
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

TESTABLE IMPLICATIONS OF EXPONENTIAL DISCOUNTING

Federico Echenique

Kota Saito

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

SOCIAL SCIENCE WORKING PAPER 1381

November 2013



Testable Implications of Exponential Discounting

Federico Echenique Kota Saito

Abstract

We develop a behavioral axiomatic characterization of exponentially discounted utility

(EDU) over consumption streams. Given is an individual agent’s behavior in the market:

assume a finite collection of purchases across periods. We show that such behavior

satisfies a “revealed preference axiom” if and only if there exists a EDU model (a discount

rate per period and a concave utility function over money) that accounts for the given

intertemporal consumption.
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Testable Implications of Exponential Discounting ∗

Federico Echenique Kota Saito

1 Introduction

Many areas of economics involve intertemporal decision making. For example, many

ideas in macroeconomics, finance and dynamic game theory often hinge on certain in-

tertemporal tradeoffs. The model of exponentially discounted utility (EDU) is by far

the most common assumption placed on individual agents in all these areas. The EDU

model is an essential tool in the study of intertemporal decisions, at least since Samuelson

(1937).

In macro or finance, EDU is used as a way of generating individual’s behavior in

response to market conditions: prices and wealth. Given prices (or interest rates) and

wealth, individuals maximize discounted utility. The underlying justification is that

individuals’ behavior is as if they were maximizing an EDU. It is therefore important

to understand the behaviors that can be rationalized as if they arose from individuals

maximizing discounted utility.

There are different behavioral axiomatizations of EDU in the literature, starting with

Koopmans (1960), and followed by Fishburn and Rubinstein (1982), Fishburn and Ed-

wards (1997), and Bleichrodt et al. (2008). All of them take preferences as primitive,

or in some cases they take utility over consumption streams as the primitive. The idea

is that an analyst can observe all pairwise comparisons of consumption streams, or that

the relevant behavior consists of all pairwise comparisons of consumption streams. Note

that this assumes knowledge of an infinite number of pairwise comparisons: so the given

“dataset” is infinite.

∗We thank Kim Border and Chris Chambers for inspiration and advice.



For macroeconomics and finance, however, it is possible that the most relevant be-

havior is different. Theories in macro and finance use EDU to model market behavior.

They predict what agents choose given prices and wealth, which is less demanding than

predicting all pairwise comparisons of consumption streams. The purpose of our paper

is to characterize the set of market behaviors that is consistent with the EDU model.

Given that EDU is so often assumed as a model of behavior in the market, it seems

very important to understand the nature of EDU behavior. What is the class of behaviors,

in a macro or finance market setting, that are consistent with EDU? We show that

intertemporal consumption (a finite consumption stream) and prices satisfy one revealed

preference axiom if and only if there exists a EDU model (i.e., a discount rate and a

concave utility function over money) that accounts for intertemporal consumption given

the prices. In addition, we assume given a finite number of observed choices, so our

datasets will be finite.

This note is a companion paper to our recent paper Echenique and Saito (2013), in

which we develop a similar result for subjective expected utility. The argument used to

prove our results is very similar in both papers, and the form of the axiom required to

characterize EDU is very similar to the one that characterized subjective expected utility.

We proceed to discuss the aforementioned papers that axiomatize the EDU model.

All of them use either preferences over consumption streams or a utility function over

consumption streams as their primitive. Another important difference with our setup is

that they assume infinitely many periods. In contrast, we suppose that we observe finite

consumption streams.

Koopmans (1960) proposes the well-known stationarity axiom, which says a prefer-

ence is not affected if a common first consumption is dropped and the timing of all other

consumptions is advanced by one period. The stationarity axiom is used by many follow-

ers and the axiom is used together with the assumption that the set of periods is infinite.

In Fishburn and Rubinstein (1982) preferences are defined on one-time consumptions in

continuous time. In Fishburn and Edwards (1997), preferences are defined on infinite

consumption streams that differ in at most finitely many periods. More recently, Ble-

ichrodt et al. (2008) show that Koopmans (1960)’s axioms imply the boundedness of

utility function. Then, Bleichrodt et al. (2008) axiomatize the EDU model possibly with

unbounded utility function by using preferences defined on infinite consumption streams.

There are several axiomatizations of quasi-hyperbolic disuniting utility model, which
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is more general than EDU. See Attema et al. (2010) and Olea and Strzalecki (2013) for

example. All of them use preferences as their primitives and require the set of periods is

infinite.

2 Model and Results

We use the following notational conventions: For vectors x, y ∈ Rn, x ≤ y means that

xi ≤ yi for all i = 1, . . . , n; x < y means that x ≤ y and x 6= y; and x � y means that

xi < yi for all i = 1, . . . , n. The inner product of two vectors is x · y =
∑n

i=1 xiyi.

2.1 Model

The model to be tested is that of exponentially discounted utility. Suppose T time

periods, and index time by t = 1, . . . , T . A consumption stream is a vector in RT
+.

Consider a decision-maker, a consumer, that chooses a consumption stream x ∈ RT
+.

The consumer’s choice solves the following problem:

maxx∈RT
+

T∑
t=1

βt−1u(xt)

s.t.
T∑
t=1

ptxt ≤ I,

(1)

in which p ∈ RT
++ is a vector of prices, these can be thought of as interest rates; I is the

agent’s (present-value) wealth; β ∈ (0, 1] is the agent’s discount factor, and u : R+ → R

is her utility function. We suppose that u is strictly increasing and concave.

