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“What surprised me was how bad they played.”

—Beth Harmon, The Queen’s Gambit

1 Introduction

In many situations, people interact with one another over time, in a multi-stage environ-
ment, such as playing chess or bargaining with alternating offers. The standard approach to
studying these situations is to model them as extensive form games where equilibrium theory
is applied, usually with refinements such as subgame perfection or other notions of sequen-
tial rationality. However, sequential rationality is a strong empirical assumption, perhaps
implausibly strong, since behavior in many laboratory experiments systematically violates
it (see, for example, Camerer (2003)).

In response to these anomalous findings, researchers have proposed a variety of models
that relax the full rationality assumptions embodied in standard equilibrium concepts, such
as Nash equilibrium. The focus of this paper is the “level-k” family of models, which assume
a hierarchical structure of strategic sophistication among the players, where level-k sophis-
ticated players can think k strategic steps and believe everyone else is less sophisticated in
the sense that they think fewer than k strategic steps. The standard level-k model assumes
level-k players believe all other players are level-(k -1) (see Nagel (1995)).

However, applications of the level-k approach have been limited almost exclusively to the
analysis of games in strategic form, where all players make their moves simultaneously, and
the theory has not been formally developed for the analysis of general games in extensive
form.1 To apply the standard level-k model to extensive form games, one would assume that
at each decision node, a level-k player will choose an action that maximizes the continuation
value of the game, assuming all other players are level-(k-1) players in the continuation game.
As a result, each player’s belief about other players’ level is fixed at the beginning. However,
as the game proceeds, this fixed belief can lead to a logical conundrum, as a level-k player
can be “surprised” by an opponent’s previous move that is not consistent with the strategy
of a level-(k -1) player.

If one closely examines this problem, the incompatibility derives from two sources that
imply players cannot learn: (1) each level of player’s prior belief about the other players’
levels is degenerate, i.e., a singleton; and (2) players ignore the information contained in the
history of the game. To solve both of these problems at the same time, as an alternative to the
standard level-k approach, we use the cognitive hierarchy (CH) version of level-k, as proposed
by Camerer et al. (2004), and extend it to games in extensive form. Like the standard level-
k model, the CH framework posits that players are heterogeneous with respect to levels
of strategic sophistication and believe that other players are less sophisticated. However,
their beliefs are not degenerate. A level-k player believes all other players have lower levels
distributed anywhere from level 0 to k -1.

Furthermore, the CH framework imposes a partial consistency requirement that ties the
players’ prior beliefs on the level-type space to the true underlying distribution of levels.

1Some special cases have been studied, which we discuss below.
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Specifically, a level-k player’s beliefs are specified as the truncated true distribution of levels,
conditional on levels ranging from 0 to k -1, i.e., players have “truncated rational expecta-
tions.” This specification has the important added feature, relative to the standard level-k
model, that more sophisticated players also have beliefs that are closer to the true distribu-
tion of levels, and very high level types have approximate rational expectations about the
behavior of the other players. Thus, the CH approach blends aspects of purely behavioral
models and equilibrium theory.

In our extension of CH to games in extensive form, a player’s prior beliefs over lower
levels are updated as the history of play in the game unfolds, revealing information about
the distribution of other players’ levels of sophistication. These learning effects can be quite
substantial as we illustrate later in the paper. Hence, the main contribution of this paper is
to propose a new CH framework for the general analysis of games in extensive form and, in
doing so, provide new insights beyond those offered by the original CH model.

Our first result establishes that every player will update their belief about each of the
opponent’s levels independently (Proposition 1). Second, we show that when the history of
play in the game unfolds, players become more certain about the opponents’ levels of sophis-
tication, in a specific way. Formally, the support of their beliefs shrinks as the history gets
longer (Proposition 2). Third, we show that the probability of paths with strictly dominated
strategies being realized converges to zero as the distribution of levels increases (Proposition
3). Nonetheless, solution concepts based on iterated dominance, such as forward induction,
can be violated even at the limit when the average level of sophistication converges to infinity.
Relatedly, even though the players fully exploit the information from the history, it is not
guaranteed that high-level players will use strategies that are consistent with the subgame
perfect equilibrium of the game. In fact, behavior of the most sophisticated players can be
inconsistent with backward induction, even at the limit when the level of sophistication of
all players is arbitrarily high.

Although backward induction is a cornerstone principle of game theory, laboratory ex-
periments reveal systematic behavioral deviations even in very simple games of perfect in-
formation. One prominent class of games where observed behavior is grossly inconsistent
with backward induction is the increasing-pie “centipede game.” This is an alternating move
two-person game, where, in turn, each player can either “take” the larger of two pieces of
the current pie, which terminates the game and leaves the other player with the smaller
piece of the current pie, or “pass,” which increases the size of the pie and allows the other
player to take or pass. The game continues for a predetermined maximum number of turns.
The subgame perfect equilibrium of this game of perfect information is solved by backward
induction. Payoffs are such that it is optimal to take at the last stage, and both players have
an optimal strategy to take if they expect the opponent will take at the next stage. Thus,
backward induction implies that the game should end immediately.2

Starting with McKelvey and Palfrey (1992), several laboratory and field experiments

2Rosenthal (1981) introduced the centipede game to demonstrate how backward induction can be chal-
lenging and implausible to hold in some environments due to logical issues about updating off-path beliefs.
His example is a ten-node game with a linearly increasing pie. Later on a shorter variant with an exponen-
tially increasing pie, called “share or quit,” is studied by Megiddo (1986) and Aumann (1988). The name
centipede was coined by Binmore (1987), and named for a 100-node variant.
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have reported experimental data from centipede games in a range of environments, such
as different lengths of the game (see McKelvey and Palfrey (1992) and Fey et al. (1996)),
different subject pools (see Palacios-Huerta and Volij (2009), Levitt et al. (2011), and Li
et al. (2021)), different payoff configurations (see Garćıa-Pola et al. (2020b), Fey et al. (1996),
Zauner (1999), Kawagoe and Takizawa (2012), and Healy (2017)) and different experimental
methods (Nagel and Tang (1998), Bornstein et al. (2004) , Garćıa-Pola et al. (2020a), and
Rapoport et al. (2003)). Although standard game theory predicts the game should end in
the first stage, such behavior is rarely observed. To this end, we study a family of centipede
games with a linearly increasing pie where our dynamic CH theory makes clear predictions
about the evolution of beliefs as the game unfolds. Our particular interest in the analysis is
the finding that dynamic CH implies a representation effect that predicts specific violations
of strategic invariance. Consider the following two strategically equivalent extensive form
representations of the centipede game. In the first (the usual representation used in centipede
experiments), the game is played as an alternate move game: that is, first player 1 decides
to take or pass. If they take the game ends; if they pass, it is player 2’s turn to pass
or take, and so forth. In the second representation, first player 1 decides at which node
to take if the game gets that far, or always pass; the second player then makes the same
decision without observing the first player’s choice. We show that dynamic CH implies that
centipede games played according to the first extensive form representation of the game will
end earlier, with lower payoffs to the players, compared to the game played according to the
second (strategically equivalent) version, where each player independently chooses a stopping
strategy, without observing the choice of their opponent (Theorem 1).

Our theoretical analysis of the representation effect in centipede games shows how dy-
namic CH can provide new insights related to an unresolved debate in experimental method-
ology: whether or not the direct-response method is behaviorally equivalent to the strategy
method (see Brandts and Charness (2011)). Under the direct-response method of obtain-
ing behavioral data for a game, the game is played sequentially according to its extensive
form representation. Thus, each player can observe the actions taken by others in the pre-
vious subgames and update their beliefs about other players’ levels. In contrast, under the
strategy method, the game is played simultaneously according to the reduced normal form
of the game. Thus, players take actions in hypothetical situations without observing any
moves of the other players, so each player’s choices are guided solely by their prior beliefs.
Our dynamic CH model will generally predict different patterns of behavior and outcomes
under the direct response method despite the fact that the two methods are strategically
equivalent.

While the direct-response method is the most commonly used method to implement
centipede game experiments, there are a few exceptions. Nagel and Tang (1998) is the first
paper to report the results from a centipede game experiment conducted as a simultaneous
move game, the reduced normal form. In their 12-node centipede games, each player has
seven available strategies that correspond to an intended “take-node” or always passing, and
they make their decisions simultaneously. Pooling the data over many repetitions, they find
that only 0.5% of outcomes coincide with the equilibrium prediction, suggesting that the
non-equilibrium behavior in the centipede games cannot solely be attributed to the violation
of backward induction. However, as the authors remarked, the results may be confounded
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with the effect of reduced normal form: “...There might be substantial differences in behavior
in the extensive form game and in the normal form game...” (Nagel and Tang (1998), p. 357).
One of our contributions is to show that dynamic CH provides a theoretical rationale for the
existence of this representation effect.3

The paper is organized as follows. The related literature is discussed in the next section.
Section 3 sets up the model. Section 4 establishes properties of the belief-updating process
and explores the relationship between our model and subgame perfect equilibrium with
several examples. In Section 5, the representation effect is explored in a detailed analysis of
centipede games with a linearly increasing pie. We conclude in Section 6.

2 Related Literature

The idea of limited depth of reasoning in games of strategy has been proposed and stud-
ied by economists and game theorists for at least thirty years (see, for example, Binmore
(1987, 1988), Selten (1991, 1998), Aumann (1992), Stahl (1993), and Alaoui and Penta
(2016, 2018)). On the empirical side, Nagel (1995) conducts the first laboratory experiment
explicitly designed to study hierarchical reasoning in simultaneous move games, using the
“beauty contest” game. Each player chooses a number between 0 and 100. The winner is
the player whose choice is closest to the average of all the chosen numbers discounted by
a parameter p ∈ (0, 1). To analyze the data, Nagel (1995) assumes level-0 players choose
randomly. Level-1 players believe all other players are level-0 and best respond to them by
choosing 50p. Following the same logic, level-k players believe all other players are level-(k -1)
and best respond to them with 50pk.

This iterative definition of hierarchies has been applied to a range of different environ-
ments. For instance, Ho et al. (1998) also analyze the beauty contest game while Costa-
Gomes et al. (2001) and Crawford and Iriberri (2007a) consider the strategic levels in a vari-
ety of simultaneous move games. Costa-Gomes and Crawford (2006) study the “two-person
guessing game,” a variant of the beauty contest game. Finally, the level-k approach has also
been applied to games of incomplete information. Crawford and Iriberri (2007b) apply this
approach to reanalyze auction data, and Cai and Wang (2006) and Wang et al. (2010) use
the level-k model to organize empirical patterns in experimental sender-receiver games. All
these studies assume level-k players best respond to degenerate beliefs of level-(k -1) players.

This standard level-k model has been extended in a number of ways. One such approach
is that each level of player best responds to a mixture of all lower levels. Stahl and Wilson
(1995) are the first to construct and estimate a specific mixture model of bounded rationality
in games where each level of player best responds to a mixture between lower levels and
equilibrium players. Camerer et al. (2004) develop the CH framework, where level-k players
best respond to a mixture of the behavior of all lower level behavioral types from 0 to k -1. In
addition, players have correct beliefs about the relative proportions of these lower levels, so
it includes a consistency restriction on beliefs in the form of truncated rational expectations.

A second direction is to endogenize the strategic levels of players, using a cost benefit

3Such a representation effect is also a feature of QRE. See Goeree et al. (2016), pp. 67-72 and 80-85.
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approach. Alaoui and Penta (2016) develop a model of endogenous depth of reasoning,
where each player trades off the benefit of additional levels of sophistication against the
cost of doing so. Players can have different benefit and cost functions, depending on their
beliefs and strategic abilities, respectively. A model is developed for two-person games with
complete information and calibrated against experimental data. Alaoui et al. (2020) provide
some additional analysis and a laboratory experiment that further explores the implications
of this model.

Third, De Clippel et al. (2019) study the implications of the standard level-k approach to
mechanism design. They establish a form of the revelation principle for level-k implementa-
tion and obtain conditions on the implementability of social choice functions under a range
of assumptions about level-0 behavior.

Fourth, there have been several papers that model how an individual’s strategic level
evolves when the same game is repeated multiple times. The standard level-k model is
ideally suited to understanding how naive individuals behave when they encounter a game
for the first time. This is a limitation since, in most laboratory experiments in economics
and game theory, subjects play the same game with multiple repetitions, in order to gain
experience and to facilitate convergence to equilibrium behavior. It is also a limitation since
many games studied by economists and other social scientists are aimed at understanding
strategic interactions between highly experienced players (oligopoly, procurement auctions,
legislative bargaining, for example), where some convergence to equilibrium would be natural
to expect.

In this vein, Ho and Su (2013) and Ho et al. (2021) propose a modification of CH that
allows for learning across repeated plays of the same sequential game, in a different way
than in Stahl (1996), but in the same spirit. In their setting, an individual player repeatedly
plays the same game (such as the guessing game) and updates his or her beliefs about the
distribution of levels after observing past outcomes of earlier games, but holding fixed beliefs
during each play of the game. In addition to updating beliefs about other players’ levels,
a player also endogenously chooses a new level of strategic sophistication for themselves,
in the spirit of Stahl (1996), for the next iteration of the game. This is different from our
dynamic CH framework where each player updates their beliefs about the levels of other
players after each move within a single game. Moreover, because players are forward-looking
in dynamic CH, they are strategic learners—i.e., they correctly anticipate the evolution of
their posterior beliefs in later stages of the game—which leads to a much different learning
dynamic compared with naive adaptive learning models.

All of these extensions add significantly to the literature on level-k behavior for games in
strategic form, by allowing for a richer set of heterogenous beliefs, by incorporating cognitive
costs into the model, and by showing how the model can be used to address classic mechanism
design problems, but all of them are limited by a restriction to simultaneous move games. In
extensive form games, the timing structure is crucial, and beliefs evolve as the game unfolds
and players have an opportunity to adjust their beliefs in response to past actions, which
is the focus of this paper. Our dynamic CH provides an extension in this direction, under
the assumption that players are forward looking about the actions of their opponents in the
entire game tree. Rampal (2022) develops an alternative approach for multistage games of
perfect information. He models levels of sophistication by assuming that players have limited
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foresight in the sense of a rolling horizon; that is, players only look forward a fixed number
of stages. This creates a hierarchy of strategic sophistication that depends on the length of a
player’s rolling horizon. In addition, players are uncertain about their opponents’ foresight.
The baseline game of perfect information is then transformed into a game of incomplete
information, with specific assumptions about players’ beliefs about payoffs at non-terminal
nodes that correspond to the current limit of their horizon in the game.

At a more conceptual level, our dynamic generalization of CH is related to other behav-
ioral models in game theory. There is a connection between dynamic CH and misspecified
learning models (see, for example, Hauser and Bohren (2021)) in the sense that level-k players
wrongly believe all other players are less sophisticated. However, in contrast to categorical
types of players in misspecified learning models, dynamic CH provides added structure to
the set of types in a systematic way, such that higher-level types have a more accurate belief
about opponents’ rationality at the aggregate level.

