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Abstract4

A mixed logit function, also known as a random-coefficients logit function, is5

an integral of logit functions. The mixed logit model is one of the most widely6

used models in the analysis of discrete choice. Observed behavior is described by a7

random choice function, which associates with each choice set a probability measure8

over the choice set. I obtain several necessary and sufficient conditions under which9

a random choice function becomes a mixed logit function. One condition is easy to10

interpret and another condition is easy to test.11

12

Keywords: Random utility, random choice, mixed logit, random coefficients.13

1 Introduction14

The purpose of this paper is to provide axiomatizations of the mixed logit model,15

also known as the random-coefficients logit model. The mixed logit model is one16

of the most widely used models in the analysis of discrete choice, especially in the17

empirical literature on marketing, industrial organization, and public economics. I18

provide several axiomatizations of the mixed logit model. One axiomatization is19

∗This paper was first presented at the University of Tokyo on July 29, 2017. I appreciate the valuable

discussions I had with Kim Border, Federico Echenique, Hidehiko Ichimura, Yimeng Li, Jay Lu, and

Matt Shum. Jay Lu also read the manuscript and offered helpful comments. This research is supported

by Grant SES1558757 from the National Science Foundation.
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useful to understand the behavioral implications of the mixed logit model. Another20

axiomatization is useful to test the mixed logit model.21

In this paper, the observed behavior is described by a random choice function

ρ that assigns to each choice set D a probability distribution over D. The number

ρ(D,x) is the probability that an alternative x is chosen from a choice set D. The

function ρ is called a mixed logit function if there exists a probability measure m

such that

ρ(D,x) =

∫

exp(u(x))
∑

y∈D exp(u(y))
dm(u). (1)

The mixed logit model has been popular for several reasons. To begin with, the22

model overcomes the limitations of the logit model. The mixed logit model allows23

various substitution patterns across the alternatives. Moreover, despite its specific24

formula, the model is flexible. In fact, McFadden and Train (2000) show that any25

random utility function can be approximated by a mixed logit function.26

In an empirical analysis, an alternative x can be identified by the real vector of27

explanatory variables of x.1 With the vector x of explanatory variables, an empirical28

researcher usually uses a special case of a mixed logit function in which u takes the29

linear form of u(x) = x · β. I call a logit function with such a linear u a linear30

logit function. I call the special case of a mixed logit function a mixed linear logit31

function.32

I provide several axiomatizations of the mixed logit model. Each axiom by33

itself is necessary and sufficient for the mixed logit model. To motivate the first34

axiomatization, consider an expected-utility maximizer who chooses an alternative35

from a choice set without knowing his true utility function. The choice set will be36

randomly chosen and the agent has a subjective belief over the choice sets. One37

simple strategy of the agent is to pick a deterministic strict preference relation and38

to maximize the strict preference relation. This strategy is naive because it ignores39

the possibility that the agent’s utility could be different across the choice sets.40

The first axiom requires that for any subjective belief over the choice sets and41

for any nonconstant realization of utility function, the agent’s random choice should42

give a higher expected utility than the worst naive strategy. Notice that the require-43

ment of the axiom is weak in that the axiom does not require that the agent’s random44

choice dominate the naive strategies; the axiom only requires that the agent’s ran-45

1For example, in Berry et al. (1995), an alternative is a car available in the market. Each car is

identified by the car’s price, weight, size, fuel efficiency, and other attributes.

2



dom choice should be better than the worst naive strategy. In Theorem 1, I show46

that a random choice function satisfies the axiom if and only if it is a mixed logit47

function.48

The second axiomatization is based on the Block-Marschak polynomials. Fal-49

magne (1978) has shown that the nonnegativity of the Block-Marschak polynomials50

characterizes the random utility model. In Theorem 2, I show that the positivity of51

the Block-Marschak polynomials characterizes the mixed logit model. The number52

of the Block-Marschak polynomials is finite. Thus it is easy to test this second53

axiom, although the behavioral meaning of the second axiom may be less clear than54

the meaning of the first axiom. McFadden and Richter (1990) and Clark (1996)55

have provided other axiomatizations of the random utility model. By modifying56

their axioms, I obtain alternative axiomatizations of the mixed logit model in the57

appendix.58

Moreover, I provide the axiomatizations of the mixed linear logit model. As59

mentioned earlier, empirical researchers usually use the mixed linear logit model, not60

the mixed logit model.2 I show that the same axioms described above respectively61

characterize the mixed linear logit model if the set of explanatory variables of the62

alternatives is affinely independent.63

By the way of proving the axiomatizations described above, I have obtained64

several remarks. Remark 1 states that if the set of explanatory variables of the65

alternatives is affinely independent, then (i) any interior random utility function can66

be represented as a convex combination of linear logit functions; (ii) any noninterior67

random utility function can be approximated by a convex combination of linear logit68

functions.69

Remark 1 is related with Theorem 1 of McFadden and Train (2000). As men-70

tioned earlier, their result has contributed to the popularity of the mixed logit71

model. There is, however, one limitation in Theorem 1 of McFadden and Train72

(2000). They say “One limitation of Theorem 1 is that it provides no practical73

indication of how to choose parsimonious mixing families, or how many terms are74

needed to obtain acceptable approximations...” (p. 452)75

Remark 1 overcomes this limitation, although the set up of McFadden and Train76

(2000) is more general than mine. They do not state how one can construct the vec-77

tors of polynomials, which can contain arbitrarily higher degree terms. In contrast,78

in Remark 1, it is not necessary to construct the polynomials; instead it is enough79

2In fact, in the empirical literature, the mixed linear loigit model is often called the mixed logit model.
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to construct a convex combination of linear logit functions. The construction of80

the convex combination is simple as shown in Remark 2. Furthermore, statement81

(i) of Remark 1 claims the exact equality, not an approximation, for the case of an82

interior random utility function.83

In the next section, I introduce the models formally. In section 3, I show the84

axiomatizations of the mixed logit model. Then in section 4, I show the axiomatiza-85

tions of the mixed linear logit model. In section 5, I state the remarks to conclude86

the paper.87

2 Model88

Let X be a finite set. X is the set of outcomes. Let D ≡ 2X \ {∅}.89

Definition 1. A function ρ : D × X → [0, 1] is called a random choice function90

if
∑

x∈D ρ(D,x) = 1 and ρ(D,x) = 0 for any x 6∈ D. The set of random choice91

functions is denoted by P.92

For each (D,x) ∈ D×X, the number ρ(D,x) is the probability that an alterna-93

tive x is chosen from a choice set D. A random choice function ρ is an element of94

RD×X .95

Let Π be the set of bijections betweenX → {1, . . . , |X|}, where |X| is the number96

of elements of X. If π(x) = k, I interpret x to be the |X|+1− k-th best element of97

X with respect to π. If π(x) > π(y), then x is better than y with respect to π. An98

element π of Π is called a strict preference ranking (or simply, a ranking) over X.99

For all (D,x) ∈ D × X, if π(x) > π(y) for all y ∈ D \ {x}, then I often write100

π(x) ≥ π(D). There are |X|! elements in Π. I denote the set of probability measures101

over Π by ∆(Π). Since Π is finite, ∆(Π) =
{

(ν1, . . . , ν|Π|) ∈ R
|Π|
+

∣

∣

∑|Π|
i=1 νi = 1

}

,102

where R+ is the set of nonnegative real numbers.103

Definition 2. A random choice function ρ is called a random utility function if

there exists a probability measure ν ∈ ∆(Π) such that for all (D,x) ∈ D ×X,

ρ(D,x) = ν(π ∈ Π|π(x) ≥ π(D)).

The probability measure ν is said to rationalize ρ. The set of random utility func-104

tions is denoted by Pr.105
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A random utility function is a probability distribution over the strict preference106

rankings over X.3107

Definition 3. A random choice function ρ is called a logit function if there exists

a function u : X → R such that for all (D,x) ∈ D ×X,

ρ(D,x) =
exp(u(x))

∑

y∈D exp(u(y))
.

The set of logit functions is denoted by Pl.108

In a logit function, u is an element of R|X|. Let B|X| denote the Borel algebra of109

R|X| and consider a measurable space (R|X|,B|X|). I denote the set of probability110

measures over R|X| by ∆(R|X|).111

Definition 4. A random choice function ρ is called a mixed logit function if there

exists a probability measure m ∈ ∆(R|X|) such that for all (D,x) ∈ D ×X,

ρ(D,x) =

∫

exp(u(x))
∑

y∈D exp(u(y))
dm(u). (2)

The set of logit functions is denoted by Pml.112

The integral is well defined because f (D,x)(u) ≡ exp(u(x))/
∑

y∈D exp(u(y)) is113

measurable with respect to B|X| for each (D,x) ∈ D ×X.4114

In the empirical literature, for each alternative x of X, there is a vector of115

explanatory variables for the alternative x. For example, as mentioned earlier, in116

Berry et al. (1995), X consists of cars available on the market. Then each car117

x ∈ X is described by its price, weight, size, fuel efficiency, and other attributes.118

The vectors of explanatory variables are usually different across the alternatives.119

So one can identify each alternative x by the vector of explanatory variables for120

x. Proceeding in this way, in some parts of this paper I assume that the set X is121

a finite subset of k-dimensional real space (where k is the number of explanatory122

variables).123

3While the function above is often called a random ranking function, a random utility function is

often defined differently–by using the existence of a probability measure µ over utilities such that for all

(D, x) ∈ D × X , ρ(D, x) = µ(u ∈ R|X||u(x) ≥ u(D)). Block and Marschak (1960)(Theorem 3.1) state

that the two definitions are equivalent.
4The formula can be written as

∫

f (D,x)(u)dm(u). Since the function f (D,x) is continuous in u, the

function f (D,x) is measurable with respect to B|X|. Moreover, since f (D,x)(u) ∈ (0, 1), the function f (D,x)

is bounded and nonnegative and hence integrable.

5



Definition 5. Let X be a finite subset of Rk. A random choice function ρ is called

a linear logit function if there exists β ∈ Rk such that for all (D,x) ∈ D ×X,

ρ(D,x) =
exp(β · x)

∑

y∈D exp(β · y)
.

The set of linear logit functions is denoted by Pll.124

The next model is a special case of the mixed logit model. To define the model,125

let Bk be the product Borel algebra of Rk and consider a measurable space (Rk,Bk).126

I denote the set of probability measures over Rk by ∆(Rk).127

Definition 6. Let X be a finite subset of Rk. A random choice function ρ is called

a mixed linear logit function if there exists a probability measure m ∈ ∆(Rk) such

that for all (D,x) ∈ D ×X,

ρ(D,x) =

∫

exp(β · x)
∑

y∈D exp(β · y)
dm(β). (3)

The set of mixed linear logit functions is denoted by Pmll.128

A mixed linear logit function is sometimes called a latent class function if m129

has a finite support. A latent class function is a convex combination of linear logit130

functions.131

In the empirical literature, the mixed linear logit model and the latent class132

model are sometimes treated as competing models. For example, Greene and Hen-133

sher (2003) claim that the performance of the latent class model is better than134

that of the mixed logit model.5 The following proposition (statement (ii)) states,135

however, that the two models are equivalent.136

Proposition 1. For any random choice function ρ,137

(i) the function ρ is a mixed logit function if and only if ρ is a convex combination138

of logit functions (i.e., Pml = co.Pl),139

(ii) the function ρ is a mixed linear logit function if and only if ρ is a convex140

combination of linear logit functions (i.e., Pmll = co.Pll).141

5Greene and Hensher (2003) (p.698) state “Which model is superior on all behavioral measures of

performance is inconclusive despite stronger statistical support overall for the latent class model (on this

occasion). The inconclusiveness is an encouraging result since it motivates further research involving

more than one specification of the choice process.”
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Statement (i) implies that for any mixed logit function, one can find an obser-142

vationally equivalent convex combination of logit functions. Thus to axiomatize the143

mixed logit model it is necessary and sufficient to axiomatize the convex hull of logit144

functions. Statement (ii) implies that the same observations hold for a mixed linear145

logit function.146

The mixed logit model has been known for a long time, but has become popular147

relatively recently since the development of simulation method. This is because148

calculating the integration used to be difficult. The proposition states that focusing149

on a convex combination of logit functions entails no loss of generality. Hence, the150

calculation of the integration is not necessary.6151

Finally, I introduce essential mathematical concepts. A polyhedron is an inter-152

section of finitely many closed half spaces. A polytope is a bounded polyhedron.153

Equivalently, a polytope is a convex hull of finitely many points.154

The convex hull of a set C is denoted by co.C. The closure of a set C is denoted155

by cl.C. The affine hull of a set C is the smallest affine set that contains C; and it156

is denoted by aff.C.157

The relative interior of a convex set C is an interior of C in the relative topol-158

ogy with respect to aff.C. The relative interior of C is denoted by rint.C. If C159

is not empty, then (i) rint.C is not empty, and (ii) rint.C = {x ∈ C|for all y ∈160

C there exists α > 1 such that αx+ (1− α)y ∈ C}. (See Theorem 6.4 in Rockafel-161

lar (2015) for the proof.)162

3 Axiomatization of the Mixed Logit Model163

In this section, I provide two axiomatizations of the mixed logit model. First, I prove164

two propositions which are necessary for the axiomatization. The first proposition165

proves that the mixed logit model is the interior of the random utility model.166

Proposition 2. The set of mixed logit functions is the relative interior of the set167

of random utility functions. That is, Pml = rint.Pr.168

6The nested logit model also can be seen as a convex combination of the logit model when the nests

do not overlap. Gul et al. (2014) axiomatize a model called the complete attribute rule, which is similar

to the nested logit model. Neither the complete attribute rule nor the mixed logit model is more general

than the other. The intersection between the two models is the (degenerate) logit model. See appendix

B for details.
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The next proposition characterizes the affine hull of the set Pr of random utility169

functions.170

Proposition 3. The affine hull of Pr is

{

p ∈ RD×X
∣

∣

∣
(i)

∑

x∈D

p(D,x) = 1 for any D ∈ D, (ii) p(D,x) = 0 for any D ∈ D, x 6∈ D
}

.

