). This assumption permits a cross-sectional unit starting

at some y and gradually moving towards a level of [a, /(1 - B)]
io i

(Figure 1). To see this, we can rewrite (2.6) in an equivalent form of

(2.7) Ogg = vg) =By gy - vg) +uyy

-6-

where

Am.mv awn Awl mv<w , m<w uo.<md A<wv uo
Then the assumption of fixed initial conditions implies that a cross-
sectional unit may start from an arbitrary initial position, and
gradually ﬂwww& towards its respective level Y5 according to & proba-
bility law. The individual level Yy is a wwsmos draw from a population
with mean zero and variance Qw. This is a reasonable model, but there

might be a question of treating Yio as fixed if the decision of when to

start sampling is arbitrary, in particular, independent of the value of

Yio®
Figure 1
A
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Since a, nmwnmmmnmm effects not taken into account explicitly,
it may be unrealistic to assume Yio 88 & fixed constant because
ay is then distributed independently of the starting value Yy
The omitted effects are not brought into the model at time O, but
affect the process at time 1 and later and determine the eventual

level.

We may re-write (2.6) as

(2.9) Yig TVWip Yy o E T 01,01,
(2.10) Vi = mtw.fw tu, s t=1,...,T ,
where W, V> and u,, ere unobservable. It is natural in (2.6)

to assume that the starting observable value and the level are indepen-

dent. In the form (2.9) and (2.10) it is natural to assume that level
Y; and the unobservable process ﬁﬁwdw are independent; then the
starting value Yio is correlated with the level Yy If we allow
correlation between %Mo and Yo the two models are equivalent via
(2.7) ana (2.8).

In the model (2.9) and (2.10), alternative standard assumptions

about W are (a) stationary with variance yQM\AH - mmv‘ (b) random

io
with arbitrary variance Ay\:vqm. and (c) w,, fixed constants. We
may express the initial conditions in three different ways. In case

(a) ¥;0 18 considered to have the marginal normal distribution

-8-

determined by the stationary process; that is, %wo is viewed to form
part of a stationary process as any other %Hd (Pigure 2). 1In case (b)

the starting value «wo is a random draw from a population which may

Figure 2

it

012 Time

not have the same marginal distribution as at later periods. In case
(c) it is similar to the first model where an individual may start at

some value and move towards a level of Yo except that in this

Yio
case rium level y; affects y.,.
The third model we consider is that the initial observations

are random with common mean but uncorrelated with the time disturbances

We may assume that

(2.11) =c+ e

Yio i



Then we may say that € represents the effect of initial individual

endovments (corrected for the mean). Dependingon the assumption about €5

the impact of initial endowments will be different as time goes by. For

instance, if we assume nw to be random with mean zero and variance
Qm and to be independent of a, &and u,

i it’ its impact gradually dimin-
€

ishes and eventually vanishes. The model is somewhat like the first model

in which the starting value and the level Y; B8re independent, except

that now the starting observable value is not a fixed constant but a

random draw from a population with mean c¢ and variance Qm
€

If we want to assume that the initial endowment affects the level,

we may let

(2.12) =¢c+a. , 1=1,...,N .

Yio i

Then, as time goes by, the effect of initial endowments cumulates and

eventually reaches a level of _pH\AH -8)].

3. Fixed Initial Observations

In this section we assume that the initial observations are

Yio0

fixed constants and observable such that

(3.1) lim ==

-10-
exists. Then

(3.2) Ly ]
3. plim = Yy
?ZHH“ =

exist and is nonzero. We define

_ ST
. Lyse ﬁwpzw.ﬁ-p
(3.3) jo=¥i o oy =L

We first consider the property of the CV of 8. The CV for

(2.6) is obtained by solving the following normal equation.

N o, oT
1.2 2 e
(3.4) Iz 1y -y, .8
R IR RS RS
NooT L
N Hm 5 mp«ua«w.dup “YYial -

We note that Qv, = Qu,. Equation Aw.rvMmmpcm<mpm=dcomva%M=m¢5m

least squares estimation of B to the model

(3.5) Yip T B0 TR T Ve
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Thus, when T tends to infinity (regardless of whether N is fixed
or tends to infinity) we can prove the consistency and asymptotic nor-
mality of the covariance estimator in exactly the same form as that of

