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1 Introduction

We present a theoretical argument that polarization of political candidates relative to the
distribution of preferences in the underlying citizenry may be an unavoidable consequence
of having open elections� that is, elections where any citizen is eligible to run for o¢ ce� if
there is asymmetric information between candidates and voters about the policy intentions
of the candidates they are voting for. Political scientists have known for decades that,
despite a barrage of information from the media, many voters are poorly informed about
the true preferences of candidates at the time they are running for o¢ ce, or where they
sit on an ideological scale (Campbell et al. 1960, Palfrey and Poole 1987, and others).
Asymmetry of information would seem to be, if anything, a greater problem the more open
is the election. The question we then ask in this paper, for open-entry winner-take-all
elections where ideal points are privately known and impossible to credibly reveal, what
is the ideological distribution of the entering candidates, and how does the equilibrium
outcomes depend on the underlying distribution of ideal points? The answer is an anti-
median voter theorem. In large elections only the very most extreme citizens will compete
for o¢ ce. The result does not depend on the distribution of voter preferences, and the
outcomes correspond to the unique symmetric equilibrium of the entry game.

The stark result of the model suggests that one should expect the distribution of
preferences of political elites to be more polarized than the distribution of voter prefer-
ences. On the empirical side, there is some evidence suggesting this to be the case in
western democracies with relatively open entry. For example, several political scientists
have argued that the currently high polarization of political elites in the United States,
especially elected o¢ cials (Poole and Rosenthal 1984, McCarty et al. 2006) is not matched
by, let alone a result of, a high level of polarization of policy preferences in the underlying
citizenry (Fiorina and Abrams 2008; Fiorina et al. 2006, DiMaggio et al. 1996). One
possible explanation for this is that more extreme members of a polity may have a greater
incentive to run for o¢ ce than more moderate members. The di¢ culty in answering this
question theoretically is that the incentives for entry into politics are determined endoge-
nously, as they depend crucially on the entry strategies of other potential candidates.
Thus, one needs to analyze the equilibrium of an entry game. Here we explore a model
with asymmetric information, free entry of candidates, and limited ability for voters to
control politicians once they are in o¢ ce to identify the extent to which the combination of
these factors may explain, as an equilibrium phenomenon, relatively extreme preferences
of elected politicians and hence political outcomes.

Our analysis follows a similar approach as the citizen candidate models of entry in
simple majority elections with complete information pioneered by Besley and Coate (1997)
and Osborne and Slivinski (1996). However, we reach much di¤erent conclusions. These
models, and ours, depart from standard spatial models of electoral competition (Downs
1957; Hotelling 1929) by introducing endogenous entry of candidates, or parties, when
these have policy preferences of their own.1 As a consequence, the bene�ts candidates

1The citizen candidate models have their roots in the earlier work on strategic entry, models related
to Duvergers� law, and models with policy motivated candidates. See, for example, Feddersen (1992),
Feddersen et al. (1990), Fey (1997, 2007), Osborne (1993), Palfrey (1984, 1989), and Wittman (1983).
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enjoy from winning the elections do not only include direct personal bene�ts from holding
o¢ ce, but also the fact that by winning they can implement their preferred public pol-
icy outcomes. The baseline model with complete information about citizen ideal points
proceeds as follows: A community is electing a new leader to implement a policy deci-
sion. In the �rst stage, each citizen can enter the electoral competition as a candidate, at
some commonly known costs, and make a policy promise for the event of being elected
(if nobody enters, a default policy is implemented). In the second stage, simple majority
elections take place in which each citizen prefers the candidate whose ideal point is closest
to her own ideal point, that is, yields her the highest utility. In the third stage, the newly
elected leader implements her policy preferences as the new policy. If there are no barriers
such as political primaries or nominating conventions, and no incumbents or political rep-
utations or future elections, then incomplete information of voters about candidates would
be a natural and potentially important component of the model. Any entrant willing to
pay the cost of entry can do so, and the potential entrants are all identical except for their
ideal point. The incorporation of the private (incomplete) information about citizens�and
candidates�preferences is our main point of departure from the seminal citizen candidate
models, and most others that have followed, which assume that the policy preferences
of all citizens and hence all candidates are common knowledge. We use the same notion
of entry equilibrium: entry strategies must be such that all citizens�entry decisions are
optimal given the entry strategies of other citizens.

The two seminal citizen candidate models di¤er to some extent. For example, Os-
borne and Slivinski (1996) assume a continuum of citizens (i.e., potential candidates) and
that each votes sincerely for her most preferred candidate. By contrast, Besley and Coate
(1997) assume a �nite number of citizens and strategic voting (i.e., a Nash equilibrium
in undominated strategies for the elections). The models have some di¤erences in their
implications about candidates and outcomes, but have two important results in common.
For most environments, they identify multiple equilibria with di¤erent numbers of candi-
dates, which support both median and non-median policy decisions. Moreover, they show
how the equilibrium set depends on the cost of entry, bene�ts from holding o¢ ce, and the
exact location of voter ideal points.

Here, we develop a citizen candidate model with a �nite (possibly very large) number
of citizens whose ideal points are private information and iid draws from a continuous
distribution on the policy space. As in the seminal models, we look at an equilibrium in
multiple stages that satisfy sequential rationality of all voters and candidates. Because
we have private information, we look at perfect Bayesian equilibrium. We prove that a
unique symmetric equilibrium exists, and provide a full characterization of it.2 Because
our model does not allow any coordination among the voters or candidates, and all citizens
are drawn independently from the same distribution of types and have the same payo¤
functions, symmetric equilibria seem appropriate to focus on. This equilibrium in the
entry stage of the game is characterized by a pair of cutpoint policies that determine
the entry decisions, one on the left side of the ideological spectrum and the other on

2The uniqueness result is both strong and quite surprising in view of the dramatic multiple equilibrium
problem in citizen candidate models with complete information. See, for example, Dhillon and Lockwood
(2002), Eguia (2007), Roemer (2003), and the references they cite.
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the right side. It has the property that citizens with "moderate" preferences (between
the two cutpoints) never enter; only citizens with ideal points more extreme than one
of the two cutpoints enters. A leftist citizen enters if and only if her ideal point is to
the left of (or equal to) the left cutpoint, while a rightist citizen enters if and only if
her ideal point is to the right of (or equal to) the right cutpoint. This unique cutpoint
equilibrium implies a unique probability distribution of the number of candidates, and
we derive the following comparative statics results about how this distribution changes
with the underlying parameters of the model: if (i) the costs of entry increase, (ii) the
bene�ts from holding o¢ ce decrease, or (iii) the degree of risk aversion increases, then
fewer candidates enter, in the sense of �rst order stochastic dominance, and they are more
extreme on average. Finally, we derive the expected number of candidates for a very large
citizenry and show that in the limit only the very most extreme possible citizens enter the
electoral competition. Thus, in both small and large electorates, the distribution of ideal
points of candidates will necessarily be more polarized� by any measure one might use�
than the distribution of ideal points in the population they are representing. Moreover,
this "political polarization" e¤ect is greater the larger is the electorate. Thus in very large
electorates, outcomes will typically coincide with the most extreme policies in the policy
space, rather than the median ideal point� hence the term "anti" median voter theorem.

The model extends the analysis of citizen candidate models in another important
direction. So far, citizen candidate models have utilized a �xed exogenous default policy,
for example the status quo policy, in the event that nobody runs for o¢ ce.3 In contrast,
we employ a default policy the e¤ect of which is endogenously determined in equilibrium.
Speci�cally, our default policy randomly selects one citizen as the new leader to implement
a policy decision. For example, consider a community without any reasonable candidate.
Under pressure to make important policy decisions, a citizen who has substantial pol-
icymaking experience but did not campaign is convinced to act as the interim leader,
irrespective of her political leaning. On the face of it, this sounds like just another exoge-
nous speci�cation of the default decision. However, in our model with private information,
the equilibrium cutpoints a¤ect the distribution of ideal points that are sampled in the
event of no entry. Thus, our random default policy has the advantage that it determines
the stochastic policy decision endogenously, as part of the equilibrium.

At the end of the paper, we also show that the result can be extended to other
variations on the model, in natural ways. For example, we consider a variety of other
default speci�cations and show that our polarization results are robust. The equilibrium
cutpoints change in minor ways, but the qualitative results are unchanged. In addition
to various exogenous speci�cations, we also consider an alternative endogenous default
policy with multiple entry rounds. That is, if nobody runs for o¢ ce, another entry round
follows and this continues until eventually at least one candidate enters. While we do
not analytically characterize the solution, we can show that it will also lead to political
polarization. In fact, the �rst round entry cutpoints in the multi-round model are more
extreme than in the one-round model.

We also consider relaxing the informational asymmetry by assuming that some infor-

3Some speci�cation of a no-entry outcome is needed for the game to be well de�ned.
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mation about the candidates�ideal points can be identi�ed by voters. An important piece
of information that citizens could base their vote on is a candidate�s political leaning "left"
or "right", without full detailed knowledge of their exact stands on all issues. We inves-
tigate how such partially private information, that is directional information about the
candidates�ideal points, would a¤ect the results of our model with private information.
To incorporate directional information in our model, we introduce common knowledge
about whether each candidate is a "leftist" or "rightist" on the policy space. We show
that this kind of realistic additional information does not a¤ect our results at all when
the citizens�ideal points are symmetrically distributed around the median.

Several papers have begun to explore the e¤ects of uncertainty on citizen candi-
date equilibria, in several di¤erent ways. For example, Eguia (2007) allows for uncertain
turnout and shows how this can reduce somewhat the set of equilibria in the model of
Besley and Coate (1997). Moreover, Fey (2007) uses the Poisson game approach to study
entry when there is an uncertain number of citizens. Brusco and Roy (forthcoming) add
aggregate uncertainty, allowing for shifts in the distribution of ideal points. Casamatta
and Sand-Zantman (2005) study a model with private information and three types of cit-
izens, and analyze the asymmetric equilibria of the resulting coordination game. Finally,
although not a citizen candidate model, Osborne et al. (2000) study a model where ex-
treme types participate in costly meetings and the moderate policy outcome is the result
of a bargaining process of extremists interests in both directions left and right. In their
model, those who enter the bargaining are extreme types because their bene�ts are high
relative to the meeting costs, but no uncertainty about their ideal points is needed to
produce this result, and more moderate types abstain because the bargaining outcome is
moderate. In the framework of a citizen candidate model with public information about
the candidates� ideal points, moderates close to the median ideal point are a threat in
the sense that they can win the elections outright if they enter. By allowing for private
information, these moderate types are kept out not only because of their lower expected
utility from implementing the own preferred policy, but also because their chances of
winning the elections is equal to that of all other types, including extremists.

2 General model

A community of n � 2 citizens is electing a new leader to implement a policy decision.
The policy space is represented by the [�1; 1] interval of the real line. Each citizen
i = 1; :::; n has preferences over policies, which are represented by a concave utility function
�
��1
2
(xi � 
)

���, � � 1, that is decreasing in the Euclidean distance between the policy
decision, 
 2 [�1; 1] � R; and her ideal point (or, type), xi 2 [�1; 1] � R. This is a special
case of power utility functions, and one can think of � as a measure of the citizens�risk
aversion, where risk aversion is strictly increasing in �.4 Examples are the commonly-used

4Essentially all the results extend to general concave single-peaked utility functions, with few restric-
tions. This is explained in the proof of Lemma 1, which is central to all the results and is is done for
general utility functions. We use power utility functions becuase it is a convenient parametrization for
comparative statics and computing examples later in the paper.
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limit case of risk neutrality, � = 1, and the quadratic speci�cation of risk aversion, � = 2.
An individual�s ideal point is private information, therefore, only citizen i knows

xi. Moreover, the ideal points are distributed according to a cumulative probability
distribution function F , and we assume that F (x); x 2 [�1; 1] � R, is common knowledge.
We make the following additional assumptions about F (:):

A1 : F (�1) = 0;
A2 : F (1) = 1;
A3 : F (:) is continuous, strictly increasing, and twice di¤erentiable on [�1; 1]; where f(:)

is the density function of F (:):

There are four decision making stages. In the �rst stage (Entry), all citizens decide
simultaneously and independently on whether to run for o¢ ce, ei = 1, and bear the entry
costs c � 0, or not run, ei = 0, and bear no costs. The number of citizen candidates is
denoted by m �

Pn
i=1 ei. In the second stage (Policy promises), each candidate publicly

announces a non-binding policy promise. In the third stage (Voting), each citizen i makes
a costless decision on whether to vote for one of the candidates, possibly for herself, or to
abstain. The new leader is determined by simple majority rule (with random tie breaking)
and announced publicly.5 In the �nal stage (Policy decision), the leader implements a
policy 
. Then, each citizen i�s total payo¤ is given by

�i (xi; 
; ei; wi) = �
��1
2
(xi � 
)

��� � cei + bwi, (1)

where wi = 1 if i is elected as the new leader, in which case she receives private bene�ts
from holding o¢ ce, b � 0. If i is not the new leader, then wi = 0. We assume citizens
maximize their expected own payo¤s. Note that we assumed all citizen have the same
entry costs, c, leadership bene�ts, b, and degree of risk aversion, �.

