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Average choice

David Ahn Federico Echenique Kota Saito

Abstract

This is an investigation of stochastic choice when only the average of the choices is

observable. For example when one observes aggregate sales numbers from a store, but

not the frequency with which each item was purchased. The focus of our work is on the

Luce model, also known as the Logit model. We show that a simple path independence

property of average choice uniquely characterizes the Luce model. We also characterize

the linear Luce mode, using similar tools. A linear version of the Luce model is used

most frequently in empirical work by applied economists.

Our characterization is based on the property of path independence, which runs

counter to early impossibility results on path independent choice. From an empirical

perspective, our results provide a small-sample advantage over the tests of Luce’s model

that rely on estimating choice frequences.

JEL classification numbers: D01,D10

Key words: Stochastic Choice, Logit Model, Luce Model, Path independence, Average
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Average choice

David Ahn Federico Echenique Kota Saito

1. Introduction

We investigate the meaning of stochastic choice theory for data on average choices. Ag-

gregate or average choices are often available when exact choice frequencies are unobserv-

able. Such aggregate statistics are not only easy to obtain, but also easier to estimate

efficiently than are choice frequencies. Taking average choice as primitive, we introduce

a novel characterization of the ubiquitous Luce, or Logit model of discrete choice.

The crucial property for the Luce model is a weak version of path independence.

Classic path independence requires choices to be recursive moving from subsets to larger

sets. In particular, first making two selection from two disjoint sets and then choosing

among the pair of selections leads to the final outcome as immediately selecting from the

union of these sets. For example in a supermarket we may choose Camembert cheese

from the cheese section. Then choose from a simplified representation of the supermarket

in which Camembert is the only cheese available. Our notion of path independence is

weaker, requiring the average choice to be any convex combination of the average choices

from a partition of the set, rather than requiring the average choice to be the average

choice from the average choice.

Our result is surprising because path independence was thought to be too strong a

property to impose on average choice. Path independence was first proposed by Plott

(1973), who used it to characterize rational choice in an abstract environment. Kalai and

Megiddo (1980) and Machina and Parks (1981) consider path independence for average

choice, essentially the same primitive as we assume in our paper. These papers present

impossibility theorems. They conclude that no continuous average choice can satisfy Plott



path independence. We consider a weakening of path independence, where the average

choice from a set must be a convex combination (a lottery) of the average choices from a

partition of the set in two. It does not need to coincide with the average choice one would

make when faced only with the two average choices. See Section 4.2 for a comparison of

the two axioms.

Our weakening of path independence not only avoids the impossibility result, but

together with continuity it pins down the Luce model uniquely. Our main result says

that the unique average choice that satisfies continuity and path independence is the

Luce average rule.

We proceed to expand on why average choices are a reasonable primitive for stochastic

choice, then explain our main contributions in some detail, and finally discuss some

related literature.

Average choices. We may often observe aggregate data on random choice, and not

the actual choice probabilities. There are two interpretations of the model of random

choice, and in each case it makes sense to think that one may be able to observe average

choice instead of choice probabilities.

The first interpretation of random choice is that it reflects the choice frequencies of a

population of individual agents. While each individual has determinate choice behavior,

the randomness of the choice function records population-level heterogeneity. We claim

that one may often actually observe the aggregate quantities chosen and not the choice

frequencies. For example, the ratio of wine sales to total revenue at a supermarket can

be immediately read from a balance sheet without observing each shopper’s receipt. The

average choice economizes on describing each product’s distribution of sales (it does not

require knowing how many shoppers bought over a dozen bottles of wine) and on describ-

ing each product’s correlation with others (it does not require knowing how frequently

cheese is purchased with wine).

The store example makes sense if we interpret random choice as the behavior of a

population of individuals, each one with an idiosyncratic choice behavior. We may instead

focus on a single individual, who may have different choice behaviors at different points

in time. But even for a single individual it is reasonable to think that we can observe

average choice and not choice frequencies. For example we may ask an individual how
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much wine, cheese and meat they purchased last month. This is much easier to answer

compared to the detailed record of each trip to the store that would be required to

compile information on choice frequencies.

Finally, even if one has information on choice frequencies it is statistically desirable

to use a test based on average choice. Studies of stochastic choice take population choice

probabilities as known. But in actual applications of the theory one only observes a

finite sample of choices. It is therefore important to understand how one would test

for the axioms that characterize the theory, given a finite-sample approximation to the

population stochastic choice probabilities.

The average is statistically very well behaved while the main alternative to our charac-

terization uses relative probabilities; these have much poorer qualities as a test statistic.

The alternative to our test is Luce’s axiomatization, based on testing for the independence

of irrelevant alternatives (IIA). Testing IIA requires estimating relative choice probabili-

ties: these are statistically more complicated objects than the average. In small samples

they are hard to estimate robustly, and even with a large sample their estimators can

have an arbitrarily large variance. We discuss these issues in detail in Section 4.4.

In fact, Luce (1959) already makes this point. Luce makes a very similar calculation to

our calculations in Section 4.4, and concludes that a reliable test based on his IIA axiom

woud require very large datasets: Sample sizes of the order of several thousands. This

would render the tests inapplicable in most experimental setups.1 Our axiomatization,

based on average choice, is in that sense much better behaved because averages can be

estimated more efficiently than fractions of probabilities.

Contributions. Our main contribution is an axiomatic characterization of the Luce

model when the primitive is average choice. The Luce model is very important in eco-

nomics, and very heavily used by applied economists and practitioners.

Our axiomatization is based on path independence, as described in the beginning of

the introduction. The axiomatization is useful as a statistical test for the Luce model

because data on average choices are a) available when data on choice frequencies are not,

and b) more robustly estimated given data on choices.

1Luce suggests that one would use psychophysical experiments to obtain the kinds of sample sizes

needed to test IIA.
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The axiomatization is also useful because of what we learn about the Luce mode. Path

independence of average choice has been studied before, and the connection to Luce’s

IIA went unnoticed. As mentioned in the beginning of the introduction, the literature

concluded that path independence of average choice was too strong a property, and lead to

an impossibility result. So the fact that a weak version of path independence lies behind

the Luce model is probably surprising, and uncovers a new facet of the Luce model. In

the paper (Section 4.1) we discuss the relation between IIA and path independence, and

why one cannot prove our main result by simply showing that path independence must

imply the IIA.

Our second contribution is to provide the first axiomatization of the linear Luce

model. The Luce model (or Logit model) is ubiquitous in applied economics: It is taught

to every first-year graduate student; and it is the basic go-to specification for the demand

side of most structural economic models. But the version of the model that is actually

empirically estimated assumes that utility is linear in object attributes. As far as we

know, the full empirical content of this model has not been investigated until now. For

example, in McFadden (1974), the influential paper that lays out the Logit model as an

empirical strategy, linearity is postulated as an axiom (McFadden’s Axiom 4).

We show that an average choice version of the von-Neumann Morgenstern indepen-

dence axiom ensures that the Luce utility function is ordinally equivalent to a linear

function. After discussing this axiom, we turn to a kind of calibration axiom that en-

sures that the Luce utility is affinely equivalent to a linear utility. These axioms, together

with continuity and path independence, constitute the content of the linear Luce model

for average choice.