One cannot observe u or β; one can only observe the consumer’s behavior.

2.2 Data

We are given a collection of decisions made by our consumer. We observe the choices of

a consumption plan made at various prices and income levels.

Definition 1. A dataset is a collection (xk, pk)Kk=1, where xk, pk ∈ RT
++ for all k and

xkt 6= xk
′

t′ if (k, t) 6= (k′, t′).
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The interpretation of a dataset is as follows. There are K observations, indexed by

k = 1, . . . , K. Each observation consists of a consumption stream xk purchased at some

vector of strictly positive prices pk across periods. Given the assumption that utility is

monotone increasing, we take the level of income at observation k to be pk ·xk (a standard

procedure in all studies on revealed preference using consumption data).

A data set can be thought of in two different ways. One the one hand, it could be

the plan made by a consumer for consumption over time. On the other hand, it can be

his actual choice made in each period. Both interpretations are equivalent because of

the dynamic consistency implied by the EDU model. For other models, such as quasi-

hyperbolic discounting, the distinction between these two kinds of data can be very

important.

The assumption that xkt 6= xk
′

t′ if (k, t) 6= (k′, t′) is for simplicity of the analysis. The

essence of our results is true without the assumption: see Section 3.1.

The datasets that are consistent with the theory of exponential discounted utility are

those that can be explained by some specification of the unobservable components of the

model. Formally,

Definition 2. A dataset (xk, pk)Kk=1 is exponential discounted utility rational (EDU

rational) if there is a number β ∈ (0, 1] and a concave and strictly increasing function

u : R+ → R such that, for all k,

pk · y ≤ pk · xk ⇒
∑
t∈T

βt−1u(yt) ≤
∑
t∈T

βt−1u(xkt ).

2.3 Theorem

Consider the maximization problem (1). Suppose that the function u is continuously

differentiable (an assumption that turns out to be without loss of generality). The first-

order condition for an interior solution is

βt−1u′(xt) = λkpt,

where λk is a Lagrange multiplier. So if a dataset (xk, pk)Kk=1 is EDU rational, the discount

factor β and utility u must satisfy the above first order condition for each xkt and pkt .

Suppose that one tries to derive the implications on quantities x of some property of
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the observed prices. From the first-order conditions, one can obtain that

u′(xk
′

t′ )

u′(xkt )
=
βt

βt′
λk
′
pk
′

t′

λkpkt
.

Suppose that xkt > xk
′

t′ . The concavity of u and xkt > xk
′

t′ implies that

βt

βt′
λk
′
pk
′

t′

λkpkt
≤ 1,

but the discount rate β and the Lagrange multipliers λk
′

and λk are unobservable so we

cannot conclude anything about the observable
pk
′

t′
pkt

.

There is, however, one implication of EDU and the concavity of u that can unambigu-

ously be obtained, despite the role of unobservables. We can consider a sequence of pairs

(xkt , x
k′

t′ ) chosen such that when we divide first-order conditions as above, all Lagrange

multipliers cancel out, and the effect of the discount factors is predicted (even though we

do not know the value of the discount factor). For example, consider

xk1t1 > xk2t2 and xk2t3 > xk1t4 .

such that

t1 + t3 ≥ t2 + t4.

By manipulating first-order conditions we obtain that:

u′(xk1t1 )

u′(xk2t2 )
·
u′(xk2t3 )

u′(xk1t4 )
=

(
βt2−1

βt1−1
λk1pk1t1
λk2pk2t2

)
·

(
βt4−1

βt3−1
λk2pk2t3
λk1pk1t4

)
= β(t2+t4)−(t1+t3)p

k1
t1

pk2t2

pk2t3
pk1t4

Notice that the pairs (xk1t1 , x
k2
t2 ) and (xk2t3 , x

k1
t4 ) have been chosen so that the Lagrange

multipliers would cancel out and the discount factors unambiguously increase the value

on the left hand side (i.e., β(t2+t4)−(t1+t3) ≥ 1 for any β ∈ (0, 1]).

Now the concavity of u and the assumption that xk1t1 > xk2t2 and xk2t3 > xk1s4 imply

that the product β(t2+t4)−(t1+t3) p
k1
t1

p
k2
t2

p
k2
t3

p
k1
t4

cannot exceed 1. Since β(t2+t4)−(t1+t3) ≥ 1 for any

β ∈ (0, 1], then
p
k1
t1

p
k2
t2

p
k2
t3

p
k1
t4

cannot exceed 1. Thus, we obtain an implication of EDU for

prices, an observable entity. No matter what the values of the unobservable β and u, we

find that the ratio of prices cannot be more than 1.

In general, the assumption of EDU rationality will require that, for any collection of

sequences as above (appropriately chosen so that Lagrange multipliers will cancel out

and the discount factors unambiguously increase the product of the ratio of prices) the

product of the ratio of prices cannot exceed 1. Formally,
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Axiom 1. For any sequence of pairs (xkiti , x
k′i
t′i

)ni=1 in which

1. xkiti ≥ x
k′i
t′i

for all i;

2.
∑n

i=1 ti ≥
∑n

i=1 t
′
i;

3. each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right):

The product of prices satisfies that

n∏
i=1

pkiti

p
k′i
t′i

≤ 1.

