
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

IDENTIFYING TREATMENT EFFECTS UNDER DATA COMBINATION

Yanqin Fan
University of Washington

Robert Sherman
California Institute of Technology

Matthew Shum
California Institute of Technology

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

SOCIAL SCIENCE WORKING PAPER 1377

May 2013



Identifying Treatment Effects under Data Combination∗

Yanqin Fan
U. Washington

Robert Sherman
Caltech

Matthew Shum
Caltech

May 16, 2013

Abstract

We consider the identification of counterfactual distributions and treatment effects when the

outcome variables and conditioning covariates are observed in separate datasets. Under the

standard selection on observables assumption, the counterfactual distributions and treatment

effect parameters are no longer point identified. However, applying the classical monotone re-

arrangement inequality, we derive sharp bounds on the counterfactual distributions and policy

parameters of interest.
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1 Introduction

In this note, we consider how to identify counterfactual distributions and treatment effects when

the outcome variables and the conditioning covariates are observed in separate datasets. The need

to combine variables from separate datasets arises naturally in many policy applications; these

include poverty analysis in which one dataset consists of program participation and the other

consists of demographic attributes, or epidemiological studies in which incidence of the disease and

demographic variables are observed separately.

We consider the identification of counterfactual distributions and treatment effects under the stan-

dard unconfoundedness or selection on observables assumption. It is composed of (i) the conditional

independence assumption —that is, the potential outcomes are jointly independent of the treatment

conditional on a set of observed covariates and (ii) the common support assumption —that is, the

propensity score is strictly between 0 and 1 for all values of the conditioning covariates. When

the treatment outcomes and covariates are observed in a single dataset, it is well-known that the

marginal and counterfactual distributions (and hence the average treatment effects and treatment

effects for the treated) are point-identified. A voluminous literature has explored many aspects of

identification, inference, and computation.1

When outcomes and conditioning covariates are observed in separate datasets, the aforementioned

point identification results break down. Using explicit representations of the marginal and counter-

factual distributions via an inverse propensity-score reweighting of the data and a continuous ver-

sion of the classical monotone rearrangement inequality (see Hardy, Littlewood, and Polya (1934);

Cambanis, Simons, and Stout (1976)), we obtain sharp bounds on the marginal and counterfac-

tual distributions and policy parameters of interest, including average treatment effects (ATE) and

average effects of treatment on the treated (ATT).

Recent work in the treatment effects literature have made use of the result in Cambanis, Simons,

and Stout (1976) and inequalities bounding the distribution functions of a sum or difference between

two random variables with fixed marginals in e.g., Frank, Nelsen, and Schweizer (1987) to evaluate

distributional treatment effect parameters that depend on the joint distribution of the potential

outcomes (such as the probability of a positive individual treatment effect and the median of

the distribution of the individual treatment effect for the treated). They include Fan and Park

(2009, 2010, 2012), Firpo and Ridder (2009), Heckman, Smith, and Clements (1997), and Fan and

Zhu (2009) who adopt the selection-on-observables assumption; and Fan and Wu (2010) which

1See, for example, Horvitz and Thompson (1952), Rosenbaum and Rubin (1983a, b), Hahn (1998), Heckman,

Ichimura, Smith, and Todd (1998), Dehejia and Wahba (1999), Hirano, Imbens, and Ridder (2000), Chernozhukov,

Fernandez-Val, Melly (2013), Rothe (2010, 2012), Khan and Tamer (2010), and Fortin, Lemieux, and Firpo (2010),

to name only a few.
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considers a class of latent threshold-crossing models. Unlike the current paper, however, these

works assume that outcomes and covariates are observed in the same dataset so that the marginal

and counterfactual marginal distributions are point identified. Extending these results, this paper

establishes bounds on the distributional treatment effect parameters that depend on the joint

distribution of the potential outcomes when the marginals are partially identified.