In the context of social learning, application of our model to the investment game is
related to Eyster and Rabin (2010) and Bohren (2016) who model the updating process
when there exist some behavioral types of players in the population. Our model is also
related to the Agent Quantal Response Equilibrium (AQRE) (McKelvey and Palfrey, 1998),
where the updating process about opponents’ types is combined with stochastic choice, as
with the level-0 CH players. An important difference is that in QRE, players have fully
rational expectations.

3 The Model

This section formally develops the dynamic cognitive hierarchy model for extensive form
games. In section 3.1, we introduce notation for extensive form games. Next, we define
the dynamic CH updating process in section 3.2, specifying how players’ beliefs about other
players’ levels evolve from the history of play. This leads to a definition of the dynamic CH
solution of a game.

3.1 Extensive Form Games

Let N0 = {0, 1, . . . , n} ≡ {0}∪N be a finite set of players, where player 0 is called “chance.”
Let H be a finite set of histories, and let ≺ be a partial order on H representing precedence,
with � being the corresponding weak order. There exists a unique element of H called the
initial history h∅ with the property that ¬∃h ∈ H : h ≺ h∅. For every element h′ ∈ H\{h∅},
there exists a unique predecessor h = α(h′) with the property that h ≺ h′. Define the set of
actions by A = {(h′, h)| h ∈ H\{h∅}, h′ = α(h)}. A history z ∈ Z ⊂ H is a terminal history
if ¬∃h ∈ H : z ≺ h; otherwise, it is a non-terminal history. For every non-terminal history
h, let Zh = {z ∈ Z|h ≺ z} be the set of terminal histories after h. Each player i ∈ N has a
payoff function (in von Neumann-Morgenstern utilities) ui : Z → R.

Let P : H\Z → N and define Hi = {h ∈ H\Z : P (h) = i} to be the set of i’s histories;
assume without loss of generality that H0 = {h∅}. For each h ∈ Hi, the set of actions
available to i at h is A(h) ≡ {(h, h′) ∈ A|h = α(h′)}. For each i, a partition, Πi of Hi defines
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i’s information sets. Information set Ii ∈ Πi specifies a subset of histories contained in Hi

that i cannot distinguish from one other, where for any h ∈ Hi, Ii(h) is the element of Πi

that contains h. Furthermore, i’s available actions are the same for all histories in the same
information set. Formally, h′ ∈ Ii(h)⇒ A(h′) = A(h).4

A behavioral strategy for player i = 1, ..., n is a function σi : Hi → ∆(A) satisfying
σi(h) ∈ ∆(A(h)) for all h ∈ Hi and h′ ∈ Ii(h) ⇒ σi(h

′) = σi(h). For each h ∈ Hi and
a ∈ A(h), we use the shorthand σih(a) = σi(h)(a) to denote the probability i takes action
a ∈ A(h) at h. Moreover, for any h 6= h∅ and i = P (α(h)), we use σi(α(h), h) to denote
the probability that player i moves from α(h) to h. The behavioral strategy for player 0 is
exogenously fixed at σ0. Let Σi denote the set of behavioral strategies for player i and let
Σ = Πi∈NΣi be the set of behavioral strategy profiles. We use the notation Σ−i = Πj 6=iΣj

and write elements of Σ as σ = (σi, σ−i) when we want to focus on a particular player i ∈ N .

An extensive form game, Γ, is defined by the tuple Γ = 〈N0, H,≺, P,Π, u, σ0〉.

3.2 Cognitive Hierarchies and Belief Updating

Each player i is endowed with a level of sophistication, τi ∈ N0, where Pr(τi = k) = pik for
all i ∈ N and k ∈ N0, and the distribution is independent across players. Without loss of
generality, we assume pik > 0 for all i ∈ N and k ∈ N0. Let τ = (τ1, . . . , τn) be the level
profile and τ−i be the level profile without player i. Each player i has a prior belief about
all other players’ levels and these prior beliefs satisfy truncated rational expectations. That
is, for each i and k, a level-k player i believes all other players in the game are at most
level-(k -1). For each i, j 6= i and k, let µkij(τj) be level-k player i’s prior belief about player

j’s level, and µki (τ−i) =
(
µkij(τj)

)
j 6=i be level-k player i’s prior belief profile. Furthermore, for

each i and k, level-k player i believes any other player j’s level is independently distributed
according to the lower truncated probability distribution function:

µkij(κ) =

{
pjκ∑k−1

m=0 pjm
if κ < k

0 if κ ≥ k.
(1)

The assumption underlying µkij is that level-k types of each player have a correct be-
lief about the relative proportions of players who are less sophisticated than they are, but
maintain the incorrect belief that other players of level κ ≥ k do not exist. The j subscript
indicates that different players can have different level distributions.

A strategy profile is now a level-dependent profile of behavior strategies for each level of
each player. Thus, let σki be the behavioral strategy adopted by level-k player i, where, σ0

i

uniformly randomizes at each information set. That is, for all i ∈ N , h ∈ Pi and a ∈ A(h),

σ0
ih (a) =

1

|A(h)|
.

In the following we may interchangeably call level-0 players non-strategic players and
level k ≥ 1 players strategic players. Each strategic player i with level k > 1 updates their

4We assume that all players in the game have perfect recall. See Kreps and Wilson (1982) for a definition.
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beliefs about all other players’ levels of sophistication at every history, h. Their posterior
beliefs at h depend on the level-dependent strategy profile of the other players, σ−i, and their
prior belief about the distribution of player types, µki .

5 This updating process is formalized
with some additional notation. Let σ−kj =

(
σ0
j , ..., σ

k−1
j

)
be the profile of strategies adopted

by the levels below k of player j. In addition, let σ−k−i =
(
σ−k1 , ..., σ−ki−1, σ

−k
i+1, ..., σ

−k
n

)
denote

the strategy profile of the levels below k of all players other than player i.

All strategic players believe every history is possible because µkij(0) > 0 for all i, j, k and
σ0
jh (a) > 0 for all j ∈ N , h ∈ Pj and a ∈ A(h). Because all histories are reached with

positive probability, given any strategy profile, σ, and prior distribution of levels, µki , level-k
player i can use Bayes’ rule to derive the posterior belief about other players’ levels. We
use νki

(
τ−i | h, σ−k−i

)
to denote level-k player i’s posterior belief about the joint distribution

of all other players’ levels (lower than k) at h ∈ H\Z for a given level-dependent strategy
profile σ and prior p. Denote level-k player i’s marginal posterior belief about player j’s
level at h ∈ H\Z as νkij

(
τj | h, σ−k−i

)
. Finally, let

{
νki
(
τ−i | h, σ−k−i

)}
h∈H\Z be level-k player

i’s contingent posterior belief about all other players’ levels induced by σ−k−i .

In the dynamic CH model, players correctly anticipate how they will update their pos-
terior beliefs about other players’ levels at all future histories of the game. Thus, level-
k player i believes the other players are using the (normalized) strategy profile, σ̃−k−i =
(σ̃−k1 , . . . , σ̃−ki−1, σ̃

−k
i+1, . . . , σ̃

−k
n ), where for any j 6= i:

σ̃−kj (h) =
k−1∑
κ=0

νkij
(
κ | h, σ−k−i

)
· σκj (h) .

In general, the posterior distribution of levels of other players will be different for different
levels of the same player at the same history, since the supports of those distributions will
generally differ.6 This, in turn, induces different levels of the same player to have different
beliefs about the probability distribution over the terminal payoffs that can be reached from
that history. For each i ∈ N , k > 0, σ, and τ−i such that τj < k for all j 6= i, let
ρ̃ki (z|h, τ−i, σ−k−i , σki ) be level-k player i’s belief about the conditional realization probability
of z ∈ Zh at history h ∈ H\Z, if the profile of levels of the other players is τ−i and i is using
strategy σki .

Furthermore, level-k of player i uses Bayes’ rule to derive the posterior belief over the
histories in every information set in the game. For any information set, I, and any h ∈ I(h),
we denote this posterior belief by πki (h), where for all i, k,and h ∈ H\Z,

∑
h′∈I(h) π

k
i (h′) = 1.

Hence, level-k of player i’s conditional expected payoff at history h is given by:

Euki (σ|h) =
∑

h′∈I(h)

πki (h′)
∑

{τ−i:τj<k ∀j 6=i}

∑
z∈Zh

νki
(
τ−i | h′, σ−k−i

)
ρ̃ki (z|h′, τ−i, σ−k−i , σki )ui(z).

5Strategic players whose level is k = 1 do not update, since they have a degenerate prior belief that all
other players are level k = 0, who randomize uniformly. Also, note that player i updates their beliefs at
every history, not only at histories in Hi.

6However, the supports of all levels of all players will always include the type profile τ0−i, in which all

other players are level-0. That is, νki
(
τ0−i | h, σ

−k
−i
)
> 0 for all i, k, h.
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The dynamic CH solution of the game is defined as the level-dependent strategy profile,
σ∗, such that σk∗ih maximizes Euki (σ∗|h) for all i, k, h.7

4 Properties of Dynamic CH in Extensive Form Games

Section 4.1 first establishes the general properties of the belief-updating process. Section 4.2
explores the relationship between the dynamic CH solution and subgame perfect equilibrium.
In addition, we point out the possibility that in games of imperfect information, the posterior
beliefs could be correlated across histories in Section 4.3. Since the dynamic CH solution is
defined with histories, the extensive form game and its corresponding normal form may not
have the same CH solution. This representation effect is illustrated in Section 4.4.

4.1 Properties of the Belief-Updating Process

The first result shows that for this important class of games, the updating process satis-
fies a particular independence property. Specifically, the following proposition establishes
that all levels of all players will update their posterior beliefs about other players’ levels
independently.

Proposition 1. For any finite extensive form game Γ, any h ∈ H\(Z ∪ {h∅}), any i ∈ N ,
and for any k ∈ N, level-k player i’s posterior belief about other players’ levels at history h
is independent across players. That is, νki

(
τ−i | h, σ−k−i

)
=
∏

j 6=i ν
k
ij

(
τj | h, σ−k−i

)
.

Proof: We prove this proposition by induction on the number of predecessors of h,
not counting the initial history h∅, which we denote by |h|. Let σ be any level-dependent
strategy profile and p be any prior distribution over types. First, suppose |h| = 1 with
j = P (α(h)) 6= ∅, and consider any i 6= j who is some level k > 0. Because player j has
made the only move in the game so far, and the prior distribution of types is assumed to be
independent across players, we have, for any τ−i such that τi′ < k ∀i′ 6= i, j :

νki
(
τ−i | h, σ−k−i

)
=

σ
τj
j (α(h), h)µkij(τj)∑k−1
l=0 σ

l
j(α(h), h)µkij(l)

∏
i′ 6=i,j

µkii′(τi′)

νkij
(
τj | h, σ−k−i

)
=

σ
τj
j (α(h), h)µkij(τj)∑k−1
l=0 σ

l
j(α(h), h)µkij(l)

νkii′
(
τi′ | h, σ−k−i

)
= µkii′(τi′)

⇒
νki
(
τ−i | h, σ−k−i

)
=

∏
j 6=i

νkij
(
τj | h, σ−k−i

)
7We assume (as is typical in level-k models) that players randomize uniformly over optimal actions when

indifferent. This assumption is convenient because it ensures a unique dynamic CH solution to every game,
so we assume it here. Note that while the dynamic CH solution is defined as a fixed point, it can be solved
for recursively, starting with the lowest level and iteratively working up to higher levels.
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where, as observed earlier, we know
∑k−1

l=0 σ
l
j(α(h), h) > 0 because σ0

j (α(h), h) = 1
|A(α(h))| >

0. Hence, the result is true for |h| = 1. Next, consider any h such that |h| = t > 1 and
h ∈ H\Z and suppose that νki

(
τ−i | h, σ−k−i

)
=
∏

j 6=i ν
k
ij

(
τj | h, σ−k−i

)
for all h such that

|h| = 1, 2, ..., t − 1. Let j = P (α(h)) and consider any i 6= j who is some level k > 0.
Because only player j has moved, going from α(h) to h, we have for any τ−i such that τi′ < k
∀i′ 6= i, j :

νki
(
τ−i | h, σ−k−i

)
=

σ
τj
j (α(h), h)νkij

(
τj | α(h), σ−k−i

)∑k−1
l=0 σ

l
j(α(h), h)νkij

(
l | α(h), σ−k−i

) ∏
i′ 6=i,j

νkii′
(
τi′ | α(h), σ−k−i

)
νkij
(
τj | h, σ−k−i

)
=

σ
τj
j (α(h), h)νkij

(
τj | α(h), σ−k−i

)∑k−1
l=0 σ

l
j(α(h), h)νkij

(
l | α(h), σ−k−i

)
νkii′
(
τi′ | h, σ−k−i

)
= νkii′

(
τi′ | α(h), σ−k−i

)
so

νki
(
τ−i | h, σ−k−i

)
=

∏
j 6=i

νkij
(
τj | h, σ−k−i

)
as desired. �

What drives this result is that when player j moves, then all players other than j only
update their beliefs about the level of player j, and do not update their beliefs about any of
the other players. From Proposition 1, we can see that the marginal posterior belief of level-k
player i to player j’s belief only depends on player j’s moves along the history. Therefore,
we can obtain that νkij

(
κ | h, σ−k−i

)
= νkij

(
κ | h, σ−kj

)
. Specifically,

νkij
(
κ | h, σ−kj

)
=


µkij(κ)fj(h|σκj )∑k−1

m=0 µ
k
ij(m)fj(h|σmj )

if κ < k

0 if κ ≥ k,

where fj(h | σκj ) is the probability that player j moves along the path to reach h given player
j is using the strategy σκj .8

The second property of the dynamic cognitive hierarchy model is that in the later his-
tories, the support of the posterior beliefs is (weakly) shrinking. In this sense, the players
would have a more precise posterior belief when the history gets longer. For any player
i, j ∈ N such that i 6= j, for any h ∈ H\(Z ∪ {h∅}), and for any k ∈ N, we denote
suppkij(h) ≡ {τj ∈ {0, 1, ..., k − 1}|νkij

(
τj|h, σ−kj

)
> 0}. This property is formally stated in

the following proposition.

Proposition 2. In any extensive form game Γ, suppkij(h) ⊆ suppkij(α(h)) for all i, j ∈ N ,
k ∈ N, and h ∈ H\(Z ∪ {h∅}).

