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THE EFFECT OF AND A TEST FOR MISSPECIFICATION IN THE
CENSORED-NORMAL MODEL

Forrest D. Nelson

It is well-known that ordinary least-squares will produce
inconsistent estimates of the regression parameters if the dependent
variable is censored or truncated. Maximum likelihood estimation with
a normality assumption on Tobit and other limited dependent variable
models is being employed with increasing frequency to avoid this
inconsistency. It is not so commonly acknowledged, however, that
such estimates lack HOWCmn:mmmm. The assumptions required of these
models are quite strong and any violation, such as heteroscedasticity
or nonnormality, may result in an asymptotic bias as severe as in the
naive OLS formulations. But to recognize the potential inconsistency
in the face of misspecification without a test for and solution to
such misspecification is of little use.

The purpose of this paper is to examine the nature of the
inconsistency and to suggest a general test for misspecification.
Section I considers the simple nonregression case of a censored
variable. Likelihood equations for the location and scale parameters
are obtained and simplified to show that they involve three sample
statistics. In section II the general problem of inconsistency

resulting from misspecification is then made clear, with the example

of heteroscedasticity used to demonstrate the problem. A specification
test following Hausman [1978] is then derived in section III for the
general alternative hypothesis of no misspecification. These first
three sections treat the nonregression case for ease of exposition,

but the results are readily generalized to a regression model. Section
IV contains a derivation of the specification test for the regression

formulation. The results are summarized in section V.



I. THE MODEL AND MOM AND ML ESTIMATORS
We consider the case of a censored-normal variate y defined

by the distribution function

Py = o(5H)  for y=o

=0 for y<O

where ®(a) is the unit normal c.d.f.,

a ©
¥(a) u\e?x: "\\wlﬂ mi‘w%v%.

=4}
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The first four moments of y can be written as:
- - B L
E = E(y; W, 0) = terv + oiov (1.1)
=550 = We(g)+ o eff) +uoe(g)
E, = E(3 30,0 = eAmv+aqu+tqem (1.2)
3 2
E(y 3 u,0) = :mn + 20 mH (1.3)
EGYsm, 00 = (8 + 307K, + 2u0’E, (1.4)

The likelihood function for a random sample (y,,...,¥,) =¥
1 N

is
L(u, 05 y) = (1.5)
where eH = ﬁw_ww = 0} and em = mw_%w > 0}. Define the variable vy
as v, =1if y, » 0, v, = 0 if y; = 0. Then the log likelihood may
i i

be written as

N
= - -a(¥ 2
logL = C + Hmﬁ v,;) log [1 erv_ - v, Homo..wéwcmlb /6%}. (1.6)

Differentiation of (1.6) w.r.t. u and ¢ yields

(1 - ) -
dlogl _ WAC v (8 . <|HAvw :v
u .o _alB
i=1 c 1 iov o\ o (1.7)
N (1-v,) eAm. v v - 2
dlogl _ 7y i u ov -.W+IH.A§ u (1.8
90 i=1 o} ow:eAWv o g o
5]
The likelihood equations are obtained by setting (1.7) and (1.8) to
zero and replacing Y and ¢ by m and G. Divide those 1likelihood
equations by N and rearrange terms to obtain:
ip o+ 6200 qop - w (1.9)
1-9(/o)
22p 4 6%p - 62O 4 _py - M - 2um, (1.10)
~ A 2 1
1-4(u/o)
where m"uﬁm<HV\z is the proportion of non-censored observations,
KH = AM%MV\Z = AM<H%Hv\z is the sample mean, and ZN = Amwwv\z =
Am<wwwv\z is the second sample moment. Finally, define m = o(U/5)
and m = eam\mv' and subtract twice u times equation (1.9) from (1.10)
to obtain the estimating mnzmmwonmum
ip + 6o @-p = M (1.11)
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%p + %p + 16— q@-p) = M (1.12)

~ ~
These equations are of course nonlinear in U and 0 and require

numerical procedures for solutionm.

