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Abstract

We develop a behavioral axiomatic characterization of Subjective Expected Utility
(SEU) under risk aversion. Given is an individual agent’s behavior in the market: assume
a finite collection of asset purchases with corresponding prices. We show that such
behavior satisfies a “revealed preference axiom” if and only if there exists a SEU model
(a subjective probability over states and a concave utility function over money) that
accounts for the given asset purchases.
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Savage in the Market∗

Federico Echenique Kota Saito

1 Introduction

Savage’s (1954) characterization of subjective expected utility (SEU) has been called the
“crowning achievement of single-person decision theory” (Kreps, 1988). Savage describes
the behaviors that are consistent with SEU, where behavior is modeled as a preference
relation over acts (i.e state-contingent consequences). The result we present in this paper
also describes the behaviors that are consistent with SEU, but we focus on economic or
market behavior.

Savage (1954) obtains a set of axioms that is necessary and sufficient for SEU. He
takes as given a state space and a set of consequences; an analyst observes the decision
maker’s preference relation. The analyst observes all pairwise comparisons of acts that
the decision maker might make. Such comparisons are compatible with SEU if and only if
they satisfy Savage’s axioms. Another way of explaining Savage’s contribution is that his
result describes all possible “paradoxes” of rational behavior that one can generate in a
certain class of thought experiments. For example, the thought experiments proposed by
Ellsberg (1961) can be traced to the violation of one of Savage’s axioms (the sure-thing
principle).

Our framework differs from Savage. We too take as given a state space, but focus on
behavior consisting of purchases of state-contingent monetary assets. An analyst observes
a finite collection of purchases with corresponding prices. Such data are standard in the
theory of revealed preference.

Our main result is that a certain axiom describes the data that are consistent with
risk averse SEU preferences. The axiom is a generalization of the simplest implication
of risk aversion on the relation between prices and quantities: that demand slopes down.
Our axiom constraints quantities and prices in a way that generalizes downward-sloping
demand, but accounts for the different unobservable components in SEU. Section 3 has
an informal derivation of the axiom, together with a formal statement of our main result.

∗We thank Kim Border and Chris Chambers for inspiration, comments, and advice.



Similarly to Savage’s, our result can be said to describe all paradoxes of SEU. The
paradoxes would be observable from market experiments, or market thought experiments,
in which subjects are presented with financial decisions. Any collection of financial
decisions that violate our axiom cannot be compatible with SEU, and all incompatible
decisions are generated by negating our axiom.

Our paper also discusses quasilinear SEU. We include this model for two reasons.
One is that quasilinear SEU is heavily used in economics, and therefore of independent
interest. The other is pedagogical. The axiom for quasilinear SEU turns out be an
obvious special case of the axiom for SEU, and the abalysis is much simpler.

As far as we know, the only precedent to our paper that is related to SEU is Epstein
(2000). Epstein’s setup is the same as ours: in particular, he assumes data on state-
contingent asset purchases, and that probabilities are subjective and unobserved. He
presents a necessary condition for market behavior to be consistent with probabilistic
sophistication. The model of probabilistic sophistication is more general than SEU, and
Epstein’s necessary condition is easily seen to be a special case of our axiom.

A few papers study von-Neumann Morgenstern objective expected utility in a similar
revealed preference framework to ours. Green and Srivastava (1986), Varian (1983) and
Varian (1988) carry out the same exercise as we do, but they take probabilities (priors) as
objective and as part of the observed data on the agent’s behavior. In contrast, we assume
that probabilities are subjective and unobserved. Varian (1988) focuses on empirically
recovering an agent’s attitude towards risk. Like Green and Srivastava, he assumes that
data on objective probabilities is available, along with prices and asset purchases. Varian
(1983) raises the possibility of using his results when probabilities are unobserved, but
doing so would require establishing the existence of values of the unobservables for which
the data satisfy Varian’s test. He does not provide a combinatorial axiom describing the
data that are SEU rational.

2 Setup

We use the following notational conventions: For vectors x, y ∈ Rn, x ≤ y means that
xi ≤ yi for all i = 1, . . . , n; x < y means that x ≤ y and x 6= y; and x � y means that
xi < yi for all i = 1, . . . , n.
Definition 1. A dataset is a collection (xk, pk)Kk=1 where for all k xk, pk ∈ RS

++, and
xks 6= xk

′

s′ if (k, s) 6= (k′, s′).

We assume a finite number of states S. A state-contingent payoff, or monetary act , is
a vector x ∈ RS

+. The interpretation of a dataset is as follows. There are K observations,
indexed by k = 1, . . . , K. Each observation consists of a monetary act xk purchased at
some vector of strictly positive state prices pk.

The assumption that xks 6= xk
′

s′ if (k, s) 6= (k′, s′) simplifies the analysis. The essence
of our results is true without it: see Section 4.1.
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Definition 2. A dataset (xk, pk)Kk=1 is subjective expected utility rational (SEU rational)
if there is a vector µ ∈ RS

++ with
∑S

s=1 µs = 1 and a concave and strictly increasing
function u : R+ → R such that, for all k,

pk · y ≤ pk · xk ⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks).

Definition 3. A dataset (xk, pk)Kk=1 is quasilinear subjective expected utility rational
(QL-SEU rational) if there is a vector µ ∈ RS

++ with
∑S

s=1 µs = 1 and a concave and
strictly increasing function u : R+ → R such that, for all k,

pk · y ≤ pk · xk ⇒
∑
s∈S

µsu(ys)− pk · y ≤
∑
s∈S

µsu(xks)− pk · xk.

3 Main Results

We start by discussing QL-SEU rationality because the analysis is similar, but simpler,
to the analysis of SEU rationality.

3.1 QL-SEU rationality

A QL-SEU maximizing agent solves the problem

max
x∈RS

+

∑
s∈S

µsu(xs)− p · x

when faced with prices p. Suppose that the function u is continuously differentiable (an
assumption that turns out to be without loss of generality). The first-order condition for
the agent’s maximization problem is

µsu
′(xs) = ps.

So if a dataset (xk, pk)Kk=1 is QL-SEU rational, the prior µ and utility u must satisfy the
above first order condition for each xks and pks ; that is: µsu

′(xks) = pks .

The first-order condition has an immediate implication for consumption at a given
state. If xks > xk

′
s then the concavity of u implies that we must have pks ≥ pk

′
s . This

implication amounts to saying that “state s demand must slope down.”

We cannot draw a similar conclusion when comparing xks > xk
′

s′ with s 6= s′ because
the effect of the different priors µs and µs′ may interfere with the effect of prices on
demand. From the first-order conditions:

u′(xk
′

s′ )

u′(xks)
=
µs
µs′

pk
′

s′

pks
.

3



Now, the concavity of u and xks > xk
′

s′ implies that

µs
µs′

pk
′

s′

pks
≤ 1,

but the priors µ are unobservable so we cannot conclude anything about the observable
pk
′

s′
pks

.

There is, however, one further implication of QL-SEU and the concavity of u. We
can consider a sequence of pairs (xks , x

k′

s′ ) chosen such that when we divide first-order
conditions all the priors cancel out. For example, consider

xk1s1 > xk2s2 and xk3s2 > xk4s1 .