8Particularly, the probability fj(h | σκj ) can be computed by

fj(h | σκj ) =

{
Πh′∈Pj∩{h̃:h̃≺h} σ

κ
jh′({(h′, h′′) : h′ = α(h′′), h′′ � h}) if Pj ∩ {h̃ : h̃ ≺ h} 6= ∅

1 otherwise.
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Proof: To prove the statement, it suffices to show that κ /∈ suppkij(α(h)) ⇒ κ /∈
suppkij(h) for all κ = 0, 1, ..., k − 1. There are two possibilities. Either j = P (α(h))
or j 6= P (α(h)). If j 6= P (α(h)), then some player other than j moved at α(h), so
νkij
(
τj|h, σ−kj

)
= νkij

(
τj|α(h), σ−kj

)
for all τj = 0, 1, ..., k − 1. Hence νkij

(
κ|α(h), σ−kj

)
=

0⇒ νkij
(
κ|h, σ−kj

)
= 0, so suppkij(h) ⊆ suppkij(α(h)). If j = P (α(h)), then j moved at α(h),

in which case, by Bayes’ rule:

νkij
(
τj | h, σ−k−i

)
=

σ
τj
j (α(h), h)νkij

(
τj|α(h), σ−kj

)∑k−1
l=0 σ

l
j(α(h), h)νkij

(
l|α(h), σ−kj

)
for all τj = 0, 1, ..., k − 1. Hence, νkij

(
κ|α(h), σ−kj

)
= 0 ⇒ νkij

(
κ|h, σ−kj

)
= 0, so suppkij(h) ⊆

suppkij(α(h)). �

There are a few additional remarks about the properties of the updating process in the
dynamic CH model that are worth highlighting. First, there is a second source of learning,
besides the shrinking support property, which is that after each move by an opponent, each
strategic player with k ≥ 2 updates the probability that the opponent is level 0. This in turn
leads to updating of the relative likelihood of the higher strategic types of the opponent, since
the probabilities have to sum to 1. Second, as the game unfolds, the beliefs of higher level
players about their opponents can be updated in either direction, in the sense of believing
an opponent is either more or less sophisticated. Examples in the next section will illustrate
this. Third, while players’ belief-updating process is adaptive, nonetheless all players are
strategically forward-looking (rather than myopic) in the sense that players take into account
and correctly anticipate how all players in the game will update beliefs at each future history.

Since the players are forward-looking and have truncated rational expectations, it is natu-
ral to ask if there is any connection between our model and perfect or sequential equilibrium.
We explore this relationship in the next section.

4.2 Dynamic CH and Subgame Perfect Equilibrium

In this section, we study the relationship between the dynamic CH solution and subgame
perfect equilibrium through two simple examples. One question we address is whether suf-
ficiently high-level players always behave consistently with rational backward induction. As
it turns out, this is not generally true. In the following series of simple two-person extensive
form games, we demonstrate how high-level players could violate backward induction either
on or off the equilibrium path, suggesting the dynamic CH solution is fundamentally differ-
ent from subgame perfection. For the sake of simplicity, in this section and for the rest of
the paper we assume every player’s level distribution is identical.

Violating Backward Induction at Some Subgame

Example 1 demonstrates how backward induction could be violated by every level of player
at some subgame. The game tree for this two-person game of perfect information is shown
in Figure 1. Suppose every player’s level is independently drawn from Poisson(1.5), which
(Camerer et al., 2004) have suggested is an empirically plausible distribution. Every level of
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1a

l1a : L2+ r1a : L1

2a

l2a : L1, L2

(3, 4)

r2a : L3+

2b

(2, 5)

l2b : L1+ r2b

1b

(1, 6)

l1b

(4, 3)

r1b : L1+

1c

l1c : L1+

(6, 1)

r1c

2c

(10, 2)

l2c

(3, 3)

r2c : L1+

Figure 1: Game Tree of Example 1. A ”+” sign indicates a move is chosen by the specified
level type and all higher levels. The subgame perfect equilibrium moves are marked with
arrows.

players’ move choices are labelled in the figure, with a ”+” sign indicating a move is chosen
by the specified level type and all higher levels. For instance, level-1 player 1 chooses r1a at
the beginning while level-2 and above choose l1a. Calculations can be found in Appendix A.

To illustrate the mechanics of the dynamic CH model in this example, it is useful to
begin by focusing on subgame 2a. In this subgame levels 2 and higher of player 2 would
update from the information that player 1 is not a level-1 player, leading a level-2 player 2
to choose l2a because the updated belief puts all weight on player 1 being level 0. However, a
level-3 player 2 places positive posterior probability on player 1 being level-2, and as long as
this posterior probability is high enough it is optimal for level-3 player 2 to choose r2a—as if
player 2 were engaged in the same backward induction reasoning used to justify the subgame
perfect equilibrium. Following a similar logic, all high-level players would behave this way
in the left branch of the game, where player 1 chooses l1a at the beginning.

However, this is not the case for the right branch of the game after player 1 chooses r1a
at the beginning. At subgame 1c, the move predicted by the subgame perfect equilibrium is
never chosen by any strategic player 1. Hence, in the dynamic CH solution for this example,
high-level player 1 types’ behavior is consistent with subgame perfect equilibrium on the left
branch but not on the right branch.

Dominated Actions

As we examine this example carefully, we can find the key of this phenomenon is that player
1 knows the subgame h = 1c can be reached only if player 2 chooses a strictly dominated
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action9 in the previous stage. One can think of player 2’s decision at subgame h = 2b
as a rationality check in the following sense. Whenever player 2 chooses r2b, the support
of strategic player 1’s posterior belief will shrink to a singleton—he will believe player 2 is
level-0. This extreme posterior belief would lead a strategic player 1 to deviate from subgame
perfect strategy.

Generally speaking, if a history contains some player’s strictly dominated action, then
all other players will immediately believe this player is non-strategic and best respond to
such strategy. As a result, it is possible that the strategy profile will not be the subgame
perfect equilibrium for every strategic level. This argument holds as long as level-0 player’s
strategy is the beginning of the hierarchical reasoning process—no matter how small the
proportion of level-0 players is. However, since paths with strictly dominated actions can
be realized only if some player is level-0, paths containing strictly dominated actions occur
with vanishing probability as the proportion of level-0 players converges to 0. Proposition 3
formally shows this conclusion.

Proposition 3. Consider any finite extensive form game where each player i’s level is in-
dependently drawn from the distribution (pk)

∞
k=0. If some history h can occur only if some

player chooses a strictly dominated action, then the probability for such history being realized
converges to 0 as p0 → 0+.

Proof: Consider any h that can occur only if some player chooses a strictly dominated
action. That is, there is h′ ≺ h with i = P (h′) such that there is a strictly dominated action
(h′, h′′) ∈ A(h′) and h′′ � h. Since this is a strictly dominated action, it can only be chosen
by a level-0 player. Therefore, the ex ante probability for player i to choose (h′, h′′) at h′ is

Pr((h′, h′′) | h′) =
∞∑
j=0

σji (h
′, h′′)pj = σ0

i (h
′, h′′)p0 =

1

|A(h′)|
p0.

Finally, the ex ante probability for h to be realized, Pr(h), is smaller than Pr((h′, h′′) | h′)
and hence

lim
p0→0+

Pr(h) ≤ lim
p0→0+

Pr((h′, h′′) | h′) = lim
p0→0+

1

|A(h′)|
p0 = 0.

This completes the proof. �

The direct implication of Proposition 3 is that if p0 is sufficiently small, one can effectively
“trim” the game by deleting histories containing strictly dominated actions. One sees this
principle in play in example 1 where player 1’s anomalous behavior only happens when player
2 chooses a strictly dominated action, which is only chosen by level-0. For other parts of
the game, if both players are at least level 3 the model predicts the game will follow the
subgame perfect equilibrium path.

9Formally speaking, at any history h ∈ H\Z with i = P (h), we say an action (h, h′) ∈ A(h) is strictly
dominated if there is an action (h, h′′) ∈ A(h) such that

min
z∈Zh′′

ui(z) > max
z∈Zh′

ui(z).
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Since the subgame perfect equilibrium path never contains strictly dominated actions,
one might be tempted to conjecture that the equilibrium path is always followed by suffi-
ciently sophisticated players. The next example demonstrates that this is not true. In fact,
it is possible that the subgame perfect equilibrium path is never chosen by strategic play-
ers, so high-level players in our model do not necessarily converge to the subgame perfect
equilibrium.

Violating Backward Induction on the Equilibrium Path

1a

l1a r1a : L1+

2a

l2a : L1+

(3, 4)

r2a

2b

(2, 5)

l2b : L1+ r2b

1b

(1, 6)

l1b

(
3
2
, 3
)

r1b : L1+

1c

l1c : L1+

(6, 1)

r1c

2c

(10, 2)

l2c

(3, 3)

r2c : L1+

Figure 2: Game Tree of Example 2. A ”+” sign indicates a move is chosen by the specified
level type and all higher levels. The subgame perfect equilibrium moves are marked with
arrows.

Example 2 is modified from the previous example by changing player 1’s payoff from 4 to
3
2

as he chooses r1b at history 1b. Decreasing the payoff does not affect the subgame perfect
equilibrium. However, this change makes low-level players think the subgame perfect equi-
librium actions are not profitable, causing a domino effect that high-level players think the
equilibrium actions are not optimal as well. Here we consider an arbitrary prior distribution
p = (pk)

∞
k=0. The game tree is shown in Figure 2 with every level of players’ decisions. The

calculations can be found in Appendix A.

Level-1 players will behave the same as in the previous example. However, the change
of payoffs makes l1a not profitable for level-2 player 1 at the initial history. Hence, player
2 would believe player 1 is certainly level-0 whenever the game proceeds to the left branch.
Moreover, every level of players would behave the same by the same logic. As a result, the
subgame perfect equilibrium path is never chosen by strategic players. If p0 is close to 0,
the subgame perfect equilibrium outcome will almost never be reached.
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Instead, there is an imperfect Nash equilibrium that can be supported by the strategy
profile of every strategic level of both players. Loosely speaking, the belief updating process
gets “stuck” at this equilibrium, causing all higher-level players behave in the same way.10

4.3 Correlated Beliefs in Games of Imperfect Information

There is a wide range of applications of extensive form games in economics and political
science where players have private information, either due to privately known preferences
and beliefs about other players, or from imperfect observability of the histories of play in
the game. These applications would include many workhorse models, such as signaling,
information transmission, information design, social learning, entry deterrence, reputation
building, crisis bargaining, and so forth. Hence the natural next step is to investigate more
deeply our approach to dynamic games with incomplete information. In such environments,
one complication is that players not only learn about the opponents’ levels of sophistication
but also about more basic elements of the game structure, such as the opponents’ private
information, payoff types, and prior moves.

One observation is that allowing for incomplete information in the dynamic CH approach
does not introduce any problems of off-path beliefs. The reason is that at every information
set of the game, all types of all players have posterior beliefs over the opponents’ types that
include a positive probability they are facing level-0 players. Hence, there is no issue of
specifying off-path beliefs in an ad hoc fashion and therefore we avoid the complications of
belief-based refinements.

3

1

l r : L1

2

(3, 4, 2)

l r : L1

2

l

(2, 5, 3)

r : L1

(1, 6, 5)

l : L1

(4, 3, 3)

r

(3, 3, 2)

l : L1

(6, 1, 3)

r

Figure 3: Game Tree of Example 3. Dashed lines are the paths selected by level-1 players.

In games with imperfect information because some information sets contain more than
one history, the beliefs about different players’ levels can be correlated across the histories

10The following strategy profile defines this imperfect equilibrium: player 1 chooses r1a at the beginning,
r1b at subgame h = 1b, and chooses l1c at subgame h = 1c; player 2 chooses l2a at subgame h = 2a, l2b at
subgame h = 2b, and chooses r2c at subgame h = 2c. Therefore, (2, 5) is an equilibrium outcome.
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in the information set. We illustrate this using the following three-person game where each
player moves once. The game tree is shown in Figure 3.

Player 1 chooses first whether to go left or right. After that, player 2 chooses to go left or
right. If player 1 and 2 make the same decision, the game ends. Otherwise, player 3 makes
the final decision. However, that stage, player 3 only knows that one of the previous players
chose l and the other chose r, but does not know which one chose l.

Level-1 players believe all other players are level-0. As we compute the expected payoff
of each action, level-1 player 1 will choose r at the initial node. Level-1 player 2 will choose
r at subgame h = l and h = r. At player 3’s information set, since level-1 player 3 thinks
both players are level-0, he would believe both histories are equally likely, and hence choose
l. Given level-0 and 1 players’ strategies, at player 3’s information set, level-2 player 3 would
think player 1 and player 2 cannot both be level-1 players; otherwise, the game will not reach
this information set. Therefore, level-2 player 3’s beliefs about player 1 and 2’s levels at the
two histories in the information set are correlated.

4.4 The Representation Effect and Violations of Strategic Invari-
ance

1a

l1a : L1, L3+ r1a : L2

2a

l2a : L1

(8, 4)

r2a : L2+

2b

(2, 5)

l2b : L1+ r2b

1b

(1, 6)

l1b

(3
2
, 3)

r1b : L1+

1c

l1c : L1+

(6, 1)

r1c

2c

(10, 2)

l2c

(3, 3)

r2c : L1+

Figure 4: Game Tree of Example 4. A ”+” sign indicates a move is chosen by the specified
level type and all higher levels. The subgame perfect equilibrium moves are marked with
arrows.

An interesting feature of the dynamic CH model is the representation effect : strategically
equivalent representations of a game have dynamic CH solutions that produce different
outcome distributions. We illustrate this with a toy example in this section, and provide a
detailed analysis of the representation effect for a class of increasing-sum centipede games in
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the subsequent section. The simplest case of this involves a comparison of the dynamic CH
solution for a multistage game of perfect information played sequentially to a the dynamic
CH solution to a strategically equivalent extensive form representation of the same game
where each player chooses a strategy for the whole game without observing the other player’s
strategy choice.11

Table 1: Reduced Normal Form of Example 4

Player 2
Player 1 l2al2b r2al2b l2ar2bl2c l2ar2br2c r2ar2bl2c r2ar2br2c

L1+
l1al1b 1,6 3,4 1,6 1,6 3,4 3,4
l1ar1b 3/2,3 3,4 3/2,3 3/2,3 3,4 3,4
r1al1c L1+ 2,5 2,5 10,2 3,3 10,2 3,3
r1ar1c 2,5 2,5 6,1 6,1 6,1 6,1

P1

(1, 6)

l2al2b

... ... ... ...
(3, 4)

r2ar2br2c

l1al1b

( 3
2 , 3)

l2al2b

... ... ... ...
(3, 4)

r2ar2br2c

l1ar1b

(2, 5)

l2al2b

... ... ... ...
(3, 3)

r2ar2br2c

r1al1c

(2, 5)

l2al2b

... ... ... ...
(6, 1)

r2ar2br2c

r1ar1c

P2

Figure 5: Strategically Equivalent Game of Example 4

We first revisit Example 2 to show how differently the static CH solution is obtained
compared with the logic of the dynamic CH solution. Table 1 displays the 4×6 matrix game
that is reduced normal form representation of the extensive form game of Example 2. Notice
that the reduced normal form can also be represented by the extensive form game of Figure
5. It is easy to see that level 1 and higher of player 1 will choose the strategy r1al1c and level
1 and higher of player 2 will choose the strategy l2al2b, as indicated in the table. Thus, for
this example it turns out that both models lead to a solution where behavior corresponds to
an equilibrium outcome that differs from the subgame perfect equilibrium outcome.