Our result is that this necessary condition turns out be sufficient as well.

Theorem 1. (xk, pk)Kk=1 is EDU rational if and only if it satisfies Axiom 1.

Note that Axiom 1 is different from our axiom in Echenique and Saito (2013) only in

the second requirement for the sequence.

3 Extension

In this section, we extend the results into possibly constant consumption streams and

risky consumption streams.

3.1 Constant Consumption Stream

We have assumed that xkt 6= xk
′

t′ if (k, t) 6= (k′, t′). We now relax this assumption. In this

section, a dataset is a collection (xk, pk)Kk=1 where for all k xk, pk ∈ RT
++.

When we allow for xkt 6= xk
′

t′ , then there is a gap in our result: Axiom 1 is still sufficient

for strict EDU rationality, but only necessary for EDU rationality with a differentiable

utility function. A concave utility function is almost everywhere differentiable, so the

gap is “small.”
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Definition 3. A dataset (xk, pk)Kk=1 is smooth EDU rational if there is a number β ∈
(0, 1] and a differentiable, concave and strictly increasing function u : R+ → R such that,

for all k,

pk · y ≤ pk · xk ⇒
∑
t∈T

βt−1u(yt) ≤
∑
t∈T

βt−1u(xkt ).

Theorem 2. If a dataset satisfies Axiom 1 then it is EDU rational. If a dataset is

smooth EDU rational, then it satisfies Axiom 1.

3.2 Risky Consumption Stream

In many economic applications, decision maker’s consumptions often involve uncertainty.

In this section, we extend the results to risky consumption streams.

The model to be tested is that of exponentially discounted utility with subjective ex-

pected utility. We introduce a new primitive, a finite set S of states. A risky consumption

stream is a vector in RT×S
++ .

Consider a decision-maker, a consumer, that chooses a risky consumption stream

x ∈ RT×S
++ . The consumer’s choice solves the following problem:

maxx∈RT×S
++

∑
t∈T

βt−1
∑
s∈S

µsu(x(t,s))

s.t.
∑
t∈T

∑
s∈S

p(t,s)x(t,s) ≤ I.
(2)

Note that (2) is differ from (1) in that the decision maker faces an uncertainty over a

realization of a state; and he has a subjective probability over the set of states. Note also

that Theorem 1 characterizes (2) with S = {1}; Echenique and Saito (2013) (Theorem

1) characterize (2) with T = {1}.

In this section, we observe the choices of a consumption plan across states made at

various prices and income levels.

Definition 4. A dataset is a collection (xk, pk)Kk=1, where xk ∈ RS
++ and pk ∈ RT

++ for

all k and xk(t,s) 6= xk
′

(t′,s′) if (k, t, s) 6= (k′, t′, s′).

The interpretation of a dataset is as follows. There are K observations, indexed by

k = 1, . . . , K. In each observation k, for each period t, the data consists of a consumption

xkt ∈ RS
++ across states, purchased at strictly positive prices pkt ∈ RS

++ across states.
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The assumption that xk(t,s) 6= xk
′

(t′,s′) if (k, t, s) 6= (k′, t′, s′) is for simplicity of the

analysis. The essence of our results is true without the assumption as in Section 3.1.

Definition 5. A dataset (xk, pk)Kk=1 is exponential discounting-subjective expected utility

rational (ED-SEU rational) if there is a number β ∈ (0, 1], a vector µ ∈ RS
++ such that∑S

s=1 µs = 1 and a concave and strictly increasing function u : R+ → R such that, for

all k,

pk · y ≤ pk · xk ⇒
∑
t∈T

βt−1
∑
s∈S

µsu(y(t,s)) ≤
∑
t∈T

βt−1
∑
s∈S

µsu(xk(t,s)).

The ED-SEU rationality can be characterized by the following axiom:

Axiom 2. For any sequence of pairs (xki(ti,si), x
k′i
(t′i,s

′
i)

)ni=1 in which

1. xki(ti,si) ≥ x
k′i
(t′i,s

′
i)

for all i;

2.
∑n

i=1 ti ≥
∑n

i=1 t
′
i;

3. each k appears as ki (on the left of the pair) the same number of times it appears

as k′i (on the right);

4. each s appears as si (on the left of the pair) the same number of times it appears

as s′i (on the right):

The product of prices satisfies that

n∏
i=1

pki(ti,si)

p
k′i
(t′i,s

′
i)

≤ 1.

Theorem 3. (xk, pk)Kk=1 is ED-SEU rational if and only if it satisfies Axiom 2.

Note that the four requirements in Axiom 2 are the combination of those in Axiom 1

and in Axiom 1 of Echenique and Saito (2013). The Proof of Theorem 3 is omitted; it is

similar to the proof of 1 and the proof of Theorem 1 in Echenique and Saito (2013).

4 Proof of Theorem 1

The proof is based on using the first-order conditions for maximizing a utility with the

EDU model over a budget set. Our first lemma ensures that we can without loss of

generality restrict attention to first order conditions. The proof of the lemma is the

same as that of Lemma 3 in Echenique and Saito (2013) with the changes of T to S and

{βt−1}t∈T to {µs}s∈S.
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Lemma 1. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

1. (xk, pk)Kk=1 is EDU rational.