The literature on data combination is much smaller. Manski (2000; esp. Section 5) considers bounds

for a treatment effect model when the aggregate treatment outcomes and agent demographics are

separately observed.2 Cross and Manski (2002) derive sharp bounds on the “long regression” of

a dependent variable Y on two sets of discrete covariates Z1 and Z2, when only the conditional

distributions of Y |Z1 and Z2|Z1 are identified from separate datasets. Ridder and Moffi tt (2007;

section 3.1) discuss the use of the Frechet-Hoeffding inequality in data combination contexts.3

Hoderlein and Stoye (2009) use the Frechet-Hoeffding inequality to bound violations of the revealed-

preference axioms in a repeated cross-section context. Our main contribution here is to combine

insights from the treatment effects literature with the monotone rearrangement inequality to obtain

identification results for counterfactual distributions and treatment effects under data combination.

The rest of this paper is organized as follows. Section 2 introduces the modelling framework, some

examples, and the unconfoundedness assumption. In Section 3, we present the main identification

results. Section 4 concludes. Throughout the rest of this paper, we use FA|B (·|b) and fA|B (·|b)
to denote the distribution function and density function of the random variable A conditional on

B = b. For a distribution function F , we use F−1 (·) to denote its quantile function.

2 The Modelling Framework and Assumptions

We now describe our treatment effects model, which follows closely the “potential outcomes”ap-

proach of Rubin (1974). We let D ∈ {0, 1} denote the two states of a binary treatment4 and
let YD denote the corresponding outcome variable of interest for D = 0, 1. Y0 and Y1 are con-

sidered “potential outcomes”; that is, each individual agent has treatment and control outcomes

Y1 and Y0. However, only one of these outcomes is observed. That is, his observed outcome is

Y ≡ Y1D + Y0(1 − D). Let Z denote additional conditioning covariates (typically demographic

variables) which can affect both treatment as well as potential outcomes.

2The ecological inference literature also considers the partial identification problem when combining aggregate and

individual-level data (e.g., Glynn and Wakefield (2010)). The two-sample IV literature has considered instrumental

variables models in which the outcome and the endogenous variables are observed in separate datasets (e.g., Angrist

and Krueger (1992), Inoue and Solon (2010)).
3For a reference on Frechet-Hoeffding inequalities, see Joe (1997).
4As in the examples below, these treatments can be policy interventions as well as different time periods.
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As a departure from the existing literature, we assume that the variables (Y,D,Z) are not observed

in a single dataset. Instead, we observe two separate datasets: (i) the outcome dataset contains

(Y,D), while (ii) the demographics dataset contains (Z,D). We introduce several examples below.

Example A: Long-run returns to college attendance. This data problem arises naturally in

situations when the outcome of interest is a long-run outcome which is not available immediately

following the treatment. For example, consider the effect of college attendance on lifetime earnings,

for which there is a very large existing empirical literature. Typically, long panels, like the PSID

or NLSY, are used to assess the long-run returns to college. But recent papers using the National

Longitudinal Survey of Adolescent Health (“Addhealth”) dataset, which is a repeated cross-section

of high school students, have uncovered many rich determinants of college attendance, including

parental, classroom, and even genetic factors which are not measured in other datasets (see, for

example, Shanahan et. al. (2008)).

In this example Y denotes long-run earnings, observed in the PSID, while Z denotes specific

determinants of college attendance, such as whether friends go to college, measures of parental

attention, also genetic factors, which are only observed in Addhealth. The treatment variable

D ∈ {0, 1} indicates whether a student attended college, and is observed in both the PSID and

Addhealth. �

Example B: Tax payments across household types. For answering questions about tax

incidence, datasets of individual tax returns are available. But tax returns contain very little de-

mographic information on the taxpayers. For instance, one may wish to examine how tax payments

vary across household types —single households, couples without children, and households with chil-

dren. Tax payments and household type are observed from tax returns, but other demographic

and labor market variables which are related to both tax payments and household type, such as

years of education, occupational sector and hours of work, are available in labor market datasets

such as the Current Population Survey. In this example Y denotes tax payments, D indexes the

different household types, and Z are these additional demographic variables not observable from

tax returns. �

Example C: Changes in wage distribution across time. This example is drawn from Di-