Related Literature. The papers that are closely related to ours are: Luce (1959),

Plott (1973), Kalai and Megiddo (1980), and Machina and Parks (1981). These have been

discussed above. In particular, the papers by Kalai and Megiddo (1980) and Machina

and Parks (1981) use the same primitive as we do, and argue that path independence

gives rise to an impossibility. We weaken path independence and find that it gives rise

to the Luce rule. Section 4.2 explains the Plott path independence axiom in detail, and

gives a simplified explanation behind the impossibility results.

The literature on path independent choice is large. Notable contributions include the
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work of Blair (1975), Parks (1976), and Ferejohn and Grether (1977). This work follows

Plott in assuming an environment of abstract choice, without the linear structure that is

part of our primitives.

The linear Luce model is the standard econometric specification of the Luce, or Logit

model. A discussion can be found in any econometric textbook: see for example Greene

(2003). The Logit model as an empirical strategy is laid out in McFadden (1974). We

are apparently the first to investigate the behavioral content of the linearity assumption

in the Luce model.

2. Average choice and the Luce model

2.1. Notation

Definitions of mathematical terms are in Section 5.1.

If A ⊆ Rn, then convA denotes the the set of all convex combinations of elements in

A, termed the convex hull of A. Let conv0A denote the relative interior of convA.

A binary relation on a set is called a preference relation if it is complete and transitive

(in other words, if it is a weak order).

Let Y be a set. Then f : Y → R+ is a finite support measure on Y if there is a

finite subset A ⊆ Y such that f(x) = 0 for x /∈ A. In this case we say that the set A

is a support for f . A finite support measure may have more than one support. If f in

addition satisfies that
∑

x∈A f(x) = 1 then we say that it is a finite support probability

measure on X. When Y is a finite set, we use the term lottery to refer to a finite support

probability measure.

Let ∆(Y ) denote the set of all finite support probability measures; and for A ⊂ Y ,

let ∆(A) denote the set of finite support measures that have support A. We shall only

discuss finite support probability measures, so we some times refer to them as probability

measures.
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2.2. Primitives

Let X be a compact and convex subset of Rn, with n ≥ 3. An important special case is

when X is a set of lotteries, in that case there is a finite set P of prizes, and X = ∆(P )

is the set of all lotteries over P .

Let A be the set of all finite subsets of X.

An average choice is a function

ρ∗ : A → X,

such that, for all A ∈ A, ρ∗(A) is in conv0A, the relative interior of the convex hull of A.

The primitive of our study is an average choice.

2.3. Luce model

A stochastic choice is a function

ρ : A → ∆(X)

such that ρ(A) ∈ ∆(A).

A stochastic choice ρ : A → ∆(X) a continuous Luce rule if there is a continuous

function u : X → R++ such that

ρ(x,A) =
u(x)∑
y∈A u(y)

.

An average choice ρ∗ is continuous Luce rationalizable if there is a continuous Luce

rule ρ such that

ρ∗(A) =
∑
x∈A

xρ(x,A)

for all A ∈ A.
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2.4. A characterization of continuous Luce rationalizable average choices.

Our main axiom is a version of the path independence axiom proposed by Plott (1973).

Plott’s axiom says that choice is recursive, in the sense that choice from A∪B is obtained

by choosing first from A and B separately, and then from a set consisting of the two

chosen elements. The idea is that all that matters about A and B in A∪B are its “best”

elements, the element chosen from A and B. Plott worked in an environment of abstract

choice. For average choice, the same environment as we use in our paper, the papers by

Kalai and Megiddo (1980) and Machina and Parks (1981) argue that Plott’s axiom is

too strong. They show that Plott’s path independence gives an impossibility result. Our

result is that a natural weakening of Plott’s axiom does not give an impossibility but

instead pins down the Luce model.

Our notion of path independence is weaker than Plott’s, and says that the average

choice from A∪B is a convex combination of the average choice from A and the average

choice from B. Formally, our axiom is:

Path independence: If convA ∩ convB = ∅ then

ρ∗(A ∪B) ∈ conv0{ρ∗(A), ρ∗(B)}.

Our second axiom imposes a continuity property on average choice.

Continuity: Let x /∈ A. For any sequence xn in X, if x = limn→∞ xn, then

ρ∗(A ∪ {x}) = lim
n→∞

ρ∗(A ∪ {xn}).

(understood as weak* convergence ).

Continuity is a technical axiom but it raises some interesting issues related to choosing

among multiple copies of identical, or close to identical, objects. We discuss these in

Section 4.

Theorem 1. An average choice is continuous Luce rationalizable iff it satisfies continuity

and path independence.

We can gain some intuition for Theorem 1 from Figure 1. Essentially what happens

is that path independence pins down ρ∗(A) uniquely from the value of ρ∗(A′) when
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y

x
z

w

q

r

ρ∗(A \ {y})

ρ∗(A \ {x})

ρ∗(A)

Figure 1: The set A = {x, y, z, w, q, r}: ρ∗(A) is determined from path independence,

ρ∗(A \ {x}), and ρ∗(A \ {y})

A′ ( A.2 We build up a rationalizing Luce model from the average choice at sets of small

cardinality, and then use path independence to show that ρ∗ must always coincide with

the average choice generated from that Luce model.

Figure 1 shows how ρ∗(A) is uniquely determined. In the figure, the points x and y

are extreme points of conv(A), where A = {x, y, z, w, q, r}. Path independence says that

ρ∗(A) must lie on the line segment joining x and ρ∗(A \ {x}) and on the line segment

joining y and ρ∗(A\{y}). The main step in the proof (Lemma 6) establishes that, outside

of some “non-generic” sets A, the intersection of the line segments x—ρ∗(A \ {x}) and

y—ρ∗(A\{y}) is a singleton. This means that path indepence pins down ρ∗(A) uniquely

from ρ∗(A \ {x}) and ρ∗(A \ {y}).

Figure 1 illustrates why the line segments x—ρ∗(A \ {x}) and y—ρ∗(A \ {y}) have a

singleton intersection. We choose x and y to lie on a proper face of convA, so there is

a hyperplane supporting A at that face. If there were two points in the intersection of

x—ρ∗(A \ {x}) and y—ρ∗(A \ {y}), then all four points x, ρ∗(A \ {x}), y and ρ∗(A \ {y})
would lie in the same line. This implies that ρ∗(A \ {x}) and ρ∗(A \ {y}) lie on the

hyperplane as well. But since these two average choices are in the relative interior of the

respective sets, it implies that A also lies in the hyperplane. This is what we mean by A

being “not generic:” it means that convA does not have low dimension.

2See also the discussion in Section 4.1, where we compare path independence and Luce’s IIA, and

argue that we could not use IIA to the same effect as path independence.
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3. Linear Luce

We have mentioned the popularity of the Luce model among practitioners and empirical

economists. Interestingly, the version of the Luce model they estimate is linear in object

attributes. Here we turn our attention to such a linear model. Specifically, we consider

continuous Luce models in which:

• u(x) = f(v · x) with v ∈ Rn and f a continuous strictly monotonic function;

• or u(x) = v · x+ β, with v ∈ Rn and β ∈ R.

The first model we term the linear Luce model. The second is called the strictly affine

Luce model.

Our results on linear Luce and the strictly affine Luce model are the first axiomatic

characterizations of any version of Luce model that assumes linearity in object attributes,

the kind of Luce model that is usually estimated empirically.