By manipulating the first-order conditions we obtain that:

u′(xk1s1 )

u′(xk2s2 )
·
u′(xk3s2 )

u′(xk4s1 )
=

(
µs2
µs1

pk1s1
pk2s2

)
·
(
µs1
µs2

pk3s2
pk4s1

)
=
pk1s1
pk2s2

pk3s2
pk4s1

Notice that the pairs (xk1s1 , x
k2
s2

) and (xk3s2 , x
k4
s1

) have been chosen so that the priors µs1 and
µs2 would cancel out. Now the concavity of u and the assumption that xk1s1 > xk2s2 and

xk3s2 > xk4s3 imply that the product of the prices
p
k1
s1

p
k2
s2

p
k3
s2

p
k4
s1

cannot exceed 1. Thus, we obtain

an implication of QL-SEU for prices, an observable entity.

In general, the assumption of QL-SEU rationality will require that, for any collection
of sequences as above (appropriately chosen so that priors will cancel out) the product
of the ratio of prices cannot exceed 1. Formally,

Axiom 1. For any sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi > x
k′i
s′i

for all i;

2. each s appears as si (on the left of the pair) the same number of times it appears
as s′i (on the right):

The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.

Our first result is that this necessary condition turns out be sufficient as well. The
axiom seems weak in the following sense. The axiom imposes a particular behavior under
circumstances in which priors do not matter–when the priors cancel out as above. It tell
us to focus on circumstances in which the priors can be ignored, and only constrains
behavior in such circumstances.

Theorem 1. (xk, pk)Kk=1 is QL-SEU rational if and only if it satisfies Axiom 1.
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3.2 SEU rationality

We now discuss the axiom for SEU rationality. In this case, the first order conditions
contain three unobservables. The conditions involve not only priors and marginal utilities
but also Lagrange multipliers:

µsu
′(xs) = λps.

Hence, from the first-order conditions:

u′(xk
′

s′ )

u′(xks)
=
µs
µs′

λk
′

λk
pk
′

s′

pks
.

We can repeat the idea used for QL-SEU rationality, but the sequences must be chosen
so that not only priors but also Lagrange multipliers cancel out. For example, consider

xk1s1 > xk2s2 , x
k3
s2
> xk1s3 , and xk2s3 > xk3s1 .

By manipulating the first-order conditions we obtain that:

u′(xk1s1 )

u′(xk2s2 )
·
u′(xk3s2 )

u′(xk1s3 )
·
u′(xk2s3 )

u′(xk3s1 )
=

(
µs2
µs1

λk1

λk2
pk1s1
pk2s2

)
·
(
µs3
µs2

λk3

λk1
pk3s2
pk1s3

)
·
(
µs1
µs3

λk2

λk3
pk2s3
pk3s1

)
=
pk1s1
pk2s2

pk3s2
pk1s3

pk2s3
pk3s1

Notice that the pairs (xk1s1 , x
k2
s2

), (xk3s2 , x
k1
s3

), and (xk2s3 , x
k3
s1

) have been chosen so that the
priors µs1 , µ2, and µs3 and the Lagrange multipliers λk1 , λk2 , and λk3 would cancel out.
Now the concavity of u and the assumption that xk1s1 > xk2s2 , xk3s2 > xk1s3 , and xk2s3 > xk3s1

imply that the product of the prices
p
k1
s1

p
k2
s2

p
k3
s2

p
k1
s3

p
k2
s3

p
k3
s1

cannot exceed 1. Thus, we obtain an

implication of SEU for prices again, an observable entity.

In general, the assumption of SEU rationality will require that, for any collection of
sequences as above (appropriately chosen so that priors and Lagrange multipliers will
cancel out) the product of the ratio of prices cannot exceed 1. Formally,

Axiom 2. For any sequence of pairs (xkisi , x
k′i
s′i

)ni=1 in which

1. xkisi ≥ x
k′i
s′i

and (ki, si) 6= (k′i, s
′
i) for all i;

2. each s appears as si (on the left of the pair) the same number of times it appears
as s′i (on the right);

3. each k appears as ki (on the left of the pair) the same number of times it appears
as k′i (on the right):

The product of prices satisfies that

n∏
i=1

pkisi

p
k′i
s′i

≤ 1.
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Note that Axiom 2 is different from Axiom 1 only in the third requirement for the
sequence. The main finding of our paper is that this necessary condition is sufficient as
well.1

Theorem 2. (xk, pk)Kk=1 is SEU rational if and only if it satisfies Axiom 2.

3.2.1 Relationship with Epstein (2000)

As mentioned, Epstein (2000) obtains a necessary condition for probability sophistication.

We can phrase the condition as follows. For any sequence (xkisi , x
k′i
s′i

)2i=1 satisfying (1), (2)

and (3) in Axiom 2, with k1 = k′1 6= k2 = k′2, it must hold that p
k′1
s′1
≤ pk1s1 or p

k′2
s′2
≤ pk2s2 .2

For such a sequence, Axiom 2 requires that

pk1s1

p
k′1
s2

pk2s1

p
k′2
s2

≤ 1,

so Axiom 2 clearly implies the necessary condition for probability sophistication.

3.2.2 Axiom 2 implies WARP

The classical necessary condition for rational choice is the weak axiom of revealed pref-
erence (WARP). By Theorem 2, any dataset that satisfies Axiom 2 must also satisfy
WARP. It is instructive to present a direct proof of this fact.

Definition 4. A dataset (xk, pk)Kk=1 satisfies WARP if there is no k and k′ such that
pk · xk ≥ pk · xk′ and pk

′ · xk′ > pk
′ · xk.

Proposition 1. If (xk, pk)Kk=1 satisfies Axiom 2, then (xk, pk)Kk=1 satisfies WARP.

Proof. Suppose, towards a contradiction, that D satisfies Axiom 2 but that it violates
WARP. Then there is k and k′ such that pk ·xk ≥ pk ·xk′ and pk

′ ·xk′ > pk
′ ·xk. It cannot

be the case that xks ≥ xk
′
s for all s, so the set S1 = {s : xks < xk

′
s } is nonempty. Choose

s∗ ∈ S1 such that
pk
′
s∗

pks∗
≥ pk

′
s

pks
for all s ∈ S1.

Now, pk · xk ≥ pk · xk′ implies that

(xks∗ − xk
′

s∗) ≥
−1

pks∗

∑
s 6=s∗

pks(x
k
s − xk

′

s ).

1In Echenique and Saito (2013), we study intertemporal decision making problem by using the same
setup with the interpretation of S as the set of periods. In the paper, we obtain one axiom that is
necessary and sufficient for exponential-discounting utility model. The axiom is the same as Axiom 2
except in condition (2). In the axiom, we require that

∑
si =

∑
s′i, instead of condition (2).