Nardo, Fortin, and Lemieux (1996). Here D is a binary indicator for two different years: D = 0

for the baseline year 1988, and D = 1 for the counterfactual year 1979. YD denotes wages in

year D, and DiNardo, Fortin and Lemieux focus on estimating fY0|D(·|1), which they interpret as

the counterfactual density of wages “if individual attributes had remained at their 1979 levels and

workers had been paid according to the wage schedule observed in 1988”. In this example, Z would

be additional covariates which affect wages. In the case when the Z variables are observed in a

dataset (e.g. US Census data) separately from wages, then the results in this paper can be used to
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bound the counterfactual wage distributions.5 �

Next, we introduce the unconfoundedness or selection on observables assumption. It is composed

of two conditions. The first corresponds to the conditional independence assumption, while the

second is an assumption about the support of the propensity score.6

(C1) Let (Y1, Y0, D, Z) have a joint distribution. For all z ∈ Z (the support of Z), (Y1, Y0) is

jointly independent of D conditional on Z = z.

(C2) For all z ∈ Z, 0 < p(z) < 1, 0 < p1 < 1, where p(z) = Pr (D = 1|Z = z) and pd = Pr (D = d)

for d = 1, 0.

The usual approach. When (Y,D,Z) are all observed in a single dataset (so that there is no

need for data combination), it is well known that under (C1) and (C2), the marginal distributions

FY1(y), FY0(y) and the counterfactual distribution function FY0|D (y|1) are identified. Specifically,

FY0|D (y|1) is identified through

FY0|D(y|1) =

∫
FY0|Z,D(y|z, 1)dFZ|D(z|1) =

∫
FY0|Z,D(y|z, 0)dFZ|D(z|1) (2.1)

in which the second equality holds under (C1). FY1(y) and FY0(y) are identified through

FYd(y) =

∫
FYd|Z(y|z)dFZ(z) =

∫
FYd|Z,D(y|z, d)dFZ(z) for d = 0, 1. (2.2)

Thus parameters that are functionals of FY1|Z(·|z), FY0|Z(·|z), FY0|D (·|1), including the ATE and

ATT, are also identified.

However, when (Y,D) and (Z,D) are observed in separate datasets, we face a fundamental identi-

fication problem: FYd|Z,D(y|z, d) is not point identified from the sample information, so it is easy

to see from (2.1) and (2.2) that FY1|Z(·|z), FY0|Z(·|z), and FY0|D (·|1) are not point identified. To

tackle this problem, we make use of the alternative expressions for FY1(y), FY0(y) and FY0|D (y|1)

in terms of inverse propensity-score weighted averages below:

FY1 (y) = E

[
D

p (Z)
I {Y ≤ y}

]
, FY0 (y) = E

[
1−D

1− p (Z)
I {Y ≤ y}

]
, (2.3)

FY0|D (y|1) =
1

p1
E

[
(1−D) p (Z)

1− p (Z)
I {Y ≤ y}

]
. (2.4)

The expectations in Eqs. (2.3) and (2.4) are not point identified from the available data. We

develop sharp bounds on these quantities in the next section.
5Fortin, Lemieux and Firpo (2010) note the formal equivalence between evaluating counterfactual distributions and

evaluating treatment effects under the unconfoundedness assumption (Conditions (C1) and (C2)). See Chernozhukov,

Fernandez-Val, and Melly (2013), and Rothe (2010, 2012) for related work.
6See e.g., Rosenbaum and Rubin (1983a, b), Hahn (1998), Heckman, Ichimura, Smith, and Todd (1998), Dehejia

and Wahba (1999), and Hirano, Imbens, and Ridder (2000), to name only a few.
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3 Identifying Treatment Effects under Data Combination

In this section, we develop sharp bounds for the marginal and counterfactual marginal distributions

of the potential outcomes Y0, Y1 and for functionals of these distributions, including the traditional

program evaluation parameters such as the ATE and ATT. We also demonstrate how sharp bounds

on the marginal and counterfactual maginal distributions can be used to obtain sharp bounds on

distributional treatment effects including the probability of a positive individual treatment effect

and the median of the distribution of the individual treatment effect.