Hence, dimPr = (|X| − 2)2|X|−1 + 1, where |X| is the number of elements in X.171

The first statement of Proposition 3 implies that the set of random choice func-172

tion is contained by the affine hull of the set of random utility functions (i.e.,173

P ⊂ aff.Pr). I will use this implication to obtain the axiomatizations below.7 The174

second statement of Proposition 3 on the dimension of Pr will be used to discuss175

the identification of the mixed logit model in section 5.176

3.1 Axiomatization based on Expected Utility177

For each strict preference ranking π ∈ Π, define178

ρπ(D,x) =

{

1 if π(x) ≥ π(D),

0 otherwise.
(4)

The function ρπ is a deterministic random choice function, which gives probability179

one to the best alternative x in a choice set D according to the strict preference180

ranking π.181

To motivate the first axiomatization, consider an agent who chooses an element

from a choice set D ∈ D without knowing his true utility function. The choice set

will be randomly chosen, and let q(D) be the agent’s subjective probability that his

choice set will be D. Let u(D,x) be the utility when the agent chooses x from D.

If the agent’s choice is described by a random choice function ρ, then his expected

utility is

E(ρ : q, u) =
∑

D∈D

q(D)
∑

x∈D

ρ(D,x)u(D,x).

7Another nontrivial implication of the result is that for any random choice function ρ, there exist

a real number α and a pair (ρ1, ρ2) of random utility functions such that ρ = αρ1 + (1 − α)ρ2. To

see the implication, notice that for any ρ ∈ P , there exist {λi}ni=1 ⊂ R and {ρ′i}
n
i=1 ⊂ Pr such that

ρ =
∑n

i=1 λiρ
′
i and

∑n

i=1 λi = 1. Define α =
∑

i:λi>0 λi and β =
∑

i:λi<0 λi. Then, α + β = 1. Define

ρ1 =
∑

i:λi>0(λi/α)ρ
′
i and ρ2 =

∑

i:λi<0(−λi/−β)ρ′i. Then, ρ1, ρ2 ∈ Pr. It follows that ρ =
∑n

i=1 λiρ
′
i =

αρ1 + βρ2 = αρ1 + (1 − α)ρ2. I wish to acknowledge Jay Lu for the discussion that led to this remark.
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One simple strategy of the agent is to pick a deterministic strict preference182

ranking π arbitrarily and maximize the strict preference ranking. Then his choice183

is described by ρπ, as defined by (4). This strategy is naive because it ignores the184

possibility that the agent’s utility could be different across the choice sets.185

The following axiom requires that for any subjective belief q over the choice186

sets and for any (nonconstant) realization u(D, ·) of the utility function, the agent’s187

random choice should give a higher expected utility than the worst naive strategy.188

As mentioned earlier, the requirement of the axiom is weak in that the axiom does189

not require that the agent’s random choice dominate the naive strategies; the axiom190

only requires that the agent’s random choice should be better than the worst naive191

strategy.192

Axiom 1. (Quasi-Stochastic Rationality) For any q ∈ ∆(D) and any u(D, ·) ∈ RD

for each D ∈ D, if u(D, ·) is not constant for some D with q(D) > 0, then

E(ρ : q, u) > min
π∈Π

E(ρπ : q, u). (5)

In the axiom, notice that the set Π is finite, so minπ∈ΠE(ρπ : q, u) exists for193

any u, q, and π ∈ Π. Notice also that if u(D, ·) is constant for all D with q(D) > 0,194

then the expected utility is also constant for any random choice function.195

Theorem 1. A random choice function ρ satisfies Quasi-Stochastic Rationality if196

and only if ρ is a mixed logit function.197

The sufficiency part of the proof can be sketched as follows. It can be shown

that the set Pr of random utility functions is a polytope. That is, Pr = co.{ρπ|π ∈

Π}. Moreover, it follows that there exist a set {ti}
n
i=1 ⊂ RD×X \ {0} and a set

{αi}
n
i=1 ⊂ R such that

Pr = ∩n
i=1{p ∈ RD×X |p · ti ≥ αi} ∩ aff.Pr. (6)

As mentioned earlier, Proposition 3 implies that Pr ⊂ P ⊂ aff.Pr. This implication198

and (6) show that Pr = ∩n
i=1{ρ ∈ P|ρ · ti ≥ αi}. It follows that rint.Pr = ∩n

i=1{ρ ∈199

P|ρ · ti > αi}. Since Proposition 2 states that Pml = rint.Pr, I obtain Pml =200

∩n
i=1{ρ ∈ P|ρ · ti > αi}.201

For each i ∈ {1, . . . , n}, I can find a utility vector ui and a belief qi such that202

ρ · ti > αi if and only if E(ρ : qi, ui) > αi/|D|. Therefore, Pr = ∩n
i=1{ρ ∈ P|E(ρ :203

qi, ui) ≥ αi/|D|} and Pml = ∩n
i=1{ρ ∈ P|E(ρ : qi, ui) > αi/|D|}. Since ρπ ∈ Pr for204
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any π ∈ Π, it follows that E(ρπ : qi, ui) ≥ αi/|D| for all i ∈ {1, . . . , n}. Hence, Quasi-205

Stochastic Rationality implies that E(ρ : qi, ui) > αi/|D| for all i ∈ {1, . . . , n}. So,206

ρ ∈ ∩n
i=1{ρ ∈ P|E(ρ : qi, ui) > αi/|D|} = Pml. See the appendix for the concrete207

proof.8208

3.2 Axiomatization by the Block-Marschak Polynomi-209

als210

In this section, I provide an alternative axiomatization of the mixed logit model211

based on a finite number of polynomials called the Block-Marschak polynomials.212

Definition 7. (Block-Marschak polynomials) For any random choice function ρ and

(D,x) ∈ D ×X such that x ∈ D, define

K(ρ,D, x) =
∑

E:D⊂E

(−1)|E\D|ρ(E, x).

Block and Marschak (1960) have shown that if ρ is a random utility function,213

then K(ρ,D, x) ≥ 0 for any ρ ∈ P and any (D,x) ∈ D × X such that x ∈ D.214

Falmagne (1978) has shown the converse.215

The next theorem states that the positivity of the Block-Marschak polynomials216

characterizes the mixed logit model.217

Theorem 2. A random choice function ρ is a mixed logit function if and only if218

K(ρ,D, x) > 0 for any (D,x) ∈ D ×X such that x ∈ D.219

Notice that there are only finitely many pairs (D,x) ∈ D ×X such that x ∈ D.220

So it is easy to test this axiom. This is the benefit of this second axiomatization,221

although the behavioral meaning of this axiom may not be clear.222

The sufficiency part of the proof can be sketched as follows. Fix a random223

choice function ρ and assume that the Block-Marschak polynomials of ρ are strictly224

positive. I will show that ρ belongs to the set Pml of mixed logit functions. Since225

Proposition 2 states Pml = rint.Pr, it suffices to show that ρ ∈ rint.Pr, equivalently226

there exists a (relative) neighborhood of ρ such that any element of the neighborhood227

belongs to the set Pr of random utility functions.228

8In a similar way, I can be prove that a weaker version of Quasi-Stochastic Rationality, which allows

the equality in (5), characterizes the random utility model.
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Since the Block-Marschak polynomials of ρ are strictly positive, it follows from229

the continuity of K in ρ that the Block-Marschak polynomials are nonnegative in a230

small neighborhood of ρ. Moreover, it is possible to make the neighborhood small231

enough to be contained by the set P of the random choice functions. Thus, any232

element of the neighborhood is a random choice function whose Block-Marschak233

polynomials are nonnegative. Therefore, by the axiomatization of Falmagne (1978),234

any element of the neighborhood belongs to Pr. It follows that ρ ∈ rint.Pr. See the235

concrete proof in the appendix236

Besides the axiomatization by Falmagne (1978), McFadden and Richter (1990)237

and Clark (1996) have proposed other axiomatizations of the random utility model.238

I obtain alternative axiomatizations of the mixed logit model by modifying the239

axioms of McFadden and Richter (1990) and Clark (1996). However, the ways240

I need to modify the axioms are not as simple the way I modified the axiom of241

Falmagne (1978) in this section. Moreover, the meaning of the axioms may be not242

so clear. For these reasons, the alternative axiomatizations appear in the appendix.243

4 Axiomatization of the Mixed Linear Logit244

Model245

In an empirical analysis, as mentioned before Definition 5, an alternative x ∈ X246

can be identified by the vector of explanatory variables of x. Therefore, in this247

section, I assume that X is a finite subset of Rk for some natural number k (where248

k is the number of the explanatory variables). Then, I show that if X is affinely249

independent, then the same results obtained in Theorems 1 and 2 for the mixed250

logit model also hold for the mixed linear logit model. To show this result, I first251

prove the two preliminary propositions.252

Definition 8. A strict preference ranking π ∈ Π is linearly representable if there

exists β ∈ Rk such that for all x, y ∈ X,

π(x) > π(y) ⇐⇒ β · x > β · y.

To motivate the first preliminary proposition, notice that, depending on the253

structure of X, there may be a ranking π which is not linearly representable. For254

example, let X = {x, y, z} and y = 1/2x+1/2z. Then for any β ∈ Rk, it is the case255

that either β ·x ≥ β ·y ≥ β ·z or β ·z ≥ β ·y ≥ β ·x. Hence, the ranking in which y is256
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the strictly best element is not linearly representable. This is the crucial difference257

between this section and the previous section. The following proposition implies258

that the difference “disappears” when and only when X is affinely independent.259

Proposition 4. Let X be a finite subset of Rk. The set X is affinely independent260

if and only if any ranking π ∈ Π is linearly representable.261

To understand this proposition graphically, see Figure 1 and Figure 2. In the262

figures, I assume that k = 2. So X = {x, y, z} in Figure 1 is affinely independent263

and X = {x, y, z, w} in Figure 2 is affinely dependent.264

y(2nd)

x(1st)

z(3rd)

Figure 1: The set X = {x, y, z} is affinely independent. Any ranking is linearly repre-

sentable with some β ∈ R2. For example, the ranking π(x) > π(y) > π(z) is linearly

representable with β ∈ R2, which defines the parallel hyperplanes.

z (3rd) w(2nd)

y (4th)
x (1st)

Figure 2: The set X = {x, y, z, w} is affinely dependent. The ranking π(x) > π(w) >

π(y) > π(z) is not linearly representable. As the figure shows, no matter how one chooses

β ∈ R2 and draws parallel hyperplanes, it is impossible to have β ·x > β ·w > β ·z > β ·y.

The condition that X is affinely independent could be easily satisfied in an em-265

pirical analysis. An empirical researcher may want to include a constant term (i.e.,266
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1) in the vector x of explanatory variables. (In that case, one needs to use (x, 1).)267

The relevant condition for that case is that {(x, 1)|x ∈ X} is linearly independent.9268

Given Proposition 4, I can prove the same result obtained in Proposition 2 for the269

mixed logit model also holds for the mixed linear logit model.270

Proposition 5. Let X be a finite subset of Rk. The set of mixed linear logit271

functions is the relative interior of the set of random utility functions (i.e., Pmll =272

rint.Pr) if and only if X is affinely independent.273

Given Proposition 5, I can prove that if X is affinely independent, then the same274

results obtained in Theorems 1 and 2 for the mixed logit model also hold for the275

mixed linear logit model.276

Theorem 3. Let X be an affinely independent finite subset of Rk. For any random277

choice function ρ, the following statements are equivalent:278

(i) the function ρ is a mixed linear logit function,279

(ii) the function ρ satisfies Quasi-Stochastic Rationality,280

(iii) K(ρ,D, x) > 0 for any (D,x) ∈ D ×X such that x ∈ D.281

To see intuitively how Theorem 3 holds, notice that the sketch of proofs of282

Theorems 1 and 2 depends on the use of the mixed logit functions only because of283

Propotion 2 (i.e., Pml = rint.Pr). Proposition 5 proves that the same result holds284

for the mixed linear logit functions (i.e., Pmll = rint.Pr). Hence Theorem 3 holds.285

See appendix for the concrete proof.286

5 Concluding Remarks287

I conclude the paper with some remarks, most of which are implied by the results288

in the previous sections. Remarks 1, 2, 3 involve the approximation of a random289

utility function by a mixed logit function. Remark 4 concerns the identification of290

the mixed logit model. Remarks 5 provides a representation result of a random291

utility function. Finally, in Remark 6, I mention the alternative axiomatizations of292

the mixed logit model.293

Proposition 1 (ii) and Proposition 5 immediately imply Remark 1.294

9X is affinely independent if and only if {(x, 1)|x ∈ X} is linearly independent.
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Remark 1. Let X be a finite subset of Rk.295

(i) If X is affinely independent, then (a) any interior random utility function can296

be represented as a convex combination of linear logit functions; (b) any noninterior297

random utility function can be approximated by a convex combination of linear logit298

functions.299

(ii) If X is not affinely independent, then there is a random utility function which300

cannot be approximated by a convex combination of linear logit functions.301

Remark 1 is related with Theorem 1 of McFadden and Train (2000). In their

Theorem 1, McFadden and Train (2000) state that under some technical conditions,

if ρ(·) is a random utility function, then for any positive number ε, there exist (i)

a vector p(x) of polynomials of x for each x ∈ X; and (ii) a mixed logit function