2The condition (3) requires that s1 = s′2 6= s2 = s′1.
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We also have that pk
′ · xk′ > pk

′ · xk, so

0 >
∑
s 6=s∗

pk
′

s (xks − xk
′

s ) + pk
′

s∗(x
k
s∗ − xk

′

s∗)

≥
∑
s 6=s∗

pk
′

s (xks − xk
′

s ) +
−pk′s∗
pks∗

∑
s 6=s∗

pks(x
k
s − xk

′

s )

=
∑
s/∈S1

pk
′

s (1− pk
′
s∗p

k
s

pks∗p
k′
s

)(xks − xk
′

s )︸ ︷︷ ︸
A

+
∑

s∈S1\{s∗}

pk
′

s (1− pk
′
s∗p

k
s

pks∗p
k′
s

)(xks − xk
′

s )︸ ︷︷ ︸
B

.

We shall prove that A ≥ 0 and that B ≥ 0, which will yield the desired contradiction.

For all s /∈ S1 we have that (xks − xk
′
s ) ≥ 0. Then Axiom 2 implies that

pk
′
s∗p

k
s

pks∗p
k′
s

≤ 1,

as xks∗ < xk
′
s∗ so that the sequence {(xk′s∗ , xks∗), (xks , x

k′
s )} satisfies (1), (2), and (3) in the

axiom. Hence A ≥ 0.

Now consider B. By definition of s∗, we have that
pk
′

s∗p
k
s

pk
s∗p

k′
s
≥ 1 for all s ∈ S1. Then,

(xks − xk
′
s ) < 0 implies that (

1− pk
′
s∗p

k
s

pks∗p
k′
s

)
(xks − xk

′

s ) ≥ 0,

for all s ∈ S1. Hence B ≥ 0.

4 Extension

4.1 Equal Consumptions

We have assumed that xks 6= xk
′

s′ if (k, s) 6= (k′, s′). We now relax this assumption. In this
section, a dataset is a collection (xk, pk)Kk=1 where for all k xk, pk ∈ RS

++.

When we allow for xks 6= xk
′

s′ , then there is a gap in our result: Axiom 2 is still
sufficient for risk averse SEU rationality, but only necessary for SEU rationality with a
differentiable utility function (the result in Varian (1983) on objective expected utility
exhibits the same gap). A concave utility function is almost everywhere differentiable,
so the gap is “small.”
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Definition 5. A dataset (xk, pk)Kk=1 is smooth SEU rational if there is a vector µ ∈ RS
++

with
∑S

s=1 µs = 1 and a differentiable, concave and strictly increasing function u : R+ →
R such that, for all k,

pk · y ≤ pk · xk ⇒
∑
s∈S

µsu(ys) ≤
∑
s∈S

µsu(xks).

Theorem 3. If a dataset satisfies Axiom 2 then it is SEU rational. If a dataset is smooth
SEU rational, then it satisfies Axiom 2.

5 Preliminaries

We shall use the following lemma, which is a version of the Theorem of the Alternative.
This is Theorem 1.6.1 in Stoer and Witzgall (1970). We shall use it here in the cases
where F is either the real or the rational numbers.
Lemma 1. Let A be an m× n matrix, B be an l× n matrix, and E be an r× n matrix.
Suppose that the entries of the matrices A, B, and E belong the a commutative ordered
field F. Exactly one of the following alternatives is true.

1. There is u ∈ Fn such that A · u = 0, B · u ≥ 0, E · u� 0.

2. There is θ ∈ Fr, η ∈ Fl, and π ∈ Fm such that θ ·A+ η ·B + π ·E = 0; π > 0 and
η ≥ 0.

We use the following notation in the proofs:

X = {xks : k = 1, . . . , K, s = 1, . . . , S}.

6 Proof of Theorem 1

We shall not prove the necessity direction. It has a simple proof, which follows along the
lines of proving necessity in Theorem 2 in Section 7.

To prove sufficiency, we shall prove that there is a vector µ ∈ RS such that µ � 0
and such that

xk
′

s′ < xks ⇒
µs′

pk
′
s′
≤ µs
pks
. (1)

We then define f(x) by setting f(xks) = pks/µs, and by interpolation everywhere else, so
that f is a strictly decreasing function and positive everywhere (see the proof of Lemma 3
for an explicit argument). We then define u(x) =

∫ x
0
f(t)dt to obtain a rationalization as

desired: we have that

u′(xks) = f(xks) =
pks
µs
,

8



so that the first-order condition for QL-SEU rationality is satisfied.

We use the following version of Farkas’ Lemma, which directly follows from Lemma 1:

Lemma 2. Let A be an m× n matrix. Exactly one of the following alternatives is true.

1. There is µ ∈ Rn such that A · u ≥ 0 and µ� 0.

2. There is θ ∈ Rm such that θ · A < 0 and θ ≥ 0.

Let A be a matrix with S columns, and K2S2 − KS rows: one row for each set
{s, s′, k, k′} with (k, s) 6= (k′, s′), s, s′ = 1, . . . , S, and k, k′ = 1, . . . , K. The matrix A
has all its entries zero, except as follows. For any states and observations s, s′, k, k′ with
(k, s) 6= (k′, s′), if xk

′

s′ < xks then we have a row labeled (s, s′, k, k′) in which the entry
for column s is 1/pks , and the entry for column s′ is −1/pk

′

s′ . The labeling (s, s′, k, k′)
indicates in which row we have the positive entry 1/pks and the negative entry −1/pk

′

s′ .
We denote the row by r(s, s′, k, k′). Matrix A looks as follows:


1 ··· s ··· s′ ··· S

...
...

...
...

...

(s,s′,k,k′) 0 · · · 1

pks
· · · − 1

pk
′
s′
· · · 0

...
...

...
...

...



By the definition of A, there is a solution to the conditions (1) if and only if there is
µ � 0 such that A · µ ≥ 0. Suppose that there is no solution to the conditions (1). We
shall prove that the data violate Axiom 1. By Lemma 2, there is a vector θ ≥ 0 with
θ ·A < 0. It could not be true that θ = 0, so θ > 0. Choose one such θ with the property
that if θ′ is another vector with the properties that θ′ ≥ 0 and θ′ · A < 0, then

{r : θ′r > 0} 6⊂ {r : θr > 0},

where ⊂ means proper subset and θr denotes the entry of θ in row r. We can choose
such a minimal θ because the number of rows in A is finite.

Claim 1. There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 that satisfies conditions (1) and (2) in

Axiom 1.

Proof. Fix a row r(s, s′, k, k′) with θr(s,s′,k,k′) > 0. Define (s1, s
′
1, k1, k

′
1) = (s, s′, k, k′) and

ρ1 = r(s1, s
′
1, k1, k

′
1). Observe that x

k′1
s′1
< xk1s1 .

The entry in row r(s, s′, k, k′) and column s is 1/pk1s1 . Now, θ ·A < 0 and θρ1/p
k1
s1
> 0,

so there must exist a row ρ2 = r(s2, s
′
2, k2, k

′
2) with s′2 = s1 and θρ3/p

k′2
s′2
< 0. Note that

x
k′2
s′2
< xk2s2 and s′2 = s1.