11Because the second version of the game is essentially a simultaneous move game, the dynamic CH
solution reduces to the standard CH solution for the normal form of the first version of the game. In the
remainder of the paper, we will (with minor abuse of terminology) refer to the dynamic CH solution of these
strategically equivalent simultaneous-move versions of the alternating move game as the ”static” CH solution
of the game.
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However, it is not true that high-level players in both CH models always lead to the
same equilibrium outcome in both representations. Example 4, whose game tree is shown in
Figure 4, demonstrates how this can happen. This example is almost exactly the same as
Example 2, with the single exception being that player 1’s payoff changes from 3 to 8 after
choosing r2a at subgame 2a. This change does not affect the subgame perfect equilibrium,
but makes choosing l1a profitable again for high-level player 1. (Here we again assume the
prior distribution follows Poisson(1.5).) Consequently, higher levels of dynamic CH players
in this game will choose actions that lead to the subgame perfect equilibrium outcome, (8, 4).
This switch to the subgame perfect outcome is a direct result of the belief-updating process
in the dynamic model. Although the payoff 10 is really attractive to player 1, player 1 in
the dynamic model will realize he can get it only if player 2 is level-0. Therefore, if there is
a high enough probability of higher levels of player 2, player 1 will realize he is likely to get
the lower payoff of 3 at node 2c. Hence, a high-level player 1 will choose l1a at the beginning
(as if conducting backward induction). As long as there are enough strategic types of player
1 choosing l1a, higher levels of player 2 will update accordingly and choose the subgame
perfect equilibrium action r2a. The calculations can be found in Appendix A.

In contrast, the static CH model makes exactly the same prediction as in Example 2.
That is, even though player 1’s subgame perfect equilibrium payoffhas increased from 3 to
8, all strategic types of players 1 and 2 in the reduced normal form will still choose r1al1c
and l2al2b, respectively, again producing the outcome (2, 5) that is not subgame perfect.

One property of the static model identified by Camerer et al. (2004) is that if a k-level
type plays a (pure) equilibrium strategy, then all higher levels of that player will play that
strategy too. One may wonder if an analogous property holds in the dynamic CH model.
That is, if some level type of a player chooses on the equilibrium path, do all higher-levels of
that player choose that action too? Example 4 provides a counterexample for this conjecture.
At the initial history, level-1 player 1 chooses the equilibrium path l1a. However, level-2 player
1 switches to r1a, and level-3 (and above) player 1 switches back to l1a.

The underlying reason is that even if a level-k player chooses the equilibrium path, a
higher-level player could still deviate from the equilibrium path if other players do not move
along the equilibrium path in later subgames. In this example, level-1 player 1 chooses l1a
at the beginning to best respond to level-0 player 2. Yet, level-1 player 2 does not choose
the equilibrium path at the subgame h = 2a, causing level-2 player 1 to choose r1a at the
beginning. Level-2 (and above) player 2 switches to the equilibrium path at the subgame
h = 2a, and this information can only be updated by level-3 (and above) player 1. Finally,
as long as there are enough level-2 (and above) players, high-level player 1 would switch back
to the equilibrium path, creating a non-monotonicity.

5 An Application: Centipede Games

In this section, we demonstrate the representation effect on the class of “linear centipede
games,” which is illustrated in Figure 6. The games in this class are described in the following
way. Player 1, the first-mover, and player 2, the second-mover, alternate over a sequence
of moves. At each move, the player whose turn it is can either end the game (“take”)
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1

(1, 0)

T

P 2

(c, 1 + c)

T

P 1

(1 + 2c, 2c)

T

P 2

((2S − 1)c, 1 + (2S − 1)c)

T

(1 + 2Sc, 2Sc)
P

Figure 6: 2S-node Centipede Game

and receive the larger of two payoffs or allow the game to continue (“pass”), in which case
both the large and the small payoff are incremented by an amount c > 0. The difference
between the large and the small payoff equals 1 and does not change. The game continues
for at most 2S decision nodes (stages) where S ≥ 2, and we label the decision nodes by
{1, 2, . . . , 2S}. Player 1 moves at odd nodes and player 2 moves at even nodes. If the game
is ended by a player at stage j ≤ 2S, the payoffs are (1 + (j − 1)c, (j − 1)c) if j is odd and
((j − 1)c, 1 + (j − 1)c) if j is even. If no player ever takes, the payoffs are (1 + 2Sc, 2Sc).
Thus, a linear centipede game has two parameters: (S, c). To avoid trivial cases, we assume
1
3
< c < 1.12

Specifically, we will compare each level of players’ behavior in two different representations
of the game given the same prior distribution. Theoretically, the direct-response method
and the strategy method correspond to the extensive form and the reduced normal form,13

respectively. The key difference between the extensive form and the reduced normal form is
that players can observe the other player’s previous actions in the extensive form. As the
game continues, the only information that can be observed is how many times the opponent
has passed.14 This history seems uninformative at the first glance. However, players can
still update their beliefs about the other player’s level from this history, and hence behave
differently.

5.1 CH Solution for the Extensive Form Centipede Games

In the extensive form centipede game, since each player can move at S stages, then a (be-
havioral) strategy for player i is an S-tuple where each element is the probability to take at
the corresponding decision node. That is, σ1 = (σ1,1, . . . , σ1,S) and σ2 = (σ2,1, . . . , σ2,S) are
player 1 and 2’s strategies, respectively. For every 1 ≤ j ≤ S, σ1,j is the probability that
player 1 would take at stage 2j − 1 and σ2,j is the probability that player 2 would take at
stage 2j.

Following the notation introduced earlier, we use σk1 and σk2 to denote level-k player’s

12If c > 1, then the unique equilibrium is for every player to pass at every node. If c < 1
3 , then all players

with level k > 0 will always take, so CH behavior is the same as subgame perfect Nash equilibrium behavior.
13In the reduced normal form, a player’s strategy is the node at which they will stop the game (or never).

Therefore, each player has S + 1 available strategies.
14Players can also update their beliefs about the opponent’s level if the other player surprisingly takes at

some stage. However, the game is over at that point.

19



strategy. Level-0 players uniformly randomize at each stage. That is, σ0
1 = σ0

2 =
(
1
2
, . . . , 1

2

)
.

Finally, to simplify the notation, for every stage 1 ≤ j ≤ 2S, we let νkj (·) : N0 → ∆(N0)
be level-k stage j-mover’s belief about the opponent’s level at stage j where νkj (τ−P (j)) ≡
νkP (j),−P (j)(τ−P (j) | j, σ−k−P (j)).

To fully characterize every level of players’ strategies, we need to compute every level
of players’ best responses at every subgame. In principle, we have to solve the behavior of
each level recursively. However, since each level of players’ strategy is monotonic—when
the player decides to take at some stage, he will take in all of his later subgames—we can
alternatively characterize the solution by identifying the lowest level of player to take at
every subgame.

In Lemma 1, we characterize level-1 players’ behavior and establish the monotonicity
result. These results are straightforward and follow from the assumption that 1

3
< c < 1.

Lemma 1. In the extensive form linear centipede game, as 1
3
< c < 1,

1. σk2,S = 1 for all k ≥ 1.

2. σ1
1 = (0, . . . , 0) and σ1

2 = (0, . . . , 0, 1).

3. For every k ≥ 2 and every 1 ≤ j ≤ S − 1,

(i) σk1,j = 0 if σm2,j = 0 for every 1 ≤ m ≤ k − 1;

(ii) σk2,j = 0 if σm1,j+1 = 0 for every 1 ≤ m ≤ k − 1.

Proof: See Appendix B. �

Lemma 1 has three parts: (1) every strategic player 2 takes at the last stage; (2) com-
pletely characterizes level-1 strategies—player 1 passes at every stage and player 2 passes at
every stage except for the last stage; (3) provides necessary conditions for higher levels to
take at some stage. For any level k ≥ 2 and any stage 1 ≤ j ≤ 2S−1, a level-k player would
take at stage j only if there is some lower level player that would take at the next stage.
Otherwise, it is optimal for level-k player to pass at stage j.

The general characterization of level-k optimal strategies is in terms of the following
cutoffs, specifying, for each stage, the lowest level type to take at that stage.

Definition 1. For every stage j where 1 ≤ j ≤ 2S, define the cutoff, K∗j be the lowest level
of player that would take at this stage. In other words,

K∗j =


arg mink

{
σk
1, j+1

2

= 1
}
, if j is odd

arg mink

{
σk
2, j

2

= 1
}
, if j is even

∞, if @k s.t. σk
1, j+1

2

= 1 or σk
2, j

2

= 1.

Based on Definition 1, the monotonicity obtained in part (3) of Lemma 1 implies the
following two results about cutoffs and strategies. Together they show that for any stage, a
player’s strategy will be to take at that stage if and only if his level is greater or equal to
the cutoff.
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Proposition 4. For every 1 ≤ j ≤ 2S − 1,

1. K∗j ≥ K∗j+1 + 1 if K∗j+1 <∞;

2. K∗j =∞ if K∗j+1 =∞.

Proof: See Appendix B. �

Proposition 5. For every 1 ≤ j ≤ 2S − 1,

1. σk
1, j+1

2

= 1 for all k ≥ K∗j if j is odd and K∗j <∞;

2. σk
2, j

2

= 1 for all k ≥ K∗j if j is even and K∗j <∞.

Proof: See Appendix B. �

Hence, cutoffs characterize optimal strategies of each level of each player, with a cutoff
defining the lowest level that would take at each stage and all higher levels of that player
would also take at that stage. The next two propositions establish recursive necessary and
sufficient conditions for the existence of some level of some player to take at each stage. The
proofs of these propositions provide a recipe for computing cutoffs.

Proposition 6. K∗2S−1 <∞ ⇐⇒ p0 <
2S

2S+( 3c−1
1−c )

First, we note that the proofs are simplified somewhat by observing the following identity:

p0 <
2S

2S +
(
3c−1
1−c

) ⇐⇒ p0
(
1
2

)S
p0
(
1
2

)S−1
+ (1− p0)

<
1− c
1 + c

.

Proof: Only if: Suppose K∗2S−1 < ∞. By Proposition 4, K∗j ≥ K∗2S−1 for all j < 2S − 1.
Hence, the belief of level K∗2S−1 of player 1 that player 2 is level-0 at stage 2S − 1 equals to

ν
K∗2S−1

2S−1 (0) =
p0
(
1
2

)S−1
p0
(
1
2

)S−1
+
∑K∗2S−1−1

l=1 pl
,

since it is optimal for K∗2S−1 <∞ to take at 2S − 1. This implies
p0( 1

2)
S

p0( 1
2)
S−1

+
∑K∗

2S−1
−1

l=1 pl

< 1−c
1+c

and hence:

p0
(
1
2

)S
p0
(
1
2

)S−1
+ (1− p0)

<
1− c
1 + c

⇐⇒

p0 <
2S

2S +
(
3c−1
1−c

) .
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If: Suppose K∗2S−1 =∞. Then from Proposition 4, K∗j =∞ for all j < 2S − 1. That is, all
levels of both players pass at every stage up to and including 2S − 1. Hence, the belief of
level k ≥ 1 of player 1 that player 2 is level-0 at stage 2S − 1 equals to

νk2S−1(0) =
p0
(
1
2

)S−1
p0
(
1
2

)S−1
+
∑k−1

l=1 pl
>

p0
(
1
2

)S−1
p0
(
1
2

)S−1
+ (1− p0)

.

Since K∗2S−1 = ∞, it is optimal to pass at 2S − 1 for all levels k ≥ 1 of player 1, which
implies

p0
(
1
2

)S
p0
(
1
2

)S−1
+ (1− p0)

≥ 1− c
1 + c

.

This completes the proof. �

Thus, p0 must be sufficiently small, and the condition is easier to satisfy the smaller c
is (the potential gains to passing) and the larger is S (the horizon). If this condition holds,
there exists some strategic player 1 that takes at stage 2S − 1. The proof also provides an
insight for how the cutoffs can be computed. Specifically, the K∗2S−1 cutoff is computed as:

K∗2S−1 = arg min
k

{
p0
(
1
2

)S
p0
(
1
2

)S−1
+
∑k−1

l=1 pl
<

1− c
1 + c

}
.

Cutoffs for earlier stages can be derived recursively as the following proposition establishes.

Proposition 7. For every 1 ≤ j ≤ 2S − 2,

K∗j <∞ ⇐⇒
p0
(
1
2

)b j
2
c+1

+
∑K∗j+1−1

l=1 pl

p0
(
1
2

)b j
2
c

+ (1− p0)
<

1− c
1 + c

. (2)

Proof: The logic of the proof is similar to Proposition 6. See Appendix B for details. �

A simple economic interpretation of the conditions obtained in Proposition 6 and 7 is as
follows. At any stage s, if the other player will take at the next stage, the net gain to taking
at s is [1 + (s − 1)c] − [sc] = 1 − c. On the other hand, if the other player passes at the
next stage, the net gain to taking at stage s + 2 is [1 + (s + 1)c]− [sc] = 1 + c. Hence, the
right-hand side is simply the ratio of payoffs to the current player depending on the opponent
taking or passing at the next stage, assuming the current player will take in the subsequent
stage. Thus, a player will take in the current stage if and only if the posterior probability
the opponent will take in the next stage is less than this ratio.

The information contained in the history is that if the game proceeds to later stages, the
opponent is less likely to be a level-0 player. If the game reaches stage j, the player would
know the opponent has passed b j

2
c times, which would occur with probability (conditional

on the opponent being level-0) 1/2b
j
2
c which rapidly approaches 0.
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5.2 CH Solution for the Reduced Normal Form Centipede Game

In order to demonstrate the effect of CH learning on behavior in centipede games, we compare
the results from the dynamic CH model with the static CH model where the game is played
in its reduced normal form. The reduced normal form of the 2S-leg centipede game is simply
a simultaneous move game where A1 = A2 = {1, , . . . , S + 1} is the set of actions for each
player. Action s ≤ S represents a plan to pass at the first s − 1 opportunities and take at
the s-th opportunity. Strategy S + 1 is the plan to always pass. Denote by a1 and a2 player
1 and 2’s strategies, respectively. If a1 ≤ a2, then the payoffs are (1 + (2a1−2)c, (2a1−2)c);
if a1 > a2, then the payoffs are ((2a2 − 1)c, 1 + (2a2 − 1)c).

Let aki denote level-k of player i’s strategy. A level-0 player uniformly randomizes across
all available strategies. With a minor abuse of notation, denote a0i = 1

S+1
for i ∈ {1, 2}.

Lemma 2 establishes level-1 players’ behavior and the monotonicity, similarly to Lemma 1.