Second derivatives of the log likelihood divided by N are

given by
wNHNzHomr -1la b
H(u, 03 M), My, P) = —— ) = dT L
mAavm@qv o
wvhere

b = Hllﬁla P+ o? -E)) - 2201 - W)

(1- 3
¢ = .Hmmlur: PP+ o? ~E)] + P - 3L My - 2um, + By
(1-9) o

where mH and mN are the first and second moments defined by equations

(1.1) and (1.2) and ¢ and ¢ are both evaluated at u/o. The Information

matrix is the negative of the expectation of H and can be written as
N
I(p, o) 2 “ e

where

- 16
d = 0-5 7o W-Ep
= H|'%.| 2 Nl
e = Qm Hleﬁq + u mN_

= Sl e ¢ 2,2
£ = 20 -5E20500" +u°-E,]
[s)
The inverse of I is the covariance matrix for Ammv.. It may be
estimated by xmAm.mwzH.zN.wle or, perhaps better, by ~nm.mv|

A proof of the comnsistency, asymptotic normality and
asymptotic efficiency (i.e. that >0Amv mv IHV is provided by
Amemiya [1973] for the more general case of a regression model
formulation. Inspection of the solution equations (1.11) and (1.12)
reveals the nature of the consistency. The i.i.d. censored normal

assumption implies that P, M, and ZM will converge to ®(u/o),

1 By

and mN respectively, so that in the limit solution of equations
(1.11) and (1.12) requires l=u and G=o0.

An alternative estimator is provided by the method of
moments. After replacing E(y) and mA%NV on the left side of equations
(1.1) and (1.2) by the first and second sample moments, ZH and ZN.
respectively and substituting |i and & for u and 0 on the right,
numerical procedures can be used to obtain the nonlinear solutions.
Existence of the second and third moments guarantees strong
convergence of the first two sample moments, so that the MOM esti-
mators U and O will be consistent. They lack asymptotic efficiency,

however, and have no computational advantage over the preferred

maximum likelihood estimates. Comparison of equations (1.11) and



(1.12) with (1.1) and (1.2) reveal the source of the efficiency gain
of the MLE estimators m and m over the MOM estimators ji and G. The
former employ one additional piece of information from the sample,
namely the proportion of noncensored observatioms, P.

Note that the normality assumption imposes a nonlinear
dependency among ®(u/o), MH and mww knowledge of any two allows
solution for the third. This restriction suggests a modification

to the MOM estimator which has distinct computational advantages.

Solution of

P = o(Yy) (1.15)

for w provides a consistent estimate of y = u/o. Substitution of Y

into either

M, = S¥P +50 ) (1.16)
or
zNumNm~w+mNm+ 3o, (1.17)

as obtained from equations (1.1) and (1.2) respectively yields O
and, in turn, m“"« .m without the need for iterative solution
procedures. Finally, the two alternative estimators obtainable in
this fashion might both be computed and combined, say as a weighted
average, to achieve some gain in asymptotic efficiency.

It may be the case that parameters of interest are not the
location and scale parameters U and 0 but rather some sample moment (s)

or the probability of a noncensored observation. In this case the

sample moments themselves are the MOM estimates of the population

moments and P is comsistent for ¢(u/o). But they lack asymptotic

~

efficiency relative to the maximum likelihood estimates mH =
ANA A 2 A~ A a A A

E(y; U, 0), E, = E(y"; i, 0), and $=90(u/0). Again the gain in

efficiency arises from use of more sample information and implicit

recognition of the dependency among those three parameters.



ITI. ML ESTIMATES UNDER MISSPECIFICATION

The i.i.d. censored normal assumptions are sufficient for
the asymptotic properties of the estimators discussed above. If
any of those assumptions are violated, that is if the model is
misspecified, the properties are no longer guaranteed. As an
example, we examine in this section the consequences of a violation
of the identically distributed agssumption.