9



In the column for s2 of row ρ2 we have 1/pk2s2 > 0, and θρ2/p
k2
s2
> 0, so again θ ·A < 0

implies that there must exist a further row ρ3 = r(s3, s
′
3, k3, k

′
3) with θρ3 > 0 in which the

entry for column s2 = s′3 is negative.

We can continue this process, whereby for each row ρi = r(si, s
′
i, ki, k

′
i) we identify

another row ρi+1 = r(si+1, s
′
i+1, ki+1, k

′
i+1) with si = s′i+1. There is a finite number of

states, so there must exist n∗ such that sn∗ = s′1. Note that the sequence of rows (ρi)
n∗
i=1

defines a sequence of pairs (xkisi , x
k′i
s′i

)n
∗
i=1 with xkisi > x

k′i
s′i

and si = s′i+1, for i = 1, . . . , n∗ − 1

and sn∗ = s′1. Thus each s either does not appear in the sequence, or it appears as both
si and as si+1. Therefore each s equals si the for as many i as it equals s′i in the sequence

(xkisi , x
k′i
s′i

)n
∗
i=1. �

Define

ηρ1 = 1,

ηρ2 =
p
k′2
s′2
p
k1
s1

,

ηρ3 = ηρ2
p
k′3
s′3
p
k2
s2

,

...

ηρi+1
= ηρi

p
k′i+1

s′
i+1

p
ki
si

,

...

ηρn∗ = ηρn∗−1

p
k′
n∗

s′
n∗

p
kn∗−1
sn∗−1

=
p
k′2
s′2
p
k1
s1

p
k′3
s′3
p
k2
s2

· · ·
p
k′i+1

s′
i+1

p
ki
si

· · ·
p
k′
n∗

s′
n∗

p
kn∗−1
sn∗−1

.

(2)

This defines ηρi for all i = 1, . . . , n∗. Define ηr = 0 for all other rows r. Define y = η ·A.
Let R be the set of all rows in A and define R∗ = {ρi : i = 1, . . . , n∗}.

Claim 2. (i) ys = 0 if s 6∈ {s′1, sn∗} and (ii) ys′1 = ysn∗ = − 1

p
k′1
s′1

+
1

pkn∗sn∗

n∗−1∏
i=1

p
k′i+1

s′i+1

pkisi
.

Proof. Let A(r, s) be the entry of A in row r and column s. First note that for each
ŝ ∈ S,

yŝ =
∑

{r(s,s′,k,k′)∈R}

ηr(s,s′,k,k′)A(r(s, s′, k, k′), ŝ)

=
∑

{r(s,s′,k,k′)∈R∗|s=ŝ or s′=ŝ}

ηr(s,s′,k,k′)A(r(s, s′, k, k′), ŝ),

as ηr = 0 for all r 6∈ R.

First we show that yŝ = 0 if ŝ 6= si and ŝ 6= s′i for all i = 1, . . . , n∗. By the definition
of A, A(r(s, s′, k, k′), ŝ) = 0 if s 6= ŝ and s′ 6= ŝ. Therefore, if ŝ 6= si and ŝ 6= s′i for all
i = 1, . . . , n∗, then yŝ = 0.
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Note that s1 = s′2 and that

ys′2 = ys1 = ηr1
1

pk1s1
− ηr2

1

p
k′2
s′2

=
1

pk1s1
−
p
k′2
s′2

pk1s1

1

p
k′2
s′2

= 0.

Similarly, s2 = s′3 and

ys′3 = ys2 =
ηr2
pk2s2
− ηr3

p
k′3
s′3

= ηr2

 1

pk2s2
−
p
k′3
s′3

pk2s2

1

p
k′3
s′3

 = 0;

and so on: si = s′i+1 and

ys′i+1
= ysi =

ηri
pkisi
−
ηri+1

p
k′i+1

s′i+1

= ηri

 1

pkisi
−
p
k′i+1

s′i+1

pkisi

1

p
k′i+1

s′i+1

 = 0;

Continuing in this fashion, we obtain that ys = 0 for all s 6= s1.

Finally, we obtain the following:

ysn∗ = ys′1 = −ηr1
p
k′1
s′1

+
ηrn∗

pkn∗sn∗

= − 1

p
k′1
s′1

+
1

pkn∗sn∗

n∗−1∏
i=1

p
k′i+1

s′i+1

pkisi

�

Claim 3. ys′1 < 0

Proof. Suppose, towards a contradiction, that ys′1 ≥ 0. By Claim 2, ys = 0 for all s 6= s′1.
Hence, y ≥ 0. Note that by construction, if ηr > 0, then θr > 0. Let

δ = min
r∈R

{
θr
ηr

: ηr > 0

}
;

let θ′ = θ− δη. Observe that θ ≥ θ′ ≥ 0 and that θ′ ·A = θ ·A− δy < 0, as θ ·A < 0 and
y ≥ 0.

However, θ ≥ θ′, and there is at least one row r for which θ′r = 0 and θr > 0, so

{r : θ′r > 0} ⊂ {r : θr > 0};

a contradiction of how we chose θ. �

Claim 4. There exists a sequence (xkisi , x
k′i
s′i

)n
∗
i=1 that satisfies conditions (1) and (2) in

Axiom 1 but
n∗∏
i=1

pkisi

p
k′i
s′i

> 1.
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Proof. By Claim 3, ys′1 < 0. Then,

1

pkn∗sn∗

n∗−1∏
i=1

p
k′i+1

s′i+1

pkisi
<

1

p
k′1
s′1

So,

1 <
pkn∗sn∗

p
k′1
s′1

n∗−1∏
i=1

pkisi

p
k′i+1

s′i+1

=
n∗∏
i=1

pkisi

p
k′i
s′i

.

7 Proof of Theorem 2

The proof is based on using the first-order conditions for maximizing a utility with the
SEU model over a budget set. Our first lemma ensures that we can without loss of
generality restrict attention to first order conditions. The proof of the lemma is a matter
of routine.

Lemma 3. Let (xk, pk)Kk=1 be a dataset. The following statements are equivalent:

1. (xk, pk)Kk=1 is SEU rational.

2. (xk, pk)Kk=1 is SEU rational with a continuously differentiable, strictly increasing and
concave utility function.

3. There are strictly positive numbers vks , λk, µs, for s = 1, . . . , S and k = 1, . . . , K,
such that

µsv
k
s = λkpks

xks > xk
′

s′ ⇒ vks < vk
′

s′ .

Proof. That (2) implies (3) is immediate from the first-order conditions for maximizing
a utility of the SEU model. We shall prove that (1) implies (2). Let (xk, pk)Kk=1 be SEU
rational. Let µ ∈ RS

++ and u : R+ → R be as in the definition of SEU rational data.
Then (see, for example, Theorem 28.3 of Rockafellar (1997)), there are numbers λk ≥ 0,
k = 1, . . . , K such that

vks =
λkpks
µs
∈ ∂u(xks),

for s = 1, . . . , S and k = 1, . . . , K. In fact, it is easy to see that λk > 0, and therefore
vks > 0.

Enumerate elements in X in increasing order:

x
k(1)
s(1) < x

k(2)
s(2) < . . . < x

k(n)
s(n) .