3 Political equilibrium

A "political equilibrium" is a perfect Bayesian equilibrium of the citizen candidate model
with private information described above. In the characterization of equilibrium, all the
action is in the Entry stage. Here, we brie�y discuss the �nal three decision making
stages, and analysis of the entry stage is carried out in the next section. In the Policy
decision stage, the newly elected leader�s only credible policy decision is to implement her
own ideal point, 
� = xi (see Alesina 1988), a strictly dominant strategy in that stage.
In the Policy promises stage, policy announcements are cheap talk since each candidate
has an incentive to misrepresent her ideal point to increase her chances of winning the
elections. In the Voting stage, all non-candidate citizens are indi¤erent over all candidates
since the candidates�ideal points are private information and policy promises are cheap
talk. Hence we simply assume that each non-candidate either votes for each candidate
with equal probability of 1

m
, or abstains. For each candidate, on the other hand, it is a

5If the outcome of the entry stage is m = 0, one citizen i is randomly selected as the new leader with
equal probability of 1n , and the game proceeds straight to the policy decision stage. Default policies are
discussed in more detail later.
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weakly dominant strategy to vote for herself. This is because in case of becoming the new
leader, implementing her own ideal point yields her no loss in payo¤, compared to a strict
loss with probability one if another candidate is elected (note that the probability of any
other candidate having the same ideal point as herself is equal to zero). Given these vote
decisions, each candidate has an equal chance of winning the election.6

4 Symmetric entry equilibrium in cutpoint strategies

In this section, we analyze symmetric entry equilibria. We prove two main results. First,
symmetric entry equilibria are always in cutpoint strategies. A cutpoint strategy is char-
acterized by two critical ideal points, (�xl; �xr) with �1 � �xl � �xr � 1, such that a citizen
enters if and only if xi � �xl or xi � �xr. This is true because the best response strategy
of a citizen to any symmetric strategy of the other citizens are always cutpoint strate-
gies (Section 4:1), even if the other citizens are not using cutpoint strategies. Second,
we show that there is always a unique symmetric equilibrium and fully characterize it.
These results hold for any continuous cumulative probability distribution, F (x), of ideal
points x 2 [�1; 1] satisfying A1-A3 (Section 4:2), and for any concave single peaked utility
function of citizens, and a stochastic default policy, d, in which one citizen is randomly
selected if no candidate emerges in the entry stage. The rest of the section explores the
comparative statics results for these entry equilibria (Section 4:3), examines the limit-
ing case of large communities (Section 4:4), and we illustrate these results with several
examples (Section 4:5).

4.1 Cutpoint strategies and best response condition

Consider citizen i. Suppose all citizens j 6= i are using an entry strategy de�ned by two
cutpoints:

�ej =

�
0 if xj 2 (�xl; �xr)
1 if xj 2 [�1; �xl] [ [�xr; 1];

(2)

where (�xl; �xr) is some pair of ideal points with �1 � �xl � �xr � 1 and the subscripts
denote their relative locations left and right, respectively. In words, the cutpoint strategy
�e determines that a citizen with ideal point equal to or more "extreme" than �xl or �xr runs
for o¢ ce, and citizens with ideal points more "moderate" than �xl and �xr do not run.

Recall that if neither citizen i nor any other citizen runs for o¢ ce (m = 0), a stochastic
default policy, d, takes e¤ect, which randomly selects one of the n citizens as the new leader
with equal probability of 1

n
for each. In this event, it follows from Bayesian updating that

xj 2 (�xl; �xr) ;8j 6= i.
To derive the equilibrium pair of cutpoint policies, or equilibrium cutpoints, (�x�l ; �x

�
r),

we must compare a citizen i�s expected payo¤s as both a candidate and a non-candidate,

6Note that voting equilibria exist in which some candidates have strictly larger probabilities of being
elected than others. By assumption, we rule out the possibility of any kind of coordination prior or after
entry decisions are made. Hence, ex ante, each candidate has an equal probability of becoming the new
leader.
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given the equilibrium decisions in subsequent stages (see Section 3). Then, (�x�l ; �x
�
r) is an

equilibrium if and only if �ei (�x�l ; �x
�
r) is a best response for citizen i when �ej (�x

�
l ; �x

�
r) is the

entry strategy of all j 6= i.
Citizen i�s expected payo¤ for entering, �ei = 1, can be written as7

E[�i j xi; �ei = 1] = (1� p)n�1 b

+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m

�
b

m
� m� 1

m
E[
��1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)]�� c; (3)

where p denotes the probability that a randomly selected j 6= i enters, if each j is using
strategy (�xl; �xr). So, p � pl + pr, with pl � Pr(xj � �xl) = F (�xl) and pr � Pr(xj � �xr) =
1� F (�xr) for our F (x); x 2 [�1; 1] � R.

Citizen i�s expected payo¤ loss from the policy outcome if some j 6= i is elected (a
term inside the summation) equals:

E
���1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)�
=

pl
p

R �xl
�1 f(x)

��1
2
(xi � x)

��� dx
pl

+
pr
p

R 1
�xr
f(x)

��1
2
(xi � x)

��� dx
pr

(4)

=

R �xl
�1 f(x)

��1
2
(xi � x)

��� dx+ R 1
�xr
f(x)

��1
2
(xi � x)

��� dx
p

for �xl 6= �1 ^ �xr 6= 1,

which accounts for the possibility that the policy outcome will be in the left or right di-
rection, 
l or 
r, with probability pl=p and pr=p, respectively. The �rst term in expression
(3) gives the case where i receives b since she is the only candidate, which occurs with
probability (1� p)n�1. The second term gives the cases where m� 1 � 1 candidates en-
ter in addition to herself, which occurs with probability

�
n�1
m�1

�
pm�1 (1� p)n�m and yields

her expected bene�ts from holding o¢ ce of b
m
. The summation accounts for all possible

m = 2; :::; n. Moreover, i will not be elected with probability (m�1)=m and her expected
loss in payo¤s for this event is E

���1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)�, given in expression (4). Fi-
nally, i bears the entry costs, c, independent of how many other candidates enter, which
gives the third term in expression (3).

By contrast, citizen i�s expected payo¤ for not entering, �ei = 0, is

E[�i j xi; �ei = 0] = (1� p)n�1
�
b

n
� n� 1

n
E[
��1
2
(xi � d)

��� j d 2 (�xl; �xr)]�

�
nX

m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m E

���1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)� : (5)

7Note that since i is entering, the default policy will not take force.
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The �rst term corresponds to the event where, like herself, no other citizen enters, which
occurs with probability (1� p)n�1. In this case the stochastic default policy, d, takes
e¤ect. Then, citizen i�s expected bene�ts from holding o¢ ce if being randomly selected
as the new leader is b=n (we assume that d does not invoke any entry costs in this event),8

and with probability (n�1)=n she will not be selected which yields her an expected payo¤
loss equal to:

E[
��1
2
(xi � d)

��� j d 2 (�xl; �xr)] = R �xr
�xl
f(x)

��1
2
(xi � x)

��� dx
1� p for �xl 6= �xr. (6)

Observe that if �xl = �xr, the default policy is irrelevant because all citizens enter. The
remaining terms in expression (5) correspond to the events where m�1 � 1 other citizens
choose to enter.

Finally, it is readily veri�ed that relating expressions (3) and (5) and rearranging
yields the best response entry strategy for a citizen with ideal point xi, if all other citizens
are using cutpoint strategy �e, which is to enter if and only if9

(1� p)n�1
�
n�1
n

� �
b+ E[

��1
2
(xi � d)

��� j d 2 (�xl; �xr)]�
+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m

�
b+ E[

��1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)]� � c; (7)

where the left-hand and right-hand sides (henceforth LHS and RHS) give citizen i�s
expected net-bene�ts and costs from running for o¢ ce, respectively.

The key observation, however, concerns the properties of LHS(7). In particular,
because � � 1; it is a U-shaped (convex) function in xi with a unique minimum strictly
between �1 and 1. In fact, the U-shape is not restricted to the case where all other
citizens j 6= i are playing a cutpoint entry strategy �ej. Rather, this cutpoint strategy
is the unique equilibrium outcome of citizen i best responding to any symmetric (type-
dependent) entry strategy of all other citizens j 6= i (and it would even be straightforward
to extend this result to any type-dependent asymmetric strategies played by all others,
following a similar proof that we use in this paper). For an arbitrary (possibly mixed) entry
strategy, �(x) : [�1; 1]! [0; 1], played by all j 6= i, where �(x) denotes the probability of
entering for a citizen with ideal point x, the left-hand side of the best response condition
(7) can be written more generally as:

Qne(n; q)

Z 1

�1
fne(xj�)

��1
2
(xi � x)

��� dx (8)

+Qe(n; q)

Z 1

�1
fe(xj�)

��1
2
(xi � x)

��� dx+Qb(n; q)b � c;

8The assumption that a randomly selected leader does not bear any entry costs (e.g., there are no
campaign costs) simpli�es our analysis, but is innocent regarding our equilibrium results derived in the
following (sub)sections.

9Without loss of generality, we assume that indi¤erent citizen types choose to enter.
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where Qne(n; q) � (1� q)n�1
�
n�1
n

�
corresponds to the case where no j 6= i enters, Qe(n; q)

�
Pn

m=2

�
n�1
m�1

�
qm�1 (1� q)n�m 1

m
corresponds to the case where at least one j 6= i enters,

and Qb(n; q) � (1� q)n�1
�
n�1
n

�
+
Pn

m=2

�
n�1
m�1

�
qm�1 (1� q)n�m 1

m
corresponds to the case

where i enters and wins, and the probability of each j 6= i entering is given by q �R 1
�1 �(x)f(x)dx. The conditional distribution of types in the �ne�and �e�events are given
by fne and fe, respectively, where, assuming q 2 (0; 1):10

fne(xj�) =
[1� �(x)]f(x)

1� q (9)

and

fe(xj�) =
�(x)f(x)

q
: (10)

The following lemma implies the cutpoint property of best replies:

Lemma 1 For any symmetric entry strategy, �(x) : [�1; 1] ! [0; 1], played by all j 6= i,
where �(x) denotes the probability of entering for a citizen with ideal point x, the left-hand
side of the best response condition (8) is a U-shaped function in xi 2 [�1; 1] with a unique
minimum at xmin and two relative maxima at xi = �1 and xi = 1.

Proof. See Appendix 7.1.

4.2 Equilibrium characterization

In this subsection, we characterize all symmetric equilibria. We begin by looking at a
special case where the logic is especially transparent, the case of symmetric distributions
with f(x) = f(�x);8x 2 [0; 1]. Thereafter, we extend our analysis to all asymmetric
distributions, and the proofs (see appendix) are all done for the general case. In particular,
we show that there always exists a unique equilibrium in cutpoint strategies that uses
equilibrium cutpoints, (�x�l ; �x

�
r) with �x

�
l � xmin � �x�r. For the symmetric case, xmin =

0 always and �x�l = ��x�r. Our next result characterizes the symmetric equilibrium in
cutpoints for the case of symmetric distributions.