3.1. Linear Luce

A stochastic choice ρ : A → ∆(X) a linear Luce rule if there is v ∈ Rn and a monotone

and continuous function f : R→ R++ such that

ρ(x,A) =
f(v · x)∑
y∈A f(v · y)

.

Consider the following axiom, which captures the kind of independence property that

is normally associated with von Neumann-Morgenstern expected utility theory.

Independence: ρ∗({x, y}) = (1/2)x+ (1/2)y iff for all λ ∈ R and all z s.t. λx+ (1−
λ)z, λy + (1− λ)z ∈ X,

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z

Note that if ρ∗ is continuous Luce rationalizable with utility u, then u(x) = u(y)

iff ρ∗({x, y}) = (1/2)x + (1/2)y. So the meaning of the independence axiom is that
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u(x) = u(y) iff for all λ ∈ R and all z s.t. λx + (1 − λ)z, λy + (1 − λ)z ∈ X, ρ∗({λx +

(1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z.

The next diagram is a geometric illustration of independence. Note that the average

choice ρ∗(λx+ (1−λ)z, λy+ (1−λ)z) must be translated with λ from ρ∗(x, y). Since we

have u(x) = u(y), this will force a rationalizing rule to translate indifference curves in λ

in a similar fashion, so the indifference curves passing through the points λx + (1− λ)z

and λy + (1− λ)z), and through λ′x+ (1− λ′)z and λ′y + (1− λ)z′), must be translates

of the indifference curve passing through x and y.

x

y

z

ρ∗(λx + (1− λ)z, λy + (1− λ)z)

ρ∗(λ′x + (1− λ′)z, λ′y + (1− λ′)z)

ρ∗(x, y)

The independence axiom ensures that u satisfies von Neumann-Morgenstern inde-

pendence. The immediate implication of the axiom (Lemma 8) says that u satisfies a

weak version of independence, but this version can be shown to suffice for the result

(Lemma 9). The result is as follows.

Theorem 2. An average choice is continuous linear Luce rationalizable iff it satisfies

independence, continuity and path independence.

3.2. Strictly affine Luce model

A stochastic choice ρ : A → ∆(X) is a strictly affine Luce rule if there is v ∈ Rn and

β ∈ R such that

ρ(x,A) =
v · x+ β∑

y∈A(v · y + β)
.

In the linear model, u is ordinally equivalent to a linear function of x. The so-called

strictly affine model has u being an affine transformation of a linear model. Independence
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is not sufficient to obtain this model and we need a stronger axiom; an axiom that

allows us to measure the effects of moving close to an alternative. This axiom is termed

calibration:

Calibration:

ρ∗({λx+ (1− λ)y, λy + (1− λ)x}) = ρ∗({x, y}) + 2λ(1− λ)(x+ y − ρ∗({x, y}))

Calibration requires that “symmetric” combinations:

λx+ (1− λ)y and λy + (1− λ)x

correctly reflect the magnitude of λ. Think of the vectors λx+(1−λ)y and λy+(1−λ)x

as two independent lotteries. The following diagram represents the two lotteries.

ρ∗

y

x

y

x

x

y

1− λ

1− λ

λ

λ

1− λ

λ

Given the two independent lotteries: with probability λ2 you draw x and then y; and

with probability (1− λ)2 you draw y then x. Either way you get ρ({x, y}). The problem

is when you draw two x or two y. Then you get ρ({x, x}) = x or ρ∗({y, y}) = y. This

happens with probability 2λ(1− λ). So what we get is ρ∗({x, y}) and a “compensation”

(x+ y − ρ∗({x, y})) in the event that we draw two x or two y. This is multiplied by the

probability of that event.

Theorem 3. An average choice is strictly affine Luce rationalizable iff it satisfies cali-

bration, independence, continuity and path independence.

4. Discussion

An axiomatic characterization serves two kinds of purposes. One is that the ideas behind

the axioms give some qualitative meaning to a quantitative model of choice. Path inde-

pendence captures a procedural approach to choice: this idea is most clearly captured
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y

x

zρ∗({x, y})

ρ∗({x, y, z})

Figure 2: Path independence and Luces’ IIA.

by Plott’s version of path independence. Plott’s notion is too strong in our environment:

we discuss these issues in Section 4.2.

Our second axiom, continuity, takes the form it takes because of a well-known phe-

nomenon in stochastic choice. This is discussed in 4.3.

The other use of an axiomatic characterization is that it provides a test for the

theory. Luce’s model is the most widely used model of discrete choice. While you read

this paper, dozens of economists are hard at work estimating hundreds of Luce models

(Logit models) of choice. But Luce’s characterization of the model relies on stochastic

choice as primitive, we argue that there are practical empirical advantages to testing

Luce’s model using average choice. These are discussed in Section 4.4.

In the first place, however, we turn to a theoretical discussion of Luce’s and our

axiomatization of the Luce model.

4.1. Path independence and Luce’s IIA.

Luce (1959) takes a stochastic choice ρ as primitive, and shows that Luce’s rue emerges

from the axiom:
ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x,A)

ρ(y, A)

for any A 3 x, y. It is interesting to consider the relation between IIA and path indepen-

dence.

Figure 2 exhibits a violation of path independence. The average choice ρ∗({x, y, z})
is not on the line connecting z with ρ∗({x, y}. Instead, ρ∗({x, y, z}) is above the line. If

we write ρ∗({x, y, z}) as a weighted average of the vectors x, y and z, then this means

that the relative weight places on x, relative to the weight place on y, is clearly higher

12



z w

y
x

ρ∗(A \ {y})

z w

y
x

ρ∗(A \ {x})

z w

y
x

Figure 3: Violation of path independence; A = {x, y, z, w}.

than the relative weight places on x in ρ∗({x, y}). This would be a violation of Luce’s

IIA, when the weights are choice probabilities.

So it is easy to see, at least in some special cases, how path independence is related

to IIA. It is not, however, so easy to prove Theorem 1 using IIA. Consider the violation

of path independence in Figure 3.

Figure 3 exhibits a violation of path independence. The figure has the average choice

from some subsets of A = {x, y, z, w}, and these choices are incompatible with path

independence. It is easy to draw violations of path independence, but Figure 3 illustrates

that the axiom can be violated given only information about the average choice from

{x, z, w} and {y, z, w}. This information does not allow us to reduce the problem to

a violation IIA because we cannot relate the probability weights in a larger set to the

probability weights in the smaller set.

The diagram on the left shows where ρ∗({x, z, w}) is in conv{x, z, w}, while the dia-

gram in the middle depicts ρ∗({y, z, w}) in conv{y, z, w}. It should be clear, as illustrated

in the diagram on the right of Figure 3, that path independence cannot be satisfied be-

cause the lines x–ρ∗(A \ {x}) and y–ρ∗(A \ {y}) do not cross.

The example in Figure 3 because it shows how the average choice at sets of smaller

cardinality pin down uniquely the average choice at sets of larger cardinality. Luce’s IIA

cannot be used in the same way. To check for IIA, as suggested by Figure 2, requires the

probability weights to be unique, but this is only possible for affinely independent sets

of vectors. So it is only possible for sets A of small cardinality. Our proof of Theorem 1
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also works inductively over the cardinality of A, but path independence (in contrast to

IIA) does pin down average choice in a way that makes Luce’s model unavoidable.

4.2. Plott path independence

Path indepence was introduced to choice theory by Plott (1973). In our model, Plott’s

notion of path independence translates into the axiom:

Plott path independence: If convA ∩ convB = ∅ then

ρ∗(A ∪B) = ρ∗ ({ρ∗(A), ρ∗(B)}) .

