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Nonparametric Learning Rules from Bandit
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Abstract

How do people learn? We assess, in a distribution-free manner, subjects’ learning and

choice rules in dynamic two-armed bandit learning experiments. To aid in identification

and estimation, we use auxiliary measures of subjects’ beliefs, in the form of their eye-

movements during the experiment. Our estimated choice probabilities and learning rules

have some distinctive features; notably that subjects tend to update in a non-smooth

manner following choices made in accordance with current beliefs. Moreover, the beliefs

implied by our nonparametric learning rules are closer to those from a (non-Bayesian)

reinforcement learning model, than a Bayesian learning model.

JEL classification numbers: D83, C91, C14

Key words: learning, experiments, eye-tracking, Bayesian vs. non-Bayesian learning,
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Nonparametric Learning Rules from Bandit

Experiments:

The Eyes have it!∗

Yingyao Hu Yutaka Kayaba Matthew Shum

How do individuals learn from past experience in dynamic choice environments? We

address this question by presenting nonparametric estimates of subjects’ learning rules in

a dynamic two-armed bandit experiments, where subjects must repeatedly guess which

of the two arms yields a (stochastically) higher reward. Auxiliary measures of subjects’

eye movements as they make their choices are employed to “pin down” subjects’ beliefs in

each round of the learning experiment. The nonparametric estimation of learning models

is a new endeavor in both the experimental learning literature, as well as the empirical

literature in economics and marketing in which dynamic learning models are estimated

structurally using field data. Estimating the learning rules nonparametrically allows us

to compare competing learning models in a manner quite distinct from that taken in the

existing literature.

A sizable literature has developed around structural estimation of learning-based

models of dynamic choice. Some representative papers include Miller (1984), Erdem and

Keane (1996), Ackerberg (2003), Crawford and Shum (2005), Chan and Hamilton (2006),

and Marcoul and Weninger (2008). This literature typically assumes that agents process

information according to a forward-looking Bayesian learning model. This restrictive

assumption is driven in part by data considerations: oftentimes, all that is observed are

the sequences of agents’ choices, so that a lot of (parametric) structure must be placed

on the learning model for identification.

∗Hu: yhu@jhu.edu. Kayaba & Shum: {ykayaba,mshum}@caltech.edu. We are indebted to Antonio

Rangel for his encouragement and for the funding and use of facilities in his lab. We thank Dan Ackerberg,

Peter Bossaerts, Colin Camerer, Andrew Ching, Cary Frydman, Ian Krajbich, Pietro Ortoleva, and

participants in presentations at U. Arizona, Caltech, UCLA, U. Washington and Choice Symposium

2010 (Key Largo) for comments and suggestions.



In controlled experimental settings, richer data are observed: not only subjects’

choices, but also the outcomes (rewards) from their choices. In addition, there is also

the opportunity to observe “auxiliary” measures of subjects’ beliefs (or valuations), such

as brain activity (cf. Yoshida and Ishii (2006), Boorman, Behrens, Woolrich, and Rush-

worth (2009) in the recent fMRI neuroscience literature), mouse-tracking (cf. Brocas,

Carrillo, Wang, and Camerer (2009)), or eye movements (as in Armel and Rangel (2008),

and the present paper).

Because of this additional data richness, researchers in the behavioral/experimental

literature have been able to consider more flexible learning rules, and to test the fully-

rational Bayesian learning benchmark versus boundedly-rational, non-Bayesian “rein-

forcement learning” (RL) rules (cf. Sutton and Barto (1998)). An incomplete list of

papers which consider these questions includes Grether (1992), El-Gamal and Grether

(1995), Charness and Levin (2005), Kuhnen and Knutson (2008), and Payzan and Bossaerts

(2009). Particularly, RL has attracted considerable attention in the recent neuroeco-

nomics and decision neuroscience literature (cf. Glimcher, Camerer, Poldrack, and Fehr

(2008), Rushworth and Behrens (2008)), ever since studies showing that the “prediction

errors” of these models are apparently encoded in certain areas of the brain (cf. Schultz,

Dayan, and Montague (1997)) for evidence from primates). Recently, RL models have

also been used to explain some observed anomalies in savings and investment behav-

ior (eg. Choi, Laibson, Madrian, and Metrick (2009), Odean, Strahilevitz, and Barber

(2004)).1

In this paper, we take a new approach to assessing learning in experimental settings.