ρ′ defined by the equation (7) below such that the distance between ρ′(D,x) and

ρ(D,x) is less than ε for any x ∈ D and any finite subset D of X, where the function

ρ′ is defined with the vectors {p(x)}x∈X of polynomials as follows:

ρ′(D,x) =

∫

exp(p(x) · β(x))
∑

y∈D exp(p(y) · β(y))
dm(β). (7)

Theorem 1 of McFadden and Train (2000) implies the generality of the mixed302

logit model; the generality is one of the essential reasons why the mixed logit model303

has been popular. As mentioned earlier, however, there is one limitation of Theorem304

1 of McFadden and Train (2000). They say “One limitation of Theorem 1 is that it305

provides no practical indication of how to choose parsimonious mixing families, or306

how many terms are needed to obtain acceptable approximations...” (p. 452)307

Remark 1 overcomes the limitation. To see this notice that in McFadden and308

Train (2000), each logit function is linear in the vector p(x) of polynomials but not309

in x. The authors do not specify how one can construct the vector p(x) or even the310

dimension of the vector. Depending on the bound ε, the vector of polynomials can311

be arbitrarily long by including higher degree terms. In contrast, in Remark 1, one312

can focus on the mixed linear logit model. In other words, one can assume p(x) = x313

for any x ∈ X. In an empirical analysis, researchers often use this linear model, so314

Remark 1 provides direct support for this model.315

There are three additional advantages to Remark 1 in comparison with Theorem316

1 of McFadden and Train (2000). First, the result by McFadden and Train (2000)317

guarantees only an approximation, while result (ia) in Remark 1 guarantees the318

exact equality for the case of interior random utility functions. Second, to achieve319

14



the exact equality, Remark 1 states that it is enough to use a convex combination of320

linear logit functions. Third, part (ii) of the remark shows that if X is not affinely321

independent, then the set of mixed linear logit functions is not large enough to322

approximate any random utility function.323

The setup of McFadden and Train (2000) is more general than mine in that they324

allow X to be infinite. McFadden and Train (2000) also allow that for a random325

choice function to be dependent on the observed attributes of agents. To make326

the discussion above clearer, I assumed that the set of the agents is homogeneous.327

However, I can easily include the set of the observed attributes in my model by328

allowing a primitive random choice function to be dependent on the agents’ observed329

attributes.330

In the next remark, I describe how one can construct a convex combination of331

logit functions that is arbitrarily close to a random utility function.332

Remark 2. Let X be an affinely independent finite subset of Rk. Let ρ be a random

utility function. Then there exists a set {λπ}π∈Π of nonnegative numbers such that

ρ =
∑

π∈Π λπρ
π and

∑

π∈Π λπ = 1.10 Fix any π ∈ Π. By Proposition 4, there exists

β ∈ Rk such that π(x) > π(y) if and only if β · x > β · y for any x, y ∈ X.11 For

any positive integer n and any (D,x) ∈ D ×X such that x ∈ D, define

ρπnβ(D,x) ≡
exp(nβ · x)

∑

y∈D exp(nβ · y)
.

An easy calculation shows that ρπnβ → ρπ as n → ∞. For each π ∈ Π, such a333

sequence {ρπnβ}
∞
n=1 exists. For each positive integer n, define ρn ≡

∑

π∈Π λπρ
π
nβ.334

Hence ρn →
∑

π∈Π λπρ
π ≡ ρ as n → ∞.335

The remarks above involve logit functions. As the next remark implies, similar336

results can be proved for some other classes of random utility functions.337

Remark 3. Let Q be a nonempty subset of the set Pr of random utility functions.338

Suppose that for any ranking π ∈ Π, there exists a sequence {ρn}
∞
n=1 of Q such339

that ρn → ρπ as n → ∞. Then, (a) any interior random utility function can be340

represented as a convex combination of elements of Q ; (b) any noninterior random341

utility function can be approximated by a convex combination of elements of Q.342

10To see this, remember that Pr = co.{ρπ|π ∈ Π}. The set {λ}π∈Π can be easily obtained by a

computer as a solution of linear inequalities.
11Such β can be easily obtained by a computer as a solution of linear inequalities.
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This remark is implied by Lemma 4 in the appendix.12 The conditions of Remark343

3 are satisfied when Q is the set Pl of logit functions. (See the proof of Proposition344

2.) The conditions of Remark 3 can also be satisfied by some other classes of random345

utility functions. For instance, the set of probit functions satisfies these conditions.346

Therefore, (a) any interior random utility function can be represented as a convex347

combination of probit functions; (b) any noninterior random utility function can be348

approximated by a convex combination of probit functions.349

Remark 4 concerns the identification of the mixed logit model. Empirical re-350

searchers have intensively studied the identification of the random coefficients model351

including the mixed logit model.13 Although the identification problem is not the352

main topic of this paper, Propositions 1, 2, and 3 imply the following remark con-353

cerning the identification of the mixed loigt model.354

Remark 4. Statement (i) of Proposition 1 implies that for any mixed logit func-355

tion defined with a probability measure whose support is infinite, one can find an356

observationally equivalent convex combination of logit functions. In the same way,357

statement (ii) implies the nonuniqueness of the representation of a mixed linear logit358

function.359

Even a convex combination of logit functions may be represented in multiple360

ways. To see this, notice that it follows from Propositions 1, 2, and 3 that dim co.Pl =361

dim rint.Pr = dimPr = (|X|−2)2|X|−1+1.14 On the other hand, there are infinitely362

many logit functions when |X| ≥ 2. Hence, an element of co.Pl may be represented363

in multiple ways.15 (Moreover, it follows from Caratheodory’s theorem that an ele-364

ment of co.Pl is represented as a convex combination of at most (|X| − 2)2|X|−1 +2365

logit functions.) If X is affinely independent, the same arguments above hold for a366

convex combination of linear logit functions.367

Fox et al. (2012) have studied the identification of a special case of a mixed368

linear logit function defined with a probability measure whose support is compact.369

12Under the supposition of the remark, Lemma 4 implies that rint.Pr = co.Q. This means statement

(a) in Remark 3. Moreover, since Pr is closed, it follows that Pr = cl.Pr = cl.rint.Pr = cl.co.Q. This

means statement (b) in Remark 3.
13See Berry and Haile (2009), Fox et al. (2012), and Fox and Gandhi (2016) for examples.
14The second equality holds by Theorem 2.1.3 of Hiriart-Urruty and Lemaréchal (2012).
15Remember that (i) the maximal number of affinely independent points in a set C is dimC + 1; (ii)

a set C is affinely independent if and only if for any y ∈ co.C, there exists a unique set of nonnegative

numbers {λx}x∈C such that y =
∑

x∈C λxx and
∑

x∈C λx = 1.
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Fox et al. (2012) show that the identification is possible if the set X of alternatives370

contains a nonempty open set and all elements of x are continuous. This result by371

Fox et al. (2012) is consistent with Remark 4 because X is finite in this paper.372

Proposition 4 immediately implies Remark 5 on a representation of a random373

utility function.374

Remark 5. For any random utility function ρ, there exists µ ∈ ∆(Rk) such that

ρ(D,x) = µ({β ∈ Rk|β · x ≥ β · y for all y ∈ D})

if and only if X is affinely independent.375

In the empirical literature of the random-coefficients model, researchers have376

analyzed various ways to introduce the randomness of coefficients (i.e., β). In the377

literature, assuming the linear model is sometimes considered to be restrictive. Re-378

mark 5 states, however, that one can focus on the linear model with no loss of379

generality if and only if X is affinely independent.16380

In Remark 6, I mention the alternative axiomatizations of the mixed logit model.381

McFadden and Richter (1990) characterize the random utility model by the Axiom382

of Revealed Stochastic Preference. Clark (1996) characterizes the random utility383

model by the axiom of Coherency. I modify these two axioms to obtain the Strict384

Axiom of Revealed Stochastic Preference (Definition 12) and the axiom of Strict385

Coherency (Definition 15). Then in Theorems 4 and 5, I characterize the mixed386

logit model by each axiom. However, the ways I modify the two axioms are not as387

simple as the way I modified the axiom of Falmagne (1978) in section 3.2. So these388

alternative axiomatizations appear in the appendix.389

Remark 6 summarizes all the axiomatizations in this paper including those in390

the appendix as follows:391

Remark 6. For any random utility function ρ, the following five statements are392

equivalent: (i) ρ is a mixed logit function; (ii) ρ satisfies Quasi-Stochastic Rational-393

ity (Axiom 1); (iii) the Block-Marschak polynomials of ρ are strictly positive; (iv)394

16Remark 5 is consistent with the axiomatization of the random expected utility model by Gul and

Pesendorfer (2006). They show that ρ satisfies the axioms of mixture continuity, linearity, extremeness,

and regularity if and only if ρ is a random expected-utility function. In my setup, all of the axioms except

regularity are satisfied vacuously when X is affinely independent. Regularity is satisfied by the random

utility model.
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ρ satisfies the Strict Axiom of Revealed Stochastic Preference; and (v) ρ is Strictly395

Coherent.396

Moreover, if X is an affinely independent subset of Rk, then statements (i)–(v)397

are also equivalent to this statement: (vi) ρ is a mixed linear logit function.398

A Proofs399

A.1 Proof of Proposition 1400

To show the proposition, I will show the following general result as a lemma. The401

lemma is trivial when the set C is closed. I used the lemma with C = Pl, where the402

set Pl is not closed.403

Let n be a positive integer. For any x ∈ Rn, xi denotes the i-th element of x for404

any i ∈ {1, . . . , n}.405

Lemma 1. For any set C ⊂ Rn, let ∆(C) denote the set of probability measures406

over C.17 Then, co.C =
{

∫

xdm(x)|m ∈ ∆(C)
}

, where
∫

xdm(x) denotes n-407

dimensional vector whose i-th element is
∫

xidm(x) for any i ∈ {1, . . . , n}.408

Proof. By definition, I immediately obtain co.C ⊂ {
∫

xdm(x)|m ∈ ∆(C)}. In the

following, I will show that

{

∫

xdm(x)|m ∈ ∆(C)
}

⊂ co.C. (8)

First I will show that

{

∫

xdm(x)|m ∈ ∆(C)
}

⊂ cl.co.C. (9)

To prove this statement, suppose by way of contradiction that
∫

xdm(x) 6∈ cl.co.C409

for some m ∈ ∆(C). Then by the strict separating hyperplane theorem (Corol-410

lary 11.4.2 of Rockafellar (2015)), there exist t ∈ Rn \ {0} and α ∈ R such that411

(
∫

xdm(x)) · t = α > x · t for any x ∈ cl.co.C. This is a contradiction because412

α = (
∫

xdm(x)) · t =
∫

(x · t)dm(x) <
∫

αdm(x) = α.413

I now will show (8) by the induction on the dimension of co.C.414

Induction Base: If dim co.C = 1, then (8) holds obviously. If dim co.C = 2,415

then there must exist y, z such that co.C is the line segment between y and z.416

17The Borel algebra here is the smallest sigma algebra that contains all open set relative to the set C.
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In the following, I assume that the line segment does not contain both y and z417

but the proof for the other cases are similar. Then for any x ∈ co.C, there exists418

unique α(x) ∈ (0, 1) such that x = α(x)y + (1 − α(x))z. Notice that the function419

α is continuous in x and hence measurable. Moreover, the function α is integrable420

because α is bounded and nonnegative. Choose any m ∈ ∆(C). Then
∫

α(x)dm(x)421

exists. Moreover, since 0 < α(x) < 1, it follows from the monotonicity of integral422

that 0 <
∫

α(x)dm(x) < 1. Denote the value of the integral by β ∈ (0, 1). Then,423

∫

xdm(x) =
∫

α(x)y + (1− α(x))zdm(x) = βy + (1− β)z ∈ co.C, as desired.424

Choose an integer k ≥ 3.425

Induction Hypothesis: Now suppose that (8) holds for any C such that426

dimC ≤ k.427

Induction Step: For any C such that dimC = k + 1, (8) holds. To prove the428

step, choose any m ∈ ∆(C). By (9), I have
∫

xdm(x) ∈ cl.co.C.429

First consider the case where
∫

xdm(x) ∈ rint.cl.co.C. Then since rint.cl.co.C =430

rint.co.C (by Theorem 6.3 of Rockafellar (2015)), so
∫

xdm(x) ∈ co.C, as desired.431

Next consider the case where
∫

xdm(x) 6∈ rint.cl.co.C. Then,
∫

xdm(x) ∈432

∂cl.co.C ≡ cl.co.C \ rint.co.C. There exists a supporting hyperplane H of cl.co.C433

at
∫

xdm(x). Then, there exist t ∈ Rn \{0} and α ∈ R such that H = {x|x · t = α}434

and
∫

xdm(x) · t = α > x · t for any x ∈ cl.co.C ∩Hc. This implies that m(H) = 1.435

Hence, m(H ∩ C) = 1. Since H is a supporting hyperplane and cl.co.C 6⊂ H, I436

obtain dim(H ∩ aff.C) ≤ k. Hence, dim(H ∩ C) ≤ k. Therefore, the induction437

hypothesis shows that
∫

xdm(x) ∈ co.(H ∩ C) ⊂ co.C, as desired.438

The result is not true in an infinite dimensional space.18 The lemma immediately439

implies the two statements in Proposition 1.440

A.2 Lemmas441

I prove three more lemmas that I use in the rest of the appendix.442

Lemma 2. The set Pr of random utility functions is a polytope. Moreover, Pr =443

co.{ρπ|π ∈ Π}, and there exist hyperplanes {Hi}
n
i=1 in RD×X such that aff.Pr 6⊂ H−

i444

18Let {ei}∞i=1 be the base of the infinite dimensional real space. Define C = {ei}∞i=1. Define a measure

m on C such that m(ei) = (1/2)i for each i. Then,
∑∞

i=1 m(ei) = 1, so that m is a probability measure

on C.
∫

xdm cannot be represented as any convex combination of elements of C. For any y ∈ co.C, there

exists i such that y(ei) = 0.
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and Pr = (∩n
i=1H