Our main identification results exploit a continous version of the classical monotone rearrangement

inequality in Hardy, Littlewood, and Polya (1934), a special case of Theorem 2 in Cambanis, Simons,

and Stout (1976).7 For convenience, we present it in the next lemma.

Lemma 3.1 (The Cambanis-Simons-Stout inequality). Let S and T denote two random variables

with known marginal distribution functions FS and FT . Assume S and T have finite variances.

Then ∫ 1

0
F−1
S (1− u)F−1

T (u) du ≤ E (ST ) ≤
∫ 1

0
F−1
S (u)F−1

T (u) du.

Without additional information, the bounds are sharp.

It is worth pointing out that the Cambanis-Simons-Stout inequality provides sharp bounds on

E (ST ) when the marginal distributions of S, T are known, while an application of the Cauchy-

Schwartz inequality to E (ST ) in this case leads to bounds that are in general not sharp. Throughout

the rest of this paper, we assume Assumption (I) below holds.

Assumption (I). Let W = 1/p (Z) and V = 1/ [1− p (Z)]. Assume V ar (W ) <∞, V ar (V ) <∞,
and V ar (V/W ) <∞. In addition, let g denote a measurable function such that V ar (g (Yd)) <∞
for d = 1, 0.

3.1 A General Result

Our first series of results establishes sharp bounds on the mean of g(Yd):

7 See also Chernozhukov, Fernandez-Val, and Galichon (2010) for a recent application of monotone rearrangement

to constructing quantile curves without crossing.
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Theorem 3.2. (i) Let µd (g) ≡ E (g (Yd)). Then µLd (g) ≤ µd (g) ≤ µUd (g), for d = 1, 0 and

µL1 (g) = E

[
D

∫ 1

0
F−1
g(Y )|D (1− u|D)F−1

W |D (u|D) du

]
,

µU1 (g) = E

[
D

∫ 1

0
F−1
g(Y )|D (u|D)F−1

W |D (u|D) du

]
,

µL0 (g) = E

[
(1−D)

∫ 1

0
F−1
g(Y )|D (1− u|D)F−1

V |D (u|D) du

]
,

µU0 (g) = E

[
(1−D)

∫ 1

0
F−1
g(Y )|D (u|D)F−1

V |D (u|D) du

]
.

Without additional information, the bounds are sharp.

(ii) Let µd|1 (g) ≡ E (g (Yd) |D = 1). Then µ1|1 (g) is identified: µ1|1 (g) = E (Dg (Y )) /p1 and

µL0|1 (g) ≤ µ0|1 (g) ≤ µU0|1 (g), where

µL0|1 (g) =
1

p1
E

[
(1−D)

∫ 1

0
F−1
g(Y )|D (1− u|D)F−1

V
W
|D (u|D) du

]
,

µU0|1 (g) =
1

p1
E

[
(1−D)

∫ 1

0
F−1
g(Y )|D (u|D)F−1

V
W
|D (u|D) du

]
.

Without additional information, the bounds are sharp.

Proof: Consider µ1 (g). An analogue of Eq. (2.3) gives us an expression for µ1 (g) in terms of the

variables (Y,D,Z), but we cannot compute this because we do not observe the joint distribution

(Y,D,Z), but only the two separate distributions of (Y,D) and (D,Z). The dataset on (D,Z)

allows us to identify the propensity score p(z). Then, rearranging the expression, we get

µ1 (g) = E

[
D

p (Z)
g (Y )

]
= E (Dg (Y )W ) = E (DE [g (Y )W |D]) .