2. (xk, pk)Kk=1 is EDU rational with a continuously differentiable, strictly increasing

and concave utility function.

3. There are strictly positive numbers vkt , λk, and β ∈ (0, 1), for t = 1, . . . , T and

k = 1, . . . , K, such that

βt−1vkt = λkpkt

xkt > xk
′

t′ ⇒ vkt ≤ vk
′

t′ .

We shall use the following lemma, which is a version of the Theorem of the Alternative.

This is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases

where F is either the real or the rational numbers.

Lemma 2. Let A be an m× n matrix, B be an l× n matrix, and E be an r× n matrix.

Suppose that the entries of the matrices A, B, and E belong the a commutative ordered

field F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ ·A+ η ·B + π ·E = 0; π > 0 and

η ≥ 0.

We also use the following lemma, which follows from Lemma 2 (See Border (2013) or

Chambers and Echenique (2011)):

Lemma 3. Let A be an m× n matrix, B be an l× n matrix, and E be an r× n matrix.

Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one

of the following alternatives is true.

1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u� 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ · A + η · B + π · E = 0; π > 0

and η ≥ 0.

We use the following notation in the proofs:

X = {xkt : k = 1, . . . , K, t = 1, . . . , T}.
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4.1 Necessity

Lemma 4. If a dataset (xk, pk)Kk=1 is EDU rational, then it satisfies Axiom 1.

Proof. By Lemma 1, if a dataset is EDU rational then there is a continuously differ-

entiable and concave rationalization u and a strictly positive solution vkt , λk, β to the

system in Statement (3) of Lemma 1 with u′(xkt ) = vkt . Let (xkiti , x
k′i
t′i

)ni=1 be a sequence

satisfying the three conditions in Axiom 1. Then xkiti > x
k′i
t′i

, so

1 ≥
u′(xkiti )

u′(x
k′i
t′i

)
=
λkiβt

′
i−1pkiti

λk
′
iβti−1p

k′i
t′i

.

Thus,

1 ≥
n∏
i=1

u′(xkiti )

u′(x
k′i
t′i

)
=

n∏
i=1

λkiβt
′
i−1pkiti

λk
′
iβti−1p

k′i
t′i

= β
∑n

i=1 t
′
i−

∑n
i=1 ti

n∏
i=1

pkiti

p
k′i
t′i

.

The numbers λk appear the same number of times in the denominator as in the numerator

of this product, as the sequence satisfies (3) in Axiom 1. Then we obtain that

β
∑n

i=1 ti−
∑n

i=1 t
′
i ≥

n∏
i=1

pkiti

p
k′i
t′i

.

Since β ≤ 1 and
∑n

i=1 ti ≥
∑n

i=1 t
′
i, and the sequence satisfies (3) in Axiom 1, we obtain

that 1 ≥
∏n

i=1

p
ki
ti

p
k′
i

t′
i

.

4.2 Sufficiency

We proceed to prove the sufficiency direction. Sufficiency follows from the following

lemmas as in Echenique and Saito (2013).

We know from Lemma 1 that it suffices to find a solution to the first order conditions.

Lemma 5 establishes that Axiom 1 is sufficient when the logarithms of the prices are

rational numbers. The role of rational logarithms comes from our use of a version of

Farkas’s Lemma. Lemma 6 says that we can approximate any data satisfying Axiom 1

with a dataset for which the logs of prices are rational and for which Axiom 1 is satisfied.

Finally, Lemma 7 establishes the result. It is worth mentioning that we cannot use

Lemma 6 and an approximate solution to obtain a limiting solution.
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Lemma 5. Let data (xk, pk)kk=1 satisfy Axiom 1. Suppose that log(pkt ) ∈ Q for all k and

t. Then there are numbers vkt , λk, β, for t = 1, . . . , T and k = 1, . . . , K satisfying (3) in

Lemma 1.

Lemma 6. Let data (xk, pk)kk=1 satisfy Axiom 1. Then for all positive numbers ε, there

exists qkt ∈ [pkt − ε, pkt ] for all t ∈ T and k ∈ K such that log qkt ∈ Q and the dataset

(xk, qk)kk=1 satisfy Axiom 1.

Lemma 7. Let data (xk, pk)kk=1 satisfy Axiom 1. Then there are numbers vkt , λk, β, for

t = 1, . . . , T and k = 1, . . . , K satisfying (3) in Lemma 1.

4.3 Proof of Lemma 5

We linearize the equation in System (3) of Lemma 1. The result is:

log v(xkt ) + t log β − log λk − log pkt = 0, (3)

x > x′ ⇒ log v(x′) ≥ log v(x) (4)

log(β) ≤ 0. (5)

In the system comprised by (3) (4) and 5, the unknowns are the real numbers log vkt ,

log β, k = 1, . . . , K and t = 1, . . . , T .

First, we are going to write the system of inequalities (3) and (4) in matrix form.

A system of linear inequalities

We shall define a matrix A such that there are positive numbers vkt , λk, β the logs

of which satisfy Equation (3) if and only if there is a solution u ∈ RK×T+1+K+1 to the

system of equations

A · u = 0,

and for which the last component of u is strictly positive.