Anderson ([1971], ch. 5, Section 5.5, pp. 200-203). The variance of

the limiting distribution of VNT (Boy = g) is

N T -1
2 1 2 -2 _ 2
(3.6) rotplim={ ] Tyl -y} =1-8 .
T NT {21 t=1 it i

On the other hand, when T is fixed but N tends to infinity

the CV is inconsistent. This can be seen by noting that

1 N T 1 N _ _
. T pr ewwww.ﬁuwcﬁ °F wwwﬁ,-wcw
(3.7 Boy = B * TR =
- =1 15 A
NT 421 451 i,t-1 = N = i,-1
P
vwhere u, = u,./T. By a law of large numbers
i it
t=1
L 13
(3.8) plim o5 ¥y 4 g4y =0
il LN P 17it

~10-

(3.9) plin ¢ 15 g3

2
=2 (r-1) +(T-28+ (T-38" % ...+
T

elmu

N

A2 T -1 - T8 + B-

B e ——————— N

B (1 -8)2

which is not equal to zero.
The CV of B 1is also the MLE under the assumption that

oy are fixed constants and uy are normally distributed. 1In this

t

paper, however, we assume that a; are random. When a, and

u are normally distributed, we can write down the logarithm of

it
the likelihood function as

(3.10) log L = - zlw. log 21 - wﬂmﬁ log o° - m log |A|
N
1 M ( -1
- = y. -y, BYAN (y, -y. .B)
mew jop -1 Ti,~1"" Vi vi,-1 ’
where
= 1
Yy, Aﬁoéﬁ...:ﬁ,eupv ,
T>1
1+ A 1 1 ... 1
1 142 1 ... 1
(3.11) A= 1 1+x ... 1 [J=2AI_+ee' ,
TRT . . . . ST .-
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A+ (T-1) -1 cee =1

-1 A+ (T -1) cee =1

-1 - ver -1

Y (Y -1 . :
-1 -1 .es A4 (T -1)

1

“ic '
e I G Y P

The derivative equations for the MLE are:

(3.12)

(3.13)

9 log L _ 1 [(A +T)

(y., - By. )y
t t-171,t-1
38 omyAy + T) + 1s i

il ~12
N ~13

1 t=1

=

N T T
-1 1 Gy - mwu.duwvﬁquwgﬂnwu =0 ,

i=1 t=1
N T
3 log L NT 1 2
i I e LI DR 7T P
30 20 20 A(X + T) i=1 t=1 :
N T T 5
= M (v, -8 M Vit HV b=0,
=1 t=1 TV gE YT

~14-
N T
3 log L N(T - 1) N 1 2
(3.1k) = - - + T Iy, -8y, ., ,)
3x 23 2y + 1) " 202 L8 2Tt i,t-1
N T T
22+ T MAM 2
- —— Y., - B* M Y, . 4)° =0 .
202200 + 1?2 121 =1 1t t=1 1ot-1

If there is a unique solution to these three equations with

that PN 0, 0 <X < =, the solution is the MLE. Maddela {1971]

has shown that the boundary solution of A = O (that is, om = 0)
2

cannot occur, but the boundary solution of ¢ =0 (that is, X = ®)
m W 2 2 m 2

will occur when (y.., - BY. ) > T (7. - mm. )©.
j=1¢=1 1t i,t-1 - j=1 i,-1 The

solution, then, does not satisfy all of the derivative equation.
Nerlove [1971] obtained such solutions in a simulation study. However,
the probability of a boundary solution tends to 0 as T+ or as

Mo,

Amemiya [1967] and Balestra and Nerlove [1966] have shown that
the the MLE is consistent and asymptoticaelly normally distributed when
T tends to infinity (and N is fixed or temds to infinity). When
T is fixed and N tends to infinity, the MLE is consistent and asym~
ptotically normally distributed under the assumption that Yip are
fixed constants.

To show that the MLE is consistent when N tends to infinity and

T is fixed, wve let 8 = Am,am.»v.. Noting that E(u, ) = gdac?

itYi,t+]
for § > 0, and wﬁﬁw%wﬁv ={(1+8+ ...+ mdlwvam for t > 2 and

2
mnw%ww o”, we can show that [1/(NT)](® log 1/38) converges in proba-

bility to O at the true 6 when T is fixed and N tends to infinity.



(3.15) -

=15~

Furthermore, HH\Azevuﬁmm log L/2636') arocund its true value converges

in wwocmcwwww¥ to

N T

1 1 1 2 T -2
s plins Y[z Ty - ¥, 4] 0 0
202 tow N ogoq T oo iat-1 A+,

0 lpm A+(T-1)

20 momy; +T)
o A+(T-1) Sm+miauwv+ieupw
20°A(x +1) 22 +1)?

vwhich is negative definite as long as T > 2, By Amemiya's [1973] Lemmas

3 and 4, we know that there is a consistent root for the MLE. We can

also show the asymptotic normality of the MLE by an argument similar to
that of Anderson ([1978].