−
i )∩aff.Pr, where H−

i is the closed lower-half space of Hi for each445

i ∈ {1, . . . , n}.446

Proof. Choose any ρ ∈ Pr to show ρ ∈ co.{ρπ|π ∈ Π}. There exists ν ∈ ∆(Π)447

that rationalizes ρ. Define λπ = ν(π) for each π ∈ Π. Define ρ′ =
∑

π∈Π λπρ
π

448

to show ρ = ρ′. For each (D,x) ∈ D × X, ρ(D,x) = ν(π ∈ Π|π(x) ≥ π(D)) =449

∑

π∈Π ν(π)1(π(x) ≥ π(D)) = ρ′(D,x). Then ρ = ρ′ ∈ co.{ρπ|π ∈ Π}. So Pr ⊂450

co.{ρπ|π ∈ Π}. The argument can be reversed to obtain the converse. By the451

definition of polytope and Theorem 9.4 of Soltan (2015), the desired hyperplanes452

exist.453

The next lemma says that any convex combination of logit functions is a full-454

support random utility function.19455

Lemma 3. For any ρ ∈ co.Pl, there exists ν ∈ ∆(Π) such that (i) ρ is rationalized456

by ν; (ii) ν(π) > 0 for all π ∈ Π.457

Proof. I show the following two statements: (i) For any ρ ∈ Pl, there exists ν ∈458

∆(Π) such that ρ is rationalized by ν. Moreover ν(π) > 0 for all π ∈ Π; (ii) For any459

α ∈ [0, 1], if logit functions ρ and ρ′ are respectively rationalized by ν and ν ′, then460

αρ+ (1− α)ρ′ is rationalized by αν + (1− α)ν ′.461

To show (i), remember that for any ρ ∈ Pl, there exists u ∈ R
|X|
++ such that

ρ(D,x) = u(x)/
∑

y∈D u(y) and
∑

x∈X u(x) = 1, where R++ is the set of all positive

real numbers. By Block and Marschak (1960), ρ ∈ Pr, so there exists ν ∈ ∆(Π)

such that ν rationalizes ρ. Moreover, in their construction of ν, they obtain that

for any π ∈ Π,

ν(π) =

|X|
∏

k=1

u(xk)
∑|X|

l=k u(xk)
,

where X = {x1, x2, . . . , x|X|} and π(x1) > π(x2) > · · · > π(x|X|). Since u > 0, I462

have ν(π) > 0.463

Statement (ii) can be proved as follows: (αρ + (1 − α)ρ′)(D,x) = αρ(D,x) +464

(1 − α)ρ′(D,x) = αν({π ∈ Π|π(x) ≥ π(D)}) + (1 − α)ν ′({π ∈ Π|π(x) ≥ π(D)}) =465

α
∑

π∈Π:π(x)≥π(D) ν(π)+(1−α)
∑

π∈Π:π(x)≥π(D) ν
′(π) =

∑

π∈Π:π(x)≥π(D) αν(π)+(1−466

α)ν ′(π) = (αν + (1− α)ν ′)({π ∈ Π|π(x) ≥ π(D)}).467

19Block and Marschak (1960) show that any logit function is a full-support random utility function,

although they do not state this explicitly.
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Lemma 4 is used to prove Propositions 2 and 5. Moreover, Lemma 4 implies468

Remark 3.469

Lemma 4. Let Q be a nonempty subset of the set Pr of random utility functions.470

Suppose that for any π ∈ Π, there exists a sequence {ρn}
∞
n=1 of Q such that ρn → ρπ471

as n → ∞. Then, rint.Pr ⊂ co.Q.472

Proof. Suppose by way of contradiction that there exists ρ ∈ rint.Pr\co.Q. Because473

co.Q 6= ∅, I obtain rint.co.Q 6= ∅. Since ρ 6∈ co.Q, then by the proper separating474

hyperplane theorem (Theorem 11.3 of Rockafellar (2015)), there exist t ∈ RD×X \475

{0} and a ∈ R such that ρ · t ≥ a ≥ ρ′ · t for any ρ′ ∈ co.Q, and a > ρ′′ · t for some476

ρ′′ ∈ co.Q.477

I obtain a contradiction by two steps. Define P̂r = {ρ̂ ∈ Pr|t · ρ̂ > t · ρ}.478

Step 1: P̂r 6= ∅. To prove the step, remember that there exists ρ′′ ∈ co.Q such479

that ρ′′ · t < ρ · t. Moreover, since Q ⊂ Pr and the set Pr is convex, it follows that480

ρ′′ ∈ co.Pl ⊂ Pr. Since ρ ∈ rint.Pr, there exists λ > 1 such that λρ+(1−λ)ρ′′ ∈ Pr.481

Moreover, (λρ+(1−λ)ρ′′) · t = λρ · t+(1−λ)ρ′′ · t = ρ · t+(λ−1)(ρ · t−ρ′′ · t) > ρ · t,482

where the last inequality holds because λ > 1 and ρ′′ ·t < ρ·t. So λρ+(1−λ)ρ′′ ∈ P̂r,483

and P̂r 6= ∅.484

Step 2: There exists ρ′ ∈ co.Q such that ρ′ · t > ρ · t. To prove the step, choose485

any ρ̂ ∈ P̂r. By Lemma 2, there exist nonnegative numbers {λ̂π}π∈Π such that486

ρ̂ =
∑

π∈Π λ̂πρ
π and

∑

π∈Π λ̂π = 1.487

By the supposition, for any π ∈ Π, there exists a sequence {ρ′n}
∞
n=1 ofQ such that488

ρ′n → ρπ as n → ∞. Therefore, for any π ∈ Π and any positive number ε, there exists489

ρ′π ∈ {ρ′n}
∞
n=1 such that ‖ρ′π−ρπ‖ < ε. Define ρ′ =

∑

π∈Π λ̂πρ
′
π. Then ρ′ ∈ co.Q and490

‖ρ′ − ρ̂‖ =
∥

∥

∥

∑

π∈Π λ̂π(ρ
′
π − ρπ)

∥

∥

∥
≤

∑

π∈Π λ̂π‖ρ
′
π − ρπ‖ ≤

∑

π∈Π λ̂πε = ε. Therefore,491

|t ·ρ′− t · ρ̂| ≤ ‖t‖‖ρ′− ρ̂‖ ≤ ‖t‖ε. Since t · ρ̂ > t ·ρ, then by choosing ε small enough,492

I obtain t · ρ′ > t · ρ.493

A.3 Proof of Proposition 2494

By Proposition 1, it suffices to show that co.Pl = rint.Pr.495

First, I show that co.Pl ⊂ rint.Pr. By Lemma 3, for any ρ ∈ co.Pl, there exists496

λπ > 0 for any π ∈ Π such that ρ =
∑

π∈Π λπρ
π and

∑

π∈Π λπ = 1. Therefore, by497

Theorem 6.9 in Rockafellar (2015), ρ ∈ rint.co.{ρπ|π ∈ Π} = rint.Pr, where the last498

equality holds by Lemma 2.499
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Next, I show that rint.Pr ⊂ co.Pl. I apply Lemma 4 with Q = Pl. To see the500

conditions of Lemma 4 are satisfied remember that, by Lemma 3 Pl is a nonempty501

subset of Pr. Moreover, by Fact 5 in appendix A of Gul et al. (2014), for any π ∈ Π,502

there exists a sequence {ρn}
∞
n=1 of Pl such that ρn → ρπ as n → ∞. It follows that503

rint.Pr ⊂ co.Pl.
20

504

A.4 Proof of Proposition 3505

To prove Proposition 3, I prove one more lemma.506

Lemma 5. (i) For any q ∈ ∆(D) and any u(D, ·) ∈ RD for each D ∈ D, E(ρπ :507

q, u) 6= E(ρπ
′

: q, u) for some π, π′ ∈ Π if and only if u(D, ·) is not constant for508

some D with q(D) > 0.509

(ii) For any t ∈ RD×X , ρπ ·t = ρπ
′

·t for all π, π′ ∈ Π if and only if t(D,x) = t(D, y)510

for all D ∈ D and x, y ∈ D.511

Proof. First I will show statement (i) by assuming statement (ii). Fix any q ∈ ∆(D)512

and any u(D, ·) ∈ RD for each D ∈ D. For each (D,x) ∈ D ×X such that x ∈ D,513

define t(D,x) = q(D)u(D,x). For each (D,x) ∈ D × X such that x 6∈ D, define514

t(D,x) = 0. Then t ∈ RD×X . Remember that for any ρ ∈ P, ρ(D,x) = 0 for any515

x 6∈ D. Hence, ρ · t =
∑

(D,x)∈D×X q(D)u(D,x)ρ(D,x) ≡ E(ρ : q, u). Then516

E(ρπ : q, u) 6= E(ρπ
′

: q, u) for some π, π′ ∈ Π

⇐⇒ ρπ · t 6= ρπ
′

· t for some π, π′ ∈ Π

⇐⇒ t(D,x) 6= t(D, y) for some D ∈ D and x, y ∈ D (∵ (ii))

⇐⇒ q(D)u(D,x) 6= q(D)u(D, y) for some D ∈ D and x, y ∈ D (∵ the definition of t)

⇐⇒ u(D,x) 6= u(D, y) for some D ∈ D with q(D) > 0 and x, y ∈ D.

So statement (i) holds.517

In the following, I will show statement (ii). For notational convenience, for any518

π ∈ Π andD ∈ D withD = {x1, . . . , x|D|}, I write ρ
π(D) =

(

ρπ(D,x1), . . . , ρ
π(D,x|D|)

)

.519

The if part of the statement (ii) is easy to prove. Assume t(D,x) = t(D, y) for all520

20For completeness, I describe here how Gul et al. (2014) construct the sequence {ρn}∞n=1

of Pl. For each natural number n, each π ∈ Π, and each x ∈ X , define un
π(x) ≡

(1/n)|X|−π(x). For each (D, x) ∈ D × X such that x ∈ D, define ρn(D, x) ≡
un
π(x)

∑

y∈D un
π(y)

=

1
∑

y∈D:π(y)>π(x)(1/n)
π(x)−π(y) + 1 +

∑

y∈D:π(y)<π(x)(1/n)
π(x)−π(y)

. For each (D, x) ∈ D × X such that

x 6∈ D, define ρn(D, x) ≡ 0. Then ρn(D, x) → ρπ(D, x) as n → ∞ for each (D, x) ∈ D ×X .
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D ∈ D and x, y ∈ D. Define t(D) = t(D,x) for any x ∈ D. Then for any π ∈ Π,521

ρπ · t =
∑

D∈D

∑

x∈D ρπ(D,x)t(D,x) =
∑

D∈D t(D)
∑

x∈D ρπ(D,x) =
∑

D∈D t(D).522

I now prove the only if part of the statement (ii) by the induction on |D|.523

Induction Base: When |D| = 1. Then x = y, so t(D,x) = t(D, y). When

|D| = 2. Then D = {x, y}. Consider π, π′ ∈ Π over X such that for any z ∈

X \ {x, y}, π(z) = π′(z), π(z) > π(x) > π(y), and π′(z) > π′(y) > π′(x). Then for

any E ∈ D such that E 6= {x, y}, ρπ(E) = ρπ
′

(E). Moreover, ρπ({x, y}, x) = 1 =

ρπ
′

({x, y}, y) and ρπ({x, y}, y) = 0 = ρπ
′

({x, y}, x). Since t · ρπ = t · ρπ
′

,

0 =
∑

E∈D

∑

x∈X

t(E, x)(ρπ(E, x) − ρπ
′

(E, x)) = t({x, y}, x) − t({x, y}, y).

So t({x, y}, x) = t({x, y}, y). This provides the induction base.524

Choose a positive integer k ≥ 2.525

Induction Hypothesis: For any D ∈ D such that |D| ≤ k, t(D,x) = t(D, y)526

for any x, y ∈ D.527

Induction Step: For any D ∈ D such that |D| = k + 1 and any x, y ∈ D,528

t(D,x) = t(D, y). To prove the step, denote D by {x, y, w1, . . . , wk−1}. Choose any529

π, π′ ∈ Π such that for any z ∈ X \ {x, y, w1, . . . , wk−1} and any i ∈ {1, . . . , k − 1},530

π(z) = π′(z), π(z) > π(x) > π(y) > π(wi), π
′(z) > π′(y) > π′(x) > π′(wi), and531

π(wi) = π′(wi).532

To show the induction step, I will show the following two facts: (a) For any533

E ∈ D, {x, y} ⊂ E and π(x) ≥ π(E) if and only if ρπ(E) 6= ρπ
′

(E); (b) If E ∈ D,534

{x, y} ⊂ E and π(x) ≥ π(E), then ρπ(E, x) = 1, ρπ(E, z) = 0 for any z ∈ D \ {x}535

and ρπ
′

(E, y) = 1, ρπ
′

(E, z) = 0 for any z ∈ E \ {y}.536

It is easy to see statement (b) and the only if part of statement (a). To show537

the if part of statement (a), assume {x, y} 6⊂ E or π(x) < π(z) for some z ∈ E.538

First consider the case where {x, y} 6⊂ E. If both x, y do not belong to E, then539

ρπ(E) = ρπ
′

(E) because the ranking over X \ {x, y} is the same for π and π′. If540

only one of them, say x, belongs to E, then ρπ(E) = ρπ
′

(E) because the ranking541

over X \ {y} is the same for π and π′.542

Next consider the case where π(x) < π(z) for some z ∈ E. Then by the definition543

of π, I obtain z ∈ X \ {x, y, w1, . . . , wk−1}. Therefore, π′(y) < π′(z). Hence,544

ρπ(E, z) = 1 = ρπ
′

(E, z) and ρπ(E, z′) = 0 = ρπ
′

(E, z′) for all z′ ∈ E \ {z}.545
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Now, I will prove the induction step. Since t · ρπ = t · ρπ
′

,546

0 =
∑

(E,z)∈D×X t(E, z)(ρπ(E, z) − ρπ
′

(E, z))

=
∑

(E,z)∈D×X:{x,y}⊂E,π(x)≥π(E) t(E, z)(ρπ(E, z) − ρπ
′

(E, z)) (∵ (a))

=
∑

E∈D:π(x)≥π(E),{x,y}⊂E t(E, x) − t(E, y) (∵ (b))

= t(D,x)− t(D, y) +
∑

E∈D:π(x)≥π(E),{x,y}⊂E,|E|≤k(t(E, x) − t(E, y)).