Lemma 2. In the reduced normal form linear centipede game, as 1
3
< c < 1,

1. a11 = S + 1 and a12 = S.

2. For every k ≥ 2,

(i) ak1 ≥ min{am2 : 1 ≤ m ≤ k − 1};
(ii) ak2 ≥ min{am1 : 1 ≤ m ≤ k − 1} − 1.

3. ak+1
i ≤ aki for all k ≥ 1 and for all i ∈ {1, 2}.

Proof: See Appendix B. �

Lemma 2 has essentially the same three parts as Lemma 1, but stated in terms of the stop-
ping point strategies rather than behavioral strategies. Therefore, as in the extensive form
centipede game, optimal strategies are given by cutoffs, defined analogously to Definition
1.

Definition 2. For every stage s where 1 ≤ j ≤ 2S, define the cutoff K̃∗j to be the lowest
level of player that would take no later than this stage. In other words,

K̃∗j =


arg mink

{
ak1 ≤

j+1
2

}
, if j is odd

arg mink
{
ak2 ≤

j
2

}
, if j is even

∞, if @k s.t. ak1 ≤
j+1
2

or ak2 ≤
j
2
.

By Lemma 2, we know a12 = S. Therefore, K̃∗2S = 1. Proposition 8 and Proposition
9 are parallel to Proposition 6 and 7, providing necessary and sufficient conditions for the
existence of some strategic players to take before a particular stage.

Proposition 8. K̃∗2S−1 <∞ ⇐⇒ p0 <
S+1

(S+1)+( 3c−1
1−c )

.
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Proof: See Appendix B. �

From Proposition 6 and Proposition 8, we can find a class of prior distributions such
that the dynamic and static CH models would generate different predictions. In this class of
prior distributions, the dynamic model predicts there is some level of player 1 would take at
some stage while the static model predicts every level of player 1 would pass at every stage.

Corollary 1. If S+1

(S+1)+( 3c−1
1−c )

≤ p0 <
2S

2S+( 3c−1
1−c )

, then K∗2S−1 <∞ and K̃∗2S−1 =∞.

Proof: Since 2S > S + 1 for all S ≥ 2, the corollary follows directly from Propositions 6 and
8. �

Proposition 9. For every 1 ≤ j ≤ 2S − 2,

K̃∗j <∞ ⇐⇒ p0

(
S

S + 1
−

2b j
2
cc

(S + 1)(1 + c)

)
+

K̃∗j+1−1∑
k=1

pk <
1− c
1 + c

. (3)

Proof: The logic of the proof is similar to Proposition 8. See Appendix B for details. �

An immediate implication of propositions 7 and 9 is that if p0 is small, then the difference
in behavior under the static and the dynamic versions of the game will also be small, since

the left hand side of inequalities (2) and (3) both converge to
∑K̃∗j+1−1

k=1 pk. This result is
intuitive. If p0 is very small, then there is essentially no learning in the dynamic game so
behavior will be almost the same as the static game.

However, regardless how small p0 is (as long as it is positive), the dynamic and static
models lead to systematically different behavioral predictions. These differences lead to the
main result of this section, Theorem 1, which establishes that players are more likely to take
at every stage in the extensive form.

Theorem 1. For every stage 1 ≤ j ≤ 2S,

K∗j ≤ K̃∗j .

Proof: See Appendix B. �

This result provides a testable prediction that these centipede games will end earlier if
played in the extensive form rather than in the reduced normal form. Moreover, this result
is robust to the prior distributions of levels. The intuition is that as long as there exists
some level-0 players, players in the dynamic model exhaust all available information while
players in the static model only use the prior distribution to form their beliefs about the
other player’s level. Therefore, players in the dynamic model exhibit more sophisticated
behavior since the information from the history is that the opponent is less likely to be a
level-0 player.

5.3 Results for the Poisson CH Model

In previous applications of the CH model, it has been useful to assume the distribution of
levels is given by a Poisson distribution (Camerer et al., 2004). We obtain some additional
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results here for this one-parameter family of distributions that allow us to further pin down
the differences between the extensive form and the reduced normal form of the centipede
game. The Poisson CH model assumes:

pk ≡
e−λλk

k!
, for all k = 0, 1, 2, ...

where λ > 0 is the mean of the Poisson distribution.

Finally, we write the cutoffs as functions of λ. In the dynamic model, the cutoff function
for stage j is K∗j (λ). In the static model, the cutoff function for stage j is K̃∗j (λ).

As we have discussed before, in the dynamic model, players become more sure that the
opponent is not level 0 when the game moves to later stages. Therefore, player 1 has the
best information in stage 2S − 1. Proposition 10 quantitatively demonstrates the difference
between two models at stage 2S − 1.

Proposition 10. As the prior distribution follows Poisson(λ), then

(i) K∗2S−1(λ) <∞ ⇐⇒ λ > ln
[
1 +

(
1
2

)S (3c−1
1−c

)]
;

(ii) K̃∗2S−1(λ) <∞ ⇐⇒ λ > ln
[
1 +

(
1

S+1

) (
3c−1
1−c

)]
.

Proof: The result is obtained by substituting p0 = eλ in the formulas given by Propositions
6 and 8, and with some algebra. See Appendix B for details. �
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Figure 7: (Left) The minimum value of λ to support taking at stage 2S − 1 for both the
dynamic CH model (solid) and the static CH model (dash) when c = 0.8 with S on the
horizontal axis and λ on the vertical axis. (Right) The CDF of terminal nodes in four-node
centipede games predicted by the dynamic CH and static CH models.

Proposition 10 provides a closed form solution for the minimum λ to support some level
of player 1 to take at stage 2S − 1 in both the dynamic and static models. The left panel of
Figure 7 plots the lowest λ. From the figure, we can notice that at stage 2S−1, the minimum
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value of λ to start unraveling is much smaller for the dynamic model than the static model.
Moreover, the minimum λ converges to 0 much faster in the dynamic model than the static
model as S gets higher, which is derived from the belief updating in the dynamic CH.

On the other hand, in the right panel of Figure 7, we focus on the four-node centipede
game (S = 2) and plot the CDF of terminal nodes predicted by both models. First of
all, we can observe the distribution of terminal nodes of the static CH model first order
stochastically dominates the dynamic CH model. In fact, the FOSD relationship holds for
any S, c, λ. This leads to a second interpretation of Theorem 1—since the cutoffs of the
dynamic CH model are uniformly smaller than the cutoffs of the static CH model, there are
more levels of players that would take at every stage, generating the FOSD relationship.

When λ gets larger, the distribution of levels will shift to the right and players tend to
be more sophisticated at the aggregate level. Proposition 11 shows that for sufficiently large
λ, highly sophisticated players would take at every stage in both the extensive form and
reduced normal form of the centipede game.

Proposition 11. For both the dynamic and static models, there exists sufficiently high λ
such that unraveling occurs. That is, for each S :

(i) ∃λ∗ <∞ such that K∗1(λ) <∞ for all λ > λ∗;

(ii) ∃λ̃∗ <∞ such that K̃∗1(λ) <∞ for all λ > λ̃∗.

Proof: See Appendix B. �

This result shows that unravelling occurs if λ is sufficiently high, in both models. However,
it leaves open questions about how this unravelling differs between the static and dynamic
models. To this end, Proposition 12 provides some insight on this issue, in particular that the
static model requires strictly more “density shift” (higher λ) in order to completely unravel
for high-level players.

Proposition 12. For any j where 1 ≤ j ≤ 2S − 1, let λ∗∗2S−j be the lowest λ such that

K∗2S−j(λ) = j+ 1 for all λ > λ∗∗2S−j, and let λ̃∗∗2S−j be the lowest λ such that K̃∗2S−j(λ) = j+ 1

for all λ > λ̃∗∗2S−j. Then λ∗∗2S−j < λ̃∗∗2S−j for all 1 ≤ j ≤ 2S − 1.

Proof: See Appendix B. �

In other words, we can view the difference of density shifts between two models (so that
every level of players completely unravels) as a measure of the effect of belief updating. As
shown in Proposition 12, we can always find a non-trivial set of λ such that players have
already unravelled in the extensive form but not in the reduced normal form.

Finally, in the Poisson family, we can obtain an unambiguous comparative static result
on the change of λ. Proposition 13 shows that when λ increases, the cutoff level of each
stage is weakly decreasing. That is, when the average sophistication of the players increases,
play is closer to the fully rational model—i,e., there is more taking.

Proposition 13. For every stage 1 ≤ j ≤ 2S, K∗j (λ) and K̃∗j (λ) are weakly decreasing in
λ > 0.

Proof: See Appendix B. �
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5.4 Non-linear centipede games

The results of this section about the exact characterization of behavior in dynamic and static
centipede games only consider games with a linearly increasing pie. A natural robustness
question is whether the qualitative findings apply more generally to other families of cen-
tipede games. The key assumption in our analysis is that the increment of pie is not too fast
or too slow. If the increment is too fast (i.e., c > 1), then it is optimal to pass everywhere.
On the other hand, if the increment is too slow (i.e., c < 1

3
), even the lowest level of players

would take at the first stage. In all cases within this range, learning occurs in the dynamic
version of the game, but not in the static version. This would seem to be a general property
of increasing-pie centipede games. That is, unless the pie sizes grow so fast that all positive
levels of players will always pass, or so slowly that positive levels will always take, then
there will be some opportunity for learning, which will lead to different behavior in the two
versions of the game. Moreover, the main effect of learning in the dynamic version will be
to update the prior probability of level-0 players in a downward direction, which in turn will
lead to earlier taking.

For example, the analysis can be extended to the class of centipede games with an expo-
nentially increasing pie, as studied in the McKelvey and Palfrey (1992) experiment. Similar
to the previous analysis, two players alternate over a sequence of moves in an exponential
centipede game with 2S legs. At each move, if a player passes, both the large and small
(positive) payoffs would be multiplied by c > 1. In addition, the ratio between the large and
the small payoff is equal to π > 1 and does not change as the game progresses. Therefore,
an exponential centipede game is parameterized by (S, π, c): if the game is terminated by a
player at stage j ≤ 2S, the payoffs are (cj−1π, cj−1) if j is odd and (cj−1, cj−1π) if j is even.
If no one ever takes, then the payoffs will be (c2Sπ, c2S). In this class of centipede games,
the multiplier c governs the growth rate of pie, and the logic of the proofs of propositions
for the linear games is similar for exponential games as long as:

−1 +
√

1 + 8π2

2π
< c < π,

which rules out trivial cases, in the same way as the assumption of 1
3
< c < 1 rules out trivial

cases in linear centipede games.

All of the qualitative results for linearly increasing centipede games also hold for ex-
ponential centipede games, with the only difference being the analytical expression of the
cutoffs. In particular, Theorem 1, the representation effect continues to hold.

6 Conclusions

We conclude by emphasizing the key motivation for this paper: to provide a theoretical
framework that characterizes hierarchical reasoning in sequential games. As documented in
the literature, sequential equilibrium based on backward induction is not only mathemati-
cally fragile but also empirically implausible to hold. To narrow the gap between the theory
and empirical patterns in sequential games, it is natural to extend the level-k approach to
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such games, as it has already demonstrated considerable success in narrowing the gap for
games played simultaneously. However, the conundrum for directly applying the standard
level-k approach is that players may observe actions that are incompatible with their beliefs,
which leads to the widely known problem of specifying off-path beliefs. The dynamic CH
model avoids this issue with a simple structure that allows players with heterogeneous levels
of sophistication to update their beliefs everywhere as history unfolds, using Bayes’ rule.

We characterize properties of the belief-updating process and explore how it can affect
players’ strategic behavior. The key of our framework is that the history of play contains
substantial information about other players’ levels of sophistication, and therefore as play
unfolds, players learn about their opponents’ strategic sophistication and update their be-
liefs about the continuation play in the game accordingly. In this way our dynamic CH
model departs from the standard level-k approach and generates new insights, including
experimentally testable implications.

We obtain two main results that apply generally to all finite extensive form games.
Proposition 1 establishes that a player’s updating process is independent across the other
players. That is, for every player and every non-terminal history, the joint distribution
of the beliefs of the levels of the other players is the product of the individual posterior
distribution of the levels of each of those other players. In games of imperfect information,
the information sets are non-singleton and the beliefs could be correlated across the histories
at some information set.

In addition, Proposition 2 establishes that the updating process filters out possible level
types of opponents as the game proceeds, and it is irreversible. That is, over the course of
play, it is possible that a player eliminates some levels of another player from the support of
his beliefs, and as the game continues, these levels can never be added back to the support.
Hence, in addition to updating posterior beliefs over the support of level types, the support
also shrinks over time. However, the level-0 players always remain in the support of beliefs,
and hence every player believes every future information set can be reached with positive
probability.

The second half of the paper provides a rigorous analysis of a class of increasing-pie
centipede games and generates testable predictions about how play depends on whether the
game is played sequentially or as a simultaneous move game in its reduced normal form.
One direct implication is the representation effect given by Theorem 1. The theorem states
that playing a centipede game in its extensive form representation, i.e., as a sequential move
game, would lead to more taking than the reduced normal form representation, where the
two players simultaneously announce the stage at which they will take.

This result provides a prediction that may be useful for experimental testing, since the
claim is independent of the length of the centipede and the increment of the pie. Moreover,
the statement is true for any prior belief about the strategic levels. A natural next step
would be to conduct an experiment to test this strong prediction of our model. Garćıa-
Pola et al. (2020a) report the results of an experiment that compares behavior in sequential
and simultaneous move centipede games. They find that games end significantly earlier in
the sequential version for two of four games they study, with no significant effect in the
other two games. This provides some support for the representation effect we identify, but
unfortunately that experiment does not apply directly to Theorem 1. Their experiment does
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not study linearly increasing centipede games, instead exploring behavior in constant sum,
decreasing sum, exponentially increasing, and irregularly increasing variations of centipede
games.

Another direction worth pursuing would be to incorporate some salient features of al-
ternative behavioral models of learning in extensive form games into our approach. In the
approach taken here, the learning process is “extreme” in the sense that players will com-
pletely rule out some levels from their beliefs whenever they observe incompatible actions.
For example, players will believe the opponent is level-0 with certainty if a strictly dominated
action is taken. Yet, it is possible that the player is strategic and the action is taken by mis-
take. In this sense, one could incorporate some elements of the extensive form QRE, where
players choose actions at each information set stochastically, and the choice probabilities
are increasing in the continuation values. In fact, this approach has been used with some
success in simultaneous move games (Crawford and Iriberri, 2007a). As shown in Propo-
sition 2, in the present model of dynamic CH, there is no way to expand the support of a
player’s belief about the other players’ types. However, if players choose stochastically, then
no level type is ever ruled out from the support, which smoothes out the updating process.
Because players’ beliefs maintain full support on lower types throughout the game, a natural
conjecture is that arbitrarily high-level players will approach backward induction when the
error is sufficiently small.