The solution of the MLE is complicated. An iterative procedure

such as Newton-Raphson type will have to be used. However, if T tends

to infinity, the CV is not only consistent, but is also asymptotically

equivalent to the MLE. [See (3.6) and (3.15)].

It is interesting to note that when N is fixed and T +tends to

infinity, it is not possible to obtain separate consistent estimates of

om and A Yet if T 4is fixed, as long as it is greater
2

than one, we can get separate consistent estimates of o

(Amemiya [1969]).

and ) when

N tends to infinity. When T 1is one, we have N independent
random variables Viy ey + u with variance amAH + ). It is
not possible to distinguish A and om. However, the MLE of B

<16~

in this case is consistent and it is the same as the least squares esti-

mate.
The incidental parameters problem does not arise under the

assumption that %» are fixed because they are observed. The

'
0 8

individual component a only gives rise to a special form of the

i

covariance matrix of v

of the fact that we are maximizing the likelihood function of N

The consistency of the MLE is a consequence

random vectors y., which are independently normally distributed.

~1

L, Random Initial Observations with a Stationary Distribution

In this and the next section we shall consider the second model

[(2.9) and (2.10)] in which the initial observations are treated

Yio

as random and correlated with «.. We first consider case (a) where

i
two is assumed to be normally distributed with mean zero and variance

ﬁyam\AH - mmvg. Then y;, Wwill be normally distributed with mean zero
and variance H»qm\nw - mmv + qm\AH - mvmu. and mnpwwwov = am\AH - B).

The joint density of Aﬁwo.%ww.....wwev is

(T+1) (T+1) 1
_ T2 2" 2 T2
(h.1) wwﬁzwo....,wwev = (2n) (c%) _m_
+ exp A-.qumw Voo =BY.qs-es¥:m—BY In
22 io*i1 i0?" YT i,T-1""

. - e - '
[¥,0¥57 = B¥i00 Vi mf,eup_w s

-1
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where
1
1- wm
1
] = X .
(T+1)%(T+1)
0
T
A i+
K.2) _n_ = [x+T+ 1= ]
( - B
r (1 - 82
1 0
-1 _ 1 )
=3 .
. o .
i 1
1+ 8,~-1
- T

1+8

-
4

H.IIm-H-...»HV

/ (1 + 8, H....,Hvl_

-18-~

It might be noticed that the density of %w in Section 3 is

1*0 Yy

not obtained from (4.1) as the conditional density given 1y,

N io’
The derivatives of the logarithm of 1 wwﬁwwo.....wwev with
i=1
respect to B, om and A are:
(4.3) dlogL . _ N8B ¥ + N(A +T-1)
‘ a8 1-g2 20 -8 "22+ 0+ T - DO - 8]
N N T
B 2 1
r=5 Iyior—5 1 1 (v, -8y, , v,
yam 121 i0 »qm i=1 t=1 it i,t-1""1i,t-1
N
1 1
-5 I [+ 8y,

AG [2+ (2 +7T-21)1 - mvum i=1

T 2 1 (1 -8)
+ dmwﬁwwd - mww.dnwvu - MMM "+ +T -0 s8]
N T T-1
HW (1 + 8ly;q + dmpcﬁw y mf,?i:dmpfﬁ g
(4.4) 3loglL _ _ N(T+1) ! W (1 - mmv%m + W (y.. - By vm
302 202 VRN 102y it rt-l
(1 - g

T T oD E LBy,



19~

(4.5) 3 log L _ NT N{(1 - B)

1
A 2 " EF 0 FT-DE BNt 22
2X 0

N 2, 2
HWHHAH - 85y,

T
vy, ey BTG -8)0-8)

t=1 »t-1 mamﬁyﬁm + (A +T- 1)1 - mVuwm

N o~1+3

N
- LIy, + ) (v, - By 2
i=1 i0 e=1 it %w.dlwv_ ?
When N is fixed and T tends to infinity, the consistency of
the MLE follows from the usual argument that the asymptotic theory is
the same for both %Mo fixed and Yio random with a stationary distri-

bution (e.g., see Anderson [1971], ch. 5). The consistency of the MLE

when N tends to infinity and T 1is fixed follows from the fact that
the MLE is obtained by maximizing the joint density of N independently

normally distributed random vectors A%Mo,%ww.....%w ). Again, there

T
is no incidentel parameters problem in this case.