Proposition 1 (Entry equilibria with symmetric cutpoints) For any continuous cu-
mulative probability distribution, F (x); of ideal points, x 2 [�1; 1] � R, with symmetric
density f(x) = f(�x); 8x 2 [0; 1]; and for a stochastic default policy, d, that randomly
selects one citizen as the new leader if nobody runs for o¢ ce, the political equilibrium is
characterized by a unique pair of cutpoints (��x�; �x�); with �x� 2 [0; 1], where each citizen
i with a more extreme ideal point in the left or right direction (i.e., xi � ��x� or xi � �x�,
respectively) enters the electoral competition as a candidate, �e�i = 1, and each citizen i
with a more moderate ideal point, ��x� < xi < �x�, does not enter, �e�i = 0. The equilibrium
cutpoint �x� is characterized as follows:

10The boundary cases of q = 0 and q = 1 simply eliminate one of the terms in condition (8).
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(i) If c � c � 1
n

h
b+

R 1
�1 f(x)

��x
2

��� dxi, then �x� = 0 and �e�i = 1;8i ("everybody enters",
or m = n);

(ii) If c � c � n�1
n

h
b+

R 1
�1 f(x)

��1
2
(1� x)

��� dxi, then �x� = 1 and �e�i = 0;8i ("nobody
enters", or m = 0);

(iii) If c < c < c, then �x� 2 (0; 1) is the unique solution to:

(1� p)n�1
�
n�1
n

� "
b+

R �x�
��x� f(x)

��1
2
(�x� � x)

��� dx
1� p

#
+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m

� 1
m

"
b+

R ��x�
�1 f(x)

��1
2
(�x� � x)

��� dx+ R 1
�x� f(x)

��1
2
(�x� � x)

��� dx
p

#
= c: (11)

where p � 2F (��x�).

Proof. This proposition is a special case of Proposition 2, which we prove in Appendix
7.2.

Next, we generalize the symmetric case of Proposition 1 to any well-behaved continu-
ous cumulative probability distribution, F (x), of ideal points x 2 [�1; 1] � R (see Section
2). This gives:

Proposition 2 (Entry equilibria): For any continuous cumulative probability distribu-
tion, F (x), of ideal points x 2 [�1; 1] � R with density f(x), and for a stochastic de-
fault policy, d, that randomly selects one citizen as the new leader if nobody runs for
o¢ ce, the political equilibrium is characterized by a unique pair of cutpoints, (�x�l ; �x

�
r), with

�x�l � �xmin � �x�r, where each citizen i with a more extreme ideal point in the left or right
direction (i.e., xi � �x�l or �x�r � xi,) enters the electoral competition as a candidate, �e�i = 1,
and each citizen i with a more moderate ideal point, �x�l < xi < �x

�
r, does not enter, �e

�
i = 0.

Four di¤erent kinds of entry equilibria can arise: (i) "everybody enters", (ii) "nobody
enters", (iii) some citizens with more extreme ideal points in only one direction are ex-
pected to enter, and (iv) some citizens with more extreme ideal points in both directions
are expected to enter.

Proof. See Appendix 7.2.

While the proofs are tedious, the intuition behind the results of Propositions 1 and 2
can be explained as follows. If the costs of entry are very small relative to the expected
net-bene�ts (i.e., from holding o¢ ce and avoiding a payo¤ loss due to the distance between
the preferred and implemented policy), everybody has an incentive to become a candidate.
On the other hand, if the entry costs are su¢ ciently high relative to the expected net-
bene�ts, nobody wants to run for o¢ ce.11 If the distribution is symmetric, then LHS (7)

11Both the universal entry equilibrium and the zero entry equilibrium are in fact cutpoint equilibria,
corresponding to cutpoints �xmin = �x�l = �x

�
r and (�x

�
l = �1; �x�r = 1), respectively. We show in the proof of

Propositon 2 that it always holds that �x�l < �xmin < �x
�
r if p < 1.
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is symmetric around 0 so if net-bene�ts and costs are in the intermediate range, then
the best response condition (7) must hold as equality (i.e., LHS (7) = c) for exactly two
citizen types �x�l and �x

�
r with �x

�
r = ��x�l . When ideal points are asymmetrically distributed,

di¤erences in expected net-bene�ts in both directions must be balanced out by asymmetric
cutpoints, ��x�l 6= �x�r. This either results in a pair of interior cutpoints, �1 < �x�l < �xmin <
�x�r < 1 or possibly a fourth kind of equilibrium where (7) holds with equality for only
one ideal point in (�1; 1) and either LHS (7) < c when xi = �1 or LHS (7) < c when
xi = 1: In the former case, the left equilibrium cutpoint is �x�l = �1 and there is only entry
by candidates on the right; in the latter case, the right equilibrium cutpoint is �x�r = 1
and there is entry only by candidates on the left. These are citizen candidates in the
opposite direction of where the probability densities amass (i.e., the cutpoints are pulled
towards the bulk of density), because these tend to have higher expected net-bene�ts from
entering as they have higher expected losses from the distance between the preferred and
implemented policy. In the following subsections, we use Propositions 1 and 2 to derive
comparative statics results and characterize limit results for large communities.

4.3 Comparative statics

In this subsection, we derive comparative statics results for the unique equilibrium char-
acterized in Propositions 1 and 2. To be precise, we analyze the e¤ects of changes in
c; b; and � on the equilibrium cutpoints, (�x�l ; �x

�
r), where �x

�
�(�x

�
��; n; c; b; �) for � = l; r and

� 6= ��, for the region of the parameter space where the solution is interior for at least
one cutpoint, that is, where �x�l 2 (�1; �xmin] and/or �x�r 2 [�xmin; 1) (see Proposition 2 (iii)
and (iv)). Thus, we are excluding cases (i) and (ii), where there is either universal entry
or no entry, respectively.12

Proposition 3 (Comparative statics) An increase in the costs of entry, c, or the degree
of risk aversion, �, yields more extreme interior equilibrium cutpoints, (�x�l ; �x

�
r)� i.e., �x

�
l

strictly decreases or �x�r strictly increases, or both� while an increase in the bene�ts from
holding o¢ ce, b, yields more moderate cutpoints. A decrease in �x�l (increase in �x

�
r) implies

that candidates and policy outcomes in the left (right) direction get more extreme, on
average. It also implies a decrease in the expected number of candidates, E[m] = np,
when c or � increases or b decreases. Finally, if n gets very large, �x�l approaches minus
one and �x�r approaches one, that is, limn!1 �x�l (�x

�
r; n) = �1 and limn!1 �x�r(�x

�
l ; n) = 1.

Proof. See Appendix 7.3.

The intuition that an increase in the degree of risk aversion, �, yields more extreme
equilibrium cutpoints is the following. In any given equilibrium (�x�l ; �x

�
r) with at least

one interior cutpoint, each citizen i compares the entry costs, c, with the expected net-
bene�ts from the lottery given by LHS (7) j(�x�l ;�x�r), which is a function of p(�x

�
l ; �x

�
r). If the

12This is done for convenience and is essentially without loss of generality. For any c > 0, case (i) does
not apply for su¢ ciently large n (see our analysis in the proof of Proposition 3). Case (ii) is satis�ed for
all n unless c is very large.
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degree of risk aversion increases, this simply means that for each citizen the utility of the
lottery must decrease relative to the utility of the secure option of saving c. Therefore,
LHS (7) j(�x�l ;�x�r) decreases for all citizens. This, in turn, means that in addition to the
citizen types xi 2 (�x�l ; �x�r) now also (at least) citizen types �x�l and �x�r have no longer an
incentive to enter, so that the new equilibrium cutpoints are more extreme than (�x�l ; �x

�
r)

(i.e., if both cutpoints are interior, while if only one cutpoint is interior, this cutpoint gets
more extreme and the boundary cutpoint remains).

Except for the limiting result, Proposition 3 does not give comparative statics results
for the e¤ect of changes in n on the equilibrium expected number of candidates, E[m].
The reason is that if c is small enough then this comparative static can go either way.
Speci�cally, there may be more or fewer candidates if n increases, because there are two
e¤ects on entry that result from increasing the community size from n to n+1. First, there
is the direct e¤ect that the number of potential citizen candidates has increased by 1. If the
equilibrium cutpoint were to remain unchanged, this e¤ect works to increase the expected
number of candidates. The second e¤ect is the indirect equilibrium e¤ect. Because the
expected number of candidates would increase if the cutpoint remains unchanged, the
probability of winning if one enters is lower, so the incentive to enter is reduced. This
e¤ect works in the opposite direction of more extreme cutpoints and a lower expected
number of entrants. The total e¤ect is generally going to be ambiguous.

Finally, Proposition 3 shows that limn!1 �x
�
l (�x

�
r; n) = �1 and limn!1 �x�r(�x

�
l ; n) = 1.

That is, in very large communities, only the most extreme citizens throw their hat in the
ring. Of course, this does not imply there is zero entry! We can use this result to derive
the limiting distribution of the number of candidates, which is fully characterized next.

4.4 Large communities

Here, we use the result of Proposition 3 that limn!1 �x
�
l (�x

�
r; n) = �1 and limn!1 �x

�
r(�x

�
l ; n) =

1 to examine the limiting distribution of the number of candidates. This gives:

Proposition 4 (Large communities) If the number of citizens, n, gets very large and if
both equilibrium cutpoints are interior (see Proposition 2 (iv)), then the expected number
of candidates, � � limn!1E [m] = limn!1 np, with � = � l + � r, � l � limn!1 npl, and
� r � limn!1 npr, is given by the two conditions

� l = �� r + (� l + � r)e�(� l+�r)
vl � 1

2

c
+
�
1� e�(� l+�r)

� b+ 1
2

c
(12)

and

� r = �� l + (� l + � r)e�(� l+�r)
vr � 1

2

c
+
�
1� e�(� l+�r)

� b+ 1
2

c
; (13)

where vl �
R 1
�1 f(x)

��1
2
(�1� x)

��� dx and vr � R 1�1 f(x) ��12 (1� x)��� dx. If only one equi-
librium cutpoint, �x�, is interior and j�x��j = 1; with � = l; r and � 6= �� (see Proposition 2
(iii)), then ��� = 0 and the expected number of candidates � � � limn!1 np� is determined
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by the single condition

� � = � �e
��� v� �

1
2

c
+
�
1� e���

� b+ 1
2

c
. (14)

Proof. See Appendix 7.4.

The result follows from a Poisson approximation argument. Note that if ideal points
are symmetrically distributed, we know from Proposition 1 that pl = pr (since ��x� = �x�),
and thus, both conditions (12) and (13) collapse to the single condition � = �e�� v�

1
2

c
+

(1� e�� ) b+
1
2

c
, which has a unique solution in � , with � l = � r = �

2
and v = vl = vr.

4.5 Examples

In this subsection, we give speci�c parametric examples of entry equilibria and com-
parative statics using F (x) = 1

8
(x + 1)2 + 1

4
(x + 1), x 2 [�1; 1] � R; with density

f(x) = 1
4
(x+1)+ 1

4
and f 0(x) = 1

4
x. Thus, we use asymmetrically distributed ideal points

for which the density is linearly increasing in x. The examples illustrate graphically the
key equilibrium properties of our model.

A. Equilibrium net-bene�ts and variations in the costs of entry, c

Figure 1: Entry equilibria in asymmetric pairs of cutpoint policies and variations in the
entry costs, c, for n = 5, b = 0, and � = 1.

To show our comparative statics results for changes in the costs of entry, we use n = 5,
b = 0, and � = 1 and vary the costs between c = 0:047, 0:150, 0:339, and 0:467. Figure 1
gives the feasible cutpoints �xl 2 [�1; �xmin] and �xr 2 [�xmin; 1] on the horizontal axis and the
expected net-bene�ts and costs of entry on the vertical axis. Expected net-bene�ts are
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represented by the U-shaped curve and the various costs by horizontal lines (see LHS (30)
and RHS (30) in the proof of Proposition 2).

The equilibrium pairs of cutpoints, [�x�l (c), �x
�
r(c)], for the various costs are determined

by the intersection of the expected net-bene�ts curve and the respective cost lines. A
pair gets more extreme if c increases (i.e., �x�l decreases in c, �x

�
r increases in c, or both).

Speci�cally, we have �x�l (c = 0:047) = �x�r(c = 0:047) = 0:236; �x�l (c = 0:150) = �0:354
and �x�r(c = 0:150) = 0:714; �x

�
l (c = 0:339) = �0:811 and �x�r(c = 0:339) = 1; and �x�l (c =

0:467) = �1 and �x�r(c = 0:467) = 1. Note that �xmin = 0:236, c = 1
5
[0 + 0:235] = 0:047,

c = cr(xl = 0:811; �xr = 1) = 0:339 and c = cl = 5�1
5

�
0 + 0:583

�
= 0:467. Moreover, note

that everybody enters if c � c, some citizen types in both directions of �xmin are expected
to enter if c < c � c, some citizen types only in the left direction of �xmin are expected to
enter if cr < c < c, and nobody enters if c � c (see the proof of Proposition 2). Finally,
as the equilibrium cutpoints get more extreme if c increases, expected entry decreases
(E[m(c)] = 5, 2:091, 0:259, and 0 for our ascending c) and expected policy outcomes
get more extreme ([E[
�l (c)]; E[


�
r(c)]] = [�0:303; 0:637], [�0:651; 0:859], [�0:903; 1], and

[�1; 1]).13

B. Variations in the bene�ts from holding o¢ ce, b

Figure 2: Entry equilibria in asymmetric pairs of cutpoint policies and variations in the
bene�ts from holding o¢ ce, b, for n = 5, c = 0:2, and � = 1.