Let A be a matrix with K×T rows and K×T +1+K+1 columns, defined as follows:

We have one row for every pair (k, t); one column for every pair (k, t); one column for

each k; and two additional columns. Organize the columns so that we first have the K×T
columns for the pairs (k, t); then one of the single columns mentioned in last place, which

we shall refer to as the β-column; then K columns (one for each k); and finally one last

column. In the row corresponding to (k, t) the matrix has zeroes everywhere with the
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following exceptions: it has a 1 in the column for (k, t); it has a t in the β column; it has

a −1 in the column for k; and − log pkt in the very last column.

Thus, matrix A looks as follows:



(1,1) ··· (k,t) ··· (K,T ) 1 ··· k ··· K p

(1,1) 1 · · · 0 · · · 0 1 −1 · · · 0 · · · 0 − log p11
...

...
...

...
...

...
... 0

...

(k,t) 0 · · · 1 · · · 0 t 0 · · · −1 · · · 0 − log pkt
...

...
...

...
...

...
... 0

...

(K,T ) 0 · · · 0 · · · 1 T 0 · · · 0 · · · −1 − log pKT



Consider the system A · u = 0. If there are numbers solving Equation (3), then these

define a solution u ∈ RK×T+1+K+1 for which the last component is 1. If, on the other

hand, there is a solution u ∈ RK×T+1+K+1 to the system A · u = 0 in which the last

component is strictly positive, then by dividing through by the last component of u we

obtain numbers that solve Equation (3).

In second place, we write the system of inequalities (4) in matrix form. Let B be

a matrix B with (|X |(|X | − 1)/2) + 1 rows and K × T + 1 + K + 1 columns. Define

B as follows: One row for every pair x, x′ ∈ X with x > x′; in the row corresponding

to x, x′ ∈ X with x > x′ we have zeroes everywhere with the exception of a −1 in the

column for (k, t) such that x = xkt and a 1 in the column for (k′, t′) such that x′ = xk
′

t′ .

These define |X |(|X |− 1)/2 rows. Finally, in the last row, we have zero everywhere with

the exception of a −1 at K × T + 1th column. We shall refer to this last row as the

β-row.

In third place, we have a matrix E that captures the requirement that the last compo-

nent of a solution be strictly positive. The matrix E has a single row and K×T+1+K+1

columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (3), (4) and (5) if and only if there is a vector

u ∈ RK×T+1+K+1 that solves the system of equations and linear inequalities

S1 :


A · u = 0,

B · u ≥ 0,

E · u� 0.
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Theorem of the Alternative

The entries of A, B, and E are integer numbers, with the exception of the last column

of A. Under the hypothesis of the lemma we are proving, the last column consists of

rational numbers.

By Lemma 3, then, there is such a solution u to S1 if and only if there is no vector

(θ, η, π) ∈ QK×T+(|X |(|X |−1)/2)+1 that solves the system of equations and linear inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

In the following, we shall prove that the non-existence of a solution u implies that

the data must violate Axiom 1. Suppose then that there is no solution u and let (θ, η, π)

be a rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2,

so we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: For a matrix D with K ×
T + 1 + K + 1 columns, write D1 for the submatrix of D corresponding to the first

K×T columns; let D2 be the submatrix corresponding to the following one column (i.e.,

β-column); D3 correspond to the next K columns; and D4 to the last column. Thus,

D = [D1 D2 D3 D4 ].

Claim 1. (i) θ · A1 + η · B1 = 0; (ii) θ · A2 + η · B2 = 0; (iii) θ · A3 = 0; and (iv)

θ · A4 + π · E4 = 0.

Proof. Since θ ·A+ η ·B + π ·E = 0, then θ ·Ai + η ·Bi + π ·Ei = 0 for all i = 1, . . . , 4.

Moreover, since B3, B4, E1, E2, and E3 are zero matrices, we obtain the claim. �

For convenience, we transform the matrices A and B using θ and η.

Transform the matrices A and B

Lets define a matrix A∗ from A by letting A∗ have the same number of columns as A

and including
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1. θr copies of the rth row when θr > 0;

2. omitting row r when θr = 0;

3. and θr copies of the rth row multiplied by −1 when θr < 0.

We refer to rows that are copies of some r with θr > 0 as original rows, and to those

that are copies of some r with θr < 0 as converted rows.

Similarly, we define the matrix B∗ from B by including the same columns as B and

ηr copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Claim 2. For any (k, t), all the entries in the column for (k, t) in A∗1 are of the same

sign.

Proof. By definition of A, the column for (k, t) will have zero in all its entries with the

exception of the row for (k, t). In A∗, for each (k, t), there are three mutually exclusive

possibilities: the row for (k, t) in A can (i) not appear in A∗, (ii) it can appear as original,

or (iii) it can appear as converted. This shows the claim.

Claim 3. There exists a sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 that satisfies (1) in Axiom 1.

Proof. We define such a sequence by induction. Let B1 = B∗. Given Bi, define Bi+1 as

follows.

Denote by >i the binary relation on X defined by z >i z′ if z > z′ and there is at

least one copy of the row corresponding to z > z′ in Bi. The binary relation >i cannot

exhibit cycles because >i⊆>. There is therefore at least one sequence zi1, . . . z
i
Li

in X
such that zij >

i zij+1 for all j = 1, . . . , Li−1 and with the property that there is no z ∈ X
with z >i zi1 or ziLi

>i z.