There are similar conditions for the occurrence of boundary

solutions. The boundary solution of A =0 (or QM = 0) cannot occur,
N
but the boundary solution that Qm = 0 will occur if Am.elwmv ) %wenp%w >
N R = -
Ty A%welwmvm. where
i=1 77~
L s
¢ =f81 .. B
melwmﬁlm.. 1

(Lee [1979]).

—20-

In this model the CV will have the same consistency properties
as in the first model. As T + =, the last term in (3.7) converges in
probability to 0. As N + =, the last term in (3.7) converges in pro-
bability to the negative of (3.9), which is not 0. Thus the CV is
consistent as T + « and um.MSOOSmwmdmbn as N + .

Although the consistency of the CV is not independent of the
way T or N goes to infinity, the MLE in this case is consistent and
independent of the way T or N goes to infinity. However (L.3)-(L.5)
do not have a simple solution and a complicated iterative scheme will
have to be used. Unfortunately, the assumption that ﬁwo are random
with arbitrary variance Ay\:vqm (case (b)) does not simplify the com-
putation either. One can see this by noting that the joint density
Wwﬁwwov....wwav is still of the form (4.1) with the definition of m

(4.2). replaced by

1 1 _1
A 0 1- % ﬁw - J1lye..,1)
1 1
(4.6) Q=12 . + . ?
0 . .
\ 1/ \ 1
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lal = T+ T —D—1
- (1 - B)
- _n n
n -n__
1-8 f - IS D |
1 0 1
at - WA . —rx+T+ nl:|mnuuu. i
- (1 - 8)
0 ) )
- 1 1 J

The MLE is still consistent if either T tends to infinity and N is
fixed or N tends to infinity and T 1is fixed, but the computation is

again complicated.

5. Random Initial Observetions with Different Means

Here we assume in model (2.9) and (2.10) (case (¢)) that Vo
i

are fixed constants. Then at t =0

.3/
awo. wﬁ.....w?v is <

Y; T Y50 T Yi0° The density of

1 =
Aw V WHAgHOvWHHu...u%M_Hv = WHA%HHo...uVaMH*VﬁHOvWNAVnHOV

T
1 T 1
= A\ml__o )" exp T2 .ewwzfa = ¥i0 * Vio)
u u
2
- By; o1 " Yig * Vig))
c L exp Ay - v )2
\Mﬂc mqm i0 i0

Y Y

_22-

2

. 2
For given wwa.m it is a function of two.m, B, a: and o . If we

Y

+ 0, this
Y

The likelihood

let W, = ¥ig ﬂsmsdvmmmcosawmnoOme H\A\Mwo<v. >mo

approaches = and the likelihood function approaches <«.

function does not have a maximum and, hence, the MLE does not exist.

However, if we focus our attention on the interior solutions we

mey take the partial deviation of the logarithm of the joint likeli-
N
hood function .:PJQSQS.. cs¥ip)s
i=

N T

= _NT NT 2 1 -
log L = - > log 21 - log o - .M ) Hﬁwwﬁ Yio * twov

{5.2) > >

2 N N 2
mA%M.ﬂlw I%Mo + cwovu -3 log 21 - > log o<

N
1 M ( 2
- Y. - W v >
26 171 10 30
Y
. 2
with respect to LITE 8, qc and q<. These are
dlogL_ _ 1 §
(5.3) v, 2 I Uy = Y50 * i) ~ B0y e ~Vio * Vo))
io o t=1
u
.C-E+|W$. -w, ) i=1,...,8
27107 M0 2eece
Y
(5.4) wwomr--plm m: e v ) 8ly cy v )]
6 2 Yiv ~Yi0 T Yio 1,8-1 ~ Yi0 7 Yio
g i=1 t=1
u
’ ??a-wiwwo+<wov ,



Setting these equal

—2ho

We want to show first that the interior solution is asymptotically
equivalent to the CV as T - =, The coefficient of B on the right-hand

side of (5.8) divided by NT can be written

, N oo _ _ A
(5.10) gy L LIy o =¥ ) * Gy = 950 * ¥io)]
i=l t=
N . T
=1 1 -3 2, (z _ Y-
=N m 7 m?f?p i)ty g - Vet o) ]

From (5.7) we find

. m<S - B)T R
(5.12) V. = ¥in = - = — (¥, - 8y, ) .
i0 i0 o1 - mvmqw + QM i i,-1

Then we see that the second term on the right-hand side of (5.11) con-
verges in probability to 0. Similarly the left-hand side of (5.8)
divided by NT can be written

v ) )
W 7 1 (g g~ ¥)0y g - 93, )