Next, we look at the e¤ects of changes in the bene�ts from holding o¢ ce. The example uses
n = 5, c = 0:2, and � = 1 and varies the bene�ts between b = 0; 0:5; and 1. Figure 2 shows
that the equilibrium cutpoints, [�x�l (b), �x

�
r(b)], are getting less extreme (more entry) as b

increases. Speci�cally, [�x�l (0) = �0:517, �x�r(0) = 0:822], [�x�l (0:5) = 0:033, �x�r(0:5) = 0:422]
13Expected entry is given by E[m(�xl; �xr)] = np = n [1� F (�xr) + F (�xl)], and expected policy outcomes

in both directions by E[
l(�xl; �xr)] =
R �xl
�1 f(x)xdxR �xl
�1 f(x)dx

and E[
r (�xl; �xr)] =
R 1
�xr
f(x)xdxR 1

�xr
f(x)dx

:
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(see the intersections of the respective net-bene�ts curves and the cost line), and �x�l (1) =
�x�r(1) = �xmin = 0:236 (since the net-bene�ts curve lies above the cost line). Finally,
the increase in the bene�ts from holding o¢ ce raises expected entry (E[m(b)] = 1:397,
3:917, and 5 for our ascending b) and expected policy outcomes become more moderate
([E[
�l (b)]; E[


�
r(b)]] = [�0:743; 0:912], [�0:425; 0:721], and [�0:303; 0:637]).

C. Variations in the degree of risk aversion, �

Figure 3: Entry equilibria in asymmetric pairs of cutpoint policies and variations in the
degree of risk aversion, �, for n = 5, b = 0, and c = 0:15.

This example examines the comparative statics for changes in the degree of risk aversion.
It uses n = 5, b = 0, and c = 0:15 and varies the degree of risk aversion between � = 1
(tent preferences), 2; and 3. Figure 3 shows that the equilibrium cutpoints, [�x�l (�), �x

�
r(�)],

are getting more extreme as � increases. The intersections of the respective net-bene�ts
curves and the cost line yield [�x�l (1) = �0:354, �x�r(1) = 0:714], [�x�l (2) = �0:636, �x�r(2) =
0:871], and [�x�l (3) = �0:791, �x�r(3) = 0:966]. The increase in the degree of risk aversion
decreases expected entry (E[m(�)] = 2:091, 1:013, and 0:415 for our ascending �) and
expected policy outcomes become more extreme ([E[
�l (�)]; E[


�
r(�)]] = [�0:651; 0:859],

[�0:808; 0:936], and [�0:892; 0:983]).

5 Extensions

5.1 Variations in the default policy

In the following, we discuss variations in the default policy that takes e¤ect if no citizen
runs for o¢ ce. In the model of Osborne and Slivinski (1996) where the types of all
citizens and candidates are complete information, the default policy is an in�nite loss,
�1. Applying this drastic measure to our model with incomplete (private) information
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would result in a unique equilibrium of universal entry, regardless of the speci�c citizen
types and their distribution. To see this, note that in any equilibrium without universal
entry we have p < 1, and thus, the expected utility from not entering is �1 and the
expected utility from entering is bounded below by �c � 1. In other words, there is no
feasible policy that gives any citizen a utility of a magnitude that can match an in�nite
loss. Therefore, an equilibrium would only exists if the conditions of universal entry are
satis�ed (see Proposition 2 (i)), which seems to be a very restrictive political scenario.

An obvious alternative to modeling the no-entry outcome would be to have a �xed
default policy, d 2 R, such as the status quo policy (e.g., Besley and Coate 1997). Ap-
plying d 2 [�1; 1] to our model yields only slightly di¤erent conditions compared to our
stochastic default policy, d, where one citizen is randomly selected as the new leader if
nobody enters. To see this, let us �rst introduce d to our best response entry condition
(7), which is a function of the cutpoints (�xl; �xr):

(1� p)n�1
�
n�1
n

� h
b+

��1
2

�
xi � d

����i (15)

+
nX

m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m

�
b+ E[

��1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)]� � c:
This looks very similar to condition (7) and it is straightforward to establish the U-shaped
property of the left-hand side (cf. Lemma 1 and footnote 18 to the proof of Proposition
2), which is key to characterizing a unique symmetric equilibrium in cutpoints. When
comparing the expected loss from our endogenous stochastic default policy and �xed
default policy (shown in the �rst terms of conditions (7) and (15)), some citizens with
E[
��1
2
(xi � d)

��� j d 2 (�xl; �xr)] > (<)
��1
2

�
xi � d

���� would enter (abstain) with d but not
with d. The e¤ect of moving the �xed default policy along the real line of the policy
space is that expected entry decreases in the direction where d moves and increases in
the opposite direction. In other words, both equilibrium cutpoints �x�l and �x

�
r move in the

same direction as d. As such it has a qualitatively similar e¤ect as shifting the distribution
of ideal points to the left or right.

A slightly more general formulation of the status quo would be to allow randomization
over exogenous status quo points. Again, this is di¤erent from what we do in the paper,
but the characterization of a unique symmetric cutpoint equilibrium still goes through
because a similar result to Lemma 1 (U-shaped net-bene�ts curve) can be shown for
arbitrary exogenous stochastic defaults. Also, note that for very large n for cases (iii)
and (iv) of Proposition 2, using an exogenous stochastic status quo given by F will be
approximately the same as our endogenous model of randomly selecting a leader from the
population, because for large n the equilibrium cutpoints converge to �1 and 1.

The alternative default policies discussed above have the advantage of being simple,
but they are exogenous and the policy decision is made by constitutional �at rather than
re�ecting the preferences of the citizens. By contrast, in our stochastic default policy the
distribution of potential leaders from the citizenry results endogenously from the rational
calculus of the players, and indeed is part of the equilibrium.14

14Note that in our stochastic default policy the selected leader receives bene�ts from holding o¢ ce but
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A third possibility is an alternative way to endogenize the no-entry outcome by al-
lowing for multiple rounds in the entry stage: if nobody runs for o¢ ce in round 1, another
round follows and this continues until eventually there is at least one candidate. Impor-
tantly, after each unsuccessful entry round the citizens can Bayesian update that nobody�s
type is more extreme than the equilibrium cutpoints in that round. Then, the entry de-
cision in round 2 will be derived just like the one in round 1, except that the earlier
probability distribution of ideal points will be truncated, and so forth. As a consequence,
the equilibrium cutpoints get more moderate with every additional entry round. A caveat
of the process of multiple entry rounds is that it may continue without end (e.g., if the
costs of entry are larger than the payo¤ from holding o¢ ce and the di¤erence between the
largest and smallest actual types). To avoid this problem, one could for example assume
a maximum number of possible entry rounds after which our stochastic default policy is
invoked, or assume bene�ts from holding o¢ ce that are su¢ ciently large relative to the
costs of entry such that a �xmin-type would prefer to enter, if she believes nobody else
would ever enter.

The equilibrium conditions for the cutpoints would be more complicated with multiple
entry rounds, compared to our stochastic default policy. Speci�cally, one cannot solve
the model "forward" in a straightforward recursive fashion by using initial cutpoints
derived from the equilibrium conditions of Proposition 2. This is because the cutpoints
in round 1 depend on beliefs about the cutpoints in round 2, and so forth. However, one
can characterize equilibrium conditions in a recursive fashion by using the monotonicity
established in Lemma 1 (i.e., the U-shape best response condition), which will continue to
hold. Speci�cally, a citizen whose type corresponds to an equilibrium cutpoint in round 1
is indi¤erent between entering in round 1 and postponing her entry decision to round 2,
if nobody runs for o¢ ce. However, the expected payo¤s in round 2 are determined by the
equilibrium cutpoints in round 2, which in turn are a function of the cutpoints in round 3,
and so forth. In other words, the multiple entry rounds create a nested system of expected
continuation payo¤s in entry round t, E [CVt (xi; (�xl; �xr)8t0>t; n; c; b; �)], which depends on
citizen i�s type, all future cutpoints (�xl; �xr)8t0>t, and all exogenous parameters. To get
an intuition how this default policy can a¤ect the equilibrium cutpoints, we compare the
best response entry condition (7) with the following one for entry round 1:

(1� p)n�1 [b� E [CVt=1 (xi; (�xl; �xr)8t>1; n; c; b; �)]] (16)

+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m

�
b+ E[

��1
2
(xi � 
)

��� j 
 =2 (�xl; �xr)]� � c;
where convexity of the left-hand side is guaranteed because E [CVt=1(:)] is convex (cf.

Lemma 1).15 Observe that conditions (7) and (16) di¤er only with respect to their �rst
terms. After simple rearrangements, directly comparing both terms yields: LHS (7) >

does not bear any entry costs. This simpli�es the equilibrium analysis and none of our propositions would
change if such costs would be introduced. To see this, consider costs ec, smaller or larger than c, for the
randomly selected leader. Compared to the best response entry condition (7), a term � (1� p)n�1 ec=n
would be added to the left-hand side, with no essential consequence for our propositions.

15This best response entry condition is derived using citizen i�s expected payo¤ for entering from
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LHS (16))

�
n�1
n

�
E[
��1
2
(xi � d)

��� j d 2 (�xl; �xr)] > b

n
� E [CVt=1 (xi; (�xl; �xr)8t>1; n; c; b; �)] : (17)

First, note that the left-hand side is strictly positive. Moreover, following the cutpoint
strategy �e, on the right-hand side extreme citizens have higher expected payo¤s than
moderate citizens from the b-part of E [CVt=1(:)] (> b=n) and also from the (�xl; �xr)8t>1-
part of E [CVt=1(:)] (i.e., the expected net-bene�ts minus the expected costs if b = 0;
cf. Lemma 1). Therefore, the right-hand side is negative for some extreme citizens.
Then, because LHS (7) > LHS (16) for some extreme citizens, the equilibrium cutpoints
in round 1 of multiple entry rounds are more extreme than with our stochastic default
policy.

Of course, there are other ways of modeling multiple entry rounds. Here, our aim
was only to provide some insights of how this default policy can a¤ect the equilibrium
cutpoints.

5.2 Directional information about candidates�political leanings

Next, we relax our assumption of private information about each candidate�s type by
allowing for partially private information, that is, directional information about a can-
didate�s political leaning (whereas all other assumptions made in Section 4 continue to
hold). Speci�cally, after entry decisions are made, the electorate learns whether a candi-
date�s ideal point lies to the "left" or "right" of �xmin (see Proposition 2 and its proof),
but not her exact ideal point. Hence, policy promises remain cheap talk within the set of
"left" and "right" types, respectively.

Here, we focus on symmetric probability distributions of ideal points. This case
is simple, because the equilibrium results are not di¤erent between our citizen candidate
model with private and partially private information. The reason is that, due to symmetry,
when making an entry decision the probability of any candidate being elected is the
same (1=m) under both assumptions. To see the intuition, consider the following simple
example. Suppose citizen i enters from the left, there are exactly two other candidates, and
exactly �fty percent of the citizens are "leftist" and "rightist", respectively. Moreover, if
there are more candidates with the same political leaning, each receives the same number
of votes from citizens with that leaning. This gives three possible events: with probability
1=4 both other candidates are "rightists" and i wins; with probability 1=4 both other
candidates are also "leftists" and i wins with probability 1=3; and with probability 1=2
one of the others is a "leftist" and the other a "rightist" and i loses. Thus, overall, i
wins with probability 1=4 + 1=12 = 1=3. It is straightforward to derive the general case

expression (3) and her expected payo¤ for not entering, that is:

(1� p)n�1E [CVt=1(:)]�
nX

m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m E

��� 1
2 (xi � 
)

��� j 
 =2 (�xl; �xr)� :
Using similar rearrangements as for condition (7), both expected payo¤s yield condition (16).
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for symmetrically distributed types (i.e., each other candidate is equally likely to have
either political leaning), that is, for any m the probability that i will win is equal to 1=m.
Note that for the case with asymmetrically distributed types, the e¤ect of directional
information is not innocuous and deriving the equilibrium cutpoints is more tedious.
This is because a candidate�s probability of being elected now depends on whether she is
a "leftist" or "rightist".