As a final remark, while the main point of the present paper is to develop a general
theoretical foundation for applying CH to extensive form games, the ultimate hope is that
this framework can be usefully applied to gain insight into specific economic models. There
are a number of possible such applications one might imagine, where some or all agents in
the model have opportunities to learn about the strategic sophistication of the other agents
in ways that could significantly affect their choices in the game. For example, Chamley and
Gale (1994) consider a dynamic investment game with social learning, where investments are
valuable only if enough other agents are able to invest, and learning occurs as investment
decisions are observed over time. The dynamic CH model, which combines learning and
updating, but without common knowledge of rationality or fully rational expectations, might
be a useful alternative approach to this problem. Models of sequential voting on agendas
(McKelvey and Niemi (1978) and Banks (1985)), limit pricing and entry deterrence (Selten
(1978) and Milgrom and Roberts (1982)), and dynamic public good provision (Marx and
Matthews (2000), Duffy et al. (2007), and Choi et al. (2008)) are some additional areas of
applied interest where the dynamic CH approach could be useful.
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Appendix A: Proofs of Results in Section 4

Let τi be player i’s level. Following previous notations, we use σi(h) to denote player i’s
(pure) action at h. In addition, µki (τ−i) is level-k player i’s prior belief about the opponent’s
level, and νki (τ−i | h) is level-k player i’s posterior belief about the opponent’s level at history
h. Finally, level-0 players would uniformly randomize at every node. The analysis of the
examples is summarized in the following claims.

Example 1

Claim 1. In Example 1, each level of players’ strategies are:

1. for any k ∈ N, σk1(1b) = r1b, σ
k
1(1c) = l1c, σ

k
2(2b) = l2b, and σk2(2c) = r2c;

2. σ1
1(1a) = r1a and σk1(1a) = l2a for k ≥ 2; σ1

2(2a) = σ2
2(2a) = l2a and σk2(2a) = r2a for

k ≥ 3.

Proof : 1. First, all strategic levels of players would choose the action with a higher
payoff at the last node. Hence, σk1(1b) = r1b and σk2(2c) = r2c for all k ≥ 1. Player 2 has
a dominant action at history h = 2b, so σk2(2b) = l2b for all k ≥ 1. Notice that whenever a
dominant action is not chosen, players would believe the opponent is level-0 with certainty.
At history h = 1c, every level of player 1 thinks player 2 is level-0 and hence for all k ≥ 1,
σk1(1c) = l1c since the expected payoff is 13/2 > 6.

2. Level-1 players believe the other player would randomize at every node. On the one
hand, σ1

1(1a) = r1a and σ1
2(2a) = l2a so that they can maximize the expected payoff. On

the other hand, level-2 players’ initial beliefs are µ2
i (0) = e−1.5/(e−1.5 + 1.5e−1.5) = 2/5 and

µ2
i (1) = 3/5. Thus, σ2

1(1a) = l1a since the expected payoff for l1a is 19/5 > 29/10. On the
other hand, when history h = 2a is realized, level-2 player 2 would believe the opponent is
definitely level-0 and hence σ2

2(2a) = σ1
2(2a) = l2a.

The behavior of higher-level players can be solved by induction. Level-3 players’ prior
beliefs are µ3

i (0) = 8/29, µ3
i (1) = 12/29, and µ3

i (2) = 9/29. In this case, σ3
1(1a) = l1a since

the expected payoff for l1a is 112/29 > 76/29. In addition, when history h = 2a is realized,
level-3 player 2’s posterior belief becomes ν32(0 | 2a) = 0.5e−1.5/(0.5e−1.5+1.125e−1.5) = 4/13
and ν32(2 | 2a) = 9/13, and hence σ3

2(2a) = r2a since 4 > 45/13. Suppose for some k > 3,
σκ1 (1a) = l1a for all 2 ≤ κ ≤ k and σκ2 (2a) = r2a for all 3 ≤ κ ≤ k. We want to show
that σk+1

1 (1a) = l1a and σk+1
2 (2a) = r2a. Level-(k+1) players’ prior beliefs are µk+1

i (κ) =
pκ/(

∑k
κ=0 pκ) for 0 ≤ κ ≤ k. By the induction hypothesis, σk+1

1 (1a) = l1a if and only if

7

2

(
p0∑k
κ=0 pκ

)
+ 4

(
p1 + p2∑k
κ=0 pκ

)
+ 3

(∑k
κ=3 pκ∑k
κ=0 pκ

)
>

17

4

(
p0∑k
κ=0 pκ

)
+ 2

(
1− p0∑k

κ=0 pκ

)
,

which is equivalent to (7/4)p0 − p1 − p2 <
∑k

κ=0 pκ. This holds because (7/4)p0 − p1 − p2 =
−(7/8)e−1.5 < 0. Finally, by the induction hypothesis, level-(k+1) player 2’s posterior belief
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at h = 2a is νk+1
2 (0 | 2a) = 0.5p0/(0.5p0 +

∑k
κ=2 pκ) and νk+1

2 (j | 2a) = pj/(0.5p0 +
∑k

κ=2 pκ)
where 2 ≤ j ≤ k. Thus, σk+1

2 (2a) = r2a if and only if

9

2
νk+1
2 (0 | 2a) + 3

(
1− νk+1

2 (0 | 2a)
)
< 4 ⇐⇒ νk+1

2 (0 | 2a) <
2

3
.

Moreover, the induction hypothesis suggests that

νk+1
2 (0 | 2a) =

1
2
p0

1
2
p0 +

∑k
κ=2 pκ

<
1
2
p0

1
2
p0 +

∑k−1
κ=2 pκ

= νk2 (0 | 2a) <
2

3
,

implying the optimal choice for level-(k+1) player 2 is r2a. This completes the proof. �

Example 2

Claim 2. Suppose τi’s are independently drawn from p = (pk)
∞
k=0, then in Example 2,

1. for any k ∈ N, σk1(1a) = r1a, σ
k
1(1b) = r1b, σ

k
1(1c) = l1c, σ

k
2(2a) = l2a, σ

k
2(2b) = l2b,

and σk2(2c) = r2c;

2. the ex ante probability of the subgame perfect equilibrium path being realized converges
to 0 as p0 → 0+.

Proof : 1. By the analysis of Example 1, we only need to check player 1’s action at the
initial node and player 2’s action at history h = 2a. We can prove the statement by induction
on k. For k = 1, players would think the opponent is level-0. In this case, σ1

1(1a) = r1a since
the expected payoff is 17/4 > 9/4 and σ1

2(2a) = l2a with the expected payoff being 9/2 > 4.
Suppose there is some K such that σk1(1a) = r1a and σk2(2a) = l2a for all 1 ≤ k ≤ K. For
level-(K +1) player 1, the prior belief is µK+1

1 (0) = p0/(
∑K

κ=0 pκ) and σK+1
1 (1a) = r1a if and

only if
17

4
µK+1
1 (0) + 2

(
1− µK+1

1 (0)
)
>

9

4
µK+1
1 (0) +

3

2

(
1− µK+1

1 (0)
)
,

which holds as µK+1
1 (0) > 0. On the other hand, by the induction hypothesis, player 2 would

believe player 1 is level-0 with certainty when history h = 2a is realized, so σK+1
2 (2a) =

σ1
2(2a) = l2a.

2. Statement 1 implies the probability of the subgame perfect equilibrium path r2a being
realized is

Pr(r2a) = Pr((1a, 2a) | 1a) Pr(r2a | 2a) =
[
σ0
1(1a, 2a)p0

] [
σ0
2,2a(r2a)p0

]
=

1

4
p20.

Therefore, we can find the limit of the probability is

lim
p0→0+

Pr(r2a) = lim
p0→0+

1

4
p20 = 0.

This completes the proof. �
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Example 4

Claim 3. In Example 4, each level of players’ strategies are:

1. for any k ∈ N, σk1(1b) = r1b, σ
k
1(1c) = l1c, σ

k
2(2b) = l2b, and σk2(2c) = r2c;

2. σk1(1a) = l1a for all k 6= 2, and σ2
1(1a) = r1a; σ

1
2(2a) = l2a, and σk2(2a) = r2a for all

k ≥ 2.

Proof : 1. The proof is the same as the proof of Claim 1.

2. First, level-1 players believe the other player randomizes everywhere, so σ1
1(1a) = l1a

and σ1
2(2a) = l2a in order to maximize their expected payoffs. Level-2 players’ prior beliefs

are µ2
i (0) = 2/5 and µ2

i (1) = 3/5. Therefore, σ2
1(1a) = r1a since the expected payoff

is 29/10 > 28/10. Level-2 player 2’s posterior belief at history h = 2a is ν22(0 | 2a) =
0.5e−1.5/(0.5e−1.5 + 1.5e−1.5) = 1/4 and ν22(1 | 2a) = 3/4. In this case, σ2

2(2a) = r2a because
4 > 27/8.

Finally, we can solve higher-level players’ behavior by induction. Level-3 players’ prior
beliefs are µ3

i (0) = 8/29, µ3
i (1) = 12/29, and µ3

i (2) = 9/29, and hence σ3
1(1a) = l1a since

the expected payoff is 128/29 > 76/29. At history h = 2a, level-3 player 2’s posterior belief
is the same as level-2, and so σ3

2(2a) = σ2
2(2a) = r2a. Suppose there is some K > 3 such

that σk1(1a) = l1a for all 3 ≤ k ≤ K and σk2(2a) = r2a for all 2 ≤ k ≤ K. Level-(K +1)
players’ prior beliefs are µK+1

i (j) = pj/
∑K

i=0 pi for 0 ≤ j ≤ K. By the induction hypothesis,
σK+1
1 (1a) = l1a if and only if

19

4

(
p0∑K
i=0 pi

)
+

3

2

(
p1∑K
i=0 pi

)
+ 8

(∑K
i=2 pi∑K
i=0 pi

)
>

17

4

(
p0∑K
i=0 pi

)
+ 2

(
1− p0∑K

i=0 pi

)
,

which is equivalent to 5.5p0 + 6.5p1 < 6
∑K

i=0 pi. This holds when the distribution of levels
follows Poisson(1.5). On the other hand, by the induction hypothesis, level-(K +1) player
2’s posterior belief at history h = 2a is νK+1

2 (0 | 2a) = 0.5p0/(0.5p0 + p1 +
∑K

i=3 pi) and

νK+1
2 (j | 2a) = pj/(0.5p0 + p1 +

∑K
i=3 pi) where j 6= 0 or 2, and hence σK+1

2 (2a) = r2a if and
only if

9

2
νK+1
2 (0 | 2a) + 3

(
1− νK+1

2 (0 | 2a)
)
< 4 ⇐⇒ νK+1

2 (0 | l) < 2

3
.

Moreover, the induction hypothesis implies:

νK+1
2 (0 | 2a) =

1
2
p0

1
2
p0 + p1 +

∑K
i=3 pi

<
1
2
p0

1
2
p0 + p1 +

∑K−1
i=3 pi

= νK2 (0 | 2a) <
2

3
,

as desired. �

Appendix B: Proofs of Results in Section 5

Proof of Lemma 1

1. Since stage 2S is the last stage of the game, for any k ≥ 1, player 2 would take at this
stage if and only if
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1 + (2S − 1)c > 2Sc ⇐⇒ 1 > c,

which holds by assumption. Therefore, σk2,S = 1 for all k ≥ 1.

2. Consider a level-1 type of player 1 and any of player 1’s decision nodes j ∈ {1, ..., S}.
The payoff from Take is 1 + (2j − 2)c and the expected payoff from Pass is greater than or
equal to 1

2
(2j − 1)c+ 1

2
(1 + (2j)c). Thus, σk1,j = 0 is strictly optimal if and only if:

1 + (2j − 2)c <
1

2
(2j − 1)c+

1

2
(1 + (2j)c)

⇐⇒ 1

3
< c.

Hence, σ1
1 = (0, . . . , 0). A similar argument shows that σ1

2 = (0, . . . , 0, 1).

3. The argument is similar to the proof of the first statement. Consider a level-k type of
player 1 and any of player 1’s decision nodes j ∈ {1, ..., S − 1}, and suppose σm2,j = 0 for
every 1 ≤ m ≤ k − 1. Then the payoff from Take is 1 + (2j − 2)c and the expected payoff
from Pass is greater than or equal to 1

2
νk2j−1(0)(2j − 1)c+ (1− 1

2
νk2j−1(0))(1 + (2j)c), which

in turn is greater than or equal to 1
2
(2j − 1)c + 1

2
(1 + (2j)c) because νk2j−1(0) ≤ 1. Thus

σk1,j = 0 is strictly optimal if and only if:

1 + (2j − 2)c <
1

2
(2j − 1)c+

1

2
(1 + (2j)c)

⇐⇒ 1

3
< c.

Hence, σk1,j = 0. A similar argument shows that σk2,j = 0 if σm1,j+1 = 0 for every 1 ≤ m ≤ k−1.
This completes the proof. �

Proof of Proposition 4

1. The statement can be proved by induction. Consider stage 2S − 1. By Lemma 1, we
know K∗2S = 1 and σ1

1,S = 0, suggesting K∗2S−1 ≥ 2 = K∗2S + 1. Now, fix any 2 ≤ m ≤ 2S − 1
and suppose the statement holds for all stages m ≤ j ≤ 2S − 1. Without loss of generality,
we consider an even m. We want to show that if K∗m < ∞, then K∗m−1 ≥ K∗m + 1. By
construction, we know σk2,m

2
= 0 for all 1 ≤ k ≤ K∗m − 1. Therefore, Lemma 1 implies

σ1,m
2

= 0 for all 1 ≤ k ≤ K∗m, and K∗m−1 ≥ K∗m + 1.

2. Consider any j such that K∗j+1 = ∞. Without loss of generality, we consider an odd j.
Hence, σk

2, j+1
2

= 0 for all k ≥ 1 and we want to show σk
1, j+1

2

= 0 for all k ≥ 1 by induction.

Lemma 1 implies σ1
1, j+1

2

= 0. Suppose there is K ≥ 2 such that σk
1, j+1

2

= 0 for all 1 ≤ k ≤ K.

Since σk
2, j+1

2

= 0 for all k ≥ 1, Lemma 1 implies σK+1

1, j+1
2

= 0, as desired. �
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Proof of Proposition 5

We prove this by induction. Consider stage 2S − 1. Level K∗2S−1 player 1 believes that only
level-0 player 2 will pass at stage 2S, so:

1 + (2S − 2)c >

(
1− 1

2
ν
K∗2S−1

2S−1 (0)

)
[(2S − 1)c] +

1

2
ν
K∗2S−1

2S−1 (0)[1 + 2Sc]

>

(
1− 1

2
νk2S−1(0)

)
[(2S − 1)c] +

1

2
νk2S−1(0)[1 + 2Sc] for all k > K∗2S−1

since 1
2
νk2S−1(0) < 1

2
ν
K∗2S−1

2S−1 (0) and therefore σk1,S = 1 for all k ≥ K∗2S−1.