Moreover by the Induction Hypothesis, the second term is zero. So t(D,x) =547

t(D, y).548

Now I will prove Proposition 3.549

The set {p ∈ RD×X |(i) and (ii)} is affine. So it suffices to show that for any

affine set A, if Pr ⊂ A, then {p ∈ RD×X |(i) and (ii)} ⊂ A. Since the set is affine,

then by Rockafellar (2015), there exist a positive integer L, L× (|D| × |X|) matrix

B, and L× 1 vector b such that A = {p ∈ RD×X |Bp = b}. For any l ∈ {1, . . . , L},

Bl(D,x) denotes (l, (D,x)) entry of B. (Remember that B has a column vector for

each (D,x) ∈ D ×X.) So Bp = b means that for any l ∈ {1, . . . , L},

∑

D∈D

∑

x∈X

Bl(D,x)p(D,x) = bl. (10)

By assuming Pr ⊂ {p ∈ RD×X |Bp = b}, I will show that if ρ satisfies (i) and550

(ii), then (10) holds for any l ∈ {1, . . . , L}.551

Step 1: Bl(D,x) = Bl(D, y) for any l ∈ {1, . . . , L}, D ∈ D, and x, y ∈ D. To552

prove step 1, fix any l. For any π ∈ Π, ρπ ∈ Pr ⊂ {p ∈ RD×X |Bp = b}. Hence,553

(10) holds with p = ρπ for any π ∈ Π. Thus ρπ ·Bl = ρπ
′

·Bl for any π, π′ ∈ Π. By554

Lemma 5 (ii), this implies that Bl(D,x) = Bl(D, y) for any D ∈ D, and x, y ∈ D.555

By Step 1, I can define Bl(D) = Bl(D,x) for any x ∈ D.556

Step 2: If p satisfies (i) and (ii), then Bp = b, or
∑

D∈D

∑

x∈X Bl(D,x)p(D,x) =

bl for any l ∈ {1, . . . , L}. To prove step 2, choose any π ∈ Π and l ∈ {1, . . . , L}.

Since ρπ ∈ Pr ⊂ {p ∈ RD×X |Bp = b}, then by (10),

bl =
∑

D∈D

∑

x∈X

Bl(D,x)ρπ(D,x) =
∑

D∈D

Bl(D), (11)

where the second equality holds by ρπ(D, z) = 1 if π(z) ≥ π(D) and ρπ(D, z) = 0557

otherwise.558

24



Finally by using these equalities, for each l ∈ {1, . . . , L}, I obtain the following559

equations:560

∑

D∈D

∑

z∈X Bl(D,x)p(D, z) =
∑

D∈D

∑

z∈D Bl(D,x)p(D, z) (∵ (ii))

=
∑

D∈D

∑

z∈D Bl(D)p(D, z) (∵ Step 1)

=
∑

D∈D Bl(D)
∑

z∈D p(D, z)

=
∑

D∈D Bl(D) (∵ (i))

= bl. (∵ (11))

This establishes that aff.Pr = {p ∈ RD×X |(i) and (ii)}. The equalities in (i) and (ii)561

are independent. So the dimension of Pr is |D|×|X| minus the number of equalities562

of (i) and (ii). The number of equalities of (i) is the number of D ∈ D, which is563

2n − 1. The number of equalities of (ii) is the number of (D,x) ∈ D ×X such that564

x 6∈ D, which is n2n−1 − n. To see this notice that for each x ∈ X (there are n of565

them), the number of D 6= ∅ such that x 6∈ D is 2n−1−1. Since |D|×|X| = (2n−1)n,566

dimPr = (2n − 1)n− (2n − 1)− (n2n−1 − n) = (n− 2)2n−1 + 1.567

A.5 Proof of Theorem 1568

To show the necessity of Quasi-Stochastic Rationality, fix any q ∈ ∆(D) and any569

u(D, ·) ∈ RD for each D ∈ D such that u(D, ·) is not constant for some D ∈ D570

with q(D) > 0. By Lemma 5 (i), if u(D, ·) is not constant for some D ∈ D with571

q(D) > 0, then E(ρπ : q, u) 6= E(ρπ
′

: q, u) for some π, π′ ∈ Π. By Proposition572

1 and Lemma 3, any ρ ∈ Pml is rationalized by full support ν ∈ ∆(Π). Then,573

E(ρ : q, u) =
∑

π∈Π ν(π)E(ρπ : q, u) > minπ∈ΠE(ρπ : q, u).574

To show the sufficiency of Quasi-Stochastic Rationality, assume that ρ satisfies575

Quasi-Stochastic Rationality. I will show that ρ ∈ Pml. By Lemma 2, there exist a576

set {ti}
n
i=1 ⊂ RD×X \{0} and a set {αi}

n
i=1 ⊂ R such that Pr = ∩n

i=1{p ∈ RD×X |p ·577

ti ≥ αi} ∩ aff.Pr and aff.Pr 6⊂ {p ∈ RD×X |p · ti ≥ αi} for all i ∈ {1, . . . , n}. Since578

rint.Pr 6= ∅, then by Theorem 6.5 of Rockafellar (2015), rint.Pr = ∩n
i=1rint.{p ∈579

RD×X |p · ti ≥ αi} ∩ aff.Pr = ∩n
i=1{p ∈ RD×X |p · ti > αi} ∩ aff.Pr. By Proposition 3,580

Pr ⊂ P ⊂ aff.Pr. Thus581

Pr = Pr ∩ P (∵ Pr ⊂ P)

= ∩n
i=1rint.{p ∈ RD×X |p · ti ≥ αi} ∩ aff.Pr ∩ P

= ∩n
i=1rint.{p ∈ RD×X |p · ti ≥ αi} ∩ P (∵ P ⊂ aff.P)

= ∩n
i=1{ρ ∈ P|ρ · ti ≥ αi}.
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Hence

Pr = ∩n
i=1{ρ ∈ P|ρ · ti ≥ αi}. (12)

This implies that rint.Pr = ∩n
i=1{ρ ∈ P|ρ · ti > αi}. Since Proposition 2 sates

Pml = rint.Pr,

Pml = ∩n
i=1{ρ ∈ P|ρ · ti > αi}. (13)

Fix any i ∈ {1, . . . , n}. I will show that there exist π, π′ ∈ Π such that ρπ · ti 6=582

ρπ
′

· ti. Suppose, by way of contradiction, that for all π, π′ ∈ Π, ρπ · ti = ρπ
′

· ti.583

Let α′
i ≡ ρπ · ti for some π ∈ Π. Since ρπ ∈ Pr and (12) holds, I have α′

i ≥ αi.584

Then, aff.Pr = aff.co.{ρπ|π ∈ Π} = aff.{ρπ|π ∈ Π} ⊂ {p ∈ RD×X |p · ti = α′
i} ⊂ {p ∈585

RD×X |p · ti ≥ αi}. This is a contradiction.586

By Lemma 5 (ii), the existence of π, π′ ∈ Π such that ρπ · ti 6= ρπ
′

· ti implies

that ti(D, ·) is nonconstant for some D ∈ D. For any (D,x) ∈ D × X such that

x ∈ D, define ui(D,x) = ti(D,x), so that ui(D, ·) ∈ RD. Note also that ui(D, ·) is

nonconstant for some D ∈ D with q(D) > 0. In addition, by Proposition 3, for any

p ∈ aff.Pr, p(D,x) = 0 for any D ∈ D and x 6∈ D. Therefore, for any p ∈ aff.Pr,

∑

D∈D

∑

x∈D

ui(D,x)p(D,x) = p · ti. (14)

Define q ∈ ∆(D) by q(D) = 1/|D| for any D ∈ D. Since ρπ ∈ Pr, then by (12),587

ρπ · ti ≥ αi for any π ∈ Π. Hence, for any π ∈ Π588

E(ρπ : q, ui) =
∑

D∈D q(D)
∑

x∈D ui(D,x)ρπ(D,x)

=
(

∑

D∈D

∑

x∈D ui(D,x)ρπ(D,x)
)

/|D|

= (ρπ · ti)/|D| (∵ (14))

≥ αi/|D|.

Hence, minπ∈ΠE(ρπ : q, ui) ≥ αi/|D| for all i ∈ {1, . . . , n}. Moreover, by Quasi-589

Stochastic Rationality, E(ρ : q, ui) > minπ∈ΠE(ρπ : q, ui), so that E(ρ : q, ui) >590

αi/|D| for all i ∈ {1, . . . , n}. By (14) ρ·ti =
∑

D∈D

∑

x∈D ui(D,x)ρ(D,x) ≡ |D|E(ρ :591

q, ui) > |D|αi/|D| = αi for all i ∈ {1, . . . , n}. Therefore, ρ ∈ ∩n
i=1{ρ ∈ P|ρ · ti >592

αi} = Pml by (13).593

A.6 Proof of Theorem 2594

First I will show the necessity of the positivity of the Block-Marschak polynomials. I595

show that if ρ ∈ Pml, then K(ρ,D, x) > 0 for any (D,x) ∈ D×X such that x ∈ D.596
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By Proposition 1 (i), ρ ∈ co.Pl. Since K(αρ + (1 − α)ρ′,D, x) = αK(ρ,D, x) +597

(1 − α)K(ρ′,D, x), it suffices to show that K(ρ,D, x) > 0 for any ρ ∈ Pl and any598

(D,x) ∈ D ×X such that x ∈ D. Fix ρ ∈ Pl and (D,x) ∈ D ×X such that x ∈ D.599

By Theorem 2.1 in Barberá and Pattanaik (1986), K(ρ,D, x) = ν({π ∈ Π|π(Dc) >600

π(x) ≥ π(D)}). Then by Lemma 3, there exists ν ∈ ∆(Π) such that ν rationalizes601

ρ and ν(π) > 0 for all π ∈ Π. Since x ∈ D, the set {π ∈ Π|π(Dc) > π(x) ≥ π(D)}602

is nonempty. Hence, K(ρ,D, x) = ν({π ∈ Π|π(D) > π(x) ≥ π(Dc)}) > 0.603

Next I will show the sufficiency of the positivity of the Block-Marschak polyno-604

mials. Fix ρ ∈ P and assume that K(ρ,D, x) > 0 for any (D,x) ∈ D × X such605

that x ∈ D. By the axiomatization of Falmagne (1978), ρ ∈ Pr. Since Proposition606

2 states that Pml = rint.Pr, it suffices to show that ρ ∈ rint.Pr.607

Choose any ρ′ ∈ Pr to show that there exists α > 1 such that αρ+(1−α)ρ′ ∈ Pr608

by the following three steps. (Remember that the existence of such α means that609

ρ ∈ rint.Pr.)610

Step 1: ρ(D,x) > 0 for any (D,x) ∈ D × X such that x ∈ D. Suppose by611

way of contradiction that ρ(D,x) = 0 for some (D,x) ∈ D ×X such that x ∈ D.612

Then for any E ⊃ D, ρ(E, x) ≤ ρ(D,x) = 0 because ρ ∈ Pr.
21 Then by definition,613

K(ρ,D, x) = 0. This is a contradiction.614

Step 2: There exists α > 1 such that, for any α ∈ (1, α), αρ + (1 − α)ρ′ ∈ P.615

To prove the step, fix (D,x) ∈ D × X such that x ∈ D. Since Step 1 has shown616

that ρ(D,x) > 0, there exists α(D,x) > 1 such that, for any α ∈ (1, α(D,x)),617

(αρ + (1 − α)ρ′)(D,x) = ρ(D,x) + (α − 1)(ρ(D,x) − ρ′(D,x)) > 0. Define α ≡618

min(D,x)∈D×X:x∈D α(D,x). Since there are finitely many pairs (D,x) such that619

x ∈ D, such α exists. The definition of α shows that α > 1 and α satisfies the620

desired property.621

Step 3: There exists α̂ > 1 such that, for any α ∈ (1, α̂), K(αρ + (1 −622

α)ρ′,D, x) > 0 for any (D,x) ∈ D×X such that x ∈ D. To prove this step, fix any623

(D,x) ∈ D × X such that x ∈ D. Since K(ρ,D, x) > 0, there exists α̂(D,x) > 1624

such that, for any α ∈ (1, α̂(D,x)), K(αρ + (1 − α)ρ′,D, x) = K(ρ,D, x) + (α −625