Let the matrix Bi+1 be defined as the matrix obtained from Bi by omitting one copy

of the row corresponding to zij > zij+1, for all j = 1, . . . Li − 1.

The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which

Bn∗+1 either has no more rows, or Bn∗+1
1 has only zeroes in all its entries (its rows are

copies of the β-row which has only zeroes in its first K × T columns).

Define a sequence of pairs (xkisi , x
k′i
t′i

)n
∗
i=1 by letting xkisi = zi1 and x

k′i
t′i

= ziLi
. Note that, as

a result, xkisi > x
k′i
t′i

for all i. Therefore the sequence of pairs (xkisi , x
k′i
t′i

)n
∗
i=1 satisfies condition

14



(1) in Axiom 1. �

We shall use the sequence of pairs (xkiti , x
k′i
t′i

)n
∗
i=1 as our candidate violation of Axiom 1.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let A1 = A∗,

and

C1 =

[
A1

B1

]
.

Observe that the rows of C1 add to the null vector by Claim 1.

We shall proceed by induction. Suppose that Ai has been defined, and that the rows

of

Ci =

[
Ai

Bi

]
add to the null vector.

Recall the definition of the sequence

xkiti = zi1 > . . . > ziLi
= x

k′i
t′i
.

There is no z ∈ X with z >i zi1 or ziLi
>i z, so in order for the rows of Ci to add to zero

there must be a −1 in Ai1 in the column corresponding to (k′i, t
′
i) and a 1 in Ai1 in the

column corresponding to (ki, ti). Let ri be a row in Ai corresponding to (ki, ti), and r′i be

a row corresponding to (k′i, t
′
i). The existence of a −1 in Ai1 in the column corresponding

to (k′i, t
′
i), and a 1 in Ai1 in the column corresponding to (ki, ti), ensures that ri and r′i

exist. Note that the row r′i is a converted row while ri is original. Let Ai+1 be defined

from Ai by deleting the two rows, ri and r′i.

Claim 4. The sum of ri, r
′
i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zij > zij+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zij >
i zij+1 for all j = 1, . . . , Li − 1. So when we add the rows corre-

sponding to zij >
i zij+1 and zij+1 >

i zij+2, then the entries in the column for (k, t) with

xkt = zij+1 cancel out and the sum is zero in that entry. Thus, when we add the rows of

Bi that are not in Bi+1 we obtain a vector that is 0 everywhere except the columns cor-

responding to zi1 and ziLi
. This vector cancels out with ri+r

′
i, by definition of ri and r′i. �
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Claim 5. The matrix A∗ can be partitioned into pairs of rows as follows:

A∗ =



r1

r′1
...

ri

r′i
...

rn∗

r′n∗ ,


in which the rows r′i are converted and the rows ri are original.

Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from Ai to

form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri, r
′
i.

First note that since the rows of Ci add up to the null vector, and Ai+1 and Bi+1 are

obtained from Ai and Bi by removing a collection of rows that add up to zero, then the

rows of Ci+1 must add up to zero as well.

By way of contradiction, suppose that there exist rows left after removing rn∗ and

r′n∗ . Then, by the argument above, the rows of the matrix Cn∗+1 must add to the null

vector. If there are rows left, then the matrix Cn∗+1 is well defined.

By definition of the sequence Bi, however, Bn∗+1 has all its entries equal to zero, or

has no rows. Hence, the rows remaining in An
∗+1

1 must add up to zero. By Claim 2, the

entries of a column (k, t) of A∗ are always of the same sign. Moreover, each row of A∗

has a non-zero element in the first K × S columns. Therefore, no subset of the columns

of A∗1 can sum to the null vector. �

Claim 6. (i) For any k and t, if xkiti = xkt for some i, then the row ri corresponding

to (k, t) appears as original in A∗. Similarly, if x
k′i
t′i

= xkt for some i, then the row

corresponding to (k, t) appears converted in A∗.

(ii) If the row corresponding to (k, t) appears as original in A∗, then there is some i with

xkiti = xkt . Similarly, if the row corresponding to (k, t) appears converted in A∗, then there

is i with x
k′i
t′i

= xkt .

Proof. (i) is true by definition of (xkiti , x
k′i
t′i

). (ii) is immediate from Claim 5 because if the

row corresponding to (k, t) appears original in A∗ then it equals ri for some i, and then
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xkt = xkiti . Similarly when the row appears converted. �

Claim 7. The sequence (xkiti , x
k′i
t′i

)n
∗
i=1 satisfies (2) and (3) in Axiom 1.

Proof. We first establish (2). Note that A∗2 is a vector, and in row r the entry of A∗2 is

as follows. There must be a (k, t) of which r is a copy. Then the component at row r of

A∗2 is t if r is original and −t if r is converted. Now, when r appears as original there is

some i for which t = ti, when r appears as converted there is some i for which t = t′i. So

for each r there is i such that (A∗4)r is either ti or −t′i. By Claim 1 (ii), θ ·A2 + η ·B2 = 0.

Recall that θ · A2 equals the sum of the rows of A∗2. Moreover, B2 is a vector that has

zeroes everywhere except a −1 in the β row (i.e., K × T + 1th row). Therefore, the sum

of the rows of A∗2 equals ηK×T+1, where ηK×T+1 is the K × T + 1th element of η. Since

η ≥ 0, therefore,
∑n∗

i=1 ti ≥
∑n∗

i=1 t
′
i, and condition (2) in the axiom is satisfied.