Taking advantage of recent developments in the econometrics of estimating dynamic

models with serially-correlated unobservables, we use the observed experimental and

auxiliary data to estimate, nonparametrically, subjects’ choice probabilities and learning

rules, without imposing a priori functional forms on these functions. Thus, our learning

rules can be reasonably interpreted as “what the subjects actually think”, as reflected

in their observed choices. Subsequently, we compare our estimated learning rules to spe-

cific parameterized learning rules which have been considered in the previous literature,

including the Bayesian and reinforcement-learning models.

Moreover, we estimate not only the learning rules nonparametrically, but also the

choice probabilities. Choice probabilities are key parameters in machine learning and de-

1In the computational IO literature, such learning algorithms have also been used to ease the com-

putational burden associated with dynamic equilibrium models, cf. Pakes and McGuire (2001), Imai,

Jain, and Ching (2009).
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cision neuroscience models (cf. Sutton and Barto (1998), Doya (2002)). Although several

studies have examined parameterized models of choice behavior (cf. Daw, O’Doherty,

Dayan, Seymour, and Dolan (2006)), to our knowledge, the present paper is the first

which examines choice behavior in learning models without imposing a priori functional

forms on the choice probabilities.

Our approach differs from a common modus operandi in the behavioral/experimental

literature, which has been to use the observed choice data from the experiment to cali-

brate parameters for competing learning models. Subsequently, the competing learning

models are simulated, and verification is based upon comparing the simulated learning

rules with the observed auxiliary belief measurements. For instance, Hampton, Bossaerts,

and O’Doherty (2006) test between a Bayesian and reinforcement-learning model on the

basis of two-armed bandit experiments supplemented with brain activity information

from fMRI brainscans.2 Instead, our approach represents a novel application of econo-

metric tools recently developed for the estimation of nonclassical measurement error

models and dynamic discrete-choice models (Hu (2008), Hu and Shum (2008)). Because

subjects’ underlying beliefs are unobserved and also serially correlated over time, the

learning model is a particular case of a nonlinear “hidden state Markov” model, which

can be challenging to estimate.3 In contrast, by fitting the learning model into a dy-

namic misclassification framework, in which the eye-movement measures play the role

of “noisy measurements” of the underlying belief process, we obtain a simple estimator

which involves only elementary calculations involving matrices which can be formed from

the observed data.4

In the next section, we describe the dynamic two-armed bandit learning (probabilistic

reversal learning) experiment, and the eye movement data gathered by the eye-tracker

machine. In Section 2, we present an econometric model of subjects’ choices in the

bandit model, and discuss nonparametric identification and estimation. In Section 3,

we describe the experimental data, and present our nonparametric estimates of subjects

decision rules and learning rules. Section 4 contains a comparison of our estimated

learning rules to “standard” learning rules, including those from the Bayesian and non-

Bayesian reinforcement-learning models. Section 5 concludes.

2Other papers utilizing a similar methodological framework include Behrens, Woolrich, Walton, and

Rushworth (2007), Boorman, Behrens, Woolrich, and Rushworth (2009), Daw, O’Doherty, Dayan, Sey-

mour, and Dolan (2006), Yoshida and Ishii (2006).
3See, for instance, Ghahramani (2001) and Arcidiacono and Miller (2006).
4Relatedly, Samejima, Doya, Ueda, and Kimura (2004) consider Bayesian estimation of a reinforce-

ment learning model using sequential Monte Carlo (“particle filtering”) methods.
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1 Two-armed bandit “reversal learning” experiment

The learning experiments considered in this paper are adapted from Hampton, Bossaerts,

and O’Doherty (2006). In the experiments, subjects make repeated choices between two

actions (which we call interchangeably “arms” or “slot machines” in what follows): in

trial t, the subject chooses Yt ∈ {1(= “green”), 2(= “blue”)}. The rewards generated by

these two arms are changing across trials, as described by the state variable St ∈ {1, 2},

which is never observed by subjects. When St = 1, then green (blue) is the “good”

(“bad”) state, whereas if St = 2, then blue (green) is the “good” (“bad”) state.