Suppose that the random sample is drawn from two distinct
censored-normal populations with common location parameters | but
different scale parameters QH and Oy We might ask whether ignorance

of such sampling affects the consistency of the maximum likelihood

estimates m. m mw and m. (Consistency of m is of course a meaning-

1°
less question in this case.) As will be shown below, the answer is
yes.

Let T and r, be the (fixed) proportions of observations
in the sample from each of the two populations ANH¢.HN = 1). Esti-

mates m or ¢ from the misspecified homoscedastic model will be

solutions, in the limit, to the two equations

~ >IIMI. _ _
tAHHeH + nNeNV + qumﬁ HHeH ﬂmemv

= tﬁwwew + nmemv + ﬁHoHeH + r,0,0, (2,1)

Ny ~ A w _ _
(W +o0o VAnHeH+ﬂNeNV + tQHI@AH nHeH Hwemv

2 2 2 2
=l +owvew+tayez+$:t +owvew+che~_. (2.2)
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where eH = eAt\oHv and ew = eAt\oHv. These equations are obtained
from equations (1.11) and (1.12) by taking the sample statistics to
their probability limits. In general, D = |y is not a solution so
that m is not consistent.

No closed form expression for the bias is obtainable but

it can be computed numerically for specified values of yu, QH, QN.

ry and T,. Table 1 below contains the results of such computations

for a number of values of U and varying degress of heteroscedasticity,

For purposes of this illustration, the sampling ratio was fixed at

= - 2 2 _
r, =1, = 1/2 and o, and o, were chosen so that r, 0] + r,0 1.

Probability limits for m and G were computed for values of y ranging

3 =

from -2 to +4 and for A = QP\QN ranging 1.5 to 4. These limits were
then employed to compute mw. mN. and & as defined in the previous
section. The table contains the asymptotic bias for the maximum

likelihood estimators of each of the four parameters.

[Table 1 about here]

The pattern of the bias is not particularly easy to
summarize. _m.ut_mmnm small as p grows large since the degree of
censoring diminishes. It seems to increase monotonically with A,
the degree of heteroscedasticity, be negative for large negative U
and positive for large positive p. The most serious bias is at
negative P and there are values for p which yield zero bias.

The asymptotic bias in w is translated into biased esti-

mates of ¢, E. and E,, but the pattern is quite different. The

1 2’

~
error in these statistics appears quite small, relative to (u=-§),



lable 1

ASYMPTOTIC BIAS IN ML ESTIMATORS UNDER HETEROSCEDASTIC MISSPECIFICATION
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*The numerical calculation of the asymptotic bias assumed equal sampling from two populations with the same

cl and 02 were chosen so

location parameter ), distinct scale parameters O

1 and Oys and censoring at y=0.

2 2
1 + 02)/2 = 1.

that 01/02 = X and (O
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as one might expect -- ML produces estimates D and G which in some

sense best fit {&, £, and mww to {P, M me while constraining the

1 1’

former to satisfy the implicit dependency. Curiously enough, the
maximum error in, for example, Am.uev appears to occur very near
the point (value of p) where fl = 4 at each value of A.

As noted above, heteroscedasticity is only one example of
a misspecification which will lead to inconsistent maximum likelihood
estimates —— it is used here only to illustrate the problem.
Departure from normality, contamination, sampling from heterogeneous

1

populations and perhaps even some nonrandom sampling,” may all lead

to similar failures. This is, by and large, in contrast with esti-
mation in noncensored normal samples. In that case, ML estimates of
the location and scale parameters are independent and any misspeci-
fication which, for example, leaves the expectation of the sample,
or more correctly the probability limit of the sample mean,
unaffected will not cause inconsistency of the ML estimate of the
location parameter or, identically the first population moment. Such
robustness does not hold for the censored normal case of concern here.
Any misspecification which effects the probability limit of any of

these sample statistics, P, M. or zN. will generate inconsistent

1

estimates. If those probability limits coincide with some member

of the family of censored normals, then ®, mH and mm will be

consistent even though m and/or G are not. If no censored normal,
i.e. no pair of values, o > 0 and u, would generate those probability

limits as values of ®(u/0), E(y;u, o) and mAwmwr: o) respectively,
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then, in general, none of the five MLEs considered above will be
consistent. The latter was exemplified by the heteroscedastic example.
Finally it should be noted that the MOM estimators may in

some limited sense be more robust. That is, so long as P, M., and

1°
zm converge, those statistics are consistent for the population
parameters to which they converge. MOM estimators D and G will not
generally be consistent for anything of interest, on the other hand,

since the functional relationships employed for their derivation

will not, in general, be correct under misspecification.