Note that it may be that s(i) = s(j) or k(i) = k(j) for some i 6= j.

12



Let zi = (x
k(i)
s(i) + x

k(i+1)
s(i+1))/2, i = 1, . . . , n − 1; z0 = 0, and zn = x

k(n)
s(n) + 1. Let

f : R++ → R++ be defined as

f(z) =

{
v
k(i)
s(i) if z ∈ (zi−1, zi],

v
k(i)
s(i) (

zn
z2

)2 if z > zn.

Since u is concave, v
k(i)
s(i) ≥ v

k(i+1)
s(i+1) . Therefore f > 0 and f is strictly decreasing. Let ε > 0

be such that
ε ≤ min{zj − xk(i)s(i) : i, j = 1 . . . , n}.

Note that f is constant and equal to vkisi on any interval (xkisi − ε, x
ki
si

+ ε).

Let ψ : R → R be an infinitely differentiable function such that (a) ψ(x) ≥ 0 for
every x ∈ R; (b) ψ(x) = 0 when |x| ≥ ε, and (c)

∫
R
ψ = 1. (A mollifier .) For example,

we can choose

ψ(x) =

{
1
C
e−1/(1−(x/ε)

2), if |x| < ε

0 otherwise,

for a suitable normalizing factor C.

Finally, define the function u∗ : R+ → R by

u∗(x) =

∫
R

f(x− y)ψ(y)dy.

Then it follows from standard arguments that u∗ is continuously differentiable, strictly
increasing, and concave.

Since f is constant and equal to vkisi on (xkisi − ε, x
ki
si

+ ε), the derivative at xks is

Du∗(xks) =

∫ ε

−ε
f ′(x− y)ψ(y)dy =

∫ ε

−ε
vksψ(y)dy = vks ,

so that xks satisfies the first order condition for maximizing

S∑
s=1

µsu
∗(xs)

over the budget set {y ∈ RS
+ : pk · y ≤ pk ·xk}. Hence µ and u∗ SEU rationalize the data.

Finally, we prove that (3) implies (2). The proof is analogous to the proof that (1)
implies (2). Given numbers vks , λk and µs as in (3), let µ′s = µs/

∑
ŝ µŝ and θk = λk/

∑
ŝ µŝ.

We obtain that µ′sv
k
s = θkpks . Define f from vks as above. Then f > 0 and f is strictly

decreasing. Defining u∗(x) =
∫ x
−∞ f(t)dt as above ensures that µ′ and u∗ SEU rationalize

the data.

Obviously (2) implies (1).
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7.1 Necessity

Lemma 4. If a dataset (xk, pk)kk=1 is SEU rational, then it satisfies Axiom 2

Proof. By Lemma 3, if a dataset is SEU rational then there is a continuously differentiable
and concave rationalization u and a strictly positive solution vks , λk, µs to the system in

Statement (3) of Lemma 3 with u′(xks) = vks . Let (xkisi , x
k′i
s′i

)ni=1 be a sequence satisfying

the three conditions in Axiom 2. Then xkisi > x
k′i
s′i

, so

1 ≥
u′(xkisi )

u′(x
k′i
s′i

)
=
λkiµs′ip

ki
si

λk
′
iµsip

k′i
s′i

.

Thus,

1 ≥
n∏
i=1

u′(xkisi )

u′(x
k′i
s′i

)
=

n∏
i=1

λkiµs′ip
ki
si

λk
′
iµsip

k′i
s′i

=
n∏
i=1

pkisi

p
k′i
s′i

,

as the sequence satisfies (2) and (3) of Axiom 2; and hence the numbers λk and µs appear
the same number of times in the denominator as in the numerator of this product.

7.2 Sufficiency

We proceed to prove the sufficiency direction. Sufficiency follows from the following
lemmas. We know from Lemma 3 that it suffices to find a solution to the first order
conditions. Lemma 5 establishes that Axiom 2 is sufficient when the logarithms of the
prices are rational numbers. The role of rational logarithms comes from our use of a
version of Farkas’s Lemma. Lemma 6 says that we can approximate any data satisfying
Axiom 2 with a dataset for which the logs of prices are rational and for which Axiom 2 is
satisfied. Finally, Lemma 7 establishes the result. It is worth mentioning that we cannot
use Lemma 6 and an approximate solution to obtain a limiting solution.

Lemma 5. Let data (xk, pk)kk=1 satisfy Axiom 2. Suppose that log(pks) ∈ Q for all k and
s. Then there are numbers vks , λk, µs, for s = 1, . . . , S and k = 1, . . . , K satisfying (3)
in Lemma 3.

Lemma 6. Let data (xk, pk)kk=1 satisfy Axiom 2. Then for all positive numbers ε, there
exists qks ∈ [pks − ε, pks ] for all s ∈ S and k ∈ K such that log qks ∈ Q and the data
(xk, qk)kk=1 satisfy Axiom 2.

Lemma 7. Let data (xk, pk)kk=1 satisfy Axiom 2. Then there are numbers vks , λk, µs, for
s = 1, . . . , S and k = 1, . . . , K satisfying (3) in Lemma 3.

To prove Lemmas 5 and 7, we use Lemma 1 and the following lemma.

Lemma 8. Let A be an m× n matrix, B be an l× n matrix, and E be an r× n matrix.
Suppose that the entries of the matrices A, B, and E are rational numbers. Exactly one
of the following alternatives is true.
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1. There is u ∈ Rn such that A · u = 0, B · u ≥ 0, and E · u� 0.

2. There is θ ∈ Qr, η ∈ Ql, and π ∈ Qm such that θ ·A+ η ·B+ π ·E = 0; θ > 0 and
η ≥ 0.

Lemma 8 follows from Lemma 1: see Border (2013) or Chambers and Echenique
(2011).

7.2.1 Proof of Lemma 5

We linearize the equation in System (3) of Lemma 3. The result is:

log vks + log µs − log λk − log pks = 0, (3)

xks > xk
′

s′ ⇒ log vks ≤ log vk
′

s′ (4)

In the system comprised by (3) and (4), the unknowns are the real numbers log vks ,
log µs, log λk, k = 1, . . . , K and s = 1, . . . , S.

First, we are going to write the system of inequalities (3) and (4) in matrix form.

A system of linear inequalities

We shall define a matrix A such that there are positive numbers vks , λk, µs the logs
of which satisfy Equation (3) if and only if there is a solution u ∈ RK×S+K+S+1 to the
system of equations

A · u = 0,

and for which the last component of u is strictly positive.

Let A be a matrix with K×S rows and K×S+S+K+1 columns, defined as follows:
We have one row for every pair (k, s); one column for every pair (k, s); one column for
each k; one column for every s; and one last column. In the row corresponding to (k, s)
the matrix has zeroes everywhere with the following exceptions: it has a 1 in the column
for (k, s); it has a 1 in the column for s; it has a −1 in the column for k; and − log pks in
the very last column.

Matrix A looks as follows:



(1,1) ··· (k,s) ··· (K,S) 1 ··· s ··· S 1 ··· k ··· K p

(1,1) 1 · · · 0 · · · 0 1 · · · 0 · · · 0 −1 · · · 0 · · · 0 − log p11
...