1
(5.13) N f

and the second term converges in probability to O. Then as T + =,

(5.8) is equivalent to (3.4). The solution is consistent as T + =.
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Now let us consider the case of N + =, If we substitute (5.12)

into (5.8), (5.9) and (5.10), we obtain three polynomial equations in

~one "2
B, q:. and q«.

stationary points of the likelihood function; perhaps some are relative

There may be several different solutions. These give

maxims. But none can give an absolute maximum. Neither does any of

these relative maxima yield a consistent root. To show this, we assume

that (1/N) m t%o converges to a finite constant. We solve (5.7) and
put it Hndowﬂw.mv. Then we subtract the right-hand side from the left-
hand side. If m is consistent, we can replace it by B8 and find the
probability limit of this difference divided by NT. Its probability

limit is not equal to zero; it is equal to

1 2°2 om
(5.14) 575 3 {1 - &% Hﬁn.mwﬂﬁa -1+ (T-2)8+ ... +8
?(1 - B)%° + o0 Y
Y u
1 ~2.°2 2 2°2
+ = - (1 -8B [0 -0d0 .
[r(1 - 8) aw + qmum uuy vy

This contradiction shows that m is not consistent.

The analysis of the behavior of the CV proceeds as in the two
previous sections. The CV is consistent as T + « and is inconsistent
as N + o,

It may be of interest to note that when T =1 this is similar

to the classical problem of incidental parameters.

6. Random Initial Observations with a Common Mean

In this section we first consider the model (2.11) where the

initial endowment mw

does not affect the level Y5 and the disturbances

—26-
u;, . Then the joint likelihood function of A%Mo....,<»ev is
(6.1)  £,(y;0sena¥yq) = F5yqaeeayyplyo)fs (vy0)
T 1
22,2 1 -
= (210) € |A] mxw?lilm (y,-v, B)'A HQ.:%
- i wi,-1 - i v
20
s
. 272 1 2
nmaamv exp *l.INMAKMo -c) .
20
€
2

Therefore, the MLE of B, A, and © is identical to the MLE under the

assumption that Yio are fixed constants, except now that in addition

to estimating these parameters, we also estimate c¢ and aw by

On the other hand, if we assume (2.12), the joint likelihood

function will be

T+l T+1 1
ool
(6.3)  £3(y ey = (21) 2 (7)) 2 ol % exp (-5
20
C (¥ig = Cr Yyq m BY gV - BY ya~t
i0 > Yil i0? iT i,T-1"~

i,-1

g}
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b - e - '
¥y = Covees¥yp = BYy py)

= 2, (yyyse e ¥ yplyy )8y ()

I I T
2 1
= (2n) 2 (d®)) 2 exp *W 5 ) ﬁA%Hn - %wov
2A0° t=1
L -2 (v, - ©)°
2 2,2, 2 ) i0
- By + &w * (2m) “ (%) © exp AH.
i,t-1 mam
where
1 1 1 e 1
1 1+ A 1l cen 1
w =] 1 1 1+ A e 1 .
(T+1)x(T+1) . . .
1 1 1 1+

Am.o.am.»v. is obtained by taking the partial derivatives
4 )
T £ Ay, nseeesy

=1 i*vio iT

The MLE of ¢ =

of the logarithm of and setting them equal to zero:

65 220eb_ 1 ¥ T Ly ) sy wely . =0
. B »Qm i=1 t=1 Vit T Y10 i,t-1 i,t-1 ’

dlogL _ 1 W m
T, 2

(6.6) dc Ao? i=1 t=1

N
1 =
(i -yy0) =By 4 * ©] v 2 Mmpﬁewo..ov =

0,

N T
3 log L N(T + 1) 1 2
(6.7) T -t ) M ((y,, -¥.4) -~ By, . . +c]
0% 20° one? is1 t=1 v 0 i1
N
1 2
+=p L lyg-e)" =0,
26t 4=1 10
N T
3 log L NT 1 2
(6.8) w o STt 22 o1 Uy i) - BYi ger * c]”=0 .

Contrary to previous cases, the solution to the derivative equations
(6.5) - (6.8) is always an interior one and there is no boundary value
problem.

It is easy to show that [1/(N(T + 1))] - [(5 log L)/38] converges
in probability to 0 at the true value and [1/{(N(T + 1))]
. Hﬁwm log L)/3638'] converges in probability to a negative definite
is fixed or N

matrix when either T tends to infinity and N

tends to infinity and T is fixed or both. Therefore, the MLE is

consistent in either case.