Now we turn to (3). By Claim 1 (iii), the rows of A∗3 add up to zero. Therefore, the

number of times that k appears in an original row equals the number of times that it

appears in a converted row. By Claim 6, then, the number of times k appears as ki equals

the number of times it appears as k′i. Therefore condition (3) in the axiom is satisfied.

�

Finally, in the following, we show that

n∗∏
i=1

pkisi

p
k′i
t′i

> 1,

which finishes the proof of Lemma 5 as the sequence (xkisi , x
k′i
t′i

)n
∗
i=1 would then exhibit a

violation of Axiom 1.

Claim 8.
∏n∗

i=1

p
ki
ti

p
k′
i

t′
i

> 1.

Proof. By Claim 1 (iv) and the fact that the submatrix E4 equals the scalar 1, we obtain

0 = θ · A4 + πE4 = (
n∗∑
i=1

(ri + r′i))4 + π,

where (
∑n∗

i=1(ri + r′i))4 is the (scalar) sum of the entries of A∗4. Recall that − log pkiti is

the last entry of row ri and that log p
k′i
t′i

is the last entry of row r′i, as r′i is converted and
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ri original. Therefore the sum of the rows of A∗4 are
∑n∗

i=1 log(p
k′i
t′i
/pkiti ). Then,

n∗∑
i=1

log(p
k′i
t′i
/pkiti ) = −π < 0.

Thus
n∗∏
i=1

pkiti

p
k′i
t′i

> 1.

�

4.3.1 Proof of Lemma 6

For each sequence σ = (xkiti , x
k′i
t′i

)ni=1 that satisfies conditions (1), (2), and (3) in Axiom 1,

and each pair xkt > xk
′

t′ , define τσ(xkt , x
k′

t′ ) to be the number of times the pair (xkt , x
k′

t′ )

appears in the sequence σ. Note that τσ is a KT (KT−1)
2

-dimensional non-negative integer

vector. Define

T =
{
τσ ∈ N

KT (KT−1)
2 : σ satisfies (1), (2), (3) in Axiom 1

}
.

The set T depends only on (xk)Kk=1 in the data set (xk, pk)Kk=1.

For each pair xkt > xk
′

t′ , define

δ̂(xkt , x
k′

t′ ) = log
pkt
pk
′
t′
.

Then, δ̂ is a KT (KT−1)
2

-dimensional real-valued vector.

If σ = (xkiti , x
k′i
t′i

)ni=1, then

δ̂ · τσ =
∑

(xkt ,x
k′
t′ )∈σ

δ̂(xkt , x
k′

t′ )τσ(xkt , x
k′

t′ ) = log
( n∏
i=1

pkiti

p
k′i
t′i

)
.

So the data satisfy Axiom 1 if and only if τ · δ̂ ≤ 0 for all τ ∈ T .

Enumerate elements in X in increasing order:

x
k(1)
t(1) < x

k(2)
t(2) < · · · < x

k(N)
t(N) .

Fix an arbitrary ξ, ξ̄ ∈ (0, 1) with ξ < ξ̄. Due to the denseness of the rational numbers,

and the continuity of the exponential function, there exists a positive number ε(1) such
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that log(p
k(1)
t(1) ε(1)) ∈ Q and ξ < ε(1) < ξ̄; Given ε(1), there exists a positive ε(2) such

that log(p
k(2)
t(2) ε(2)) ∈ Q and ξ < ε(2)/ε(1) < ξ̄. More generally, when ε(n) has been

defined, let ε(n+1) > 0 be such that log(p
k(n+1)
t(n+1) ε(n+1)) ∈ Q and ξ < ε(n+1)/ε(n) < ξ̄.

In this way have defined (ε(n))Nn=1. Let qkt = pkt ε(n), where n is such that pk(n)t(n) =

pkt . The claim is that the data (xk, qk)Kk=1 satisfy Axiom 1. Let δ∗ be defined from (qk)Kk=1

in the same manner as δ̂ was defined from (pk)Kk=1. For each pair xkt > xk
′

t′ , if n and m are

such that xkt = x
k(n)
t(n) and xk

′

t′ = x
k(m)
t(m) , then n > m. By definition of ε, ε(n)/ε(m) < ξ̄ < 1.

Hence,

δ∗(xkt , x
k′

t′ ) = log
pkt ε(n)

pk
′
t′ ε(m)

< log
pkt
pk
′
t′

+ log ξ̄ < log
pkt
pk
′
t′

= δ̂(xkt , x
k′

t′ ).

Thus, for all τ ∈ T ,

δ∗ · τ ≤ δ̂ · τ ≤ 0,

as τ ≥ 0 and the data (xk, pk)Kk=1 satisfy Axiom 1. Thus the data (xk, qk)Kk=1 satisfy

Axiom 1.

Note that ξ < ε(n) for all n. So that by choosing ξ close enough to 1, we can take

the prices (qk) to be as close to (pk) as desired.