...
...

...
...

...
...

...
...

...
...

(k,s) 0 · · · 1 · · · 0 0 · · · 1 · · · 0 0 · · · −1 · · · 0 − log pks
...

...
...

...
...

...
...

...
...

...
...

(K,S) 0 · · · 0 · · · 1 0 · · · 0 · · · 1 0 · · · 0 · · · −1 − log pKS



Consider the system A · u = 0. If there are numbers solving Equation (3), then these
define a solution u ∈ RK×S+S+K+1 for which the last component is 1. If, on the other

15



hand, there is a solution u ∈ RK×S+S+K+1 to the system A · u = 0 in which the last
component is strictly positive, then by dividing through by the last component of u we
obtain numbers that solve Equation (3).

In second place, we write the system of inequalities (4) in matrix form. Let B be a
matrix B with |X |(|X |−1)/2 rows and K×S+S+K+ 1 columns. Define B as follows:
One row for every pair x, x′ ∈ X with x > x′; in the row corresponding to x, x′ ∈ X
with x > x′ we have zeroes everywhere with the exception of a −1 in the column for
(k, s) such that x = xks and a 1 in the column for (k′, s′) such that x′ = xk

′

s′ . These define
|X |(|X | − 1)/2 rows.

In third place, we have a matrix E that captures the requirement that the last compo-
nent of a solution be strictly positive. The matrix E has a single row and K×S+S+K+1
columns. It has zeroes everywhere except for 1 in the last column.

To sum up, there is a solution to system (3) and (4) if and only if there is a vector
u ∈ RK×S+S+K+1 that solves the system of equations and linear inequalities

S1 :


A · u = 0,

B · u ≥ 0,

E · u� 0.

Note that E · u is a scalar, so the last inequality is the same as E · u > 0.

Theorem of the Alternative

The entries of A, B, and E are either 0, 1 or −1, with the exception of the last column
of A. Under the hypothesis of the lemma we are proving, the last column consists of
rational numbers. By Lemma 8, then, there is such a solution u to S1 if and only if
there is no vector (θ, η, π) ∈ QK×S+(|X |(|X |−1)/2)+1 that solves the system of equations and
linear inequalities

S2 :


θ · A+ η ·B + π · E = 0,

η ≥ 0,

π > 0.

In the following, we shall prove that the non-existence of a solution u implies that
the data must violate Axiom 2. Suppose then that there is no solution u and let (θ, η, π)
be a rational vector as above, solving system S2.

By multiplying (θ, η, π) by any positive integer we obtain new vectors that solve S2,
so we can take (θ, η, π) to be integer vectors.

Henceforth, we use the following notational convention: For a matrix D with K ×
S+S+K+1 columns, write D1 for the submatrix of D corresponding to the first K×S

16



columns; let D2 be the submatrix corresponding to the following S columns; D3 corre-
spond to the next K columns; and D4 to the last column. Thus, D = [D1 D2 D3 D4 ].

Claim 5. (i) θ ·A1 +η ·B1 = 0; (ii) θ ·A2 = 0; (iii) θ ·A3 = 0; and (iv) θ ·A4 +π ·E4 = 0.

Proof. Since θ ·A+ η ·B + π ·E = 0, then θ ·Ai + η ·Bi + π ·Ei = 0 for all i = 1, . . . , 4.
Moreover, since B2, B3, B4, E1, E2, and E3 are zero matrices, we obtain the claim. �

For convenience, we transform the matrices A and B using θ and η.

Transform the matrices A and B

Lets define a matrix A∗ from A by letting A∗ have the same number of columns as A
and including

1. θr copies of the rth row when θr > 0;

2. omitting row r when θr = 0;

3. and θr copies of the rth row multiplied by −1 when θr < 0.

We refer to rows that are copies of some r with θr > 0 as original rows, and to those
that are copies of some r with θr < 0 as converted rows.

Similarly, we define the matrix B∗ from B by including the same columns as B and
ηr copies of each row (and thus omitting row r when ηr = 0; recall that ηr ≥ 0 for all r).

Claim 6. For any (k, s), all the entries in the column for (k, s) in A∗1 are of the same
sign.

Proof. By definition of A, the column for (k, s) will have zero in all its entries with the
exception of the row for (k, s). In A∗, for each (k, s), there are three mutually exclusive
possibilities: the row for (k, s) in A can (i) not appear in A∗, (ii) it can appear as original,
or (iii) it can appear as converted. This shows the claim.

Claim 7. There exists a sequence of pairs (xkisi , x
k′i
s′i

)n
∗
i=1 that satisfies (1) in Axiom 2.

Proof. We define such a sequence by induction. Let B1 = B∗. Given Bi, define Bi+1 as
follows.

Denote by >i the binary relation on X defined by z >i z′ if z > z′ and there is at
least one copy of the row corresponding to z > z′ in Bi. The binary relation >i cannot
exhibit cycles because >i⊆>. There is therefore at least one sequence zi1, . . . z

i
Li

in X
such that zij >

i zij+1 for all j = 1, . . . , Li−1 and with the property that there is no z ∈ X
with z >i zi1 or ziLi

>i z.

Let the matrix Bi+1 be defined as the matrix obtained from Bi by omitting one copy
of the row corresponding to zij > zij+1, for all j = 1, . . . Li − 1.
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The matrix Bi+1 has strictly fewer rows than Bi. There is therefore n∗ for which
Bn∗+1 would have no rows. The matrix Bn∗ has rows, and the procedure of omitting
rows from Bn∗ will remove all rows of Bn∗ .

Define a sequence of pairs (xkisi , x
k′i
s′i

)n
∗
i=1 by letting xkisi = zi1 and x

k′i
s′i

= ziLi
. Note that, as

a result, xkisi > x
k′i
s′i

for all i. Therefore the sequence of pairs (xkisi , x
k′i
s′i

)n
∗
i=1 satisfies condition

(1) in Axiom 2. �

We shall use the sequence of pairs (xkisi , x
k′i
s′i

)n
∗
i=1 as our candidate violation of Axiom 2.

Consider a sequence of matrices Ai, i = 1, . . . , n∗ defined as follows. Let A1 = A∗,
and

C1 =

[
A1

B1

]
.

Observe that the rows of C1 add to the null vector by Claim 5.

We shall proceed by induction. Suppose that Ai has been defined, and that the rows
of

Ci =

[
Ai

Bi

]
add to the null vector.

Recall the definition of the sequence

xkisi = zi1 > . . . > ziLi
= x

k′i
s′i
.

There is no z ∈ X with z >i zi1 or ziLi
>i z, so in order for the rows of Ci to add to zero

there must be a −1 in Ai1 in the column corresponding to (k′i, s
′
i) and a 1 in Ai1 in the

column corresponding to (ki, si). Let ri be a row in Ai corresponding to (ki, si), and r′i be
a row corresponding to (k′i, s

′
i). The existence of a −1 in Ai1 in the column corresponding

to (k′i, s
′
i), and a 1 in Ai1 in the column corresponding to (ki, si), ensures that ri and r′i

exist. Note that the row r′i is a converted row while ri is original. Let Ai+1 be defined
from Ai by deleting the two rows, ri and r′i.