1)(K(ρ,D, x)−K(ρ′,D, x)) > 0. Define α̂ ≡ min(D,x)∈D×X:x∈D α̂(D,x). Since there626

are finitely many pairs (D,x) such that x ∈ D, such α̂ exists. The definition of α̂627

shows that α̂ > 1 and α̂ satisfies the desired property.628

Now choose α such that 1 < α < min{α, α̂}. Then, by Steps 2 and 3, αρ+ (1−629

21A random utility function ρ ∈ Pr satisfies the following property: if x ∈ D ⊂ E, then ρ(E, x) ≤

ρ(D, x) .This property is called regularity, or monotonicity.
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α)ρ′ ∈ P and K(αρ+(1−α)ρ′)(D,x) > 0 for any (D,x) ∈ D×X such that x ∈ D.630

Then, by the axiomatization of Falmagne (1978), αρ+ (1− α)ρ′ ∈ Pr.631

A.7 Proof of Proposition 4632

Let n ≡ |X| and X = {x1, . . . , xn}. For any ranking π ∈ Π, consider the following633

condition: if
∑n−1

i=1 λi(π
−1(n + 1 − i) − π−1(n − i)) = 0 and λi ≥ 0 for all i ∈634

{1, . . . , n − 1}, then λi = 0 for all i ∈ {1, . . . , n − 1}. I call this condition as635

Condition (∗).636

Step 1: For each π ∈ Π, Condition (∗) holds if and only if there exists β ∈ Rk
637

such that for any x, y ∈ X, π(x) > π(y) ⇐⇒ β · x > β · y.638

Proof. Fix π ∈ Π.639

∃β ∈ Rk β · π−1(n) > β · π−1(n− 1) > · · · > β · π−1(2) > β · π−1(1)

⇐⇒ ∃β ∈ Rk β · (π−1(n)− π−1(n− 1)) > 0, . . . , β · (π−1(2) − π−1(1)) > 0

⇐⇒ 6 ∃λ ∈ Rn−1
∑n−1

i=1 λi(π
−1(n+ 1− i)− π−1(n− i)) = 0, λ ≥ 0, and λ 6= 0

⇐⇒ Condition(∗),

where the second to the last equivalence is by Lamme 9 with F = R in section640

A.10.641

Step 2: X is affinely independent if and only if Condition (∗) holds for any642

π ∈ Π.643

Proof. I first show that if X is affinely independent then Condition (∗) holds for644

any ranking π ∈ Π. Fix any π ∈ Π. Without loss of generality assume that645

π(xi) = n + 1 − i for all i ∈ {1, . . . , n}. Suppose that
∑n−1

i=1 λi(π
−1(n + 1 − i) −646

π−1(n − i)) ≡
∑n−1

i=1 λi(xi − xi+1) = 0 and λi ≥ 0 for all i. Define µ1 = λ1,647

µi = λi−λi−1 for all i ∈ {2, . . . , n−1}, and µn = −λn−1. Then
∑n−1

i=1 λi(xi−xi+1) =648

λ1x1 +
∑n−1

i=2 (λi − λi−1)xi + (−λn−1)xn = µ1x1 +
∑n−1

i=2 µixi + µnxn =
∑n

i=1 µixi.649

Since
∑n−1

i=1 λi(xi − xi+1) = 0, I have
∑n

i=1 µixi = 0. Moreover,
∑n

i=1 µi = λ1 +650

∑n−1
i=2 (λi − λi−1) + (−λn−1) = 0. If X is affinely independent, then µi = 0 for all651

i ∈ {1, . . . , n}. Hence, λi = 0 for all i ∈ {1, . . . , n− 1}.652

Next I will show that if Condition (∗) holds for any π ∈ Π thenX is affinely inde-653

pendent. Choose any real numbers {µi}
n
i=1 such that

∑n
i=1 µixi = 0 and

∑n
i=1 µi = 0654

to show µi = 0 for all i ∈ {1, . . . , n}. Order µi by its value. Without loss of gener-655

ality assume that µ1 ≥ µ2 ≥ · · · ≥ µn. If µ = 0, then the proof is finished. If µ 6= 0656

then µ1 > 0. For each xi ∈ X, define π(xi) = n+ 1− i. Then π ∈ Π.657
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Define λ1 = µ1 and λi =
∑i

j=1 µj for all i ∈ {2, . . . , n − 1}. Then λ 6= 0658

because µ1 > 0. I will show that λi ≥ 0 for all i ∈ {1, . . . , n − 1}. Suppose by659

way of contradiction that λi < 0 for some i. Then µi < 0 because µ1 ≥ · · · ≥660

µi. Since 0 > µi ≥ µj for all j ≥ i, I have
∑n

j=i+1 µj < 0. It follows that661

∑n
j=1 µj = λi +

∑n
j=i+1 µj < 0. This contradicts that

∑n
i=1 µi = 0. Therefore,662

λi ≥ 0 for all i ∈ {1, . . . , n− 1}. Moreover
∑n−1

i=1 λi(π
−1(n+ 1− i)− π−1(n− i)) =663

∑n−1
i=1 λi(xi−xi+1) = λ1x1+

∑n−1
i=2 (λi−λi−1)xi+(−λn−1)xn = µ1x1+

∑n−1
i=2 µixi+664

(−
∑n−1

i=1 µi)xn =
∑n

i=1 µixi = 0, where the second to the last equality holds because665

∑n
i=1 µi = 0.Therefore, by Condition (∗), λi = 0 for all i ∈ {1, . . . , n − 1}. Hence,666

µi = 0 for all i ∈ {1, . . . , n}.667

A.8 Proof of Proposition 5668

To prove Proposition 5, I prove two lemmas. To simplify the notation, define Π∗ as669

the set of linearly representable rankings. Notice that Theorem 4 states Π = Π∗ if670

and only if X is affinely independent.671

Lemma 6. Let X be a finite subset of Rk. For any π ∈ Π, π ∈ Π∗ if and only if672

there exists a sequence {βn}
∞
n=1 ⊂ Rk such that ρβn

→ ρπ as n → ∞.673

Proof. Choose any π ∈ Π∗. Without loss of generality, assume thatX = {x1, . . . , x|X|}674

and π(x1) > π(x2) > · · · > π(x|X|). Since π ∈ Π∗, there exists β ∈ Rk such that675

β · x1 > β · x2 > · · · > β · x|X|. For any positive integer k and any (D,x) ∈ D ×X676

such that x ∈ D,677

ρkβ(D,x) ≡
exp(kβ · x)

∑

y∈D exp(kβ · y)

=
1

∑

y∈D:π(y)>π(x) exp(kβ · (y − x)) + 1 +
∑

y∈D:π(y)<π(x) exp(kβ · (y − x))
.

For any y ∈ D, π(y) > π(x) if and only if β · (y − x) > 0. Therefore, as k → ∞,678

if π(x) ≥ π(D), then ρkβ(D,x) → 1; if π(x) < π(D), then ρkβ(D,x) → 0. Hence,679

ρkβ → ρπ as k → ∞.680

To show the converse, fix a sequence {βn}
∞
n=1 such that ρβn

→ ρπ as n → ∞.

For any D ∈ D and x ∈ D, notice that

ρβn
(D,x) =

1

1 +
∑

y∈D\x exp(βn · (y − x))
.
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Let π(x) ≥ π(D). Since ρβn
→ ρπ as n → ∞, it must hold that βn · (y − x) → −∞681

as n → ∞ for all y ∈ D \ {x}. Therefore, for each D ∈ D there exists n(D) such682

that for all n > n(D) and all y ∈ D \ {x}, βn · x > βn · y, where π(x) ≥ π(D).683

Without loss of generality assume that X = {x1, . . . , x|X|} and π(x1) > π(x2) >684

· · · > π(x|X|). Let n > max{n(X), n({xi}
|X|
i=2), . . . , n({xi}

|X|
i=|X|−1)}. Then, βn · x1 >685

βn · x2 > · · · > βn · x|X|−1 > βn · x|X|. Therefore, π ∈ Π∗.686

Lemma 7. For any π ∈ Π, if there exist strictly positive numbers {λi}
m
i=1 and a687

sequence {βi
n} ⊂ Rk for all i ∈ {1, . . . ,m} such that

∑m
i=1 λi = 1 and

∑m
i=1 λiρβi

n
→688

ρπ as n → ∞, then ρβi
n
→ ρπ as n → ∞ for all i ∈ {1, . . . ,m}.689

Proof. As in the proof of Lemma 6,

m
∑

i=1

λiρβi
n
(D,x) =

m
∑

i=1

λi

1 +
∑

y∈D\x exp(β
i
n · (y − x))

.

Let π(x) > π(y) for all y ∈ D \ {x}. Since
∑m

i=1 λiρβi
n
→ ρπ as n → ∞ and λi > 0690

for all i ∈ {1, . . . ,m}, it must hold that βi
n · (y − x) → −∞ as n → ∞ for all691

i ∈ {1, . . . ,m}. Therefore, ρβi
n
→ ρπ as n → ∞ for all i ∈ {1, . . . ,m}.692

In the following, I prove Proposition 5. First I will show that if X is affinely693

independent, then Pmll = rint.Pr. Since Proposition 1 (ii) states Pmll = co.Pll, it694

suffices to show that co.Pll = rint.Pr assuming X is affinely independent.695

Since Pll ⊂ Pl and Proposition 2 states co.Pl ⊂ rint.Pr, it follows that co.Pll ⊂696

rint.Pr. I now show that rint.Pr ⊂ co.Pll by applying Lemma 4 with Q = Pll. The697

conditions of Lemma 4 are satisfied because of Proposition 4 and Lemma 6. In fact,698

these two results jointly show that for any ranking π ∈ Π, there exists a sequence699

{ρβn
}∞n=1 of linear logit functions such that ρβn

→ ρπ as n → ∞. Therefore,700

rint.Pr ⊂ co.Pll.701

To show the converse, assume now that X is not affinely independent. Suppose

by way of contradiction that rint.Pr = co.Pll. Then

Pr = cl.Pr = cl.rint.Pr = cl.co.Pll = co.cl.Pll, (15)

where the first equality holds because Pr is closed, the second equality holds by702

Theorem 6.3 of Rockafellar (2015), and the last equality holds because Pll is bounded703

and by Theorem 17.2 of Rockafellar (2015).704

Since X is not affinely independent, then by Proposition 4, there exists π ∈705

Π \ Π∗. Moreover, by (15), ρπ ∈ Pr = co.cl.Pll. Then, there exist positive numbers706
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{λi}
m
i=1 such that

∑m
i=1 λi = 1 and sequences {βi

n}
∞
n=1 for each i ∈ {1, . . . ,m} such707

that
∑m

i=1 λiρβi
n
→ ρπ as n → ∞. It follows from Lemma 7 that ρβi

n
→ ρπ as708

n → ∞ for all i ∈ {1, . . . ,m}. Then, by Lemma 6, π ∈ Π∗, which is a contradiction.709

A.9 Proof of Theorem 3710

The proofs of Theorems 1 and 2 depend on the use of the mixed logit functions only711

because the set of mixed logit functions is the relative interior of the set of random712

utility functions (i.e., Pml = rint.Pr).713

Proposition 5 shows that X is affinely independent if and only if the set of mixed714

linear logit functions is the relative interior of the set of random utility functions715

(i.e., Pmll = rint.Pr). Hence, Theorem 1 and Proposition 5 prove the equivalence716

between (i) and (ii). Moreover, Theorem 2 and Proposition 5 prove the equivalence717

between (i) and (iii).718

A.10 Theorems of Alternatives719

In Theorem 3.2, Fishburn (2015) states the following result.720

Lemma 8. Let A be an r × n matrix, B be an l × n matrix, and E be an m × n721

matrix. Suppose that the entries of the matrices A, B, and E are rational numbers.722

Exactly one of the following alternatives is true.723

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u ≫ 0.724

2. There is θ ∈ Zr, η ∈ Zl, and π ∈ Zm such that θ ·A+ η ·B + π ·E = 0; π > 0725

and η ≥ 0.726

In Theorem 1.6.1, Stoer and Witzgall (2012) show the following result.727

Lemma 9. Let F be a field. Let A be an r × n matrix, B be an l × n matrix, and728

E be an m×n matrix. Suppose that the entries of the matrices A, B, and E belong729

to a commutative ordered field F . Exactly one of the following alternatives is true.730

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u ≫ 0.731

2. There is θ ∈ Fr, η ∈ F l, and π ∈ Fm such that θ ·A+ η ·B+π ·E = 0; π > 0732

and η ≥ 0.733

By Lemmas 8 and 9, I prove the following lemma.734
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Lemma 10. Let A be an r × n matrix, B be an l × n matrix, and E be an m× n735

matrix. Suppose that the entries of the matrices A, B, and E are rational numbers.736

The followings are equivalent737

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u ≫ 0.738

2. There is u ∈ Zn such that A · u = 0, B · u ≥ 0, and E · u ≫ 0.739

Proof. By the supposition, the entries of the matrices A, B, and E are rational740

numbers. Then741

∃u ∈ Rn [A · u = 0, B · u ≥ 0, E · u ≫ 0.]