14

III. AN ASYMPTOTIC TEST AGAINST MISSPECIFICATION

The sensitivity of MLEs to specification error motivates a
search for some reasonably general test. We suggest in this section
an asymptotic specification test derived from the work of Hausman

[1978]. Hausman's procedure may be outlined as follows. Let mo

and @H be two estimators of the parameter vector 8§ such that under

the null hypothesis, mo. they are both consistent and asymptotically

~

normal with asymptotic variances <o and <H. Further, let mo be

asymptotically efficient so that <ou ~«H and <H..<o is nonnegative

definite. Then, as Hausman shows, q = mw.:oo is asymptotically

normal with variance <H..<o. Letting @H and @o be consistent for <H
~ ~ |H

and <o respectively, he constructs the statistic m = zn.A<H.|<ov a

which, he argues, is asymptotically XMWV under mo. where K is the

dimension of 6. Consider now an alternative hypothesis, mwv such

~

that, under mw. wwbamo # 0 but Plim oH = 0. Under these conditions
q does not converge to zero and m is not asymptotically xw. so that
m serves as a test statistic. Hausman proceeds to outline conditons
under which m will follow a noncentral XN so that the power of the
test may be examined.

The apparent attractions of Hausman's asymptotic test
are the ease with which the variance of q may be obtained and the
generality of the procedure. As regards the latter, the test is,
simultaneously, against all alternatives under which ®H is consistent
but mo inconsistent, though of course the power of the test will

vary with mm. Thus a particular alternative hypothesis need not be

fully specified -- all that is needed is an asymptotically efficient
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estimator and a second consistent but inefficient estimator which
exhibits a fair degree of robustness.

The test appears particularly apt for the censored normal
problem of sections I and II above. There we have a maximum likelihood
estimator with all the desired asymptotic properties under the
maintained assumptions but which may exhibit severe bias under a
variety of seemingly innocuous misspecifications. We will, in what
follows, adapt Hausman's test to this case.

Regardless of the parameters of interest, maximum likelihood
estimation yields the estimators il and G as either an intermediate or
a final step. This vector (ji, 6)' exhibits the necessary properties
of the efficient estimator mo, but there does not exist a robust

A

estimator of 6 = (u, 0)' to serve the role of § For example, the

1
MOM estimator, (i, §)', noted in section I is subject to the same

- . e . 1 .
sensitivity to misspecification as is the MLE. The first two sample

moments, M, and ZN. on the other hand are, under very general condi-

1

tions, consistent for the first two population moments of whatever

A

population is being sampled. And the MLE for these moments, MH =

E(y; i, mv and E_ = mﬁwmmm. 0), as obtained from the invariance

2
property, serves as the efficient counterpart. Furthermore we should
note that the sample proportion of noncensored observations, P, is,
again under general conditions and random sampling, consistent for
the corresponding population fraction. It's efficient counterpart

is w = enw\mv. We thus have three population parameters for which
both efficient and robust estimators are readily available.

One might reason intuitively that since the censored normal

distribution has only two parameters, the test statistic can and

16

should be constructed from only two of the three available estimator
pairs --use of all three would surely result in a singularity in the
variance-covariance matrix for q. As will be shown directly, the

problem is even more severe. Define 95 9, and ou as

q = P - o/0) (3.1
U R A
9, = M} - E(y;4,0) = ——=(P-9) (3.2)
1-9
9 . mw + 62 - mm .
4 = ZN - E(y ;H,0) = — (r-9) (3.3)

where the equalities in 3.2 and 3.3 are obtained after substitution
from equations (1.1) and (1.11), and (1.2) and (1.12) respectively.