Claim 8. The sum of ri, r
′
i, and the rows of Bi which are deleted when forming Bi+1

(corresponding to the pairs zij > zij+1, j = 1, . . . , Li − 1) add to the null vector.

Proof. Recall that zij >
i zij+1 for all j = 1, . . . , Li − 1. So when we add the rows corre-

sponding to zij >
i zij+1 and zij+1 >

i zij+2, then the entries in the column for (k, s) with
xks = zij+1 cancel out and the sum is zero in that entry. Thus, when we add the rows
of Bi that are not in Bi+1 we obtain a vector that is 0 everywhere except the columns
corresponding to zi1 and ziLi

. This vector cancels out with ri + r′i, by definition of ri and
′
i. �
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Since the rows of Ci add up to the null vector, and Ai+1 and Bi+1 are obtained from
Ai and Bi by removing a collection of rows that add up to zero, then the rows of Ci+1

must add up to zero as well.

Claim 9. The matrix A∗ can be partitioned into pairs of rows as follows:

A∗ =



r1
r′1
...
ri
r′i
...
rn∗
r′n∗ ,


in which the rows r′i are converted and the rows ri are original.

Proof. For each i, Ai+1 differs from Ai in that the rows ri and r′i are removed from Ai to
form Ai+1. We shall prove that A∗ is composed of the 2n∗ rows ri, r

′
i.

By way of contradiction, suppose that there exist rows left after removing rn∗ and
r′n∗ . Then, by the argument above, the rows of the matrix Cn∗+1 must add to the null
vector. If there are rows left, then the matrix Cn∗+1 is well defined.

By definition of the sequence Bi, however, Bn∗+1 is an empty matrix. Hence, rows
remaining in An

∗+1
1 must add up to zero. By Claim 6, the entries of a column (k, s) of A∗

are always of the same sign. Moreover, each row of A∗ has a non-zero element in the first
K×S columns. Therefore, no subset of the columns of A∗1 can sum to the null vector. �

Claim 10. (i) For any k and s, if xkisi = xks for some i, then the row ri corresponding

to (k, s) appears as original in A∗. Similarly, if x
k′i
s′i

= xks for some i, then the row

corresponding to (k, s) appears converted in A∗.
(ii) If the row corresponding to (k, s) appears as original in A∗, then there is some i with
xkisi = xks . Similarly, if the row corresponding to (k, s) appears converted in A∗, then there

is i with x
k′i
s′i

= xks .

Proof. (i) is true by definition of (xkisi , x
k′i
s′i

). (ii) is immediate from Claim 9 because if the

row corresponding to (k, s) appears original in A∗ then it equals ri for some i, and then
xks = xkisi . Similarly when the row appears converted. �

Claim 11. The sequence (xkisi , x
k′i
s′i

)n
∗
i=1 satisfies (2) and (3) in Axiom 2.

Proof. By Claim 5 (ii), the rows of A∗2 add up to zero. Therefore, the number of times
that s appears in an original row equals the number of times that it appears in a converted
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row. By Claim 10, then, the number of times s appears as si equals the number of times
it appears as s′i. Therefore condition (2) in the axiom is satisfied.

Similarly, by Claim 5 (iii), the rows of A∗3 add to the null vector. Therefore, the num-
ber of times that a state k appears in an original row equals the number of times that it
appears in a converted row. By Claim 10, then, the number of times that k appears as
ki equals the number of times it appears as k′i. Therefore condition (3) in the axiom is
satisfied. �

Finally, in the following, we show that

n∗∏
i=1

pkisi

p
k′i
s′i

> 1,

which finishes the proof of Lemma 5 as the sequence (xkisi , x
k′i
s′i

)n
∗
i=1 would then exhibit a

violation of Axiom 2.

Claim 12.
∏n∗

i=1

p
ki
si

p
k′
i

s′
i

> 1.

Proof. By Claim 5 (iv) and the fact that the submatrix E4 equals the scalar 1, we obtain

0 = θ · A4 + πE4 = (
n∗∑
i=1

(ri + r′i))4 + π,

where (
∑n∗

i=1(ri + r′i))4 is the (scalar) sum of the entries of A∗4. Recall that − log pkisi is

the last entry of row ri and that log p
k′i
s′i

is the last entry of row r′i, as r′i is converted and

ri original. Therefore the sum of the rows of A∗4 are
∑n∗

i=1 log(p
k′i
s′i
/pkisi ). Then,

n∗∑
i=1

log(p
k′i
s′i
/pkisi ) = −π < 0.

Thus
n∗∏
i=1

pkisi

p
k′i
s′i

> 1.

�

7.2.2 Proof of Lemma 6

For each sequence σ = (xkisi , x
k′i
s′i

)ni=1 that satisfies conditions (1), (2), and (3) in Axiom 2,

and each pair xks > xk
′

s′ , define tσ(xks , x
k′

s′ ) to be the number of times the pair (xks , x
k′

s′ )
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appears in the sequence σ. Note that tσ is a KS(K−1)(S−1)
2

-dimensional non-negative
integer vector. Define

T =
{
tσ ∈ N

KS(K−1)(S−1)
2 |σ satisfies (1), (2), (3) in Axiom 2

}
.

The set T depends only on (xk)Kk=1 in the data set (xk, pk)Kk=1.

For each pair xks > xk
′

s′ , define

δ̂(xks , x
k′

s′ ) = log
pks
pk
′
s′
.

Then, δ̂ is a KS(K−1)(S−1)
2

-dimensional real-valued vector.

If σ = (xkisi , x
k′i
s′i

)ni=1, then

δ̂ · tσ =
∑

(xks ,x
k′
s′ )∈σ

δ̂(xks , x
k′

s′ )tσ(xks , x
k′

s′ ) = log
( n∏
i=1

pkisi

p
k′i
s′i

)
.

So the data satisfy Axiom 2 if and only if t · δ̂ ≤ 0 for all t ∈ T .

Enumerate elements in X in increasing order:

x
k(1)
s(1) < x

k(2)
s(2) < · · · < x

k(N)
s(N) .

Fix arbitrary numbers ξ, ξ̄ ∈ (0, 1) with ξ < ξ̄. Due to the denseness of the rational
numbers, and the continuity of the exponential function, there exists a positive number
ε(1) such that log(p

k(1)
s(1)ε(1)) ∈ Q and ξ < ε(1) < 1; Given ε(1), there exists a positive

ε(2) such that log(p
k(2)
s(2)ε(2)) ∈ Q and ξ < ε(2) and ε(2)/ε(1) < ξ̄. More generally, when

ε(n) has been defined, let ε(n+1) > 0 be such that log(p
k(n+1)
s(n+1)ε(n+1)) ∈ Q, ξ < ε(n+1)

and ε(n+ 1)/ε(n) < ξ̄.