There are interesting extensions to the citizen candidate model with directional in-
formation. For example, consider a two-party version of the model with one "left" and
one "right" party, which have nominating conventions. One could de�ne the parties in
terms of the cutpoints as follows: label any candidate entering to the left of �xl (right
of �xr) a contender for the nomination of party L (R). Then one could introduce a party
nomination stage where, for example, each party leader: (i) is selected randomly from all
contenders of this party; (ii) is the one closest to the party median (de�ned as the median
of the distribution of potential party contenders, i.e., the distribution truncated by the
respective cutpoint); or (iii) the most moderate or most extreme contender. We leave to
future research the analysis of these more complex entry stages.

5.3 Asymmetric entry equilibria in type-independent strategies

Up to this point, we have assumed that there are no coordination possibilities or focal
points that would allow citizens to arrive at an asymmetric equilibrium. Thus we have
analyzed symmetric entry equilibria in cutpoints. Like most entry games there can be
asymmetric equilibria. In the following, we examine equilibria where the number of can-
didates, m, is commonly known and citizen types are private information but equilibrium
entry strategies are type-independent (while all other assumptions made in Section 4
continue to hold).16 Proposition 2 (i) and (ii) characterize universal entry and univer-
sal abstention, respectively. Both equilibria are also boundary cases of type-independent
equilibria where exactly m citizens enter and exactly n�m citizens do not enter (regard-
less of xi). We call such a solution an "m-equilibrium". Obviously, if the parameters of
the model allow for a (type-independent) m-equilibrium to exist, then there are poten-
tially more of them ( n!

m!(n�m)! , to be precise). These equilibria are characterized by two
conditions. To keep notation simple, we only study symmetric probability distributions of
ideal points (it is straightforward to extend the conditions to asymmetric distributions).
The �rst condition states that all types are weakly better o¤ entering than not entering if
exactly m�1 other citizens enter for sure. For symmetric distributions, this is true if and
only if the 0-type is weakly better o¤ entering than not entering. The second condition is
that all types are strictly better o¤ not entering than entering if exactly m other citizens
enter for sure. For symmetric distributions, this is true if and only if the 1-type is strictly
better o¤ not entering than entering. Thus, for 1 < m < n, these two conditions are:

1

m

�
b+

Z 1

�1
f(x)

��x
2

��� dx� � c (18)

16In constrast, Besley and Coate (1997) and Osborne and Slivinski (1996) study entry equilibria where
m is commonly known and types are public information and relevant.
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and
1

m+ 1

�
b+

Z 1

�1
f(x)

��1
2
(1� x)

��� dx� < c; (19)

Putting them together, we have an m-equilibrium for 1 < m < n if and only if:

1

m+ 1

�
b+

Z 1

�1
f(x)

��1
2
(1� x)

��� dx� < c � 1

m

�
b+

Z 1

�1
f(x)

��x
2

��� dx� : (20)

Form = 1, the �rst of the two conditions is slightly di¤erent because if nobody enters,
a citizen "wins" with probability 1=n. Therefore, the condition that a citizen is weakly
better o¤ entering than not entering if nobody else is entering is given by:

n� 1
n

�
b+

Z 1

�1
f(x)

��x
2

��� dx� � c: (21)

Thus we have a 1-equilibrium if and only if:

1

2

�
b+

Z 1

�1
f(x)

��1
2
(1� x)

��� dx� < c � n� 1
n

�
b+

Z 1

�1
f(x)

��x
2

��� dx� : (22)

6 Discussion and conclusions

We analyze a citizen candidate model with simple majority voting and private information
about all citizens�and candidates� ideal points. This is the polar opposite assumption
to the seminal models of Besley and Coate (1997) and Osborne and Slivinski (1996),
which assume complete information about the ideal points of all citizens before entry
decisions are made. We fully characterize the symmetric equilibrium of the Bayesian
entry game. These equilibria are in cutpoint strategies and hence are characterized by
a unique pair of ideal points, where only citizens more extreme that these cutpoints run
for o¢ ce. In the limiting case as the community becomes very large, only those citizens
with ideal points at the extreme boundary of the distribution of ideal points become
candidates. We show that this holds for any well-behaved probability distribution of
ideal points� symmetric or asymmetric� and it implies substantial political polarization
in large populations, independent of the distribution of citizens� ideal points! It only
depends on the support of the distribution of ideal points. For example, consider the
class of ideal point distributions de�ned by the set of all Normal distributions truncated
(and renormalized) at �1 and 1. Then for all these distributions, the only entrants in
large electorate will have ideal points at �1 and 1. Even if the CDF of ideal points is
concentrated almost entirely at 0, so there is essentially no polarization of preferences
in the general electorate, all candidates (and hence all policies) will be extreme. These
properties of our equilibrium cutpoints, uniqueness and the emergence of only extreme
candidates, di¤er from the multiple equilibria derived in previous citizen candidate models,
a subset of which typically includes candidates with ideal points at or close to the median
ideal point.

We derive comparative statics results for our model, which all follow intuition and
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are similar to the results of previous citizen candidate models with di¤erent informational
assumptions (though risk aversion has not been studied in these models). On average,
higher entry costs or higher risk aversion yield fewer and more extreme candidates, whereas
higher bene�ts from holding o¢ ce yield more and less extreme candidates. Moreover, an
increase in the number of citizens has ambiguous e¤ects on the number of candidates
but they become more extreme on average, and we characterize the limiting equilibrium
distribution and expected number of entrants.

There are important examples where the candidates� ideal points on issues are ei-
ther private or public information. However, for many issues citizens possess information
somewhere in-between these two limit cases. A particular relevant piece of information
is about a candidate�s political leaning, that is, whether she is a "leftist" or "rightist".
We show that this directional information does not a¤ect our equilibrium cutpoints at all
when ideal points are symmetrically distributed. By contrast, it does bias the cutpoints
when ideal points are asymmetrically distributed, because candidates in the direction with
more entrants now have a lower chance of winning than those in the opposite direction.
However, the main results for our cutpoint equilibrium still goes through. Our model with
directional information can, for example, be utilized to study endogenous party formation,
since this information can serve as a coordination device for candidates with the same
political leaning. We leave the analysis of such a model to future research. Another inter-
esting extension would be to utilize other kinds of information about the candidates�ideal
points, such as in the way introduced to the spatial model of competition by Banks (1990)
or allowing for polls, media, or other sources of information about candidate preferences.

We also elaborate on the choice of our default policy, which randomly selects one
citizen as the new leader if nobody runs for o¢ ce. This default policy has the advantage
that it implements a policy decision as part of the equilibrium. We compared it to the
commonly-used �xed default policy (e.g., Besley and Coate 1997; Eguia 2007). If this
exogenous policy (e.g., a status quo policy) is a feasible ideal point, the main results
for our equilibrium cutpoints are maintained, though they are biased in an intuitive way
(i.e., depending on their location). Finally, we discuss an alternative endogenous default
policy with multiple entry rounds. That is, if nobody runs for o¢ ce, another entry round
follows and this continues until eventually at least one candidate emerges. This default
policy demands additional assumptions to ensure that the process ends with certainty.
Comparing the equilibrium cutpoints for the �rst entry round to those for our citizen
candidate model with random default policy, suggests that the �rst round cutpoints will
be more extreme when multiple entry rounds are possible.

On a grander scale, this paper may contribute to our understanding of why we often
observe extreme policy decisions and political polarization in democracies (McCarty et
al. 2006), in contrast to the classical Downsian predictions of median outcomes. In our
model, this phenomenon occurs even in communities where preferences are not polarized
at all. Rather, extreme and polarized policies are the outcome of a process where only
(the most) extreme citizens �nd it worth their while to enter the electoral competition
as candidates. Interestingly, in this equilibrium the citizens get locked in, meaning that
they may vote even though they know there are only extreme candidates. This reduces
social welfare, because the community would be better o¤ ex ante if candidates would
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make truthful policy promises, so that the new leader could be elected according to
the distribution of preferences. The informational problem that candidates�true policy
intentions when elected are privately known challenges the fundamental democratic idea
that policy decisions should re�ect the will of the majority. It remains to be shown
empirically whether and, if so, to what extent this kind of informational asymmetry
combined with endogenous entry of candidates can help explain political polarization.

7 Appendix

7.1 Proof of Lemma 1

Proof. We need to prove that for all � � 1 the function :

B(xi) = Qne(n; q)

Z 1

�1
fne(xj�)

��1
2
(xi � x)

��� dx +Qe(n; q)Z 1

�1
fe(xj�)

��1
2
(xi � x)

��� dx
is strictly convex in xi (i.e., B00(xi) > 0) with B0(xi) < 0 for xi = �1 and B0(xi) > 0
for xi = 1. In fact, we prove here something much stronger, to establish the claim in the
text that our results apply more broadly than just to power utility function. Consider
any utility function U(xi; 
) = �L(xi; 
) where xi denotes the ideal point and 
 is the
implemented policy. Assume that L is twice continuously di¤erentiable and satis�es three
properties:

(i)
@2L(xi; 
)

@x2i
> 0

(ii)
@2L(xi; 
)

@
2
> 0

(iii)
@L(xi; 
)

@xi
= 0 if xi = 
:

In other words, utility functions are concave and single peaked. Then, for any such
U (represented by a loss function, L) we can de�ne:

BL(xi) = Qne(n; q)

Z 1

�1
fne(xj�)L(xi; x)dx +Qe(n; q)

Z 1

�1
fe(xj�)L(xi; x)dx (23)

Thus, if we can show B00L(xi) > 0 with B
0
L(xi) < 0 for xi = �1 and B0L(xi) > 0 for xi = 1

then the result is established for all � > 1 (we prove the special case of � = 1 separately
later).

(Convexity) First, it is straightforward to see that B00L(xi) > 0:

B00L(xi) = Qne(n; q)

Z 1

�1
fne(xj�)

@2L(xi; x)

@x2i
dx +Qe(n; q)

Z 1

�1
fe(xj�)

@2L(xi; x)

@x2i
dx

> 0; (24)
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because @2L(xi;
)

@x2i
> 0.

(Relative maximum and unique minimum) Next, for xi = �1 we have

B0L(�1) = Qne(n; q)
Z 1

�1
fne(xj�)

@L(xi; x)

@xi
jxi=�1dx +Qe(n; q)

Z 1

�1
fe(xj�)

@L(xi; x)

@xi
jxi=�1dx < 0

where the strict inequality holds for a �1-type because our assumptions on L imply that
that @L(xi;x)

@xi
< 0 if xi < x. Similarly, for xi = 1 we have

B0L(1) = Qne(n; q)

Z 1

�1
fne(xj�)

@L(xi; x)

@xi
jxi=1dx+Qe(n; q)

Z 1

�1
fe(xj�)

@L(xi; x)

@xi
jxi=1dx > 0

where the strict inequality holds for a 1-type because our assumptions on L imply that
that @L(xi;x)

@xi
> 0 if xi > x.

Thus, for � > 1, the net-bene�ts of entering are always U-shaped, for any strategy
used by the other citizens. This means that for any symmetric (type-dependent) mixed
entry strategy, �j(x), played by all citizens j 6= i there is a unique interior minimum,
which we will call at xmin� i.e., B is strictly decreasing for xi < xmin, has a derivative
of 0 at xi = xmin, and is strictly increasing for xi > xmin� and two relative maxima at
xi = �1 and xi = 1.

(Risk neutrality) To cover the case of risk neutrality (� = 1) we replace our speci�c
loss function �U(xi; 
) =

��1
2
(xi � 
)

�� with a more general utility function, eL(xi; 
), that
includes the linear "tent" preferences. Assume: (i) eL is twice di¤erentiable for all xi; 
 2
[�1; 1]; (ii) eL(xi; 
 = xi) = 0; (iii) eL0xi(xi; 
) = �K < 0 if xi < 
 and eL0xi(xi; 
) = K > 0

if xi � 
, where K > 0 is a constant (i.e., the value of eL is linearly increasing in the
distance between xi and 
); and (iv) eL00xixi = 0. Thus L is single peaked as before, but
has a kink at the ideal point. The proof follows the same logic as above for the case of a
smoothly convex single peaked L function, and we omit the details.17

7.2 Proof of Proposition 2

Proof. Recall our assumptions n � 2, c � 0, b � 0, and � � 1 and that the citizen types,
xi 2 [�1; 1] � R, are distributed according to any continuous cumulative probability
function, F (x), strictly increasing and twice di¤erentiable on [�1; 1] and with F (�1) = 0,
F (1) = 1, and density f(x) (see Section 2).