Consider the expansions of q, and 4y about | and 0. We obtain for

92
u-E -6 ~ U-E, 5 _ & .
Gy = —=2@-0) - 222(E -p) + —2222 Go)
1-9 1-9¢ 1-9¢ 1-9
u-E 6 .~ _¢ A
LG+ B2 G0 + B2y 4 g,
1-% 1-9 1-¢

where ww includes all second and higher order terms. Note that wm

o - N

and all terms like (P - 9) .Amw.umwv are of smaller order than N 1/
since P, mw. m and & are all consistent under mo. Thus q, may be
simplified to

H~E

A -1/2
q, = ——2@-% + o /2y (3.4)
1-9



17 18

Similarly for q, ve obtain AN(O, $(1 -®)), so that the asymptotic variance of P is V(P) = &(1 - ).

Y ~

The asmyptotic distribution of ¢ and, for completeness, E

2 2 2 2 1
t+Q|mm t+0|mN A, X
a, = ® - 9) - :|||01xlt|l||Amm..mNVAm..ev and mm is obtained as follows. Expand each of the three terms in a
1-9 1-9 ‘
first-order Taylor series about (y, 0). (Consistency guarantees that
2 2 2 2 higher order terms are OAZ|H\NV so they may be neglected). We obtain
ue 4ot - By | u e+ ot - E,
-—=(%-9) + 5 (®-0)(P-9)
1-9 1-9 ~ A 1 ~
¢ -0 (U-wos - G-0)¢ (3.6)
g
) E. -E ~ (-wé + (5-0)0 (3.7)
2y o~ - 20 _ % 1 1
+ G- wE-0 + 755G -0 @-9) + R,
E, - E, (U-p) 2+ (o +0¢) + (G-0)+2+00 (3.8)
Again, consistency of mmv P, @. m and 0 allows simplification to
Each of the three statistics times ¥ N will, in the limit, follow
tN + QN - B \N . N . . . .
g, = 2 (e |mv + OAZIH ). (3.5) the same asymptotic normal distribution as the respective linear
3
1-9 . . ~ ~
combination of \ﬂﬁtltv and VN (G-0). That is,
In the limit, then, q, and nw are constant multiples of q; = Q|®v
¢ -9
so that the asymptotic covariance matrix V(q), where q = EH. Gys -1
/N E -E ~ AN(0,A'T &)
nuv ', must have rank one.
The Hausman-article failed to acknowledge the possibility mwl mm

that ﬁmwv - <A®ov might sometimes or always be singular in a
where I is the information matrix defined in (1.14) and A is given

particular application. But the resolution of such a difficulty is

by
obvious -— base the test on some subset of the estimator pairs which
1 2+E
is not perfectly colinear. In the case at hand we will choose Qe ¢ 1
~ A=
the estimator pair (&, P) on computational grounds, but in fact it -1 te 0 2o (3.9)
60 :

makes little difference which of the three we choose.

The next step is to obtain the asymptotic variance of In particular the asymptotic variance of ¢ is given by

~

P-&. Rather than compute it directly, we will obtain it, as did 1 .2 i 9 R 1 )
VE) = GOTVM) + G EN V() - 25)50" Cov (B, 0). (3.10)

e}

Hausman, from V(P) |<Amv. P is of course binomial and vV N(P -0) ~
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In principle, any consistent estimators of V(P) and <Amv
may be employed in construction of the test statistic. The

following variance estimator is guaranteed to be positive, and

. . : 2
experimentation suggests that it serves the purpose well:

~ ~

@-8) =86.-a-9 - Hw

o>

!
®11 (u,0)]

§
Q|
[e} =

Q|-

(3.11)

Qfp=
[oP: =3
<>

We have, then, the following result which defines the
asymptotic specification test. Under the maintained hypothesis of a

sample from an i.i.d. censored-normal propulation with location

and scale parameters L and 0, the statistic
/ V(P -0) (3.12)

follows, asymptotically, a XN distribution with one degree of
freedom.