4.3.2 Proof of Lemma 7

Consider the system comprised by (3), (4), and (5) in the proof of Lemma 5. Let A,

B, and E be constructed from the data as in the proof of Lemma 5. The difference with

respect to Lemma 5 is that now the entries of A4 may not be rational. Note that the

entries of E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised

by (3), (4), and (5). Then, by the argument in the proof of Lemma 5 there is no solution

to System S1. By Lemma 2 with F = R, there is a real vector (θ, η, π) such that

θ · A+ η ·B + π · E = 0 and η ≥ 0, π > 0.

Let (qk)Kk=1 be vectors of prices such that the data set (xk, qk)Kk=1 satisfies Axiom 1

and log qkt ∈ Q for all k and t. (Such (qk)Kk=1 exists by Lemma 6.) Construct matrices A′,

B′, and E ′ from this data set in the same way as A, B, and E is constructed in the proof

of Lemma 5. Note that only the prices are different in (xk, qk) compared to (xk, pk). So
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E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Since only prices qk are different in this

dataset, only A′4 may be different from A4.

By Lemma 6, we can choose prices qk such that |θ · A′4 − θ · A4| < π/2. We have

shown that θ · A4 = −π, so the choice of prices qk guarantees that θ · A′4 < 0. Let

π′ = −θ · A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for

matrices A, B and E, and A′i = Ai, B
′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0

so

θ · A′4 + η ·B′4 + π′E4 = θ · A′4 + π′ = 0.

We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute a solution S2 for

matrices A′, B′, and E ′.

By Lemma 2 we know then that there is no solution to S1 for matrices A′, B′, and

E ′, so there is no solution to the system comprised by (3), (4), and (5) in the proof of

Lemma 5. However, this contradicts Lemma 5 because the data (xk, qk) satisfies Axiom 1

and log qkt ∈ Q for all k = 1, . . . K and s = 1, . . . , S.

5 Proof of Theorem 2

The second statement in the theorem follows from Lemma 1 and the proof of Lemma 4.

We proceed to prove the first statement in the theorem. Assume then that (xk, pk)Kk=1 is

a dataset that satisfies Axiom 1.

Recall that X = {xkt : k = 1, . . . , K, t = 1, . . . , T}. Let ε > 0 be s.t.

ε < min{|x− x′| : x, x′ ∈ X , x 6= x′}.

Let α(x) = {(k, t) : x = xkt } for x ∈ X .

We shall define a new dataset for which consumptions are not equal, but that still

satisfies Axiom 1. Let (x̂k, pk)Kk=1 be a dataset with the same prices as in (xk, pk)Kk=1; in

which (x̂k)Kk=1 is chosen such that (a) x̂kt 6= x̂k
′

t′ when (k, t) 6= (k′, t′); and (b) for all x ∈ X

|x̂kt − x| < ε,

for all (k, t) ∈ α(x).

20



Observe that, with this definition of data (x̂k, pk)Kk=1, if x̂kt > x̂k
′

t′ then xkt ≥ xk
′

t′ . The

reason is that, either there is x for which (k, t) ∈ α(x) and (k′, t′) ∈ α(x), in which case

xkt ≥ xk
′

t′ because x = xkt = xk
′

t′ ; or there is no x and x′, with x 6= x′, in which (k, t) ∈ α(x)

and (k′, t′) ∈ α(x′), which implies that x > x′ and thus that xkt > xk
′

t′ .

With this definition of data, if (x̂kisi , x̂
k′i
t′i

)ni=1 is a sequence of pairs from dataset (x̂k, pk)Kk=1

satisfying (1), (2), and (3) in Axiom 1, then (xkisi , x
k′i
t′i

)ni=1 is a sequence of pairs from dataset

(xk, pk)Kk=1 that also satisfies (1), (2), and (3) in Axiom 1. By hypothesis, (xk, pk)Kk=1 sat-

isfy Axiom 1, so (x̂k, pk)Kk=1 satisfy Axiom 1.

Since (x̂k, pk)Kk=1 satisfies that xkt 6= xk
′

t′ if (k, t) 6= (k′, t′), and Axiom 1, then Lemma 7

implies that there are strictly positive numbers v̂kt , λk, βt−1, for t = 1, . . . , T and k =

1, . . . , K, such that

βt−1v̂kt = λkpkt

x̂kt > x̂k
′

t′ ⇒ v̂kt < v̂k
′

t′ .

Define the correspondence v′ : X → R+ by

v′(x) =
[
inf{v̂kt (k, t) ∈ α(x)}, sup{v̂kt (k, t) ∈ α(x)}

]
.

Note that if x > x′ then v̂kt < v̂k
′

t′ for all (k, t) ∈ α(x) and all (k′, t′) ∈ α(x′). So as a

result of the definition of v′, if x > x′ then sup v′(x) < inf v′(x′).

Let v : R+ → R+ be

v(x) = {inf v′(x̃) : x̃ ∈ X , x̃ ≤ x}

for x ≥ inf X ; and v(x) = {sup v′(x̃) : x̃ ∈ X} for x < inf X . The correspondence v is

monotone. There is therefore a concave function u : R+ → R such that

∂u(x) = v(x)

for all x (See Rockafellar (1997), Theorem 24.8).

In particular, for all x ∈ X and all (k, t) ∈ α(x) we have v̂kt ∈ ∂u(x). Since βt−1v̂kt =

λkpkt , we have
λkpkt
βt−1

∈ ∂u(xkt ).

Hence the first-order conditions for EDU maximization are satisfied at xkt .
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