The rightmost quantity here contains the term E [g (Y )W |D], which is the (conditional) expectation

of a product of two random variables g (Y ) andW , which are observed in different datasets, so that

the expectation cannot be computed feasibly. However, we can apply Lemma 3.1 to obtain bounds

on the expectation of their product. This leads to the bounds for µ1 (g) in part (i) of Theorem 3.2.

Similarly, by using the expression: µ0 (g) = E
[

1−D
1−p(Z)g (Y )

]
, we obtain the bounds for µ0 (g) in part

(i). For part (ii), noting that V/W = p (Z) / [1− p (Z)], we get: p1µ0|1 (g) = E
[
(1−D)

(
V
W

)
g (Y )

]
and the bounds in part (ii).

The bounds for µ1 (g) are sharp, in that there exist distributions of (D,Y,W ) which attain these

bounds. In fact, the upper bound on µ1 (g) is achieved when, conditional on D, (g (Y ) ,W ) are

perfectly positively dependent on each other; the lower bound is achieved when, conditional on D,

(g (Y ) ,W ) are perfectly negatively dependent on each other. Analogously, the upper bound on
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µ0 (g) is achieved when conditional on D, (g (Y ) , V ) are perfectly positively dependent on each

other and the lower bound is achieved when conditional on D, (g (Y ) , V ) are perfectly negatively

dependent on each other.

We note that µL1 (g) and µU1 (g) are identified from the sample information, as Fg(Y )|D (·|d) is

identified from the first dataset, FW |D (·|d)
(
FV |D (·|d)

)
is identified from the second dataset, and

the expectation in the expressions for µL1 (g) and µU1 (g) can be identified from either dataset (or

both).

3.2 Counterfactual Distributions and Treatment Effects

Let ∆ ≡ Y1 − Y0 denote the individual treatment effect. Let µ∆ and µ∆|1 denote, respectively,

the ATE and the ATT, i.e., µ∆ = E (∆) and µ∆|1 = E (∆|D = 1). Bounds on µ∆ and µ∆|1 follow

immediately from Theorem 3.2:

µL1 − µU0 ≤ µ∆ ≤ µU1 − µL0 and (3.1)

1

p1
E [DY ]− µU0|1 ≤ µ∆|1 ≤

1

p1
E [DY ]− µL0|1.

Let g (Yd) = I {Yd ≤ y} in Theorem 3.2. Noting that

F−1
IY |D (u|D) =

{
0 for u ∈ [0, 1− FY |D (y|D))

1 for u ∈ [1− FY |D (y|D) , 1]
,

where IY = I {Y ≤ y}, we obtain bounds for FY1 (y), FY0 (y) in part (i) of Theorem 3.3 below.

Bounds for the counterfactual marginal distribution function FY0|D (y|1) are obtained similarly.

Theorem 3.3. (i) For d = 0, 1, we have: FLd (y) ≤ FYd (y) ≤ FUd (y), where

FL1 (y) = E

[
D

∫ FY |D(y|D)

0
F−1
W |D (u|D) du

]
,

FU1 (y) = E

[
D

∫ 1

1−FY |D(y|D)
F−1
W |D (u|D) du

]
,

FL0 (y) = E

[
(1−D)

∫ FY |D(y|D)

0
F−1
V |D (u|D) du

]
,

FU0 (y) = E

[
(1−D)

∫ 1

1−FY |D(y|D)
F−1
V |D (u|D) du

]
.

Without additional information, the bounds are sharp (both pointwise and uniformly).
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(ii) FY1|D (y|1) is identified: FY1|D (y|1) = E [DI {Y ≤ y}] /p1 and FY0|D (y|1) is partially identified:

FL0|D (y|1) ≤ FY0|D (y|1) ≤ FU0|D (y|1) , where

FL0|D (y|1) =
1

p1
E

[
(1−D)

∫ FY |D(y|D)

0
F−1

V
W
|D (u|D) du

]
and

FU0|D (y|1) =
1

p1
E

[
(1−D)

∫ 1

1−FY |D(y|D)
F−1

V
W
|D (u|D) du

]
.