The rewards Rt that the subject receives in trial t depends on the action taken, as

well as (stochastically) on the current state: the good (bad) arm yields rewards

Rt =

{

“2′′(= $0.50) with prob 0.7 (0.4)

“1′′(= −$0.50) with prob 0.3 (0.6)
(1)

The state evolves according to an exogenous binary Markov process. At the beginning of

each block, the initial state S1 ∈ {1, 2} is chosen with probability 0.5, randomly across

all subjects and all blocks. Subsequently, the state evolves with transition probabilities5

P (St+1|St) St = 1 St = 2

St+1 = 1 0.85 0.15

St+1 = 2 0.15 0.85

.

Because St is not observed by subjects, and is serially-correlated over time, there is the

opportunity for subjects to learn and update their beliefs about the current state on

the basis of past rewards. Moreover, because St changes randomly over time, so that

the identity of the good arm varies across trials, this is called a “probabilistic reversal

learning” experiment. The goal of the exercise in this paper is to infer subjects’ learning

(that is, belief updating) rule, on the basis of their observed choices.

Remark 1 (reversal learning): This bandit problem with reversal learning differs

in important ways from the “standard” multi-armed bandit problem (cf. Gittins and

Jones (1974), Banks and Sundarum (1992)), in which the states of the bandits are fixed

over all periods and the bandits are “independent” in that a reward from one bandit

is uninformative about the state of another bandit. The optimal Bayesian decision rule

in the standard model features exploration (or “experimentation”), which recommends

5This aspect of our model differs from Hampton, Bossaerts, and O’Doherty (2006), who make the

non-Markovian assumption that the state St changes with probability 25% after a subject has chosen

the good arm four successive times.
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Figure 1: Timeline of a trial

After a fixation on the cross (top screen), two slot machines are presented (the left-

right position is randomized; second screen). Subjects’ eye-movements are recorded by

the eye-tracking machine here. Subjects choose by pressing the left (right) arrow key

to indicate a choice of the left (right) slot machine. After choosing (third screen), a

positive reward (depicted by two quarters) or negative reward (two quarters covered by

a red X) is delivered, along with feedback about the subject’s choice highlighted against

a background color corresponding to the choice. In the bottom screen, a subject is

transitioned to the next trial, and reminded that the a slot machine may switch from

“good” to “bad” (and vice versa) with probability 15%.
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sacrificing current rewards to achieve longer-term payoffs. In the setting considered in

this paper, however, the bandits are negatively correlated, so that positive information

about one slot machine implies negative information about the other. This eliminates

most of the incentives for subjects to experiment.

1.1 Data

The experiments were run over several weeks in November-December 2009. We used

21 subjects, recruited from the Caltech Social Science Experimental Laboratory (SSEL)

subject pool consisting of undergraduate/graduate students, post-doctoral students, and

community members,6 each playing for 200 rounds (broken up into 8 blocks of 25 trials).

Most of the subjects completed the experiment within 40 minutes, including instruction

and practice sessions. Subjects were paid a fixed show-up fee ($20), in addition to the

amount won during the experiment, which was $14.20 on average.7

Subjects were informed of the reward structure for good and bad slot machines, and

the Markov transition probabilities for state transitions (reversals), but were not informed

which state was occurring in each trial. In Figure 1, we present the time line and some

screenshots from the experiment. In addition, while performing the experiment, the

subjects were attached to an eye-tracker machine, which recorded their eye movements.