Next, suppose for any m where 2 ≤ m ≤ 2S − 1, the statement holds for all j such that
m ≤ j ≤ 2S − 1. Suppose m is odd and K∗m−1 < ∞. (A similar argument applies if m is
even.) By construction, σk

2,m−1
2

= 0 for all 1 ≤ k ≤ K∗m−1−1. By Lemma 1, we have σk1,s = 0

for all 1 ≤ s ≤ m−1
2

and for all 1 ≤ k ≤ K∗m−1. Level K∗m−1 player 2’s belief at stage m− 1
that the other player would pass at stage m is

1

2
ν
K∗m−1

m−1 (0) +

K∗m−1∑
κ=1

ν
K∗m−1

m−1 (κ) =
1

2

p0
(
1
2

)m−1
2

p0
(
1
2

)m−1
2 +

∑K∗m−1−1
κ=1 pκ

+

∑K∗m−1
κ=1 pκ

p0
(
1
2

)m−1
2 +

∑K∗m−1−1
κ=1 pκ

=
p0
(
1
2

)m+1
2 +

∑K∗m−1
κ=1 pκ

p0
(
1
2

)m−1
2 +

∑K∗m−1−1
κ=1 pκ

.

Since σ
K∗m−1

1,s = 0 for all 1 ≤ s ≤ m−1
2

, then for any k > K∗m−1, at stage m− 1 level-k player
2’s belief about the probability that the other player would pass at stage m is

1

2
νkm−1(0) +

K∗m−1∑
κ=1

νkm−1(κ) ≤ 1

2
ν
K∗m−1+1

m−1 (0) +

K∗m−1∑
κ=1

ν
K∗m−1+1

m−1 (κ)

=
1

2

p0
(
1
2

)m−1
2

p0
(
1
2

)m−1
2 +

∑K∗m−1

κ=1 pκ
+

∑K∗m−1
κ=1 pκ

p0
(
1
2

)m−1
2 +

∑K∗m−1

κ=1 pκ

<
p0
(
1
2

)m+1
2 +

∑K∗m−1
κ=1 pκ

p0
(
1
2

)m−1
2 +

∑K∗m−1−1
κ=1 pκ

.

since
∑K∗m−1

κ=1 pκ >
∑K∗m−1−1

κ=1 pκ. This implies that for any level k > K∗m−1, higher level of
player 2 at stage m− 1 would think the other player is less likely to pass at stage m. Since
it is already profitable for level K∗m−1 player 2 to take at stage m− 1, we can conclude that
σk
2,m−1

2

= 1 for all k ≥ K∗m−1. �

Proof of Proposition 7

Without loss of generality, we can consider an even j, so b j
2
c = j

2
and it is player 2’s turn at

stage j.
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Only if: Suppose K∗j < ∞. Then from Proposition 4, K∗j′ ≥ K∗j + 1 for all j′ < j. Hence,
the belief of level K∗j of player 2 that player 1 is level-0 at stage j equals to

ν
K∗j
j (0) =

p0
(
1
2

) j
2

p0
(
1
2

) j
2 +

∑K∗j−1
κ=1 pκ

>
p0
(
1
2

)S−1
p0
(
1
2

)S−1
+ (1− p0)

.

Level K∗j player 2’s belief at stage j that the player 1 would pass at stage j + 1 is

1

2
ν
K∗j
j (0) +

K∗J+1−1∑
κ=1

ν
K∗j
j (κ) =

1

2

p0
(
1
2

) j
2

p0
(
1
2

) j
2 +

∑K∗j−1
κ=1 pκ

+

∑K∗j+1−1
κ=1 pκ

p0
(
1
2

) j
2 +

∑K∗j−1
κ=1 pκ

=
p0
(
1
2

) j
2
+1

+
∑K∗j+1−1

κ=1 pκ

p0
(
1
2

) j
2 +

∑K∗j−1
κ=1 pκ

where we know that K∗j+1 ≤ K∗j − 1 Since it is optimal for level K∗j < ∞ to take at j this

implies
p0( 1

2)
j
2+1

+
∑K∗j+1−1

κ=1 pκ

p0( 1
2)

j
2+

∑K∗
j
−1

κ=1 pκ

< 1−c
1+c

and therefore

p0
(
1
2

) j
2
+1

+
∑K∗j+1−1

κ=1 pκ

p0
(
1
2

) j
2 + (1− p0)

<
1− c
1 + c

.

If: Suppose K∗j = ∞. Then from Proposition 4, K∗j′ = ∞ for all j′ < j. That is, all levels
of both players pass at every stage up to and including j. Hence the belief of level k ≥ 1 of
player 2 that player 1 is level-0 at stage j equals to

νkj (0) =
p0
(
1
2

) j
2

p0
(
1
2

) j
2 +

∑k−1
κ=1 pκ

>
p0
(
1
2

) j
2

p0
(
1
2

) j
2 + (1− p0)

.

Since K∗j = ∞ it is optimal to pass at j for all levels k ≥ 1 of player 2, which implies
1
2
p0( 1

2)
j
2+

∑K∗j+1−1

κ=1 pκ

p0( 1
2)

j
2+

∑k−1
κ=1 pκ

≥ 1−c
1+c

, for all k, where possibly K∗j+1 =∞, so:

1
2
p0
(
1
2

) j
2 +

∑K∗j+1−1
κ=1 pκ

p0
(
1
2

) j
2 + (1− p0)

≥ 1− c
1 + c

,

as desired. �

Proof of Lemma 2

1. To prove the statement, we can discuss player 1 and 2 separately.

Player 2:
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(i) a12 = S strictly dominates a12 = S + 1: E [u2(a
0
1, S)]− E [u2(a

0
1, S + 1)] = 1−c

S+1
> 0 since

c < 1.

(ii) a12 = j + 1 strictly dominates a12 = j for all 1 ≤ j ≤ S − 1: For 1 ≤ j ≤ S − 1, since
c > 1

3
,

E
[
u2(a

0
1, j + 1)

]
− E

[
u2(a

0
1, j)

]
=

1

S + 1
[−1 + (2S − 2j + 1)c] ≥ 1

S + 1
(−1 + 3c) > 0.

Hence, we can obtain that a12 = S.

Player 1: By the same logic as (ii) above, a11 = j + 1 strictly dominates a11 = j for all
1 ≤ j ≤ S: For 1 ≤ j ≤ S, since c > 1

3
,

E
[
u1(j + 1, a02)

]
− E

[
u1(j, a

0
2)
]

=
1

S + 1
[−1 + (2S − 2j + 3)c] ≥ 1

S + 1
(−1 + 3c) > 0.

Hence, we can obtain that a11 = S + 1.

2. (i) Notice that for any a2, u1(a1, a2) is maximized at a1 = a2. Fix level k ≥ 2. If level-k
player 1 chooses s, then the expected payoff is:

V k
1 (s) ≡

k−1∑
κ=0

p̃kκE [u1(s, a
κ
2)]

= p̃k0E
[
u1(s, a

0
2)
]

+
k−1∑
κ=1

p̃kκu1(s, a
κ
2).

Suppose min{am2 : 1 ≤ m ≤ k−1} = 1, then (i) holds trivially. If min{am2 : 1 ≤ m ≤ k−1} ≥
2, then we can prove the statement by contradiction. Suppose ak1 < min{am2 : 1 ≤ m ≤ k−1},
then

V k
1 (ak1) = p̃k0 E

[
u1(a

k
1, a

0
2)
]︸ ︷︷ ︸

<E[u1(ak1+1,a02)]

+
k−1∑
κ=1

p̃kκ u1(a
k
1, a

κ
2)︸ ︷︷ ︸

≤u1(ak1+1,al2)

< V k
1 (ak1 + 1).

E
[
u1(a

k
1, a

0
2)
]
< E

[
u1(a

k
1 + 1, a02)

]
follows from the first statement. Furthermore, ak1 <

min{am2 : 1 ≤ m ≤ k − 1} implies u1(a
k
1, a

κ
2) ≤ u1(a

k
1 + 1, aκ2) for all 1 ≤ κ ≤ k − 1.

Hence, ak1 < min{am2 : 1 ≤ m ≤ k − 1} is not optimal for level-k player 1, a contradiction.

(ii) The logic is similar for player 2.

3. We prove this statement by induction on k. First, it holds for k = 1, by the first
statement. Next, we suppose it holds for any k where 1 ≤ k ≤ K − 1 and prove it holds for
k = K. For level K + 1 player 1, the expected payoff for choosing s is:

V K+1
1 (s) = p̃K+1

0 E
[
u1(s, a

0
2)
]

+
K∑
κ=1

p̃K+1
κ u1(s, a

κ
2)

=

(∑K−1
κ=0 pκ∑K
κ=0 pκ

)
V K
1 (s) + p̃K+1

K u1(s, a
K
2 ).
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Suppose, by way of contradiction, that aK+1
1 > aK1 . Then V K

1 (aK+1
1 ) < V K

1 (aK1 ). From
the induction hypothesis, aK2 ≤ aK−12 , and from the second statement, aK1 ≥ aK−12 and
hence aK+1

1 > aK1 ≥ aK−12 ≥ aK1 .This implies u1(a
K+1
1 , aK2 ) ≤ u1(a

K
1 , a

K
2 ), so V K+1

1 (aK+1
1 ) <

V K+1
1 (aK1 ), which contradicts that aK+1

1 is the optimal strategy for level K + 1 player 1.
Hence aK+1

1 ≤ aK1 , so the result is proved for i = 1. A similar argument proves the result for
i = 2. �

Proof of Proposition 8

With slight abuse of notation, denote a level-k player’s prior belief that the opponent is
level-κ by µkκ ≡

pκ∑k−1
j=0 pj

, κ = 1, ..., k − 1.

Only if: Suppose p0 ≥ S+1

(S+1)+( 3c−1
1−c )

, then we want to show that ak1 = S + 1 for all k ≥ 1.

We can prove this statement by induction on k. By Lemma 2, we know a11 = S + 1. Now,
suppose this statement holds for all 1 ≤ k ≤ K for some K ∈ N, then we want to show this
holds for level K + 1 player 1. First, by Lemma 2, we have ak2 = S for all 1 ≤ k ≤ K. Level
K + 1 player 1 would choose S if and only if

µK+1
0

[
1

S + 1

[
1 + 2Sc+

S+1∑
i=2

(2i− 3)c

]]
+
(
1− µK+1

0

)
(2S − 1)c

< µK+1
0

[
1

S + 1

[
2(1 + (2S − 2)c) +

S∑
i=2

(2i− 3)c

]]
+
(
1− µK+1

0

)
(1 + (2S − 2)c)

⇐⇒ µK+1
0

[
1

S + 1
(1− 3c)

]
+
(
1− µK+1

0

)
(1− c) > 0

⇐⇒ µK+1
0 <

S + 1

(S + 1) +
(
3c−1
1−c

) .
However, we know µK0 > p0 and we have assumed p0 ≥ S+1

(S+1)+(−1+3c
1−c )

, so µK+1
0 > p0 ≥

S+1

(S+1)+( 3c−1
1−c )

, implying that aK+1
1 = S + 1.

If: Suppose p0 <
S+1

(S+1)+( 3c−1
1−c )

, then there exists N∗ < ∞ such that µN
∗

0 < S+1

(S+1)+( 3c−1
1−c )

.

Therefore, by a previous calculation we have that

K̃∗2S−1 = arg min
N∗

{
µN

∗

0 <
S + 1

(S + 1) +
(
3c−1
1−c

)} <∞,

which is the lowest level of player 1 who would take at no later than stage 2S − 1. �

Proof of Proposition 9

First, an immediate implication of Lemma 2 is that for all level k ≥ 1, the optimal choice
for level-(k+1) is either the same as level-k or to take at one stage earlier. Given this
observation, the logic of the proof is similar to Proposition 7.
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Only if : For any 1 ≤ j ≤ 2S − 2, suppose p0

(
S
S+1
− 2b j

2
cc

(S+1)(1+c)

)
+
∑K̃∗j+1−1

κ=1 pκ ≥ 1−c
1+c

, then

we want to show K̃∗j = ∞. Without loss of generality, we consider an odd j. If K̃∗j+1 = ∞,

then the statement holds immediately. Otherwise, we can prove ak1 >
j+1
2

for all k ≥ 1 by

induction. By construction, we know am2 > j+1
2

for all 1 ≤ m ≤ K̃∗j+1 − 1 and ak1 >
j+1
2

for

all 1 ≤ k ≤ K̃∗j+1 by Lemma 2. Suppose there is some K ≥ K̃∗j+1 + 1 such that ak1 >
j+1
2

for
all 1 ≤ k ≤ K. We want to show this holds for level K + 1 player 1. Level K + 1 player 1
would choose j+1

2
+ 1 if and only if

p0

[
1

S + 1
(1− (2S − j + 2)c)

]
+

K̃∗j+1−1∑
κ=1

pκ

 (−2c) +

 K∑
κ=K̃∗j+1

pκ

 (1− c) ≤ 0.

Moreover, we can observe that this condition is implied by:

p0

[
1

S + 1
(1− (2S − j + 2)c)

]
+

K̃∗j+1−1∑
κ=1

pκ

 (−2c) +

1− p0 −
K̃∗j+1−1∑
κ=1

pκ

 (1− c) ≤ 0

⇐⇒ p0

[
S

S + 1
− (j − 1)c

(S + 1)(1 + c)

]
+

K̃∗j+1−1∑
κ=1

pκ ≥
1− c
1 + c

.

By our assumption, we can conclude that the optimal choice for level (K +1) player 1 is
j+1
2

+ 1,15 which completes the only if part of the proof.

If : For any 1 ≤ j ≤ 2S − 2, suppose

p0

(
S

S + 1
−

2b j
2
cc

(S + 1)(1 + c)

)
+

K̃∗j+1−1∑
κ=1

pκ <
1− c
1 + c

,

then there exists N∗ where K̃∗j+1 + 1 ≤ N∗ <∞ such that

µN
∗

0

(
S

S + 1
−

2b j
2
cc

(S + 1)(1 + c)

)
+

∑K̃∗j+1−1
κ=1 pκ∑N∗−1
κ=0 pκ

<
1− c
1 + c

.

Therefore, by previous calculation and the existence of such N∗ <∞, we can obtain that

K̃∗j = arg min
N∗

µN∗0

(
S

S + 1
−

2b j
2
cc

(S + 1)(1 + c)

)
+

∑K̃∗j+1−1
κ=1 pκ∑N∗−1
κ=0 pκ

<
1− c
1 + c

 <∞,

which is the lowest level of player who would take at no later than stage j. �

15If j is even, then by the same argument, we can obtain level (K+1) player 2 would choose j
2 + 1 as

p0

(
S

S + 1
− jc

(S + 1)(1 + c)

)
+

K̃∗j+1−1∑
l=1

pl ≥
1− c
1 + c

.
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Proof of Theorem 1

Step 1: By Lemma 1 and Lemma 2, we can obtain that 1 = K∗2S ≤ K̃∗2S = 1, suggesting
that the inequality holds at stage 2S.