The idea is that all that matters for choosing from A∪B are the choices from A and

from B. Once we know ρ∗(A) and ρ∗(B) there is no more relevant information in the

original sets A and B.

It is important to see how our path independence axiom weakens Plott’s. We require

only that ρ∗(A ∪ B) be a convex combination of ρ∗(A) and ρ∗(B)}, but the weights in

this convex combination does not need to coincide with the weights in the choice from

the set {ρ∗(A), ρ∗(B)}. So the elements of A ∪ B are allowed to influence the average

choice ρ∗(A ∪B) by way of affecting the weights placed on ρ∗(A) and ρ∗(B)}.

There is an extensive literature following the work of Plott. The most relevant for

our purposes is Kalai and Megiddo (1980) and Machina and Parks (1981), who argue

that Plott path independence is too strong an axiom in our framework. It is particularly

simple to see Kalai’s, Megiddo’s, Machina’s, and Park’s point when we talk about Luce

rationalizable average choice.

Proposition 4. If an average choice is continuous Luce rationalizable, then it cannot

satisfy Plott path independence.

Proof. Let ρ∗ be an average choice that is continuous Luce rationalizable, and let u :

X → R++ be the continuous utility function in the Luce model that rationalizes ρ∗.

Suppose towards a contradiction that ρ∗ satisfies Plott path independence.

Fix any affinely independent x, y, z ∈ X. Then Plott path independence implies that

ρ∗({x, y, z}) = ρ∗(ρ∗({x, y}), {z}) =
u(ρ∗({x, y}))ρ∗({x, y}) + u(z)z

u(ρ∗({x, y})) + u(z)
.

14



But at the same time, ρ∗({x, y, z}) also equals

u(x)x+ u(y)y + u(z)z

u(x) + u(y) + u(z)
.

Affine independence then implies that

u(z)

u(x) + u(y) + u(z)
=

u(z)

u(ρ∗({x, y})) + u(z)
.

Then u(z) > 0 gives that

u(ρ∗({x, y})) = u

(
u(x)x+ u(y)y

u(x) + u(y)

)
= u(x) + u(y).

One can choose y arbitrarily close to x such that x, y, z are affinely independent. There-

fore, continuity of u would imply that u(x) = 2u(x), which is impossible as u(x) > 0.

4.3. Debreu’s example

The continuity axiom we are using is perhaps not the first such axiom one would think

of (it certainly was not the first we thought of). A stronger axiom would demand that

ρ∗ is continuous, but this is incompatible with the Luce rule.

It is interesting to see why, as it relates the the famous “blue bus – red bus” example

of Debreu (1960) and Tversky (1972). Suppose that an agent has to choose a mode of

transportation. Choosing x means taking a bus while choosing y means taking a cab.3

Alternative z is also a bus, but of a different color from x. Debreu argues that the

presence of z should matter for the relative probability of choosing x over y, as the agent

would consider whether to take a bus or a taxi and then be indifferent over which bus to

take.

To see the connection to Debreu’s example, suppose that ρ∗ is continuous Luce ratio-

nalizable, with a continuous function u. Let zn be a sequence in X converging to x ∈ X.

Then

ρ∗({x, y}) 6= 2u(x)x+ u(y)y

2u(x) + u(y)
= lim

n→∞
ρ∗({x, y, zn}).

Thus ρ∗ must be discontinuous.

3Actually Debreu talked about two different recordings of the same Beethoven symphony vs. a suite

by Debussy; but the literature has preferred buses and cabs.
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The lack of continuity of ρ∗ is reminiscent of the blue bus-red bus example. The

lack of continuity results because the Luce model demands that zn be irrelevant for the

relative choice of x over y, even when zn becomes very similar to x. In that sense, the

lack of continuity of ρ∗ is related to the blue bus-red bus phenomenon.

4.4. Sampling error

Theoretical studies of stochastic choice assume that choice probabilities are observed

perfectly. But we intend our axioms to be useful as empirical tests, so that one can

empirically decide whether observed data are consistent with the theory.

In an empirical study, however, choice probabilities must be estimated from sample

frequencies. In the individual interpretation of the stochastic choice model (see the

discussion in the Introduction), one agent would make a choice repeatedly from a set

of available alternatives. This allows us to estimate the stochastic choice, but not to

perfectly observe it. In the population interpretation (again, see the Introduction) we

can observe the choices of a group of agents. The group may be large, and the fraction

with which an agent makes a choice may be close to the population fraction of that

choice, but there is likely some important randomness due to sampling. Here we want to

argue that our axiomatization is better suited to dealing with such errors.

In his discussion of the Luce mode, Luce (1959) makes the point that testing his

axiom, IIA, requires a large sample size. We follow up on Luce’s remark and compare

the efficiency of the IIA test statistic with the test statistic neded to test for path inde-

pendence, the average of the choices.

Fix a set of alternatives A. Suppose that the population choices from A are given

by p ∈ ∆(A), which comes from some continuous Luce rule u : X → R++. We do not

observe p but instead a sample X1, . . . , Xn of choices, with Xi ∈ A for i = 1, . . . , n. The

Xi are independent, and distributed according to p. The probability p is estimated from

the empirical distribution:

pnx =
|i : Xi = x|

n
.

We have two possibilities to test the Luce model:
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1. Test the model using Luce’s original axiomatization, by computing relative proba-

bilities
pnx
pny
,

for x, y ∈ A.

2. Test the model using our axiomatization, by computing average choice:

µn =
∑
x∈A

xpnx

We argue that option (2) is better for two reasons. One is that in small samples it

is more reliable to use the average than to use relative probabilities. The other is that,

even in a large sample, the test statistic in (1) can have a very large variance relative to

the test statistic in (2). Specifically, for any M there is an instance of the Luce model in

which the asymptotic variance of the statistic in (1) is M times the asymptotic variance

of the statistic in (2).

We proceed to formalize the second claim.

Standard calculations (see Appendix B) yield:

√
n

(
pnx
pny
− px
py

)
d−→ N

(
0,

√
px
np2y

[
1 +

px
py

])

On the other hand,
√
n(µn − µ)

d−→ N(0,Σ), where

Σ = (σl,h) and σl,h =
∑
x∈A

∑
y∈A\x

−xlyhpxpy +
∑
x∈A

xlxhpx(1− px).

It is obvious that the entries of Σ are bounded and the asymptotic variance of pnx/p
n
y

can be taken to be as large as desired by choosing a Luce model in which u(x)/u(y) is

large. So for any M there is a Luce model for which the asymptotic variance of pna/p
n
b

relative to max{σl,h}, the largest element of Σ, is greater than M .
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5. Proof of Theorem 1

5.1. Definitions from convex analysis

Let x, y ∈ Rn. The line passing through x and y is the set {x+ θ(y − x) : θ ∈ R}. The

line segment joining x and y is the set {x+ θ(y−x) : θ ∈ [0, 1]}. A subset of Rn is affine

if it contains the line passing through any two of its members. A subset of Rn is convex

if it contains the line segment joining any two of its members.