In this way have defined (ε(n))Nn=1. Let qks = pksε(n). The claim is that the data
(xk, qk)Kk=1 satisfy Axiom 2. Let δ∗ be defined from (qk)Kk=1 in the same manner as δ̂ was
defined from (pk)Kk=1.

For each pair xks > xk
′

s′ , if n and m are such that xks = x
k(n)
s(n) and xk

′

s′ = x
k(m)
s(m) , then

n > m. By definition of ε, ε(n)/ε(m) < ξ̄ < 1. Hence,

δ∗(xks , x
k′

s′ ) = log
pksε(n)

pk
′
s′ ε(m)

< log
pks
pk
′
s′

+ log ξ̄ < log
pks
pk
′
s′

= δ̂(xks , x
k′

s′ ).

Thus, for all t ∈ T ,
δ∗ · t ≤ δ̂ · t ≤ 0,

as t ≥ 0 and the data (xk, pk)Kk=1 satisfy Axiom 2. Thus the data (xk, qk)Kk=1 satisfy
Axiom 2.

Note that ξ < ε(n) for all n. So that by choosing ξ close enough to 1 we can take the

prices (qk) to be as close to (pk) as desired.
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7.2.3 Proof of Lemma 7

Consider the system comprised by (3) and (4) in the proof of Lemma 5. Let A, B, and
E be constructed from the data as in the proof of Lemma 5. The difference with respect
to Lemma 5 is that now the entries of A4 may not be rational. Note that the entries of
E, B, and Ai, i = 1, 2, 3 are rational.

Suppose, towards a contradiction, that there is no solution to the system comprised
by (3) and (4). Then, by the argument in the proof of Lemma 5 there is no solution to
System S1. By Lemma 1 with F = R, there is a real vector (θ, η, π) such that

θ · A+ η ·B + π · E = 0 and η ≥ 0, π > 0.

Recall that B4 = 0 and E4 = 1, so we obtain that θ · A4 + π = 0.

Let (qk)Kk=1 be vectors of prices such that the dataset (xk, qk)Kk=1 satisfies Axiom 2 and
log qks ∈ Q for all k and s. (Such (qk)Kk=1 exists by Lemma 6.) Construct matrices A′,
B′, and E ′ from this dataset in the same way as A, B, and E is constructed in the proof
of Lemma 5. Note that only the prices are different in (xk, qk) compared to (xk, pk). So
E ′ = E, B′ = B and A′i = Ai for i = 1, 2, 3. Since only prices qk are different in this
dataset, only A′4 may be different from A4.

By Lemma 6, we can choose prices qk such that |θ · A′4 − θ · A4| < π/2. We have
shown that θ · A4 = −π, so the choice of prices qk guarantees that θ · A′4 < 0. Let
π′ = −θ · A′4 > 0.

Note that θ · A′i + η · B′i + π′Ei = 0 for i = 1, 2, 3, as (θ, η, π) solves system S2 for
matrices A, B and E, and A′i = Ai, B

′
i = Bi and Ei = 0 for i = 1, 2, 3. Finally, B4 = 0

so
θ · A′4 + η ·B′4 + π′E4 = θ · A′4 + π′ = 0.

We also have that η ≥ 0 and π′ > 0. Therefore θ, η, and π′ constitute a solution S2 for
matrices A′, B′, and E ′.

By Lemma 1 we know then that there is no solution to S1 for matrices A′, B′,
and E ′, so there is no solution to the system comprised by (3) and (4) in the proof of
Lemma 5. However, this contradicts Lemma 5 because the data (xk, qk) satisfies Axiom 2
and log qks ∈ Q for all k = 1, . . . K and s = 1, . . . , S.

8 Proof of Theorem 3

The second statement in the theorem follows from Lemma 3 and the proof of Lemma 4.
We proceed to prove the first statement in the theorem. Assume then that (xk, pk)Kk=1 is
a dataset that satisfies Axiom 2.
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Recall that X = {xks : k = 1, . . . , K, s = 1, . . . , S}. Let ε > 0 be s.t.

ε < min{|x− x′| : x, x′ ∈ X , x 6= x′}.

Let α(x) = {(k, s) : x = xks} for x ∈ X .

We shall define a new dataset for which consumptions are not equal, but that still
satisfies Axiom 2. Let (x̂k, pk)Kk=1 be a dataset with the same prices as in (xk, pk)Kk=1; in
which (x̂k)Kk=1 is chosen such that (a) x̂ks 6= x̂k

′

s′ when (k, s) 6= (k′, s′); and (b) for all x ∈ X

|x̂ks − x| < ε,

for all (k, s) ∈ α(x).

Observe that, with this definition of data (x̂k, pk)Kk=1, if x̂ks > x̂k
′

s′ then xks ≥ xk
′

s′ . The
reason is that, either there is x for which (k, s) ∈ α(x) and (k′, s′) ∈ α(x), in which case
xks ≥ xk

′

s′ because x = xks = xk
′

s′ ; or there is no x and x′, with x 6= x′, in which (k, s) ∈ α(x)
and (k′, s′) ∈ α(x′), which implies that x > x′ and thus that xks > xk

′

s′ .

With this definition of data, if (x̂kisi , x̂
k′i
s′i

)ni=1 is a sequence of pairs from dataset (x̂k, pk)Kk=1

satisfying (1), (2), and (3) in Axiom 2, then (xkisi , x
k′i
s′i

)ni=1 is a sequence of pairs from dataset

(xk, pk)Kk=1 that also satisfies (1), (2), and (3) in Axiom 2. By hypothesis, (xk, pk)Kk=1 sat-
isfy Axiom 2, so (x̂k, pk)Kk=1 satisfy Axiom 2.

Since (x̂k, pk)Kk=1 satisfies that xks 6= xk
′

s′ if (k, s) 6= (k′, s′), and Axiom 2, then Lemma 7
implies that there are strictly positive numbers v̂ks , λk, µs, for s = 1, . . . , S and k =
1, . . . , K, such that

µsv̂
k
s = λkpks

x̂ks > x̂k
′

s′ ⇒ v̂ks < v̂k
′

s′ .

Define the correspondence v′ : X → R+ by

v′(x) =
[
inf{v̂ks (k, s) ∈ α(x)}, sup{v̂ks (k, s) ∈ α(x)}

]
.

Note that if x > x′ then v̂ks < v̂k
′

s′ for all (k, s) ∈ α(x) and all (k′s′) ∈ α(x′). So as a result
of the definition of v′, if x > x′ then sup v′(x) < inf v′(x′).

Let v : R+ → R+ be

v(x) = {inf v′(x̃) : x̃ ∈ X , x̃ ≤ x}

for x ≥ inf X ; and v(x) = {sup v′(x̃) : x̃ ∈ X} for x < inf X . The correspondence v is
monotone. There is therefore a concave function u : R+ → R such that

∂u(x) = v(x)
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for all x (See Rockafellar (1997)).

In particular, for all x ∈ X and all (k, s) ∈ α(x) we have v̂ks ∈ ∂u(x). Since µsv̂
k
s =

λkpks , we have
λkpks
µs
∈ ∂u(xks).

Hence the first-order conditions for SEU maximization are satisfied at xks .
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