The power characteristics of the test under various
alternative hypotheses are not derived here. But we do offer, as
evidence on the efficacy of the test, the following results from
some simple simulation experiments. Six experiments were run under
varying conditions with respect to sample size, location parameters
and degree of misspecification. In the first of the experiments
the model was correctly specified, while the next five involved a
heteroscedastic misspecification as examined in section II. In
each experiment, two samples of size N/2 were drawn randomly from

a N(u, va distributions, the two subsamples were combined and

20

censored at zero, ML estimates m and m were obtained under the i.i.d.
censored-normal assumption, and the statistic m was computed. This
process was repeated fifty times (100 in the correctly specified
experiment) to obtain fifty (100) observations on the statistic
m under the prespecified structure. The six experiments differed
in sample size N (100, 250, 500 or 1000), and the location parameter
u (-.5 or +.5). 1In all five misspecified experiments, the two
population scale parameters were fixed at QH = .6325 and g, = 1.2649,
corresponding to A = QH\QN = 2 and AQW + QWv\m =1,

Table 2 summarizes the results of those six experiments.
For each experiment the table contains the nine decile values for
the statistic; its mean and variance; the proportion of the sample
exceeding critical XM values for tests with o = .01, .05,

.10 and .25; and, for comparison with table 1, computed values

~ -

for & - P and w.-t. A column containing relevant parameters for

the XMHV distribution is included as a benchmark.

[Table 2 about here]
" suggest that with no

. s . A . 2 . . .
misspecification the statistic m fits the xAHv distribution

The results from experiment :mo
reasonably well even for the moderate sample size of 100. With

large samples the test seems quite effective at detecting the employed
degree of misspecification -- the null hypothesis is rejected at

o = .05 in 48 of the 50 samples in experiment ::w: with N = 1000

and 23 of the 50 samples in experiment :mu: with N = 500. For

smaller sample sizes the results are less encouraging -- rejection
rates at o = .05 are 6/50 and 3/50 in the two misspecified

experiments with N = 100 and 12/50 in the one with N = 250.



Table 2

PERFORMANCE OF TEST STATISTIC m = N(P - 8)2/9(P - 8) IN SIX SAMPLING EXPERIMENTS

Experiment

X

Experiment Structure

A= 01/02

+.5

100 250 500 100 1000

100

50 50 50

50

50

100

Number of Samples

Sampling Statistics

18.34

1.56
7.41
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IV. THE EXTENSION TO A REGRESSION MODEL

Section III introduced a specification test for the case
of an i.i.d. censored-normal random variate. We sketch here the
extension to a regression model.

Let xw be a k—-element vector of exogenous variables, B be
a k-element vector of unknown regression parameters, and specify

eA%H IQ m_xwv

for y,

>0
iz

F(y;)
=0 for Y, <0 (4.1)

This is of course the tobit model more commonly described by

if RHS > O

«
t

T
B Nw + ug

=0 otherwise

2

u,

2
i IN(0, 07) .

The likelihood for a random sample of size N is given by equation
1.5 with u replaced by m.xw.

Define X as the NxK matrix containing xw in the ith row;
Y as the NX1 vector with typical element %Hm W as the NXN diagonal

matrix containing the indicator variable, w,,

i 1 if vy >0, 0

otherwise, along the diagonal; ¢ be the Nx1 vector with eﬁm.xw\ov
at element i; and M be the NxN diagonal matrix with eﬁm.xW\Qv at

position ii. When ¢ and M are evaluated at the MLEs B and m. they

- A
will be indicated as ¢ and 2 respectively.

Otherwise they will

be evaluated at the true values, mo and Qo.