⇐⇒ ¬
[

∃θ ∈ Zr, η ∈ Zl, π ∈ Zm [θ · A+ η ·B + π ·E = 0;π > 0; η ≥ 0.]
]

(∵ Lemma 8)

⇐⇒ ¬
[

∃θ ∈ Qr, η ∈ Ql, π ∈ Qm [θ · A+ η · B + π ·E = 0;π > 0; η ≥ 0.]
]

⇐⇒ ∃u ∈ Qn A · u = 0, B · u ≥ 0, E · u ≫ 0. (∵ Lemma 9 with F = Q)

⇐⇒ ∃u ∈ Zn A · u = 0, B · u ≥ 0, E · u ≫ 0,

where I obtain the second equivalence by dividing by a positive integer; and the last742

equivalence by multiplying by a positive integer.743

B Relationship with Gul et al. (2014)744

Gul et al. (2014) axiomatize the complete attribute rule under strong richness as-745

sumption. Neither the complete attribute rule nor the mixed logit model is more746

general than the other. The intersection between the two models is the (degenerate)747

logit model.748

Definition 9. A random choice function ρ is called an attribute rule if there exists

a set A of attributes, a function w : A → R++ and η : A×X → N ∪ {0} such that

ρ(D,x) =
∑

a∈Ax

w(a)
∑

b∈AD w(b)

ηa(x)
∑

y∈D ηa(y)
,

where Ax = {a ∈ A|ηa(x) > 0} and AD =
⋃

x∈D Ax.749

An element x ∈ X is called an arhetype for a ∈ A if Ax = {a} and ηa(x) = 1.750

An attribute rule is called complete if every attributes has at least two arhetypes.751

An attribute rule can be a convex combination of logit functions if for any752

x, y ∈ X, Ax = Ay. To see this define A∗ = Ax. For any (D,x) ∈ D ×X and any753
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a ∈ A, define ρa(D,x) = ηa(x)/(
∑

y∈D ηa(y)). For any a ∈ A, ρa is a logit function.754

Moreover, if Ax = A∗ for any x ∈ X, we can define a probability measure m on755

{ρa}a∈A∗ by m(ρa) = w(a)/(
∑

b∈A∗ w(b)).756

However, the assumption that Ax = Ay for any x, y ∈ X is compatible with their757

completeness assumption only when there is only one attribute (i.e., Ax = Ay = {a}758

for any x, y ∈ X). This corresponds to the degenerate logit model.759

Moreover, even besides the assumption of the completeness, since η can take760

only nonnegative integers, the set of attribute rules may not include the convex hull761

of the set of logit functions.762

C Axiomatization by the Strict Axiom of Re-763

vealed Stochastic Preference764

In this section, I provide an additional axiomatization of the mixed logit model by765

modifying the axiom provided by McFadden and Richter (1990).766

Definition 10. For any ρ ∈ P and any sequence (Di, xi)
n
i=1 ⊂ D ×X, define

B((Di, xi)
n
i=1, ρ) = max

π∈Π

n
∑

i=1

1(π(xi) ≥ π(Di))−
n
∑

i=1

ρ(Di, xi).

McFadden and Richter (1990) show that a random choice function ρ is a random767

utility function if and only if B((Di, xi)
n
i=1, ρ) ≥ 0 for any sequence (Di, xi)

n
i=1.768

Given Theorem 2, one might suspect that by simply changing the weak inequal-769

ity to the strict inequality, one could characterize the mixed logit model. This is770

false, because the resulting axiom is too strong. Instead, the sequence needs to be771

restricted in a certain way that excludes redundant sequences.772

Definition 11. A sequence (Di, xi)
n
i=1 of elements of D × X is called redundant773

if there exists D ∈ {Di}
n
i=1 such that for any x, y ∈ D, |{i ∈ {1, . . . , n}|(Di, xi) =774

(D,x)}| = |{i ∈ {1, . . . , n}|(Di, xi) = (D, y)}|. Otherwise, a sequence is called775

nonredundant.776

If a sequence (Di, xi)
n
i=1 is redundant, there exists D ∈ {Di}

n
i=1 such that all of777

the elements in D must appear the same number of times in the sequence.778

Definition 12. A random choice function ρ is said to satisfy the Strict Axiom779

of Revealed Stochastic Preference if B((Di, xi)
n
i=1, ρ) > 0 for any nonredundant780

sequence (Di, xi)
n
i=1.781
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Theorem 4.782

(i) A random choice function ρ is a mixed logit function if and only if ρ satisfies783

the Strict Axiom of Revealed Stochastic Preference.784

(ii) Let X be an affinely independent finite subset of Rk. A random choice function ρ785

is a mixed linear logit function if and only if ρ satisfies the Strict Axiom of Revealed786

Stochastic Preference.787

C.1 Proof of the Necessity of the Axiom788

Let ρ be a mixed logit function. By Proposition 1 (i), ρ ∈ co.Pl. Then by789

Lemma 3, there exists full support ν∗ ∈ ∆(Π) such that ν∗ rationalizes ρ. Then,790

∑n
i=1 ρ(Di, xi) =

∑n
i=1 ν

∗({π ∈ Π|π(xi) ≥ π(Di)}). Also, maxν∈∆(Π)

∑n
i=1 ν({π ∈791

Π|π(xi) ≥ π(Di)}) = maxπ∈Π
∑n

i=1 1(π(xi) ≥ π(Di)) because the objective function792

is linear in ν and ∆(Π) is compact. Therefore, B((Di, xi)
n
i=1, ρ) = maxν∈∆(Π)

∑n
i=1 ν({π ∈793

Π|π(xi) ≥ π(Di)}) −
∑n

i=1 ν
∗({π ∈ Π|π(xi) ≥ π(Di)}).794

So to complete the proof I will show that ν∗ 6∈ argmaxν∈∆(Π)

∑n
i=1 ν({π ∈795

Π|π(xi) ≥ π(Di)}). Since ν∗ is full support, it suffices to show that for any796

nonredundant sequence (Di, xi)
n
i=1, there exist π, π′ ∈ Π such that

∑n
i=1 1(π(xi) ≥797

π(Di)) 6=
∑n

i=1 1(π
′(xi) ≥ π′(Di)).798

By way of contradiction suppose that there exist a nonredundant sequence799

(Di, xi)
n
i=1 and α ∈ R such that

∑n
i=1 1(π(xi) ≥ π(Di)) = α for any π ∈ Π.800

For each (D,x) ∈ D×X define t(D,x) = |{i ∈ {1, . . . , n}|(Di, xi) = (D,x)}|. Then,801

t ∈ RD×X and for each π ∈ Π, t · ρπ =
∑n

i=1 ρ
π(Di, xi) =

∑n
i=1 1(π(xi) ≥ π(Di)) =802

α. Then by Lemma 5 (ii), t(D,x) = t(D, y) for any D ∈ D and x, y ∈ D. This803

contradicts with the definition of the nonredundancy of (Di, xi)
n
i=1.804

C.2 Proof of the Sufficiency of the Axiom805

To show the result, I show three lemmas.806

Lemma 11. For any sequence (Di, xi)
n
i=1, if B((Di, xi)

n
i=1, ρ) > 0 for some ρ ∈ P,807

then there exists a nonredundant subsequence (Dj , xj)
m
i=1 of (Di, xi)

n
i=1 such that808

B((Di, xi)
n
i=1, ρ) = B((Dj , xj)

m
j=1, ρ) for all ρ ∈ P.809

Proof. Fix a sequence (Di, xi)
n
i=1. Denote the sequence by S. If the sequence is810

nonredundant, then I obtain the desired result by letting (Dj , xj)
m
i=1 = (Di, xi)

n
i=1.811
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If the sequence S is redundant, then exists D′ ∈ {Di}
n
i=1 such that for any812

x, y ∈ D′, |{i ∈ {1, . . . , n}|(Di, xi) = (D′, x)}| = |{i ∈ {1, . . . , n}|(Di, xi) =813

(D′, y)}|. Denote the set of such D′ by D′. For each D′ ∈ D′, construct subse-814

quence (Dj , xj)
m
j=1 of (Di, xi)

n
i=1 such that Dj = D′ for all j ∈ {1, . . . ,m}. Denote815

the subsequence by S(D′). I obtain the subsequence S∗ by removing all subse-816

quences of {S(D′)|D′ ∈ D′} from S. If S∗ is not empty, then S∗ is a nonredundant817

sequence.818

In the following I will show that B(S, ρ) = B(S∗, ρ) for all ρ ∈ P and that819

S∗ is a nonredundant sequence. By the definition of D′, for any D′ ∈ D′ all el-820

ements of D′ must appear the same number of times. Say it is K(D′) times.821

Since
∑

x∈D′ ρ(D′, x) = 1, I have
∑

(Di,xi)∈S(D′) ρ(Di, xi) = K(D′). Moreover,822

∑

(Di,xi)∈S(D′) 1(π(xi) ≥ π(Di)) = K(D′). This is because for any π ∈ Π, 1(π(x) ≥823

π(D)) is one if x is the best element and zero otherwise. Therefore824

∑

(Di,xi)∈S
ρ(Di, xi) =

∑

D′∈D′

∑

(Di,xi)∈S(D′) ρ(Di, xi) +
∑

(Di,xi)∈S∗ ρ(Di, xi)

=
∑

D′∈D′ K(D′) +
∑

(Di,xi)∈S∗ ρ(Di, xi)

and825

maxπ∈Π
∑

(Di,xi)∈S
1(π(xi) ≥ π(Di))

= maxπ∈Π
∑

D′∈D′

∑

(Di,xi)∈S(D′) 1(π(xi) ≥ π(Di)) +
∑

(Di,xi)∈S∗ 1(π(xi) ≥ π(Di))

=
∑

D′∈D′ K(D′) + maxπ∈Π
∑

(Di,xi)∈S∗ 1(π(xi) ≥ π(Di)).

Hence B(S, ρ) = maxπ∈Π
∑

(Di,xi)∈S∗ 1(π(xi) ≥ π(Di)) −
∑

(Di,xi)∈S∗ ρ(Di, xi) =826

B(S∗, ρ). Since B(S, ρ) > 0 for some ρ ∈ P, the subsequence S∗ is not empty. Thus827

the subsequence S∗ is a desired nonredundant sequence.828

Lemma 12. If a random choice function ρ satisfies the Strict Axiom of Revealed829

Stochastic Preference, then ρ satisfies the Axiom of Revealed Stochastic Preference.830

Proof. Fix a sequence (Di, xi)
n
i=1. Denote the sequence by S. By the same argument831

as in the proof of Lemma 11, I obtain a subsequence S∗ of S such that B(S, ρ) =832

B(S∗, ρ) for any ρ ∈ P. If S∗ is empty, then B(S, ρ) = 0 for any ρ ∈ P. Moreover,833

if S∗ is not empty, then it is a nonredundant sequence. Then, by the Strict Axiom834

of Revealed Stochastic Preference, B(S∗, ρ) > 0, hence B(S, ρ) > 0 for any ρ ∈ P.835

Therefore, ρ satisfies the Axiom of Revealed Stochastic Preference.836

Lemma 13. For any s ∈ ZD×X and β ∈ R, there exist t ∈ ZD×X
+ and α ∈ R such837

that ρ · s < β if and only if ρ · t < α, where Z is the set of integers and Z+ is the838

set of nonnegative integers.839
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Proof. I will construct a nonnegative integer t from s and a number α from β.840

To do this, set t = s initially. If s(D, y) < 0 for some (D, y), then add −s(D, y)841

to t(D,x) for all x ∈ X. This transformation changes only the constant because842

∑

x∈X ρ(D,x) = 1. Formally, for each (D,x) define843

t(D,x) = s(D,x) +
∑

y∈X:s(D,y)<0(−s(D, y))

α = β −
∑

(D,y)∈D×X:s(D,y)<0 s(D, y).

Then, t is a nonnegative integer vector. For any ρ ∈ P,844

ρ · s = ρ · t−
∑

D∈D

∑

x∈X ρ(D,x)
∑

y∈X:s(D,y)<0(−s(D, y))

= ρ · t−
∑

D∈D

∑

y∈X:s(D,y)<0(−s(D, y)) (∵
∑

x∈X ρ(D,x) = 1)

= ρ · t+
∑

(D,y)∈D×X:s(D,y)<0 s(D, y).

Hence, ρ · s < β if and only if ρ · t < α.845

Lemma 14. For any hyperplane H in RD×X such that Pr ⊂ H−, there exist846

t ∈ ZD×X
+ \ {0} and α ∈ R such that H ∩ Pr = {p ∈ RD×X |p · t = α} ∩ Pr and847

rint.H− ∩ Pr = {p ∈ RD×X |p · t < α} ∩ Pr.848

Proof. Since H is a hyperplane, there exist s ∈ RD×X \ {0} and β ∈ R such that849

H = {p ∈ RD×X |p · s = β} and rint.H− = {p ∈ RD×X |p · s < β}. Since Pr is850

a polytope, Pr ∩ H is also a polytope if it is not empty. There exist a (possibly851

empty) subset Π′ of Π such that co.{ρπ|π ∈ Π′} = {p ∈ RD×X |p · s = β} ∩ Pr and852

ρπ · s < β for any π ∈ Π \ Π′.853

Therefore, ρπ · s = β for any π ∈ Π′ and ρπ · s < β for any π ∈ Π \ Π′. I854

shall define matrices A and E such that the above inequalities hold if and only if855

A · (s, β)T = 0 and E · (s, β)T ≫ 0, where (s, β)T denotes the transpose of (s, β).856

The matrix A has one row for each π ∈ Π′; one column for each (D,x) ∈ D×X;857

and one last column. In the row corresponding to π ∈ Π, A has ρπ(D,x) at the858

column of (D,x) ∈ D×X. The entries of the last column are all −1. The matrix E859

has one row for each π ∈ Π \Π′; one column for each (D,x) ∈ D ×X; and one last860

column. In the row corresponding to π ∈ Π \Π′, E has −ρπ(D,x) at the column of861

(D,x) ∈ D ×X. The entries of the last column are all +1.862

Then, A · (s, β)T = 0 and E · (s, β)T ≫ 0. Moreover, since ρπ(·) ∈ {0, 1} for863

any π ∈ Π, the entries of the matrices A and E are rational numbers. It follows864

from Lemma 10 that there exists (t, α) ∈ ZD×X ×R such that A · (t, α)T = 0 and865

E · (t, α)T ≫ 0. So ρπ · t = α for any π ∈ Π′ and ρπ · t < α for any π ∈ Π \ Π′.866