Let�s �rst use expressions (4) and (6) to rewrite the best response entry condition (7):

(1� p)n�1
�
n�1
n

� "
b+

R �xr
�xl
f(x)

��1
2
(xi � x)

��� dx
1� p

#
+

nX
m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m

17The cutpoint best response property is even more general, and applies even if other citizens are not
all using the same strategy. However, we are only interested in symmetric equilibria.
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�
"
b+

R �xl
�1 f(x)

��1
2
(xi � x)

��� dx+ R 1
�xr
f(x)

��1
2
(xi � x)

��� dx
p

#
� c: (25)

Moreover, for this and the following proofs it is helpful to separate the "integral"- and
"probability"-terms in condition (25). This yields the following modi�ed best response
condition:18

LHS(70) = Pne(n; p)

Z �xr

�xl

f(x)
��1
2
(xi � x)

��� dx (26)

+Pe(n; p)

�Z �xl

�1
f(x)

��1
2
(xi � x)

��� dx+ Z 1

�xr

f(x)
��1
2
(xi � x)

��� dx�+ Pb(n; p)b � c:
The subscript �ne�in the Pne-term refers to the situation where none of the other citizens
enters, and

Pne(n; p) �
(n� 1)(1� p)n�2

n
> 0 for p 2 [0; 1). (27)

And, the superscript �e�in the Pe-term refers to the situation where at least one other
citizen enters, and

Pe(n; p) � 1

p

"
nX

m=2

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m
+ (1� p)n�1 � (1� p)n�1

#

=
1

p

"
nX

m=1

�
n� 1
m� 1

�
pm�1 (1� p)n�m 1

m
� (1� p)n�1

#

=
1

p

"
1

np

nX
m=1

�
n

m

�
pm (1� p)n�m � (1� p)n�1

#

=
1

np2

"
nX

m=0

�
n

m

�
pm (1� p)n�m � (1� p)n

#
� (1� p)

n�1

p

=
1� (1� p)n

np2
� (1� p)

n�1

p
> 0 for p 2 (0; 1]. (28)

Finally, the superscript �b�in the Pb-term refers to the bene�ts from holding o¢ ce and,

18In Section 5, we compare our stochastic default policy, d, with a �xed default policy d 2 [�1; 1]. In
this case, the best response entry condition (15) can be rewritten as:

Pne(n; p)

Z �xr

�xl

f(x)
�� 1
2

�
xi � d

���� dx
+ Pe(n; p)

�Z �xl

�1
f(x)

�� 1
2 (xi � x)

��� dx +

Z 1

�xr

f(x)
�� 1
2 (xi � x)

��� dx�+ Pb(n; p)b � c:
The �rst term on the left-hand side is U-shaped in xi with a minimum at d, the second term is U-shaped
in xi (cf. the proof of Lemma 1), and the third term is constant in xi. Thus, the left-hand side is overall
U-shaped with a unique minimum value at xmin(�xl; �xr; d). In other words, while d a¤ects xmin, it does
not change the U-shape in xi of the left-hand side of the best response entry condition.
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using similar rearrangements as for expression (28),

Pb(n; p) �
1� (1� p)n

np
� (1� p)

n�1

n
> 0 for p 2 [0; 1]. (29)

We continue by using condition (26) to specify the two best response conditions for
citizen types xi = �xl and xi = �xr. To avoid abundant equilibrium characterization, we
introduce the notation � 2 fl; rg and the indicator functions

F�(x) =

�
F (x) if � = r
F (�x) if � = l

and f�(x) =

�
f(x) if � = r
f(�x) if � = l

;

for x 2 [�1; 1] � R. Thus, we consider the mirror images F (�x) and f(�x) of F (x)
and f(x), respectively, with F�=r(�1) = F (�1) = 0 and F�=r(1) = F (1) = 1, and with
F�=l(�1) = F (1) = 1 and F�=l(1) = F (�1) = 0.

Using this, we can modify the best response entry condition (26) as follows: if all
other citizens j 6= i are using a cutpoint strategy �ej as de�ned in expression (2) (see
Lemma 1), the best response entry strategy of a citizen type xi = �x�, for � = l; r and
� 6= ��, is to enter if and only if:

Pne(n; p)

Z �x�

�x��

f�(x)
��1
2
(�x� � x)

��� dx (30)

+Pe(n; p)

�Z �x��

�1
f�(x)

��1
2
(�x� � x)

��� dx+ Z 1

�x�

f�(x)
��1
2
(�x� � x)

��� dx�+ Pb(n; p)b � c;
where p = p�� + p�, p�� = F�(�x��), and p� = 1� F�(�x�).

(Necessary and su¢ cient conditions) We can use this best response entry strategy to
characterize two necessary and su¢ cient conditions for a cutpoint equilibrium, (�x���; �x

�
�),

to exist, which must hold simultaneously for types �x�� and �x�. First, note the important
relationship between LHS(26), LHS(30), and Lemma 1. When the "c-line" on RHS(26)
intersects the net-bene�ts curve on LHS(26) at xi = �xl and xi = �xr, it must hold that
xmin 2 [�xl; �xr]. Because the net-bene�ts curve is U-shaped in xi, this means that the
cutpoint strategy �e (see expression (2)) ful�lls a necessary condition for the existence of
a cutpoint equilibrium. Then, using the two best response strategies (30) for � = l; r,
the following equilibrium characterizations do indeed constitute necessary and su¢ cient
conditions for an entry equilibrium in cutpoint strategies to exist.

(Equilibrium characterization) There are four di¤erent equilibrium cases:

Case (i): If c � c � 1
n

h
b+

R 1
�1 f(x)

��1
2
(�x�min � x)

��� dxi, then �e�i = 1,8i ("everybody
enters"), where �x�l = �x

�
r = �x

�
min 2 (�1; 1) is determined by

R �x�min
�1 f(x)

��1
2
(�x�min � x)

����1 dx
=
R 1
�x�min

f(x)
��1
2
(�x�min � x)

����1 dx.
This case is derived as follows: if LHS(26) is greater than or equal to c for all values of
xi; �xl; and �xr, then the unique equilibrium is for all n citizens to enter. This corresponds

25



to an equilibrium cutpoint xmin = �xmin = �xl = �xr.19 Thus, for this to hold, in LHS(30)
we simply set xmin = �xmin = �x� = �x�� and only consider the case m = n in the P -terms.
Then, as stated above, the inequality condition (30) reduces to:

1

n

�
b+

Z 1

�1
f�(x)

��1
2
(�xmin � x)

��� dx� � c � c for � = l; r; (31)

because p = F�(�xmin) + 1 � F�(�xmin) = 1, and therefore, Pe [n; p(�xmin) = 1] = 1
n
and

Pb [n; p(�xmin) = 1] =
1
n
(see expressions (28) and (29)). Thus, there is universal entry if

and only if c � c.20 Finally, knowing xmin = �xmin = �xl = �xr, we can determine �xmin by
using the �rst derivative of the left-hand side of LHS(26) with respect to xi, setting this
equal to zero, and replacing �xl; �xr; and xi with �xmin. This gives:

@LHS(7)0
���xi=�xmin=�xl=�xr
@xi

=

Pe(n; p = 1)

�Z �xmin

�1
f�(x)

�
2

��1
2
(�xmin � x)

����1 dx� Z 1

�xmin

f�(x)
�
2

��1
2
(�xmin � x)

����1 dx� = 0
,
Z �xmin

�1
f�(x)

��1
2
(�xmin � x)

����1 dx = Z 1

�xmin

f�(x)
��1
2
(�xmin � x)

����1 dx; (32)

which implicitly determines �xmin, as stated above.

Case (ii): If c � c � max [cl; cr], where cl � n�1
n

h
b+

R 1
�1 f(x)

��1
2
(�1� x)

��� dxi and
cr � n�1

n

h
b+

R 1
�1 f(x)

��1
2
(1� x)

��� dxi, then �x�l = �1; �x�r = 1, and �e�i = 0;8i ("nobody
enters").

This case is derived as follows: if LHS(26) is smaller than or equal to c for all values of
xi; �xl; and �xr, then the unique equilibrium is for no citizen to enter. This corresponds to
an equilibrium pair of cutpoints (�xl = �1; �xr = 1). Thus, for this to hold, we reverse the
inequality sign of condition (30), simply set �x�� = �1 and �x� = 1 in LHS(30), and only
consider the case m = 0 in the P -terms. Then, as stated above, condition (30) reduces to

c� �
n� 1
n

�
b+

Z 1

�1
f�(x)

��1
2
(1� x)

��� dx� � c for � = l; r; (33)

because p = p��+p� = F�(�x�� = �1)+1�F�(�x� = 1) = 0, and therefore, Pne (n; p = 0) =
n�1
n
and Pb (n; p = 0) = n�1

n
(see expressions (27) and (29)). Thus, there is zero entry

if and only if c � c � max [cl; cr] (note that the probability of any citizen having type
xi = �1 or xi = 1 is equal to zero).

Case (iii): If ec � min [ecl;ecr] � c < c, where ec�� � c(�x�� = �1; �x� = x�) and x� =

19The speci�cation of cutpoints is arbitrary when there is universal entry. Any ex such that �xl = �xr = ex
implies universal entry.

20Note that condition (31) implies that if c = 0, there is always universal entry because the left-hand
side is greater than or equal to zero for any feasible combination of n; b; and �.
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�x��(�x
�
�� = �1) 2 (�xmin; 1) for � = l; r, then there is a unique cutpoint equilibrium where

only some more extreme citizen types in one direction are expected to enter. Speci�cally,
if ec = ec�� then citizen types xi � x� enter, that is, [�x��� = �1; �x�� 2 [x�; 1)], and all other
types (xi < x�) do not enter. This unique equilibrium is characterized by the two best
response conditions

Pne(n; p�)

Z �x��

�1
f�(x)

��1
2
(�x�� � x)

��� dx
+ Pe(n; p�)

Z 1

�x��

f�(x)
��1
2
(�x�� � x)

��� dx+ Pb(n; p�)b = c (34)

and

Pne(n; p�)

Z �x��

�1
f�(x)

��1
2
(�1� x)

��� dx
+ Pe(n; p�)

Z 1

�x��

f�(x)
��1
2
(�1� x)

��� dx+ Pb(n; p�)b � c; (35)

where ec = ec�� and p� = 1 � F�(�x��). Note that the probability of any citizen type �1 or
x� occurring is equal to zero. Moreover, x� = �x��(�x

�
�� = �1) is implicitly determined by

Pne(n; p�)

�Z x�

�1
f�(x)

��1
2
(x� � x)

��� dx� Z x�

�1
f�(x)

��1
2
(�1� x)

��� dx� (36)

+ Pe(n; p�)

�Z x�

�1
f�(x)

��1
2
(x� � x)

��� dx� Z 1

x�

f�(x)
��1
2
(�1� x)

��� dx� = 0;
and ec�� is determined by replacing �x�� with x� on the left-hand side of condition (34).
This case is derived as follows: if LHS(26) is greater than or equal to c for all values
xi � x� and smaller than c for all values of xi < x�, then the unique equilibrium is
for all citizen types larger than or equal to x� to enter, and for all other types not to
enter. This corresponds to a cutpoint equilibrium [�x�� = �1; �x� 2 [x�; 1)]. Thus, for this
to hold, for a type �x� we state condition (30) as equality and simply set �x��� = �1 in
LHS(30) j�x� , where the subscript denotes the citizen type whose strategy we investigate
(see condition (34)), and for a type �x�� we reverse the inequality sign and set �x��� = �1
in LHS(30)

��
�x�� (see condition (35)). In condition (36), we determine the boundary case

x� = �x�(�x�� = �1)� where a type �x�� = �1 is just indi¤erent between entering and
not entering as a candidate (note that the probability of this type occurring is equal to
zero)� by setting the left-hand sides of conditions (34) and (35) equal and making simple
rearrangements. Importantly, below we use Envelope Theorem to show that a citizen
type x�� = �1 always prefers not to enter if c > ec. Therefore, for ec � c < c we only need
condition (34) to compute the interior cutpoint policy �x�(�x�� = �1).
Case (iv): If c < c < ec, then there is a unique equilibrium pair of interior cutpoints,
(�x�l ; �x

�
r), where some more extreme citizen types in both directions are expected to enter.
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Speci�cally, for � = l; r, if ec = ec�� then [�x��� 2 (�1; �x�min); �x�� 2 (�x�min; x�)] and if ec = ec�� =ec� then [�x��� 2 (�1; �x�min); �x�� 2 (�x�min; 1)], and in all these cases some citizen types in both
directions who are more extreme than or equal to �x��� or �x

�
� are expected to enter. This

unique interior equilibrium is characterized by the equality condition

Pne(n; p)

Z �x��

�x���

f�(x)
��1
2
(�x�� � x)

��� dx (37)

+Pe(n; p)

"Z �x���

�1
f�(x)

��1
2
(�x�� � x)

��� dx+ Z 1

�x��

f�(x)
��1
2
(�x�� � x)

��� dx#+ Pb(n; p)b = c;
which must hold simultaneously for � = l; r, where p = F�(�x���) + 1� F�(�x��).