If A is a subset of Rn, the affine hull of A is the intersection of all affine subsets of

Rn that contain A. An affine combination of members of A is any finite sum
∑l

i=1 λixi

with λi ∈ R and xi ∈ A i = 1, . . . , l and
∑l

i=1 λi = 1. The affine hull of A is equivalently

the collection of all affine combinations of its members. If A is a subset of Rn, the convex

hull of A is the intersection of all convex subsets of Rn that contain A. A set A is affinely

independent if none of its members can be written as an affine combination of the rest

of the members of A.

A point x ∈ A is relative interior for A if there is a neighborhood N of x in Rn

such that the intersection of N with the affine hull of A is contained in A. The relative

interior of A is the set of points x ∈ A that are relative interior for A.

A polytope is the convex hull of a finite set of points. The dimension of a polytope

P is l − 1 if l the largest cardinality of an affinely independent subset of A. A vector

x ∈ A is an extreme point of a set A if it cannot be written as the convex combination

of the rest of the members of A. A face of a convex set A is a convex subset F ⊆ A

with the property that if x, y ∈ A and (x + y)/2 ∈ F then x, y ∈ F . If F is a face

of a polyope P , then F is also a polytope and there is α ∈ Rn and β ∈ R such that

P ⊆ {x ∈ Rn : α · x ≤ β} and F = {x ∈ P : α · x = β}. If a polytope has dimension l

then it has faces of dimension 0, 1, . . . , l (Corollary 2.4.8 in Schneider (2013)).

5.2. Proof

The following axiom seems to be weaker than path independence, but it is not.
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One-point path independence:

ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})}.

We use one-point path independence in the proof of sufficiency in Theorem 1. Since

path independence is satisfied by any continuous Luce rationalizable average choice,

one-point path independence and path independence are equivalent (at least under the

hypothesis of continuity).

We now proceed with the formal proof. The first lemma establishes necessity, and is

also needed in the proof of sufficiency.

Lemma 5. If ρ∗ is continuous Luce rationalizable, then it satisfies continuity and path

independence.

Proof. Continuity of the average choice is a direct consequence of the continuity of u.

Path independence is also simple: Note that when convA∩ convB = ∅ then A and B are

disjoint. So it follows that(∑
x∈A

u(x) +
∑
y∈B

u(x)

)
ρ∗(A ∪B) =

∑
x∈A

u(x)x+
∑
x∈B

u(x)x

= ρ∗(A)
∑
x∈A

u(x) + ρ∗(B)
∑
x∈B

u(x);

whence

ρ∗(A ∪B) ∈ conv0{ρ∗(A), ρ∗(B)},

as
∑

x∈A u(x) > 0 and
∑

x∈B u(x) > 0.

The proof of the sufficiency of the axioms relies on two key ideas. One is that when

A is affinely independent, ρ∗(A) has a unique representation as a convex combination of

the elements of A. The other is the following lemma, which is used to show that path

independence determines average choice uniquely.

Lemma 6. Suppose that ρ∗ satisfies one-point path independence. Let A be a finite set

with |A| ≥ 3, and let x, y ∈ A with x 6= y. If x and y are extreme points of A and there

is a proper face F of conv(A) with dim(F ) ≥ 1 and x, y ∈ F , then:

conv0({x, ρ∗(A \ {x})}) ∩ conv0({y, ρ∗(A \ {y})})

is a singleton.
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Proof. First, ρ∗(A) ∈ conv0{x, ρ∗(A \ {x})} and ρ∗(A) ∈ conv0{y, ρ∗(A \ {y})}, as ρ∗

satisfies one-point path independence. So

∅ 6= conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})}.

Since x, y ∈ F there is a vector p and a scalar α with F ⊆ {z ∈ X : p · z = α} –one

of the hyperplanes supporting convA– and such that convA ⊆ {z ∈ X : p · z ≥ α}. We

shall prove that if there is

z1, z2 ∈ conv0{x, ρ∗(A \ {x})} ∩ conv0{y, ρ∗(A \ {y})},

with z1 6= z2, then A ⊆ F , contradicting that F is a proper face of conv(A).

Now, z1, z2 ∈ conv0{x, ρ∗(A \ {x})} implies that there is θx, θρ∗(A\{x}) ∈ R such that

x = z2 + θx(z
1 − z2) and ρ∗(A \ {x}) = z2 + θρ∗(A\{x})(z

1 − z2). Similarly, we have

y = z2 + θy(z
1 − z2) and ρ∗(A \ {y}) = z2 + θρ∗(A\{y})(z

1 − z2).

As a consequence then of p · x = α = p · y we have

p · z2 + θxp · (z1 − z2) = p · z2 + θyp · (z1 − z2).

Since θx 6= θy (as x 6= y) we obtain that p · (z1 − z2) = 0. So

α = p · x = p · z2 + p · θx(z1 − z2) = p · z2.

Then

p · ρ∗(A \ {x}) = p · (z2 + θρ∗(A\{x})(z
1 − z2)) = p · z2 = α.

But ρ∗(A \ {x}) =
∑

z∈A\{x} λzz for some λz > 0, as ρ∗(A \ {x}) is in the relative interior

of conv(A \ {x}). Then p · z ≥ α for all z ∈ A implies that p · z = α for all z ∈ A \ {x}.

This means that A ⊆ F , contradicting that F is a proper face of convA.

The proof of sufficiency proceeds by first constructing a stochastic choice ρ, then

arguing that it is a Luce rule that rationalizes ρ∗. The first step is to define ρ(A) for A

with |A| = 2. Then we define ρ(A) for A with |A| = 3, and finally we define ρ on all of

A by constructing a continuous Luce rule, and using this rule to define ρ. The average

choice defined from the Luce rule must be path independent, so Lemma 6 is used to show

that the average choice from the constructed Luce rule coincides with ρ∗.

20



Let x, y ∈ X, x 6= y. Since ρ∗({x, y}) is in the relative interior of {x, y} there

is a unique θ ∈ (0, 1) with ρ∗({x, y}) = θx + (1 − θ)y. Define ρ(x, {x, y}) = θ and

ρ(y, {x, y}) = 1− θ. Note that ρ(x, {x, y}) is a continuous function of x and y.

Thus we have defined ρ(A) for A with |A| = 2. Now turn to A with |A| = 3.

Let A = {x, y, z}. Consider the case when the vectors x, y and z are affinely in-

dependent. Such collections of three vectors exist because |P | ≥ 3. Then there are

unique ρ(x,A) ρ(y, A) and ρ(z, A) (non-negative and adding up to 1) such that ρ∗(A) =

xρ(x,A) + yρ(y, A) + zρ(z, A). Since ρ∗(A) is in the relative interior of conv(A) in fact,

ρ(x,A), ρ(y, A), ρ(z, A) > 0.

By path independence, there is θ such that

ρ∗(A) = θz + (1− θ)ρ∗(A \ {z}) = θz + (1− θ)[xρ(x, {x, y}) + yρ(y, {x, y})].

The vectors x, y and z are affinely independent, so the weights ρ(x,A), ρ(y, A) and

ρ(z, A) are unique, which implies that ρ(x,A) = (1 − θ)ρ(x, {x, y}) and ρ(y, A) = (1 −
θ)ρ(y, {x, y}). Hence

ρ(x,A)

ρ(y, A)
=
ρ(x, {x, y})
ρ(y, {x, y})

. (1)

Consider now the case when the vectors x, y and z are not affinely independent.

Choose a sequence {zn} such that

a) x, y and zn are affinely independent for all n,

b) z = limn→∞ zn,

c) and ρ({x, y, zn}) converges.