Now the likelihood equations may be written, after simpli-

fication, as
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-1

~

XWX+ SX'[1-WI[I- 8] § = X'¥ (4.2)
and

A~ IH>
B'X'WXB + OPTr[W] + 0B' X' [I- WI[I-39] o =YY (4.3)

So long as the y;s are random with distribution as specified in 4.1

and the sequence xu is such that

stw.x.x = Q pos. def.,
N>

solution of 4.2 and 4.3 will yield estimates which are consistent,
asymptotically normal, and asymptotically efficient. That is,

- ~ AN [0, LinT(8,0) T
g zlvoo

/N

Q> m>
™

with I defined as

X'[c +3]X X'[¢ - CB]
18,0) = 5 &

o [ - CB]'X B'CB - B'¢ + 2Tr[J] (4.4)

where C is an NXN diagonal matrix with typical diagonal element

B'%,\?
CH e e
[¢] B NH eAm NMV

c,, = - =3 S
B'X.
g

and B is an N element vector with typical element vw = Am.NHv\Q.

Violation of any of the distributional assumptions will
in general lead to an inconsistent estimator. We seek then a
general test for those assumptions. The test we propose is again
the Hausman test, based this time on estimates of mﬁw%.%v. Under
1

fairly general conditions on xw and the distribution of Yi» muﬁ Y
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will be consistent for its expectation. Under the maintained
assumptions for the censored normal regression model, it will be
consistent and asymptotically normal though inefficient. Taking xw

as fixed, the first two moments of y; are given by

B'X;\ B'X;
. = ' M
E(y;; 8,0) = B'X; 9| — \+ ob\—5 (4.5)
and
R'X. B'X, B'X,
2. e 22 i 2 i , i ,
E(y;; B, 0) = (B'X))" o\ — + 0ol — +B'X; ool — v (4.6)
Thus
= W 1] . "m.l LFY 1]
mxwumﬁzx Y; B, 0) zﬁx 2XB + oX'9] 4.7)
and the variance of wmx.< is
= 1“_.1 1y . H'W '
<H;<Azx Y;B0) R (4.8)

where <% is an NxX N diagonal matrix with diagonal elements mA%Mv -

mﬁwwvm as defined in (4.5) and (4.6). Thus,

/N XY - BE,.) ~ AN(O, lim V.).
N XY
n-—+o

1

1
mx<& is the consistent but inefficient estimator we require for the test

statistic and its variance is given by expression (4.8).
The corresponding efficient estimator is the maximum likeli-

~
hood estimator for E__. Define the statistic mx as expression 4.7

XY Y

~

evaluated at the MLEs B and m. Its variance is obtained by expanding

it about B and o,

> -w.;> _> L\M
By = By = glX'2X(B-B) + X'$(0-0)] +o(N '7) 4.9
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The left side of (4.9) will thus have the same asymptotic distribution
as the indicated linear combination of AW| B) and Am..qv. That is,

/N (Egy — Egy) ~ AN(O, 1im V)

N>«

where <o is defined by
X'9X

[X'FX X'¢)1(B, o) " (4.10)
9'X

H
v, ==
072

Combining these results, we obtain the desired test statistic,

yldxry - B, 4.11)

m=NEX'Y-E )M, -V
N XY 1 N XY

0
are obtained by evaluation of (4.8) and (4.10)

0
respectively at the MLEs w and m.m Under the maintained assumptions,

where QH and ¢

2 .
this statistic will follow, asymptotically, a xﬁwv distribution.
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V. SUMMARY

The Tobit model and maximum likelihood estimation of it are
being employed with increasing frequency in economics and other areas.
The assumptions of that model are quite strong, and more attention
must be paid to the effect of violating those assumptions to avoid
erroneous inferences.