This case is derived as follows: if LHS(26) is greater than or equal to c for all values
of xi � �x��� and xi � �x�� and smaller than c for all values of xi 2 (�x���; �x��), then the
unique equilibrium is for all citizen types who are more extreme than or equal to �x���
and �x�� to enter, and for all other more moderate types not to enter. This corresponds to
a cutpoint equilibrium [�x�� 2 (�1; �xmin); �x� 2 (�xmin; x�)] for ec = ec��. Thus, for this to
hold, we simply have to state (30) as equality for both � = l; r (see condition (37)), and
simultaneously compute the values of the interior cutpoints �x� and �x��.

(Existence) Next, we prove that a cutpoint equilibrium, (�x���; �x
�
�), always exist and is

always unique for any cumulative probability distribution of ideal points, F (x), satisfying
A1-A3 (see Section 2). We proceed in the following steps. Here, we use Envelope Theorem
and Intermediate Value Theorem to show existence. Thereafter, we prove uniqueness using
our result that for any given entry probability, p, there is a unique cutpoint equilibrium.

We begin by using Envelope Theorem. Recall that LHS(26) is a continuous function
of xi; �x��; and �x�. Now consider the following value function:

�[�x��; �x� jf�(x); n; �; c; b ] =
1Z

�1

f�(x)
�
c� LHS(26)[x; �x��; �x� jf�(x); n; �; c; b ]

�
dx

and the maximization problem

��[�x���; �x
�
� jf�(x); n; �; c; b ] � max

�x�� ;�x�
�[�x��; �x� jf�(x); n; �; c; b ].

However, if both cutpoints are interior (the case with one interior cutpoint will be dis-
cussed below), we know from equilibrium condition (37) that a solution to this problem�
i.e., a cutpoint equilibrium, (�x���; �x

�
�)� is implicitly determined by

LHS(26)[�x���; �x
�
� jf�(x); n; �; c; b ]

���xi=�x��� = LHS(26)[�x���; �x�� jf�(x); n; �; c; b ] ��xi=�x�� = c
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which, using Lemma 1, gives:

��[�x���; �x
�
� jf�(x); n; �; c; b ] =

�x��Z
�x���

f�(x)
�
c� LHS(26)[x; �x���; �x�� jf�(x); n; �; c; b ]

�
dx. (38)

Here, we are interested in the e¤ects of a marginal change in the entry costs, c, on ��[:],
and on the equilibrium cutpoints in particular. Since the two cutpoints are mutually
dependent, let us write the pair as [�x���(�x

�
� ; c); �x

�
�(�x

�
��; c)]. Then, by the chain rule we

have

d��[�x���(�x
�
� ; c); �x

�
�(�x

�
��; c); c jf�(x); n; �; b ]
dc

=
@��[:]

@c

+
@��[:]

@�x��(�x�; c)

�
d�x��(�x�; c)

dc
+
@�x��(�x�; c)

@�x�(�x��; c)

d�x�(�x��; c)

dc

�
+

@��[:]

@�x�(�x��; c)

�
d�x�(�x��; c)

dc
+
@�x�(�x��; c)

@�x��(�x�; c)

d�x��(�x�; c)

dc

�
;

which, using the �rst-order equilibrium condition @��[:]
@�x��(�x� ;c)

= @��[:]
@�x�(�x�� ;c)

= 0, yields

d��[�x���(�x
�
� ; c); �x

�
�(�x

�
��; c); c jf�(x); n; �; b ]
dc

=
@��[:]

@c
=

�x��Z
�x���

f�(x)dx > 0 for p 2 [0; 1): (39)

Therefore, a marginal change in c a¤ects ��[:] only directly, but not indirectly through
changes in �x��(�x�; c) and �x�(�x��; c) (in other words, the e¤ects on LHS(26)[:] in v�[:] are
negligible and marginal changes in the cutpoints are independent from each other).

This is an important result, and it also informs us about how �x�� and �x� change when
c changes marginally. Expression (39) shows that an increase in ��[:] through a marginal
increase from c to c0 is entirely due to the higher entry costs of each potential citizen
type x 2 [�x���; �x�� ]. Among these citizens, for c only types �x���(c) and �x��(c) enter and
all other, moderate types x 2 (�x���(c); �x��(c)) abstain. By contrast, for c0 the entry costs
exceed the net-bene�ts also for types �x���(c) and �x

�
�(c), who now abstain too. Therefore,

if both equilibrium cutpoints �x��� and �x
�
� are interior (see Proposition 2 (iv)), marginally

increasing c to c0 yields more extreme equilibrium cutpoints, or �x0��� < �x��� and �x
�
� < �x0�� .

As a consequence, the entry probability decreases in both directions (i.e., p�� > p0�� and
p� > p0�), and hence decreases overall (i.e., p > p0). If only one equilibrium cutpoint is
interior, �x��, and the other is at the boundary, �x

�
�� = �1 (see Proposition 2 (iii)), it is

readily veri�ed that the value function (38) and its derivative (39) can be used by simply
setting �x��� = �1. Then, marginally increasing c to c0 yields the interior cutpoint to
become more extreme, or �x�� < �x0�� , while the boundary cutpoint remains unchanged, or
�x��� = �x

0�
�� = �1. As a consequence, the entry probability only decreases in the direction

of the interior cutpoint (i.e., p� > p0� and p�� = p0�� = 0), and hence decreases overall
(i.e., p > p0).
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Moreover, importantly, for interior equilibrium cutpoints the net-bene�ts of citizen
types with exactly these cutpoints are larger for c0 than for c, respectively. This is be-
cause from expression (39) we know that, on the margin, for c0 the cutpoints are simply
reached by moving upwards along the U-shaped net-bene�t curve for c, that is, along
LHS(26)[xi; �x��; �x� jn; �; c; b ]. Finally, note that our results also establish that in any
equilibrium it must hold that �x�l 2 [�1; �x�min] and �x�r 2 [�x�min; 1], because cutpoints never
get more moderate if c increases. In summary, continuously increasing c creates one or
more continuous equilibrium paths [�x���(�x

�
� ; c); �x

�
�(�x

�
��; c)] with the following properties:

the interior cutpoints get more extreme (at the boundary, �x��� = �1 remains), (ii) p
decreases; and (iii) LHS(30) increases. The endpoints of any path are at c (p = 1, where
�x��� = �x�� = �xmin) and at c (p = 0, where �x��� = �1 and �x�� = 1). Using expressions (31)
and (33), unless n = 2 ^ � = 1 ^ f�(x) = 121 we have:

c < c) 1

n

�
b+

Z 1

�1
f�(x)

��1
2
(�xmin � x)

��� dx� < n� 1
n

�
b+

Z 1

�1
f�(x)

��1
2
(1� x)

��� dx� ;
where the strict inequality holds because 1

n
< n�1

n
for n > 2 and

R 1
�1 f�(x)

��1
2
(�xmin � x)

��� dx
<
R 1
�1 f�(x)

��1
2
(1� x)

��� dx. Therefore, by the Intermediate Value Theorem, at least one
equilibrium path [�x���(�x

�
� ; c); �x

�
�(�x

�
��; c)] must exist. Finally, for c � c and c < c, ex-

istence (and uniqueness) is readily veri�ed for universal entry and universal abstention,
respectively. This completes our proof of existence.

(Uniqueness) Next, we prove uniqueness of (�x���; �x
�
�). To do so, we show that for any

given entry probability, p 2 [0; 1], at most one pair of cutpoints can simultaneously ful�ll
the best response condition (37) for � = l; r (see Proposition 2 (iv)), or conditions (34)
and (35) (see Proposition 2 (iii)). The main idea of the proof is that any continuous
equilibrium path must use all p 2 [0; 1], and thus, if there is only one cutpoint equilibrium
for p, this would mean there is a unique equilibrium path. Note that keeping p constant
means that the three P (n; p)-terms in these conditions are not a¤ected when �x�� and �x�
change (see expressions (27) to (29)). It also means that it can neither be a unilateral
change in one cutpoint only, nor a simultaneous change in both cutpoints in opposite
directions (i.e., jointly more extreme or jointly less extreme). Note that for a �xed p this
also holds for equilibria with only one interior cutpoint. Thus, by keeping p constant, we
need to analyze changes in �x�� and �x� in the same direction. Without loss of generality,
we focus on increases from �x to �x0, that is, �x�� < �x0�� � �xmin and �xmin � �x� < �x

0
�, under

the constraint that p(�x��; �x�) = p(�x0��; �x
0
�). We account for these increases by modifying

the partition of the integrals in LHS (30). Then, before the change is implemented, for a

21If n = 2 ^ � = 1 ^ f�(x) = 1 (note that f�(x) = 1 gives the uniform distribution of types), we have
c = c, because 1=n = (n� 1)=n for n = 2 and because the integral terms are equal for � = 1^ f�(x) = 1,
and there are only two possible equilibria: either both citizens enter or both abstain.
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�x�-type this gives:

LHS (30)
��
(�x�� ;�x�);�x�

= Pe(n; p)

Z �x��

�1
f�(x)

��1
2
(�x� � x)

��� dx (40)

+Pne(n; p)

Z �x0��

�x��

f�(x)
��1
2
(�x� � x)

��� dx+ Pne(n; p)Z �x�

�x0��

f�(x)
��1
2
(�x� � x)

��� dx
+Pe(n; p)

Z �x0�

�x�

f�(x)
��1
2
(�x� � x)

��� dx+ Pe(n; p)Z 1

�x0�

f�(x)
��1
2
(�x� � x)

��� dx
+Pb(n; p)b:

Next, we rewrite this expression for a �x0�-type, after increasing both cutpoints. Compared
to expression (40), note that besides replacing �x� with �x0� in the absolute brackets of the
integrals, also the P -terms of the second and fourth terms are a¤ected. This gives:

LHS (30)
���(�x0�� ;�x0�);�x0�

= Pe(n; p)

Z �x��

�1
f�(x)

��1
2
(�x0� � x)

��� dx (41)

+Pne(n; p)

Z �x0��

�x��

f�(x)
��1
2
(�x0� � x)

��� dx+ Pne(n; p)Z �x�

�x0��

f�(x)
��1
2
(�x0� � x)

��� dx
+Pe(n; p)

Z �x0�

�x�

f�(x)
��1
2
(�x0� � x)

��� dx+ Pe(n; p)Z 1

�x0�

f�(x)
��1
2
(�x0� � x)

��� dx
+Pb(n; p)b

+ [Pe(n; p)� Pne(n; p)]
Z �x0��

�x��

f�(x)
��1
2
(�x0� � x)

��� dx
� [Pe(n; p)� Pne(n; p)]

Z �x0�

�x�

f�(x)
��1
2
(�x0� � x)

��� dx;
where the last two terms are used to make the �rst six terms comparable to the six terms
in expression (40). Importantly, these terms are strictly larger in expression (41) than in
(40). This follows from Lemma 1 by setting xi = �x� and xi = �x0�, respectively, and using
xmin(�x��; �x�) � �x� < �x0� (because �x0� moves on the same net-bene�ts curve as �x�).22

22To see this, we simplify expression (40) and the �rst six terms of expression (41), the latter of which

are equivalent to LHS (30)
���(�x��;�x�);�x0� . This gives:

LHS (30)
��
(�x��;�x�);�x� = Pe(n; p)

R �x��
�1 f�(x)

�� 1
2 (�x� � x)

��� dx+ Pne(n; p) R �x��x�� f�(x) �� 12 (�x� � x)��� dx
+Pe(n; p)

Z 1

�x�

f�(x)
�� 1
2 (�x� � x)

��� dx+ Pb(n; p)b

31



Next, we examine the last two terms of expression (41). If it holds that

[Pe(n; p)� Pne(n; p)]
Z �x0��

�x��

f�(x)
��1
2
(�x0� � x)