To see that it is possible to choose such a sequence, note that x, y and zn are affinely

independent if and only if x− zn and y − zn are not collinear. Now x− z and y − z are

collinear, so there is θ ∈ R with x− z = θ(y − z). For each n the ball with center z and

radius 1/n has full dimension, so the intersection of this ball with the complement in X

of the line passing through x and z (which is also the line passing through y and z) is

nonempty. By choosing zn in this ball, but outside of the line passing through x and z,

we obtain a sequence that converges to z Then we have that

(x− zn)i
(y − zn)i

=
θ(y − z)i + (z − zn)i
(y − z) + (z − zn)i

=
θ + (z−zn)i

(y−z)i

1 + (z−zn)i
(y−z)i

,

21



a ratio that is not a constant function of i, as zn is not on the line passing through y and

z. Finally, by going to a subsequence if necessary, we can ensure that condition c) holds

because the simplex is compact. Define ρ({x, y, z}) to be the limit of ρ({x, y, zn}).

We have shown that Equation (1) holds for sets of three affinely independent vec-

tors. So ρ(x,A)/ρ(y, A) = ρ(x, {x, y})/ρ(y, {x, y}), as ρ(x, {x, y, zn})/ρ(y, {x, y, zn}) =

ρ(x, {x, y})/ρ(y, {x, y}) for all n. In particular, this means that ρ(x,A), ρ(y, A) ∈ (0, 1),

as ρ(x, {x, y}), ρ(y, {x, y}) ∈ (0, 1).

Again, the fact that Equation (1) holds for sets of three affinely independent vectors

implies:
ρ(zn, {x, y, zn})
ρ(y, {x, y, zn})

=
ρ(zn, {zn, y})
ρ(y, {zn, y})

→ ρ(z, {z, y})
ρ(y, {z, y})

as n → ∞. Then ρ(z, A)/ρ(y, A) = ρ(z, {z, y})/ρ(y, {z, y}). In particular, ρ(z, A) ∈
(0, 1) because ρ(z, {z, y}) ∈ (0, 1).

Thus we have established that, for any three distinct vectors x, y, z ∈ X (affinely

independent or not), Equation (1) holds with A = {x, y, z}.

Now we turn to the definition of ρ on A. The definition proceeds by induction. We

use (1) to define a utility function u : X → R++ and a Luce rule. Then we show by

induction, and using Lemma 6, that ρ rationalizes ρ∗.

Fix y0 ∈ X. Let u(y0) = 1. For all x ∈ X, let u(x) = ρ(x,{x,y0})
ρ(y0,{x,y0}) . Note that u is a

continuous function, as x 7→ (ρ(x, {x, y}), ρ(y, {x, y})) is continuous, and that u > 0. By

Equation (1), we obtain

u(x)

u(y)
=

ρ(x, {x, y0})
ρ(y0, {x, y0})

ρ(y0, {y, y0})
ρ(x, {y, y0})

=
ρ(x, {x, y})
ρ(y, {x, y})

=
ρ(x, {x, y, z})
ρ(y, {x, y, z})

,

for all x and y.

Let ρ(A) be the Luce rule defined by u. This definition coincides with the definition

of ρ we have given for A with |A| ≤ 3 because

u(x)

u(y)
=
ρ(x, {x, y})
ρ(y, {x, y})

and
u(x)

u(y)
=
ρ(x, {x, y, z})
ρ(y, {x, y, z})
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for all x, y, z ∈ X.

Note also that, by definition of ρ,

ρ∗({x, y}) = xρ(x, {x, y}) + yρ(y, {x, y})

and ρ∗({x, y, z}) = xρ(x, {x, y, z}) + yρ(y, {x, y, z}) + zρ(z, {x, y, z})
(2)

for all x, y, z ∈ X.

Let

ρ̄(A) =
∑
x∈A

xρ(x,A).

We shall prove that ρ̄(A) = ρ∗(A) for all A ∈ A, which finishes the proof of the theorem.

The proof proceeds by induction on the size of A. We have established (see Equa-

tion (2)) that ρ̄(A) = ρ∗(A) for |A| ≤ 3. Suppose then that ρ̄(A) = ρ∗(A) for all A ∈ A
with |A| ≤ k. Let A ∈ A with |A| = k + 1. We shall prove that ρ̄(A) = ρ∗(A).

Suppose first that dim(convA) ≥ 2. Then by Corollary 2.4.8 in Schneider (2013)

there is a proper face F of conv(A) with dimension ≥ 1. Let x, y ∈ A be two extreme

points of conv(A), such that x, y ∈ F . Such x and y exist because F has dimension at

least 1. Note that ρ̄(A \ {x}) = ρ∗(A \ {x}) ρ̄(A \ {y}) = ρ∗(A \ {y}) by the inductive

hypothesis. By Lemma 5, ρ̄ satisfies path independence. So Lemma 6 implies that

conv0({x, ρ̄(A\{x})})∩conv0({y, ρ̄(A\{y})}) = conv0({x, ρ∗(A\{x})})∩conv0({y, ρ∗(A\{y})})

is a singleton. Since ρ̄ and ρ∗ both satisfy path independence, ρ̄(A) = ρ∗(A).

In second place we consider the case when dim(A) = 1. Let z ∈ A be an extreme

point of convA. Let {zn} be a sequence with zn → z, such that A \ {z} ∪ {zn} has

dimension ≥ 2. This is possible because X has dimension larger than 3. The we obtain

that ρ̄(A) = ρ∗(A) by continuity of ρ∗ and ρ̄.

6. Proof of Theorems 2 and 3

Lemma 7. If ρ∗ is continuous linear Luce rationalizable, then it satisfies independence.
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Proof. Let ρ∗ be continuous linear Luce rationalizable, with u(x) = f(v · x). We check

that it satisfies independence. Note first that:

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z,

where

µ =
f(v · (λx+ (1− λ)z))

f(v · (λx+ (1− λ)z)) + f(v · (λy + (1− λ)z))
.

Suppose first that u(x) = u(y). Then v · x = v · y, as f is monotone increasing.

Then f(v · (λx + (1 − λ)z)) = f(v · (λy + (1 − λ)z)). This means that µ = 1/2. So

µx+ (1− µ)y = ρ∗({x, y}), because u(x) = u(y) implies that ρ∗({x, y}) = 1
2
x+ 1

2
y.

Conversely, suppose that for all λ and all z such that λx+(1−λ)z, λy+(1−λ)z ∈ X

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = λρ∗({x, y}) + (1− λ)z,

but (towards a contradiction) that u(x) 6= u(y). Say that u(x) > u(y). Choose z

and λ such that µ > 1/2, where µ is such that ρ∗({λx + (1 − λ)z, λy + (1 − λ)z}) =

µ(λx + (1 − λ)z) + (1 − µ)(λy + (1 − λ)z) (which can be done by the continuity of u).

Then ρ∗({x, y}) 6= µx+ (1− µ)y, a contradiction.

Let ρ∗ be continuous Luce rationalizable with utility function u. Write x ∼ y when

u(x) = u(y).

Lemma 8. If ρ∗ satisfies independence then it satisfies the following property:

x ∼ y iff ∀λ ∈ R∀z ∈ X(λx+(1−λ)z, λy+(1−λ)z ∈ X =⇒ λx+(1−λ)z ∼ λy+(1−λ)z)

Proof. Let x ∼ y, λ ∈ (0, 1) and z ∈ X. Let µ be such that

ρ∗({λx+ (1− λ)z, λy + (1− λ)z}) = µ(λx+ (1− λ)z) + (1− µ)(λy + (1− λ)z)

= λ(µx+ (1− µ)y) + (1− λ)z.