Step 2: By Proposition 6 and 8, we know K∗2S−1 and K̃∗2S−1 are the lowest levels such that

p0∑K∗2S−1−1
κ=0 pκ

<
2S

2S +
(−1+3c

1−c

) , and

p0∑K̃∗2S−1−1
κ=0 pκ

<
S + 1

(S + 1) +
(−1+3c

1−c

) , respectively.

We can observe that S+1

(S+1)+(−1+3c
1−c )

< 2S

2S+(−1+3c
1−c )

, suggesting the inequality for the dynamic

model is less stringent. Hence, we can obtain that K∗2S−1 ≤ K̃∗2S−1.

Step 3: We can finish the proof by induction on the stages. At stage 2S−2, as we rearrange
the condition from Proposition 7, we can obtain K∗2S−2 is the lowest level such that

K∗2S−2−1∑
κ=1

pκ > p0

(
1

2

)S (−1 + 3c

1− c

)
+

K∗2S−1−1∑
κ=1

pκ

(1 + c

1− c

)
. (4)

Similarly, as we rearrange the necessary and sufficient condition from Proposition 9, we can
find that K̃∗2S−2 is the lowest level such that

K̃∗2S−2−1∑
κ=1

pκ > p0

(
1

S + 1

)(
−1 + 3c

1− c

)
+

K̃∗2S−1−1∑
κ=1

pκ

(1 + c

1− c

)
. (5)

It suffices to prove K∗2S−2 ≤ K̃∗2S−2 by showing the right-hand side of Condition (4) is

smaller than the right-hand side of (5). This holds because
(
1
2

)S
< 1

S+1
for all S ≥ 2 and

K∗2S−1 ≤ K̃∗2S−1 as we have shown in step 2.

Step 4: Consider any j where 3 ≤ j ≤ 2S−1 and supposeK∗2S−i ≤ K̃∗2S−i for all 0 ≤ i ≤ j−1.

We want to show K∗2S−j ≤ K̃∗2S−j. Without loss of generality, we consider an odd j. That is,
player 1 owns stage 2S − j. By Proposition 7, we know K∗2S−j is the lowest level such that

K∗2S−j−1∑
κ=1

pκ > p0

(
1

2

)S− j+1
2

+1(−1 + 3c

1− c

)
+

K∗2S−j+1−1∑
κ=1

pκ

(1 + c

1− c

)
. (6)

Similarly, as we rearrange the necessary and sufficient condition from Proposition 9, we
can obtain that K̃∗2S−j is the lowest level such that

K̃∗2S−j−1∑
κ=1

pκ > p0

(
1

S + 1

)[
−1 + (j + 2)c

1− c

]
+

K̃∗2S−j+1−1∑
κ=1

pκ

(1 + c

1− c

)
. (7)
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Similar to the previous step, we can finish the proof by showing the right-hand side of
Condition (6) is smaller than the right-hand side of (7). The induction hypothesis implies
the second term of (7) is larger than the second term of (6). Hence, the only thing left to
show is (

1

2

)S− j+1
2

+1(−1 + 3c

1− c

)
<

(
1

S + 1

)[
−1 + (j + 2)c

1− c

]
.

Or equivalently,

(S + 1)(−1 + 3c) < 2S−
j+1
2

+1(−1 + (j + 2)c). (8)

Since 3 ≤ j ≤ 2S − 1, there is nothing to show if S < j+1
2

. When S ≥ j+1
2

, we know (8)
would hold in the following three different cases.

- Case 1: If S + 1 = 2S−
j+1
2

+1, then (8) becomes −1 + 3c < −1 + (j + 2)c ⇐⇒ j > 1.

- Case 2: If S + 1 < 2S−
j+1
2

+1, then (8) is equivalent to

2S−
j+1
2

+1−(S+1) <
[
(j + 2)2S−

j+1
2

+1 − 3(S + 1)
]
c ⇐⇒ 1 <

3 +
(j − 1)2S−

j+1
2

+1

2S−
j+1
2

+1 − (S + 1)︸ ︷︷ ︸
>0 as j≥3

 c,
which holds under our assumption c > 1

3
.

- Case 3: If S + 1 > 2S−
j+1
2

+1, then (8) can be rearranged as

(S+1)−2S−
j+1
2

+1 >
[
3(S + 1)− (j + 2)2S−

j+1
2

+1
]
c ⇐⇒ 1 >

3− j − 1(
S+1

2S−
j+1
2 +1

)
− 1

 c.
The right-hand side of the inequality is negative since

3− j − 1(
S+1

2S−
j+1
2 +1

)
− 1
≤ 3− j − 1( j+1

2
+1

2

)
− 1

= −1.

This completes the proof. �

Proof of Proposition 10

By Proposition 6, we know

K∗2S−1 <∞ ⇐⇒ p0 <
2S

2S
(−1+3c

1−c

) .
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As the prior distribution follows Poisson(λ), the condition becomes

K∗2S−1(λ) <∞ ⇐⇒ e−λ <
2S

2S
(−1+3c

1−c

)
⇐⇒ λ > ln

[
1 +

(
1

2

)S (−1 + 3c

1− c

)]
.

Similarly, by Proposition 8, we know

K̃∗2S−1 <∞ ⇐⇒ p0 <
S + 1

(S + 1)
(−1+3c

1−c

) ,
which can be rearranged to the following expression when the prior distribution follows
Poisson(λ):

K̃∗2S−1(λ) <∞ ⇐⇒ e−λ <
S + 1

(S + 1)
(−1+3c

1−c

)
⇐⇒ λ > ln

[
1 +

(
1

S + 1

)(
−1 + 3c

1− c

)]
.

This completes the proof. �

Proof of Proposition 11

Here we show the existence of λ∗. The existence of λ̃∗ can be proven by the same argument.

Step 1: By Proposition 1, we know for all λ > 0, K∗2S(λ) = 1.

Step 2: By Proposition 10, we know

K∗2S−1(λ) <∞ ⇐⇒ λ > ln

[
1 +

(
1

2

)S (−1 + 3c

1− c

)]
≡ λ∗2S−1.

Since λ∗2S−1 <∞, we know K∗2S−1(λ) <∞ ⇐⇒ λ > λ∗2S−1.

Step 3: By Proposition 7, we know

K∗2S−2(λ) <∞ ⇐⇒
e−λ

(
1
2

)S
+ e−λ

∑K∗2S−1(λ)−1
l=1

λl

l!

e−λ
(
1
2

)S−1
+ (1− e−λ)

<
1− c
1 + c

⇐⇒ 1− e−λ
[

1 +

(
1

2

)S (−1 + 3c

1− c

)]
− e−λ

K∗2S−1(λ)−1∑
κ=1

λκ

κ!

(
1 + c

1− c

)
> 0.

Notice that by step 2, we know there exists someM <∞, such that for all λ > λ∗2S−1, K
∗
2S−1(λ) <

M . Moreover, by Proposition 4, we know K∗2S−1(λ) ≥ 2. Hence,

0 = lim
λ→∞

λ

eλ
≤ lim

λ→∞
e−λ

K∗2S−1(λ)−1∑
κ=1

λκ

κ!
≤ lim

λ→∞
e−λ

M−1∑
κ=1

λκ

κ!
= 0.
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Coupled with the fact that limλ→∞ e
−λ = 0, we can conclude that there exists λ∗2S−2 such

that λ∗2S−1 < λ∗2S−2 <∞ and K∗2S−2(λ) <∞ ⇐⇒ λ > λ∗2S−2.

Step 4: Now we can prove this statement by induction on each stage. Consider any j
where 3 ≤ j ≤ 2S − 1 and suppose there exists λ∗2S−j+1 <∞ such that K∗2S−j+1(λ) <∞ for
all λ > λ∗2S−j+1. By Proposition 7, we know

K∗2S−j(λ) <∞ ⇐⇒
e−λ

(
1
2

)b 2S−j
2
c+1

+ e−λ
∑K∗2S−j+1(λ)−1

κ=1
λκ

κ!

e−λ
(
1
2

)b 2S−j
2
c

+ (1− e−λ)
<

1− c
1 + c

⇐⇒ 1− e−λ
[

1 +

(
1

2

)b 2S−j
2
c+1(−1 + 3c

1− c

)]
− e−λ

K∗2S−j+1(λ)−1∑
κ=1

λκ

κ!

(
1 + c

1− c

)
> 0.

By the induction hypothesis, we know there exists some L <∞ such that for all λ > λ∗2S−j+1,
K∗2S−j+1(λ) < L. Proposition 4 gives us K∗2S−j+1(λ) ≥ j, and hence,

0 = lim
λ→∞

e−λ

(
j−1∑
κ=1

λκ

κ!

)
≤ lim

λ→∞
e−λ

K∗2S−j+1(λ)−1∑
κ=1

λκ

κ!
≤ lim

λ→∞
e−λ

L−1∑
κ=1

λκ

κ!
= 0.

Combined with the fact that limλ→∞ e
−λ = 0, we have proved that there exists λ∗2S−j such

that λ∗2S−j+1 < λ∗2S−j <∞ and K∗2S−j(λ) <∞ ⇐⇒ λ > λ∗2S−j. Thus, λ∗1 is the desired λ∗.
�

Proof of Proposition 12

The proofs of Propositions 6 through 9 provide a recipe to derive the necessary and suffi-
cient conditions for complete unraveling at each stage. That is, when the prior distribution
follows Poisson distribution, we can compute the minimum λ for both models such that the
predictions coincide with the standard level-k model. In the dynamic model, we can obtain
from Proposition 6 and 7 that for any stage 2S − j where 1 ≤ j ≤ 2S − 1,

K∗2S−1(λ) = 2 ⇐⇒ e−λ

e−λ + λe−λ
<

2S

2S +
(−1+3c

1−c

) ⇐⇒ λ >

(
1

2

)S (−1 + 3c

1− c

)
≡ λ∗∗2S−1, and

K∗2S−j(λ) = j + 1 ⇐⇒
j∑

κ=1

λκe−λ

κ!
> e−λ

(
1

2

)S−b j+1
2
c+1(−1 + 3c

1− c

)
+

(
j−1∑
κ=1

λκe−λ

κ!

)(
1 + c

1− c

)

⇐⇒ 1

j!
λj −

(
2c

1− c

)( j−1∑
κ=1

λκ

κ!

)
>

(
1

2

)S−b j+1
2
c+1(−1 + 3c

1− c

)
≡M∗∗

2S−j.

Similarly, we know from Proposition 8 and Proposition 9 that for any stage 2S− j where
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1 ≤ j ≤ 2S − 1,

K̃∗2S−1(λ) = 2 ⇐⇒ e−λ

e−λ + λe−λ
<

S + 1

(S + 1) +
(−1+3c

1−c

) ⇐⇒ λ >
−1 + 3c

(S + 1)(1− c)
≡ λ̃∗∗2S−1, and

K̃∗2S−j(λ) = j + 1 ⇐⇒
j∑

κ=1

λκe−λ

κ!
> e−λ

(
−1 +

(
2b j+1

2
c+ 1

)
c

(S + 1)(1− c)

)
+

(
j−1∑
κ=1

λκe−λ

κ!

)(
1 + c

1− c

)

⇐⇒ 1

j!
λj −

(
2c

1− c

)( j−1∑
κ=1

λκ

κ!

)
>

(
−1 +

(
2b j+1

2
c+ 1

)
c

(S + 1)(1− c)

)
≡ M̃∗∗

2S−j.

First, we can find λ∗∗2S−1 < λ̃∗∗2S−1 since (1
2
)S < 1

S+1
. Moreover, because the LHS of each

inequality is a degree of j polynomial of λ, it has only one positive root by Descartes’ rule

of signs. Hence, it suffices to prove M∗∗
2S−j < M̃∗∗

2S−j, or equivalently,
M̃∗∗2S−j
M∗∗2S−j

> 1, for all

2 ≤ j ≤ 2S−1. Due to the property of floor functions, we can focus on odd j without loss of
generality. Also, we can observe that this ratio is decreasing in j since for any odd j where
3 ≤ j ≤ 2S − 3,

M̃∗∗
2S−(j+2)

M∗∗
2S−(j+2)

=

(
2S−

j+1
2

S + 1

)(
−1 + (j + 4)c

−1 + 3c

)

=
1

2

(
M̃∗∗

2S−j

M∗∗
2S−j

)
+

1

2

[(
2S−

j−1
2

S + 1

)(
2c

−1 + 3c

)]
<
M̃∗∗

2S−j

M∗∗
2S−j

⇐⇒ 2c < −1 + (j + 2)c ⇐⇒ 1 < jc,

which holds because of the assumption c > 1
3
. The monotonicity implies that the ratio is

minimized when j = 2S − 1, and we can obtain the conclusion by showing
M̃∗∗1
M∗∗1

> 1:

M̃∗∗
1

M∗∗
1

=

(
2

S + 1

)(
−1 + (2S + 1)c

−1 + 3c

)
> 1 ⇐⇒ (S − 1)(1 + c) > 0,

as desired. �

Proof of Proposition 13

Here we only provide the proof for the dynamic model. A very similar argument can be
applied to the static model. First of all, by Proposition 1, we know K∗2S(λ) = 1 for all λ > 0.
Therefore, it is weakly decreasing in λ.

To show the monotonicity of K∗2S−1(λ), we need to introduce the function Fk(λ) : R++ →
R where k ∈ N and Fk(λ) =

∑k
κ=1

λκ

κ!
. Notice that Fk+1(λ) > Fk(λ) for all λ > 0, and Fk(λ)

is strictly increasing since F ′k(λ) =
∑k−1

κ=0
λκ

κ!
> 0 for all λ > 0. We prove the monotonicity

toward contradiction. By Proposition 6, we know K∗2S−1(λ) is the lowest level such that

FK∗2S−1(λ)−1(λ) >

(
1

2

)S (−1 + 3c

1− c

)
.
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If K∗2S−1(λ) is not weakly decreasing in λ, then there exists λ′ > λ such that K∗2S−1(λ
′) >

K∗2S−1(λ). By the construction and the monotonicity of Fk(λ), we can find that

FK∗2S−1(λ)−1(λ
′) > FK∗2S−1(λ)−1(λ) >

(
1

2

)S (−1 + 3c

1− c

)
.

Also, K∗2S−1(λ
′) is the lowest level such that

FK∗2S−1(λ
′)−1(λ

′) >

(
1

2

)S (−1 + 3c

1− c

)
,

implying that

FK∗2S−1(λ)−1(λ
′) > FK∗2S−1(λ

′)−1(λ
′) >

(
1

2

)S (−1 + 3c

1− c

)
.

This contradicts the assumption that K∗2S−1(λ
′) > K∗2S−1(λ). �
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