We note that conditional on vy in (6.3) we can maximize

0

==

L¥ = B, ¢, and qu.

i=1
tional MLE is consistent when either T or N or both tend to infinity,

AWA%MH.....%MQ_QMOV with respect to This condi-

and asymptotically normally distributed. Of course, when T 1is fixed

and N tends to infinity the unconditional MLE of B and ¢ is more
efficient than the conditional MLE (in the sense of having smaller variance-
covariance matrix). But it is computationally more tedious than the condi-

tional MLE. Taking partial derivatives of log L¥*, we have
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N T
. 2 log ¥ _ 1 . -
(6.9) 26 N MWH ﬁmw_AwHa Vi “ ¥y g v el 470
(6.10) ﬁmhu - IHM W_ W :uﬁﬁ - w.ov - By. +cl=0 ,
¢ ae i=1t=1 v b=l
N T
9 _log L¥ NT 1 2
(6.11) = . + Y Y[y, -y..) -By, +c]=0 .
3(r0%) 2(xc%) 2(r02)? 21 ¢=1 it 710 1rt-1

Equation (6.9)-(6.11) are nothing but the least squares regression of

L/

A%wﬁ - %Hov on %Muaup and a constant term.— This solution can either
be used as a consistent estimate or be used to start the iterative procedure
to obtain unconditional MLE.

The property of the CV is the same as in other cases. It is
consistent when T tends to infinity and inconsistent when T

is fixed and N tends to infinity.

T. Pseudo and Conditional Maximum Likelihood Estimators

The purpose of using a covariance estimator is to eliminate the

individual effect o This can be done by premultiplying v, by the

(P - 1) x T transformation matrix

-1 1 0 ... 0 0O

0 -1 1 ... 0 0

0o 0 -1 ... 0 O

(7.1) D = . . . ... 0 O
(T-1)xT . o

-30-

Then

2 -1 0 ...00
-1 2 -1...00
2 2
7.3) o DAD' =o } 0 -1 2...0 0] .
0 0 0...2-1
0 0 0...-1 2

From (2.6) we have

(7.4) Vie " Vi1 T B0 e TV e0) PNy T Y

However, from this we cannot obtain MLE's as claimed by some people.
This can be seen by noting that although mmw has a properly defined
density function, me does not. Even under the assumption that Yio
are fixed, %HH ere still random. Thus, WNM leaves the density of

AKHH - %wov undefined.
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Substituting (7.4) into the density of wm .....wmz and de-
riving the estimators by maximizing this quantity with respect to B,
A and om yields estimators that are not consistent when N tends to
infinity and T 1is fixed. We show the inconsistency of these pseudo
maximum likelihood estimators by considering the case where %Ho are fix-

ed end T = 3. Then

(7.5) u u

~ad
2x3 \"i3 - M2

is normally distributed with mean zero and variance-covariance matrix

2 -1

2 2
(16) o = o

-1 2

The determinant of DAD' is now equal to 3 and the inverse of it is

If we consider (7.4), t = 2,3 as a transformation from Aﬁwm - :wwv and

(uy5
is equal to one. Thus, the logarithm of the pseudo likelihood function

is equal to

- cumv to Yio» and %uw. i=1,...N, the Jacobian of the transformation
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- 2 1 N
(7.7) log L = constant - N log o, - T3 M

+ vy - ¥5p) - Bygp - v )10

+ 1y, - vyq) - Blyyy - wwovuﬁﬁwww - Vi) - By, -y}

Taking partial derivatives of (7.7) with respect to B8 and solving for B8,

we have
N
HmwﬁmAme - ¥ gy - Vi) 2lyyg - v (b, - )
A F vy, - 700 Uy - ¥ M0y - ¥y0)]
(1.8) Boyg = 12 ~ Y41 i3 ~ Y5075y T Vg .
2 2
2(y.. - ¥, - -
wWHﬁ (¥4q = ¥30)" * 20yyp = ¥y (v - ¥ gy = ¥y0)

+ (v, - <MHVA<HH - ¥ig)]

The probability limit of this pseydo MLE m is equal to

PML

2-8

(1.9 imB. =8 -
7.9) plim mMZH 8 constant

N
Hence, it is inconsistent.