Without additional information, the bounds are sharp (both pointwise and uniformly).

We note that the distribution bounds in Theorem 3.3 are not only pointwise sharp but also uniformly

sharp, i.e., the upper and lower bounds are distribution functions which are attainable for specific

data-generating processes. To see this, consider the bounds on F1 (·). Both FL1 (·) and FU1 (·) are
distribution functions. FL1 (·) is the distribution function of Y1 when conditional on D, IY and W

are perfectly negatively dependent on each other or equivalently Y and W are perfectly positively

dependent on each other; the upper bound FU1 (·) is the distribution function of Y1 when conditional

on D, Y and W are perfectly negatively dependent on each other.

The uniform sharpness of the bounds in Theorem 3.3 allows us to establish sharp bounds on

monotone functionals of the marginal or counterfactual marginal distribution functions. Such

functionals include the quantile treatment effects (QTE) defined as

QTEu = F−1
Y1

(u)− F−1
Y0

(u) and QTEu|1 = F−1
Y1|D (u|1)− F−1

Y0|D (u|1) , u ∈ (0, 1) .

3.3 Distributional Treatment Effects

Under the selection-on-observables assumption, when the outcomes and covariates are observed in

the same dataset, Fan and Park (2009, 2010) have established bounds on the distribution of the

individual treatment effect and the distribution for the treated:

F∆ (δ) = Pr (∆ ≤ δ) and F∆ (δ|D = 1) = Pr (∆ ≤ δ|D = 1) .

These are useful when one is interested in distributional treatment effects such as the probability

of a positive individual treatment effect: either Pr (∆ > 0) or Pr (∆ > 0|D = 1), and the median of

∆. Theorem 3.3 and the lemma below adapted from Frank, Nelsen, and Schweizer (1987) allow us

to establish similar results to Fan and Park (2009, 2010, 2012) in our context.

Lemma 3.4. Let S and T denote two random variables with fixed marginal distribution functions

FS and FT . Further let FS−T (δ) denote the distribution function of (S − T ). Then FLS−T (δ) ≤

9



FS−T (δ) ≤ FUS−T (δ), where

FLS−T (δ) = max

(
sup
y

[FS(y)− FT (y − δ)] , 0
)
,

FUS−T (δ) = 1 + min

(
inf
y

[FS(y)− FT (y − δ)] , 0
)
.

Consider, for instance, the distribution function F∆ (δ|D = 1). From Theorem 3.3 and the condi-

tional version of Lemma 3.4, we have:

FL∆ (δ|D = 1) ≤ F∆ (δ|D = 1) ≤ FU∆ (δ|D = 1) , where

FL∆ (δ|D = 1) = max

(
sup
y

[
FY1|D(y|1)− FU0|D(y − δ|1)

]
, 0

)
,

FU∆ (δ|D = 1) = 1 + min

(
inf
y

[
FY1|D(y|1)− FL0|D(y − δ|1)

]
, 0

)
.

Sharp bounds on the quantile function of F∆ (δ|D = 1) follow directly from sharp bounds on

F∆ (δ|D = 1).

4 Concluding Remarks

We consider the identification of counterfactual distributions and treatment effects when the out-

come variables and conditioning covariates are observed in separate datasets. Even under the selec-

tion on observables assumption, the marginal and counterfactual marginal distributions (hence the

average treatment effect parameters) are no longer point identified, and we utilize the monotone

rearrangement inequality to derive sharp bounds on the counterfactual distribution and policy

parameters of interest. While this note focuses exclusively on identification, a companion paper

(Fan, Sherman, and Shum (2012)) considers inference in these models and includes an empirical

application to predicting counterfactual voting outcomes in US elections.

Extensions of the results in this note to the case that the separate datasets contain a common

covariate X, i.e., one dataset contains observations on (Y,D,X) and the other contains (D,Z,X),

are straightforward.
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