Then independence implies that

λ(µx+ (1−µ)y) + (1−λ)z = ρ∗({λx+ (1−λ)z, λy+ (1−λ)z}) = λρ∗({x, y}) + (1−λ)z,
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and thus µx+ (1− µ)y = ρ∗({x, y}) Since x ∼ y we must have µ = 1/2. Hence

1

2
=

u(λx+ (1− λ)z)

u(λx+ (1− λ)z) + u(λy + (1− λ)z)
.

Therefore λx+ (1− λ)z ∼ λy + (1− λ)z.

Conversely, if λx+(1−λ)z ∼ λy+(1−λ)z for all λ and all z then x ∼ y by continuity

of u and the fact that λx+ (1− λ)z, λy + (1− λ)z ∈ X.

The property in Lemma 8 is weaker than the standard von-Neuman Morgenstern inde-

pendence property (restricted to λ ∈ (0, 1)). Using Lemma 8, however, we can establish

the stronger independence property, as stated in the next lemma. Then the proof of

Theorem 2 follows from the expected utility theorem: the preference relation represented

by u is a weak order, it satisfies continuity (as u is continuous), and independence.

Lemma 9. If ρ∗ is continuous Luce rationalizable, and it satisfies independence, then it

satisfies the following property

u(x) ≥ u(y) iff ∀λ ∈ [0, 1]∀z ∈ X u(λx+ (1− λ)z) ≥ u(λy + (1− λ)z).

Proof. Note that by Lemma 8, independence implies that

x ∼ y iff x+ θ(z − x) ∼ y + θ(z − y)

for all scalars θ and for all z.

Suppose towards a contradiction that u(x) ≥ u(y) but that u(λx+(1−λ)z) < u(λy+

(1−λ)z). By continuity of u there is λ∗ < λ such that u(λx+(1−λ)z) = u(λy+(1−λ)z).

Let λ∗x+ (1− λ∗)z = x′. Then x = x′− 1−λ∗
λ∗

(z− x′). Similarly, y = y′− 1−λ∗
λ∗

(z− y′)
where λ∗y+(1−λ∗)z = y′. Then independence and u(x′) = u(y′) implies that u(x) = u(y).

Then u(λx+ (1− λ)z) < u(λy + (1− λ)z) is a violation of independence.

6.1. Proof of Theorem 3

By Theorem 2, a strictly affine Luce rationalizable rule satisfies independence, continuity

and path independence. Lemma 10 establishes that Calibration is also necessary for the

rule to be strictly affine Luce rationalizable.
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For necessity, we know that path independence, continuity and independence imply

that an average choice rule is linear Luce rationalizable. Lemma 11 finishes the proof by

establishing that calibration is sufficient for the linear Luce rule to be strictly affine.

Lemma 10. The strictly affine Luce model satisfies calibration

Proof. Let w = λx+ (1− λ)y and w′ = λy + (1− λ)x. Note that

v · w + v · w′ = v · x+ v · y.

Therefore,

ρ∗({λx+ (1− λ)y, λy + (1− λ)x})

=
(v · w + β)(λx+ (1− λ)y) + (v · w′ + β)(λy + (1− λ)x)

(v · x+ β) + (v · y + β)
.

Note that

(v · w + β)(λx+ (1− λ)y) + (v · w′ + β)(λy + (1− λ)x)

is:

(λv · x+ (1− λ)v · y + β)(λx+ (1− λ)y) + (λv · y + (1− λ)v · x+ β)(λy + (1− λ)x)

= ((λ2 + (1− λ)2)v · x+ 2λ(1− λ)v · y)x

+((λ2 + (1− λ)2)v · y + 2λ(1− λ)v · x)y

+β(λx+ (1− λ)y + λy + (1− λ)x)

= ((λ2 + (1− λ)2)v · x+ 2λ(1− λ)v · y)x+ ((λ2 + (1− λ)2)v · y + 2λ(1− λ)v · x)y

+β(x+ y).

Hence,

ρ∗({λx+ (1− λ)y, λy + (1− λ)x})

=(λ2 + (1− λ)2)
v · xx+ v · yy

(v · x+ β) + (v · y + β)
+ 2λ(1− λ)

v · yx+ v · xy
(v · x+ β) + (v · y + β)

+
β(x+ y)

(v · x+ β) + (v · y + β)

=(λ2 + (1− λ)2)
(v · x+ β)x+ (v · y + β)y

(v · x+ β) + (v · y + β)
+ 2λ(1− λ)

(v · y + β)x+ (v · x+ β)y

(v · x+ β) + (v · y + β)

=(λ2 + (1− λ)2)ρ∗({x, y}) + 2λ(1− λ)(x+ y − ρ∗({x, y})).
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Lemma 11. Let ρ∗ be a linear Luce rationalizable, with utility function u(x) = f(v · .x).

Suppose that ρ∗ satisfies calibration. Then there is α > 0 and β such that f(v · x) =

αv · x+ β for all x ∈ X.

Proof. By the calibration axiom, for all x, y ∈ X and λ ∈ [0, 1],

λf(v · w) + (1− λ)f(v · w′)
f(v · w) + f(v · w′)

=
(λ2 + (1− λ)2)f(v · x) + 2λ(1− λ)f(v · y)

f(v · x) + f(v · y)
,

where w = λx+ (1− λ)y and w′ = λy + (1− λ)x.

Let V = {a ∈ R|v · x = a for some x ∈ X}. Then, the above equation implies that

for all λ ∈ [0, 1] \ {1
2
} and a, b ∈ V ,

λf(λa+ (1− λ)b) + (1− λ)f(λb+ (1− λ)a)

f(λa+ (1− λ)b) + f(λb+ (1− λ)a)
=

(λ2 + (1− λ)2)f(a) + 2λ(1− λ)f(b)

f(a) + f(b)

= λ
λf(a) + (1− λ)f(b)

f(a) + f(b)

+ (1− λ)
(1− λ)f(a) + λf(b)

f(a) + f(b)
.

Let

A =
f(λa+ (1− λ)b)

f(λa+ (1− λ)b) + f(λb+ (1− λ)a)
and B =

λf(a) + (1− λ)f(b)

f(a) + f(b)
.

Then λA+ (1− λ)(1− A) = λB + (1− λ)(1−B), so that A = B.

Step 1: For all λ ∈ [0, 1] \ {1
2
} and a, b ∈ V , f(λa+ (1− λ)b) > λf(a) + (1− λ)f(b)⇔

f(λb+ (1− λ)a) < λf(b) + (1− λ)f(a).

Proof of Step 1: If f(λa + (1 − λ)b) < λf(a) + (1 − λ)f(b), then A = B implies that

f(λa+(1−λ)b)+f(λb+(1−λ)a) > f(a)+f(b). So λf(a)+(1−λ)f(b)+f(λb+(1−λ)a) >

f(a) + f(b). Therefore, f(λb+ (1− λ)a) > λf(b) + (1− λ)f(a).