On the other hand, the maximization of the joint density of
A%wm....,wwev conditional on %ww over i does yield a consistent
estimator. This follows from the fact that conditional on Yi1

i

(and Yio fixed) we are maximizing (T - 1) - component independently

distributed random vectors, the i-th having density
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The MLE's of ao, QH. am are (strongly) consistent if
-1 T-1 1
2,2 2,,%" 2
(1.20) £y, . ¥yplyyy) = (20) % (%) = A7)
(7.13) W Yio\¥i0 Yi
1 - o + 0
-exp = =5 gy - By - Ty g - BYge)s i=1l vy, -
20 1

1
Yiq = BYi0 =T % (Vi1 - BY50)» s
3 12 (Anderson and Taylor [1979]). Since the transformation ao.aw.a ) and

2
| Amuvuamv is one-to-one (in the proper region (A > 0, ¢° > 0)), the
1
ces - - —=(y., - By ) ]A
2L, m%w.elw T+x71 Y10 _e MLE's of &, A, am are {strongly) consistent if (7.13) is fulfilled.
[ - &y _ 1 (v _ ) If yi; is a random draw from ¥Yiq = m%»o + oy + Ui then
Yio 11 - T+ x Vi1 T Y0l
-8 -y, - By, )]} i=1 N 1 ¥ Yio| W10 Vi1
e Vit By e TT R Y 10 S R (7.14) plim = §
N
N+ i=1
Vi1
where
N 1\(2 8) + /0 0
(7.11) A e (A, te e )-—E—e e up.sw.Mfmo
. = = T+ - — . el
A 5 B IR S S oo N 521 o wened |
(T-1) x (T-1)
which is positive definite. Therefore, the conditional MLE is consistent
We illustrate the argument of consistency by considering the case when T is fixed and N tends to infinity. It is the pseudo MLE which
that T = 2. Then the conditional density of y,, glven y,, andy;, is inconsistent. We suspect it is this confusion about the proper form
2
is normal with mean ao%uo + mH%»H and varisnce <t , where of the conditional likelihood function which caused the confusion about the
consistency of the conditional MLE (e.g., Chamberlein [1979], Lee [1979]).
_ B
(7.12) 8 = = T3 %
1 8. Simple Consistent Estimates
§q = B +
0
1+ Although the maximization of (7.4) does not yield consistent
am _ A2 + »Naw estimates, it does suggest some simple consistent estimators. From (7.4)
T 14 )
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we know that we may use either %w t-0 or A%M.ﬁlm - %H.dlwv
+d

a8 instruments and estimate B8 by

)

o~13

. i (vi - qw.e|HVA<M.«|m = Yi,6-3
(8.1) Bry =

1t=3

12 0 12

N
. -y, )¢ -y,
1 dmwaﬁwudlw %H.dlm %M.dnm %w.alwv

He

or

(yyg = wu,auwvww,wum

n

(8.2)

™
i

?
=
<
e
1] N i
o)
o+

W 23] 1 t~13

Aww.alp - ww.ﬁlmvww.a-m

[y
0
)
n

Both {8.1) and (8.2) are consistent when N tends to infinity or T
tends to infinity or both.

Estimator (8.2) has the advantage over (8.1) in the sense that the
minimum time period required is two, while (8.1) requires T > 3.
However, (8.1) and (8.2) have different asumptotic variances. Under the

assumption that y,, random with & stationary distribution (Section &)

0
the asymptotic variance of (8.1) is

- b (1-8%1 - 8)
(8.3) asy. var [/N(B, - 8)] = . ,
e ToF (1+8%)?
the asymptotic variance of (8.2) is
(8.4) asy. var H\mAmH< -8)] = mAH|+Hmv~ i, 1+8 1)

1-8 (1.2
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Therefore, (8.1) is preferred to (8.2) if

2.2
(8.5) 2T -1) (L2 8) () gy k(14 )l .
T -2 (1 - mvm A

Without knowledge of B and A, there is little to choose between these
two estimators. However, it appears that (8.5) is more likely to be
satisfied if B 1is positive. Thus, as a rough rule of thumb, we may want
to use (8.1) if there is prior belief that successive observations are
positively correlated and use (8.2) if successive observations are negatively
correlated.