��� dx
� [Pe(n; p)� Pne(n; p)]

Z �x0�

�x�

f�(x)
��1
2
(�x0� � x)

��� dx
,
Z �x0��

�x��

f�(x)
��1
2
(�x0� � x)

��� dx � Z �x0�

�x�

f�(x)
��1
2
(�x0� � x)

��� dx; (42)

where Pe(n; p) � Pne(n; p) for p 2 (0; 1],23 then we have shown that LHS(30) always
strictly increases for a given p if both cutpoints increase. Note that for p = 0, the
only feasible pair is (�x�� = �1; �x� = 1). To see that condition (42) indeed holds, it is
su¢ cient to show that the minimal gain on the left-hand side,

R �x0�
�x�
f�(x)dx

��1
2

�
�x0� � �x0��

����
(using

R �x0��
�x��

f�(x)dx =
R �x0�
�x�
f�(x)dx; since p is held constant), is equal to or larger than the

maximal loss on the right-hand side,
R �x0�
�x�
f�(x)dx

��1
2
(�x0� � �x�)

���. That is, we set the most
extreme values constant and multiply them by the equal probabilities. This gives:Z �x0�

�x�

f�(x)dx
��1
2

�
�x0� � �x0��

���� � Z �x0�

�x�

f�(x)dx
��1
2
(�x0� � �x�)

��� (43)

,
��1
2

�
�x0� � �x0��

���� � ��1
2
(�x0� � �x�)

��� ;
which always holds because �x0�� � �xmin � �x� < �x0�. Note that the same things hold
when there is one boundary cutpoint, �x0�� = �1 (this is readily veri�ed by replacing �x0��
with �1 in expressions (41) to (43)). Therefore, increasing �x�� and �x� while keeping p
constant yields LHS (30)

��
(�x�� ;�x�);�x� < LHS (30)

���(�x0�� ;�x0�);�x0� , and also LHS (30) ��(�x�� ;�x�);�x��
> LHS (30)

���(�x0�� ;�x0�);�x0�� (to understand the latter inequality, consider the reverse de-
creases from �x0�� to �x�� and �x

0
� to �x�, which is analyzed analogous to the increases

above). However, in equilibrium it must hold for (�x��; �x�) that LHS (30)
��
(�x�� ;�x�);�x��

< LHS (30)
���(�x��;�x�);�x0� = Pe(n; p) R �x���1 f�(x)

�� 1
2 (�x

0
� � x)

��� dx+ Pne(n; p) R �x��x�� f�(x) �� 12 (�x0� � x)��� dx
+Pe(n; p)

Z 1

�x�

f�(x)
�� 1
2 (�x

0
� � x)

��� dx+ Pb(n; p)b:
for �x� < �x0� (see Lemma 1).

23Using expressions (27) and (28), this is derived as follows: Pe(n; p) � Pne(n; p) for p 2 (0; 1]

, p
nX
k=1

(1� p)k�1 � np(1� p)n�1 + (n� 1) p2(1� p)n�2 ,
nX
k=1

1

(1� p)n�k�1 � n� p

, 1

(1� p)n�2 +
1

(1� p)n�3 + :::+ 1 + (1� p) � n� p; since
1

(1� p)n�k�1 � 1 for k = 1; :::; n� 1

if p 2 (0; 1) and 1
(1�p)n�k�1 = 1� p if k = n. Note that Pe(n; p) = Pne(n; p) if n = 2:
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= LHS (30)
��
(�x�� ;�x�);�x� , and thus, given the two inequalities it cannot hold simultaneously

for (�x0��; �x
0
�) that LHS (30)

���(�x0�� ;�x0�);�x0�� = LHS (30)
���(�x0�� ;�x0�);�x0� . Thus, for any given en-

try probability p 2 [0; 1], there is a unique cutpoint equilibrium. Given the properties
of the equilibrium path derived above, this also means that there is a unique cutpoint
equilibrium for any given c > 0, which completes our proof Proposition 2.

7.3 Proof of Proposition 3

Proof. We begin by analyzing the comparative statics e¤ects of changes in the costs
of entry, c, the bene�ts from holding o¢ ce, b, and the degree of risk aversion, �, on
the equilibrium cutpoints, (�x�l ; �x

�
r), that use at least one interior cutpoint. Thereafter, we

show that a change in the number of citizens, n, has ambiguous e¤ects on this equilibrium,
and we also derive the cutpoints for very large n, that is, lim n!1�x

�
l (n) and lim n!1�x

�
r(n).

The proof uses the best response entry strategy (30). First, note that the three
P (n; p)-terms (see expressions (27) to (29)) in this condition are not directly a¤ected by a
change in c; b; or �, and the three integral terms are (not) directly a¤ected by a change in �
(c; b; or n). Importantly, if �x�� and �x� are interior, we know from the proof of Proposition 2
that there is a unique equilibrium path where LHS(30)

��
�x�� = LHS(30) j�x� = c and both

cutpoints simultaneously get more extreme if c increases. Moreover, if �x�� = �1 and �x�
is interior, there is a unique equilibrium path where LHS(30)

��
�x��=�1 � LHS(30) j�x� = c

and �x�� = �1 remains and �x� gets more extreme if c increases. These results can be used
to derive the following comparative statics e¤ects:

(Costs of entry) LHS(30) is constant in c while RHS(30) is strictly increasing in c for
� = l; r. Because on the unique equilibrium path LHS(30) is strictly increasing if both
interior cutpoints �x�� and �x� get more extreme (if �x�� = �1 remains and the interior
cutpoint �x� increases), this implies that on this path �x�� strictly decreases (remains)
and �x� strictly increases if c increases. This implies less entry, in the sense of stochastic
dominance, and therefore the expected number of candidates decreases. It also implies
that candidates and policy outcomes are more extreme, on average.

(Bene�ts from holding o¢ ce) LHS(30) is strictly increasing in b (since Pb(n; p) > 0)
while RHS(30) is constant in b for � = l; r. Because on the unique equilibrium path
LHS(30) is strictly decreasing if both interior cutpoints �x�� and �x� get more moderate
(if �x��(�x� � x�) = �1 remains or increases and the interior cutpoint �x� decreases),
this implies that on this path �x�� strictly increases (remains or strictly increases) and
�x� strictly decreases if b increases. This implies more entry, in the sense of stochastic
dominance, and therefore the expected number of entrants increases. It also implies that
candidates and policy outcomes are less extreme, on average.

(Risk aversion) RHS(30) is constant in � and LHS(30) is strictly decreasing in
� for � = l; r (since Pne(n; p) > 0, Pe(n; p) > 0, and @

R
f(x)

��1
2
(�x� � x)

��� dx=@� =R
f(x)

��1
2
(�x� � x)

��� ln ��1
2
(�x� � x)

�� dx < 0, where the inequality holds because ln ��1
2
(�x� � x)

��
< 0 for any combination of �x� 2 (�xmin; 1); x 2 [�1; 1], and all three de�nite integrals in
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condition (30)). Because on the unique equilibrium path LHS(30) is strictly increasing if
both interior cutpoints �x�� and �x� get more extreme (if �x�� = �1 remains and the inte-
rior cutpoint �x� increases), this implies that on this path �x�� strictly decreases (remains)
and �x� strictly increases if � increases. This implies less entry, in the sense of stochastic
dominance, and therefore the expected number of entrants decreases. It also implies that
candidates and policy outcomes are more extreme, on average.

(Community size) Here we show that limn!1 �x�l (�x
�
r; n) = �1. The proof that

limn!1 �x�r(�x
�
l ; n) = 1 is identical. Because we are looking at in�nite sequences on a

compact set, there must exist at least one convergent subsequence so we only need to
show lim infn!1 �x�l (�x

�
r; n) = �1. Suppose to the contrary that lim infn!1 �x�l (�x�r; n) > �1.

Then there exists an � and a subsequence fnkg ! 1 and an integer k such that for k > k
the probability a randomly selected citizen enters equals pk > �. This implies that the
equilibrium probability of winning along this subsequence goes to zero. But this in turn
implies that nobody will enter, which implies �x�l (�x

�
r; nk) = �1, a contradiction.

7.4 Proof of Proposition 4

Proof. Here, we derive the expected number of candidates in very large communities.
For very large n, the best response condition (30) for � = l; r is:

lim
n�!1

"
Pne(n; p)

Z �x�

�x��

f�(x)
��1
2
(�x� � x)

��� dx
+Pe(n; p)

�Z �x��

�1
f�(x)

��1
2
(�x� � x)

��� dx+ Z 1

�x�

f�(x)
��1
2
(�x� � x)

��� dx�+ Pb(n; p)b�
� lim

n�!1
c.

Using limn!1 �x
�
��(�x

�
� ; n) = �1 and limn!1 �x

�
�(�x

�
��; n) = 1 (see Proposition 3) and limn!1 c =

c, the best response condition for a citizen type �x� can be reduced to:

lim
n�!1

�
Pne(n; p)

Z 1

�1
f(x)

��1
2
(1� x)

��� dx+ Pb(n; p)b� � c: (44)

Moreover, de�ning v� �
R 1
�1 f(x)

��1
2
(1� x)

��� dx, and using limn!1
n�1
n
= 1 and expres-

sions (27) and (29) gives:

lim
n�!1

Pne(n; p) = lim
n�!1

(n� 1)(1� p)n�2
n

= lim
n�!1

(1� p)n�2

and

lim
n�!1

Pb(n; p) = lim
n�!1

�
1� (1� p)n

np
� (1� p)

n�1

n

�
:

Because n is very large and p is very small (as limn!1 �x
�
��(�x

�
� ; n) = �1 and limn!1 �x

�
�(�x

�
��; n) =

1), we can approximate the binomial distribution by the Poisson distribution using
�
N
k

�
pk(1�

34



p)N�k � (Np)k

k!
e�Np. Moreover, let us denote � � limn!1E(m) = limn!1 np and

� � � limn!1E(m�) = limn!1 np�, where p = p�� + p�, m = m�� +m�, and � = ��� + � �
for � = l; r and � 6= ��. Then, setting k = 0 and N = n� 2 in the Poisson approximation
yields:

(1� p)n�2 � [(n� 2)p]0

0!
e�(n�2)p = e�(n�2)(p��+p�) � e�(���+��),

where e�(n�2)p�� � e�np�� and e�(n�2)p� � e�np� . Similarly, setting k = 0 and N = n in
the Poisson approximation yields:

1� (1� p)n
np

� (1� p)
n�1

n
�
1� (np)0

0!
e�np

�
�

[(n�1)p]0
0!

e�(n�1)p

n
=
1� e�(���+��)
��� + � �

;

where limn!1
e�(n�1)p

n
= 0 since e�(n�1)p � 1 for p 2 [0; 1]. Using these results, we can

rewrite the best response condition (44) as

e�(���+���)v� +
1� e�(���+���)
��� + ���

b � c: (45)

In the following, we distinguish between conditions (iii) and (iv) of Proposition 2. First,
note that

lim
n�!1

c = lim
n�!1

1

n

�
b+

Z 1

�1
f�(x)

��1
2
(�xmin � x)

��� dx� = 0
and

lim
n�!1

c� � lim
n�!1

n� 1
n

[b+ v�] = b+ v�:

Without loss of generality, let us assume that ec = ec�� � ec� (see the proof of Proposition
2). If 0 < c < ec (see Proposition 2 (iv)), stating the "limit" best response condition (45)
as equality and rearranging yields the following implicit function for � = l; r:

� � = ���� + (��� + � �)e�(���+��)
v� � 1

2

c
+
�
1� e�(���+��)

� b+ 1
2

c
; (46)

which proves the �rst part of Proposition 4. If c 2 (ec; c� = c] (see Proposition 2 (iii)), then
�x�� = �1 and p�� = 0 and we simply set ��� = 0 in condition (46). This can be done since
the best response condition (44) already accounts for �x�� = �1 (as limn!1 �x��(n) = �1),
and it is readily veri�ed that setting p�� = 0 and following all steps that led to condition
(46) does indeed give:

� � = � �e
��� v� �

1
2

c
+
�
1� e���

� b+ 1
2

c
; (47)

which proves the second part of Proposition 4. Finally, note that for symmetric probability
distributions of ideal points the equilibrium cutpoints are (�x�� = ��x�; �x�) and c = c�� =
c�. Then, for c 2 (0; c) we have ��� = � � = �

2
(recall that � = ���+ � �) and v = v�� = v�.
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This yields

� = �e��
v � 1

2

c
+
�
1� e��

� b+ 1
2

c
: (48)
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