Conversely, if f(λa + (1 − λ)b) > λf(a) + (1 − λ)f(b), then A = B implies that

f(λa+(1−λ)b)+f(λb+(1−λ)a) < f(a)+f(b). So λf(a)+(1−λ)f(b)+f(λb+(1−λ)a) <

f(a) + f(b). Therefore, f(λb+ (1− λ)a) < λf(b) + (1− λ)f(a).

Step 2: f(1
2
a+ 1

2
b) = 1

2
f(a) + 1

2
f(b) for all a, b ∈ V .

Proof of Step 2: Suppose that f(1
2
a+ 1

2
b) 6= 1

2
f(a) + 1

2
f(b) for some a, b ∈ V . Without
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loss of generality, assume f(1
2
a+ 1

2
b) > 1

2
f(a) + 1

2
f(b). Define for all λ ∈ [0, 1],

d(λ) = f(λa+ (1− λ)b)− λf(a) + (1− λ)f(b).

Then by Step 1, we must have for all λ ∈ [0, 1] \ {1
2
},

d(λ) > 0⇔ d(1− λ) < 0.

and d(1
2
) > 0. Since d is continuous, there exists a positve number ε such that d(1

2
+ε) > 0

and d(1
2
− ε) > 0. This is a contradiction. So we have f(1

2
a+ 1

2
b) = 1

2
f(a) + 1

2
f(b) for all

a, b ∈ V .

Step 3: f(λa+ (1− λ)b) = λf(a) + (1− λ)f(b) for all a, b ∈ V and λ ∈ (0, 1).

Proof of Step 3: Suppose toward contradiction that there exist a, b ∈ V and λ ∈ (0, 1)

such that f(λa + (1 − λ)b) 6= λf(a) + (1 − λ)f(b). Without loss of generality, assume

that a < b.

Consider the case where f(λa+ (1− λ)b) > λf(a) + (1− λ)f(b). Define a function g

as follows: for all x ∈ V

g(x) = f(x)− f(b)− f(a)

b− a
(x− a)− f(a).

Note that

g(λa+ (1− λ)b) = f(λa+ (1− λ)b)− f(b)− f(a)

b− a
(λa+ (1− λ)b− a)− f(a)

> λf(a) + (1− λ)f(b)− (1− λ)(f(b)− f(a))− f(a)

= 0.

So supx∈[a,b] g(x) > 0. Define γ ≡ supx∈[a,b] g(x).

Moreover, g(a) = g(b) = 0. By Step 2,

g
(x+ y

2

)
= f

(x+ y

2

)
− f(b)− f(a)

b− a

(x+ y

2
− a
)
− f(a)

=
g(x) + g(y)

2
.

Define c = inf{x ∈ [a, b]|g(x) = γ}. Since g is continuous (because f is continuous),

g(c) = γ. Since γ > 0, it must be that c ∈ (a, b). For any h > 0 such that c + h ∈ (a, b)

and c− h ∈ (a, b), we have that g(c− h) < g(c) and g(c+ h) ≤ g(c). Hence, by Step 2,

g(c) =
g(c− h) + g(c+ h)

2
<
g(c) + g(c)

2
= g(c),
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which is a contradiction.

We can obtain a contrdiction in the same way in the case where f(λa + (1− λ)b) <

λf(a) + (1− λ)f(b).

So we have proved that there is α > 0 and β such that f(v · x) = αv · x + β for all

x ∈ X. We redefine v as v = αv. So we finished the proof of Theorem 3.
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Appendix A. Appendix

The following result is standard in convex analysis (see for example Theorem 1.1.14 in

Schneider (2013)). We include a proof for convenience.

Lemma 12. Let A ⊆ Rn be a finite set. Then x is in the relative interior of conv(A) iff

there exists (λa)a∈A such that x =
∑

a∈A λaa,
∑

a∈A λa = 1 and λa > 0 for all a ∈ A.

Proof. Let A∗ = {l ∈ A|there exists no {ri} ⊂ A, {αi} s.t. l =
∑
αiri}. Since ρ∗(A) ∈

conv(A), by Choquet theorem, there exists ρ such that ρ∗(A) =
∑

a∈A∗ aρ(a,A). If

A = A∗, there is nothing to prove. Consider the case A \ A∗ 6= ∅.

Since A is finite, we can write A∗ = {r1, . . . , rm} and A\A∗ = {a1, . . . , an}. By defini-

tion, for each aj, there exist αj ∈ [0, 1]m such that aj =
∑m

i=1 α
j(i)ri and

∑m
i=1 α

j(i) = 1.

For each j ∈ {1, . . . , n}, choose a positive number εj such that for each i ∈ {1, . . . ,m}

n∑
j=1

εjα
j(i) < ρ(ri, A).

Define ρ′ as follows: for each i, define ρ′(ri, A) = ρ(ri, A)−
∑n

j=1 εjα
j(i), for each aj, define

ρ′(aj, A) = εj. By the deifnition of ε, ρ′(a,A) > 0 for all a ∈ A. To finish the proof, we

need to show
∑

a∈A ρ
′(a,A) = 1 (so that ρ′(A) ∈ ∆(A)) and

∑
a∈A a(x)ρ′(a,A) = ρ∗(A).

∑
a∈A

ρ′(a,A) =
m∑
i=1

ρ′(ri, A) +
n∑
j=1

ρ′(aj, A)

=
m∑
i=1

(
ρ(ri, A)−

n∑
j=1

εjα
j(i)
)

+
n∑
j=1

εj

=
m∑
i=1

ρ(ri, A)−
m∑
i=1

n∑
j=1

εjα
j(i) +

n∑
j=1

εj

=
m∑
i=1

ρ(ri, A)−
n∑
j=1

εj

( m∑
i=1

αj(i)
)

+
n∑
j=1

εj

=
m∑
i=1

ρ(ri, A) (∵
m∑
i=1

αj(i) = 1)

= 1.
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Hence, ρ′ ∈ ∆(A). Moreover, for each x ∈ P ,∑
a∈A

a(x)ρ′(a,A) =
m∑
i=1

ri(x)ρ′(ri, A) +
n∑
j=1

aj(x)ρ′(aj, A)

=
m∑
i=1

ri(x)ρ′(ri, A) +
n∑
j=1

( m∑
i=1

αj(i)ri(x)
)
ρ′(aj, A)

=
m∑
i=1

ri(x)
(
ρ(ri, A)−

n∑
j=1

εjα
j(i)
)

+
n∑
j=1

( m∑
i=1

αj(i)ri(x)
)
εj

=
m∑
i=1

ri(x)ρ(ri, A)

=
∑
a∈A∗

a(x)ρ(a,A)

= ρ∗(x,A).

So
∑

a∈A a(x)ρ′(a,A) = ρ∗(A).

Appendix B. Calculations from Section 4.4

We have Epnx = px/n, Vpnx = px(1 − px)/n and Cov(pnx, p
n
y ) = −pxpy when y 6= x.

Moreover, the central limit theorem implies that
√
n(pnx − px)

d−→ N(0,
√
px(1− px)).

Then, using the delta method and the following calculation yields the result in the text:

V

(
pnx
pny
− px
py

)
=

(
1

py

)2

Vpnx +

(
−px
p2y

)2

Vpny +
2

py

−px
p2y

(−pxpy)

=
1

np2y

[
px(1− px) +

p2x
p2y
py(1− py) + 2px

]
=

px
np2y

[
(1 + px) +

px
py

(1− py)
]

=
px
np2y

[
1 +

px
py

]
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