As we have seen, different assumptions about the initial observations
do not affect the consistency of the MLE's when T tends to infinity.
However, a typical panel usually involves a large number of individuals,
but only over a short period of time. As it turns out, the properties of the
MLE depend crucially on the assumption of the initial conditions. Different
assumptions about the initial conditions call for different methods to
obtain the MLE. Mistaking one case for the other in general will not lead
to asymptotically equivalent formulas. Consequently, the misused estimator
may be inconsistent. Unfortunately, usually we have little information to
rely upon in making a correct choice of the initial conditions. Estimator
(8.1) or (8.2) has the advantage that it is consistent independent of
what the initial conditions are. Thus, the instrumental variable method,
although is less efficient, does have its merit. Furthermore, if we
know the correct choice of the initial conditions, we can always use the
instrumental variable estimates as the initial value to start the itera-

tive process to obtain the more efficient MLE.
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9. Conclusions

In this paper we have studied the problems of estimating a dynamic
model with error components in panel data when either the number of time
point T or the number of cross-sectional unit N tends to infinity.

We examined several models arising from different assumptions about the
initial conditions. We attempted an interpretation and studied the pro-
perties of the MLE's and covariance estimators for each of these models.
The main conclusions may be summerized in the followimg ﬁdem.M\

As we can see from Table, the MLE is consistent when T +tends to
infinity no matter what are the assumptions about the initial conditions.
When T is fixed and N tends to infinity the consistency of the MLE
will depend on the assumptions about the initial conditions.

On the other hand the covariance estimators always use the same
estimation method no matter what the initial conditions are. When T
tends to infinity it is always consistent. When T is fixed it is always
inconsistent no matter how large N is and no matter what are our initial
conditions. Because the justification of using the covariance estimator
for a dynamic model mainly rests on the asymptotic properties as the
length of series T tends to infinity and the typicel panel has a
large number of individuals observed over a short period, it appears that
the case for the use of the covariance estimator is not favorable.

Although we favor the use of the MLE because its desirable asymp-~
totic properties (with T or N or both tend to infinity) in most cir-
cumstances, the computations of the MLE's are complicated. In the special

case where the individual effects may be viewed as the effect of the initial

~38-

observation or initial endowment (corrected for the mean) and affect the
individual equilibrium level (Section 6), the conditional MLE becomes very
simple. We only need to modify the dependent variable as the actual sub-
tracting the initial observation and apply the least squares regression to
the transformed model.
It should be noted that the method of obtaining the MLE is different

under different assumptions about the initial conditions. Mistaking one
case for the other will not give us a consistent estimator no matter how

large N is. A simple instrumental variable method was therefore suggested

in Section 8. Although it is less efficient, it does have the advantage

that it is consistent independent of what the initial conditions are.
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Table 1

Interpretations and Statistical Propertles of the MLE's
and CV's for Models Under Different Assumptions about the Initial Observations

%wo fixed

w»o random

with & stationary distridbution

with different means

with a cozmon mean

Interpretation
of the Model

A cross~sectional unit

starts from an arbitrary
initial position and gradually
drift towards its mean or no
individual effects at the
initial period but shows up

at all later periods

All cross-sectional observa-
tion are random reslizations

of a stochastic process with
same distribution dbut different
levels and the initial obser-
vation is no different from any
other observations

A cross-sectional unit

may start at some position
and gradually move toward
its equilibrium level. But
the individual equilibrium
level affects the starting
value

The starting value corrected
for the mean mey be vieved as
the initial endowxent. Depends
on the assumption, the initial
endowment may or may not affect
the equilibrium level

T+w T fixed T»w T fixed T+ T fixed T+ e T fixed
N fixed N+ N fixed N+o N fixed N~+»w» N fixed N~+w
Statis~ MLE Consistent Consistent Consistent Consistent Consistent Inconsistent Consistent Consistent
tical
proper-
ties _ cv Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent Consistent Inconsistent

of




Lo~

Footnotes

We assume no correlation between the unobserved effects and the
observed explanatory variables; this assumption is unlike that
of Mundlak [1978]. As will be discussed later, we essentially
follow a different interpretation of the model from that of
Mundlak [1978].

The stationarity assumption may be relaxed when T is fixed and
N tends to infinity (e.g., see Anderson [1978]). We keep this
assumption for simplicity of exposition and because it allows

us to provide a unified approach towards various assumptions about
the initial conditions to be discussed later.

Note that we use Qm in place of »Qm and om in place of

2 2 U Y
Q\Awnmv HnddpmmmovwoswowmmmmowmvamMﬁMos.

Note that if the original model contains an intercept term, the
conditional MLE can only provide a consistent estimate of ¢ sub-
tracting the intercept. Neither can the conditional MLE distinguish

2 s
A and o . The unconditional MLE can distinguish the intercept, c,

A and Qm.

In Table 1, the MLE for ¥; random with different means should

0
be interpreted as the interior solution. See Section 5.
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