We have argued above that MLEs for this model lack robust-
ness against misspecification. This was illustrated in section II
for the nonregression case with numerical results on the asymptotic
bias arising from heteroscedasticity. Similar results will hold for
other violations of the assumptions and extend to the regression case
as well,

Given this sensitivity, some general test against misspeci-
fication would be most helpful. Such a test was developed along the
lines of the asymptotic test proposed by Hausman. That test requires
two estimators: One exhibiting consistency and asymptotic efficiency
under the null hypothesis and inconsistency under misspecification,
and the other exhibiting consistency under the alternative as well
as the null hypothesis. The natural estimators to employ for this
test would be those for the location and scale parameters. But, for
the types of misspecification of concern here, those parameters are
not necessarily the same under the maintained and alternative models.
Thus we suggest using estimators for population moments. We further
demonstrate a singularity in the asymptotic covariance matrix when
the test is applied to a pair of estimators whose dimension equals

the total number of unknown parameters. The test must therefore be
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based on some reduced set of estimators.

The suggested test statistics are given by expressions
(3.12) and (4.11) for the nonregression and regression cases
respectively. Consistent estimators of the required asymptotic
covariance matrices are suggested which will be positive definite
even with finite samples. The performance of the test statistic in
the nonregression case was examined by Monte-Carlo methods at the
end of section III. The results suggested that the test statistic
fits its asymptotic xN distribution reasonably well even for moderate
sample sizes and was quite effective in detecting a heteroscedastic
misspecification in samples greater than 500. The test appears to

exhibit rather weak power, however, with smaller sample sizes.
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FOOTNOTES

Introduction
1. Hausman and Wise [1978] have noted inconsistencies arising
from misspecification in probit-logit models. The effect
of heteroscedasticity has been examined by Maddala and
Nelson [1975] and by Maddala [1979] in the case of the tobit

model and by Hurd [1977] in a truncated variable model.

Section I
1. Amemiya [19 ] presents the moments from a truncated normal

from which these are readily derived.

2. Cohen [1950] presented similar equations for a variety of
censoring and truncation schemes. He proposed estimation

of £ = (u~T1)/0 where T is the (known) censoring threshold.

Section II

1. The independence assumption is perhaps the least crucial.
Under first-order serial correlation, for example, the
three relevant sample statistics will converge to the
corresponding population parameters, guaranteeing con-

sistency.

Section ITI

1. Hauseman's condition that @H be consistent under mw may

be stronger than necessary —- his test might serve well,
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0 under mm. In the present

case, that would mean the test could be based on Amu mv

so long as Plim \o,“_.% Plim

and (1, 3). We have not investigated that possibility
since (il, §) are computationally more difficult than other

statistics we can use.

2. Use of P(1-P) in place of m .AH.lmv and/or |m|H Mz

-1 . :
place of I~ will yield the same asymptotic results but
produce the unesthetic small sample result of occasional

negative variance estimates.

SECTION IV
1. As before, statistics for E(Y'Y) and HH&MV might be included
as well but would involve a singularity in the asymptotic
var-cov matrix for the difference vector. Of the K+2

possible statistic pairs, we must choose only k.

2. Again there exist other consistent estimators for <H and <o.
use of lmlH in (4.9) for example, but they will not
guarantee a positive definite variance estimate for the

difference.

30

REFERENCES

AMEMIYA, Takeshi, "Regression Analysis when the Dependent Variable
is Truncated Normal," Econometrica 41 (1973): 997-1016.

COHEN, A.C., "Estimating the Mean and Variance of Normal Populations

from Singly Truncated and Doubly Truncated Samples," Annals of

Mathematical Statistics 21 (1950): 557-569.

HAUSMAN, J.A., "Specification Tests in Econometrics,”

46 (1978): 1251-1272,

Econometrica

HAUSMAN, J.A. and D. A. Wise, "A Conditional Probit Model for
Qualitative Choice," Econometrica 46 (1978): 403-426.

HURD, M., "Estimation in Truncated Samples when there is Hetero-
scedasticity," Economics Series Working Paper No. 65, Stanford

University, October 1977.

MADDALA, G.S., "Specification Errors in Limited Dependent Variable
Models," Discussion Paper, University of Florida, May 1979.

MADDALA, G.S. and F. D. Nelson, 'Specification Errors in Limited
Dependent Variable Models," NBER Working Paper No. 96, July 1975.