36



Now I will show {p ∈ RD×X |p · s < β} ∩ Pr = {p ∈ RD×X |p · t < α} ∩ Pr.867

Choose any ρ ∈ Pr such that ρ · s < β. Then, there exists {λπ}π∈Π ⊂ R+ such that868

∑

π∈Π λπ = 1 and ρ =
∑

π∈Π λπρ
π. Since ρ · s < β, λπ∗ > 0 for some π∗ ∈ Π \ Π′.869

Since ρπ · t ≤ α for all π ∈ Π and ρπ
∗

· t < α, then ρ · t =
∑

π∈Π λπ(ρ
π · t) < α.870

This establishes {p ∈ RD×X |p · s < β} ∩Pr ⊂ {p ∈ RD×X |p · t < α} ∩Pr. Since the871

argument can be reversed to obtain the other inclusion, {p ∈ RD×X |p·s < β}∩Pr =872

{p ∈ RD×X |p·t < α}∩Pr. In a similar way, I can obtain {p ∈ RD×X |p·s = β}∩Pr =873

{p ∈ RD×X |p · t = α} ∩ Pr.874

Therefore H ∩ Pr = {p ∈ RD×X |p · s = β} ∩ Pr = {p ∈ RD×X |p · t = α} ∩ Pr875

and rint.H− ∩ Pr = {p ∈ RD×X |p · s < β} ∩ Pr = {p ∈ RD×X |p · t < α} ∩ Pr.876

By using the lemmas above, I will show the sufficiency of the axiom. By Lemma

2, there exist hyperplanes {Hi}
n
i=1 in RD×X such that aff.Pr 6⊂ H−

i for each i ∈

{1, . . . , n} and Pr = (∩n
i=1H

−
i ) ∩ aff.Pr. By Theorem 6.5 of Rockafellar (2015),

rint.Pr = (∩n
i=1rint.H

−
i ) ∩ aff.Pr. (16)

For each hyperplane Hi, since aff.Pr 6⊂ H−
i , I have Pr 6⊂ Hi. Since Pr =877

co.{ρπ|π ∈ Π}, there exists Π′
i ( Π such that {ρπ|π ∈ Π′

i} ⊂ Hi ∩ Pr and {ρπ|π ∈878

Π \ Π′
i} ⊂ rint.H−

i ∩ Pr.879

By Lemma 14, for each hyperplane Hi, there exist ti ∈ ZD×X
+ \ {0} and αi ∈ R

such that Hi ∩ Pr = {p ∈ RD×X |p · ti = αi} ∩ Pr and

rint.H−
i ∩ Pr = {p ∈ RD×X |p · ti < αi} ∩ Pr. (17)

This implies that for any π′ ∈ Π′
i and π ∈ Π \ Π′

i,

ρπ
′

· ti = αi > ρπ · ti. (18)

For each hyperplane Hi, consider a sequence (Dj , xj)
ni

j=1 such that each (D,x)880

appears ti(D,x) times, where ni ≡
∑

(D,x)∈D×X ti(D,x). (The order of the pair881

in the sequence does not matter.) Then for each ρ ∈ P,
∑ni

j=1 ρ(Dj , xj) = ρ · ti.882

By (18), maxπ∈Π
∑ni

j=1 1(π(xj) ≥ π(Dj)) = maxπ∈Π
∑ni

j=1 ρ
π(Dj , xj) = maxπ∈Π ρπ ·883

ti = αi. For any ρ ∈ P, B((Dj , xj)
ni

j=1, ρ) = maxπ∈Π
∑ni

j=1 1(π(xj) ≥ π(Dj)) −884

∑ni

j=1 ρ(Dj , xj) = αi−ρ·ti. Moreover, there exists π ∈ Π\Π′
i such that B((Dj , xj)

ni

j=1, ρ
π) =885

αi − ρπ · ti > 0. Then by Lemma 11, I obtain a nonredundant sequence (D′
j , x

′
j)

n′

i

j=1886

such that B((D′
j , x

′
j)

n′

i

j=1, ρ) = B((Dj , xj)
ni

j=1, ρ) for all ρ ∈ P. Hence, B((D′
j , x

′
j)

n′

i

j=1, ρ) >887

0 if and only if ρ · ti < αi for all ρ ∈ P.888
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Since Pr ⊂ P, for all i ∈ {1, . . . , n}

{p ∈ RD×X |p · ti < αi} ∩ Pr = {ρ ∈ P|B((D′
j , x

′
j)

n′

i

j=1, ρ) > 0} ∩ Pr. (19)

Suppose that a random choice function ρ satisfies the Strict Axiom of Revealed889

Stochastic Preference. So B((D′
j , x

′
j)

n′

i

j=1, ρ) > 0 for all i ∈ {1, . . . , n}. Then by890

Lemma 12, ρ satisfies the Axiom of Revealed Stochastic Preference. By the result891

of McFadden and Richter (1990), ρ ∈ Pr. Therefore,892

ρ ∈ ∩n
i=1{ρ ∈ P|B((D′

j , x
′
j)

n′

i

j=1, ρ) > 0} ∩ Pr

= ∩n
i=1{p ∈ RD×X |p · ti < αi} ∩ Pr (∵ (19))

= ∩n
i=1rint.H

−
i ∩ Pr (∵ (17))

⊂ ∩n
i=1rint.H

−
i ∩ aff.Pr

= rint.Pr (∵ (16))

So ρ ∈ rint.Pr. It follows from Propositions 2 and 5 that statements (i) and (ii)893

hold.894

D Axiomatization by Strict Coherency895

Besides the axiomatizations by Falmagne (1978) and McFadden and Richter (1990),896

there is another axiomatization for the random utility model proposed by Clark897

(1996). The axiomatization by Clark (1996) is based on DeFinetti’s Coherency898

condition. DeFinetti shows that if a function defined on a set of subsets satis-899

fies Coherency then the function can be extended to a finitely additive probability900

measure on the smallest algebra that contains the subsets.901

To introduce Coherency, for Π′ ⊂ Π, let IΠ′ denote the indicator function on the902

set Π′. For any f : Π → R, f ≥ 0 means that f(π) ≥ 0 for all π ∈ Π.903

Definition 13. A random choice function ρ is Coherent if, for every sequence

{(Di, xi)}
m
i=1 of D×X such that xi ∈ Di for all i ∈ {1, . . . ,m}, and for every finite

sequence of real numbers {λi}
m
i=1,

m
∑

i=1

λiI{π∈Π|π(xi)≥π(Di)} ≥ 0 =⇒
m
∑

i=1

λiρ(Di, xi) ≥ 0.

Based on the result of DeFinetti, Clark (1996) shows that a random choice904

function ρ is Coherent if and only if ρ is a random utility function.905
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To axiomatize the mixed logit model, I need to modify the axiom of Coherency.906

As in the previous section, changing the weak inequality to the strict inequality907

is not enough to characterize the mixed logit model. (The resulting axiom is too908

strong). I need to restrict the sequences.909

Definition 14. A sequence {(Di, xi, λi)}
m
i=1 of D×X×R such that xi ∈ Di is said

to be balanced if, for every D ∈ {Di}
m
i=1 and for every x, y ∈ D,

∑

j∈{i∈{1,...,m}|(Di,xi)=(D,x)}

λj =
∑

j∈{i∈{1,...,m}|(Di,xi)=(D,y)}

λj .

Otherwise, a sequence is called unbalanced.910

Definition 15. A random choice function ρ is Strictly Coherent if for every se-

quence {(Di, xi)}
m
i=1 of D × X such that xi ∈ Di, and for every sequence of real

numbers {λi}
m
i=1 such that the sequence {(Di, xi, λi)}

m
i=1 is unbalanced,

m
∑

i=1

λiI{π∈Π|π(xi)≥π(Di)} ≥ 0 =⇒
m
∑

i=1

λiρ(Di, xi) > 0.

Theorem 5.911

(i) A random choice function ρ is Strictly Coherent if and only if ρ is a mixed logit912

function.913

(ii) Let X be an affinely independent finite subset of Rk. A random choice function914

ρ is Strictly Coherent if and only if ρ is a mixed linear logit function.915

D.1 Proof of the Necessity of Strict Coherency916

By Theorems 1 and 3, it suffices to show that if ρ satisfies Quasi-Stochastic Ratio-917

nality, then ρ is Strictly Coherent.918

Choose a sequence {(Di, xi)}
m
i=1 of D×X such that xi ∈ Di and a sequence of real919

numbers {λi}
m
i=1 such that the sequence {(Di, xi, λi)}

m
i=1 is unbalanced. Suppose920

that
∑m

i=1 λiI{π∈Π|π(xi)≥π(Di)} ≥ 0 to show
∑m

i=1 λiρ(Di, xi) > 0.921

For each (D,x) ∈ D ×X such that x ∈ D, define

u(D,x) =
∑

j∈{i∈{1,...,m}|(Di,xi)=(D,x)}

λj .

If (D,x) does not appear in the sequence, then u(D,x) = 0. Since {(Di, xi, λi)}
m
i=1922

is unbalanced, u is not constant for some D ∈ D. Define q ∈ ∆(D) by q(D) = 1/|D|923

for each D ∈ D.924
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Now notice that for each π ∈ Π, if π(xi) ≥ π(Di), then I{π∈Π|π(xi)≥π(Di)}(π) =925

1 = ρπ(Di, xi). If π(xi) < π(Di), then I{π∈Π|π(xi)≥π(Di)}(π) = 0 = ρπ(Di, xi).926

Therefore, for each π ∈ Π, I{π∈Π|π(xi)≥π(Di)}(π) = ρπ(Di, xi).927

Hence, for each π ∈ Π,928

∑m
i=1 λiI{π∈Π|π(xi)≥π(Di)}(π) = |D|

∑

D∈D q(D)
∑

x∈D u(D,x)ρπ(D,x)

= |D|E(ρπ : q, u).
(20)

Since
∑m

i=1 λiI{π∈Π|π(xi)≥π(Di)} ≥ 0, I have E(ρπ : q, u) ≥ 0 for all π ∈ Π. By

Quasi-Stochastic Rationality, E(ρπ : q, u) > 0. Hence

m
∑

i=1

λiρ(Di, xi) = |D|
∑

D∈D

q(D)
∑

x∈D

u(D,x)ρπ(D,x) = |D|E(ρπ : q, u) > 0.

Therefore, ρ is Strictly Coherent.929

D.2 Proof of the Sufficiency of Strict Coherency930

By Theorems 1 and 3, it suffices to show that if ρ is Strictly Coherent then ρ satisfies931

Quasi-Stochastic Rationality. Choose any q ∈ ∆(D) and any u(D, ·) ∈ RD such that932

u(D, ·) is not constant for some D with q(D) > 0. Let α = minπ∈ΠE(ρπ : q, u).933

Choose any D′ ∈ D such that q(D′) > 0. For any x ∈ D′, define v(D′, x) =934

u(D′, x) − (α/q(D′)). For any (D,x) ∈ (D \ {D′}) × X such that x ∈ D, define935

v(D,x) = u(D,x). Since u(D, ·) is not constant for some D with q(D) > 0, v(D, ·)936

is not constant for some D with q(D) > 0. Moreover, E(ρπ : q, u) = E(ρπ : q, v)+α937

for any π ∈ Π. Therefore, minπ∈ΠE(ρπ : q, v) = 0 and E(ρπ : q, v) ≥ 0 for any938

π ∈ Π.939

Define sequences {(Di, xi)}
m
i=1 and {λi}

m
i=1 as follows. For each (D,x) ∈ D ×X

such that x ∈ D, if v(D,x) 6= 0, then include (D,x) in the sequence. Since the

number of a pair (D,x) such that x ∈ D is finite, I obtain a sequence {(Di, xi)}
m
i=1.

For each (Di, xi) in the sequence, define λi = q(Di)v(Di, xi) for each i ∈ {1, . . . ,m}.

Then for any ρ ∈ P,

E(ρ : q, v) ≡
∑

D∈D

q(D)
∑

x∈D

v(D,x)ρ(D,x) =

m
∑

i=1

λiρ(Di, xi). (21)

Since v(D, ·) is not constant for some D with q(D) > 0, there exist x, y ∈ D940

such that q(D)v(D,x) 6= q(D)v(D, y). Hence,
∑

j∈{i∈{1,...,m}|(Di,xi)=(D,x)} λj =941

q(D)v(D,x) 6= q(D)v(D, y) =
∑

j∈{i∈{1,...,m}|(Di,xi)=(D,y)} λj , where the equalities942
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hold because by the definition of the sequence. Therefore, {(Di, xi, λi)}
m
i=1 is unbal-943

anced.944

As in the proof of the necessity, for each π ∈ Π, I{π∈Π|π(xi)≥π(Di)}(π) = ρπ(Di, xi).945

Therefore, for each π ∈ Π,946

∑m
i=1 λiI{π∈Π|π(xi)≥π(Di)}(π) =

∑m
i=1 q(Di)v(Di, xi)ρ

π(Di, xi)

=
∑

D∈D q(D)
∑

x∈D v(D,x)ρπ(D,x)

= E(ρπ : q, v).

Since minπ∈ΠE(ρπ : q, v) ≥ 0, this implies that
∑m

i=1 λiI{π∈Π|π(xi)≥π(Di)} ≥ 0. By947

Strict Coherency,
∑m

i=1 λiρ(Di, xi) > 0. Therefore,948

E(ρ : q, u) = α+E(ρ : q, v) = α+
m
∑

i=1

λiρ(Di, xi) > α = min
π∈Π

E(ρπ : q, u),

where the second equality holds by (21). Therefore, ρ satisfies Quasi-Stochastic949

Rationality.950
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