From this, we constructed the auxiliary variable Zt, which measures the fraction of the

reaction time (the time between the onset of a new round after fixation, and the subject’s

choice in that round) spent gazing at the picture of the “blue” slot machine on the

computer screen.8

For each subject, and each round t, we observe the data (Yt, St, Rt, Zt). Table 1

presents some summary statistics of the data. The top panel shows that, across all

subjects and all trials, “green” (2108 choices) and “blue” (2092 choices) are chosen in

almost-equal proportions. Moreover, from the second panel, we see that subjects obtain

the high reward with frequency of roughly 57% (≈ 2398/(2398 + 1802)). This is slightly

higher than, but significantly different from, 55%, which is the frequency which would

6Community members consisted of spouses of students at either Caltech or Pasadena City College (a

two-year junior college). While the results reported below were obtained by pooling the data across all

subjects, we also estimated the model separately for the subsamples of Caltech students, vs. community

members. There were few noticeable differences in the results across these classes of subjects.
7For comparison, purely random choices would have earned $10 on average.
8Across trials, the location of the “blue” and “green” slot machines were randomized, so that the

same color is not always located on the same side of the computer screen. This controls for any “right

side bias” which may be present (see discussion further below).
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Table 1: Summary statistics for experimental data

Y : subjects’ choices
R: subjects’ rewards

Zp: fixation measure (as defined in Eq. (2))
RT : reaction time (in 10−2 seconds)

Z: discretized version of Zp

1(green) 2(blue)
Y 2108 2092

1 ($0.50) 2 (-$0.50)
R 2398 1802

mean median upper 5% lower 5%
Zp -0.0309 0 1.3987 -1.4091

RT 88.22 59.3 212.2 36.8

Sample size 21 subjects 168 blocks 4200 trials
Corr.(Y ,Zp) 0.7647

Z (after two-value discretization)A

1(green, Zp < 0) 2(blue, Zp ≥ 0)
2032 2168

Z (after three-value discretization)A

1(green) 2(not sure) 3(blue)
1887 540 1773

A: for more details on discretizing Z, see the appendix, section B

obtain if the subjects were choosing completely randomly.9 Hence, subjects appear to be

“trying”, which motivates our analysis of their learning rules.

1.1.1 Remarks on eye-tracking measure

Because eye-tracking is still a relatively novel tool in economics, we present some dis-

cussion here. Recently, eye-tracking has been employed to assess subjects’ thinking pro-

cesses in various decision environments: to determine how subjects detect truth-telling

9This is the marginal probability of a good reward, which equals 0.5(0.7 + 0.4) from Eq. (1). The

t-statistic for the null that subjects are choosing randomly equals 169.67, so that hypothesis is strongly

rejected.
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Figure 2: Scatter plot of Zb (fixation on blue) and Zg(fixation on green)

Both Zb and Zg are reported in 2× 10−2 seconds.

or deception in sender-receiver games (Wang, Spezio, and Camerer (forthcoming)); how

consumers evaluate comparatively a huge number of commodities, as in a supermarket

setting (Reutskaja, Nagel, Camerer, and Rangel (forthcoming)); and the relationship

between visual attention (as measured by eye-fixations) and valuation of commodities in

choice tasks (cf. Krajbich, Armel, and Rangel (2007), Armel and Rangel (2008), Armel,

Beaumel, and Rangel (2008), Rangel (2008)). Specifically, Armel and Rangel (2008) con-

struct a plausible behavioral-neuroscientific model of value computation through visual

attentions which successfully explains the observed relationship between fixation times

and subjects’ valuations in their experiments.10

In this paper, we use subjects’ fixation durations as noisy measures of their beliefs

(or valuations) for each slot machine. The raw eye-movement measure, Zp,t, is defined

as,

Zp,t = (Zb,t − Zg,t)/RTt; (2)

that is, for trial t, Zb(g),t is the fixation duration at the blue (green) slot machine, and

RTt is the reaction time, ie. the time between the onset of the trial after fixation, and

10Eye-tracking has also been used in marketing studies to evaluate the relationship between visual

attention to advertisements and subsequent sales of advertised items (eg. Zhang, Wedel, and Pieters

(2009)).
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the subject’s choice.11 Thus, Zp,t measures how much longer a subject looks at the blue

slot machine than the green one during the t-th trial, with a larger (smaller) value of Zp,t

implying longer fixation time at the blue (green) slot machine. Summary statistics on

this measure are given in the bottom panels of Table 1. Particularly, panel 4 shows that

the correlation between Yt (which =2(1) if blue(green) is chosen) and Zp,t is 0.7647, which

suggests that in this choice setting, a longer fixation duration at an alternative implies a

larger probability of choosing it. This also provides some justification for our use of eye

movements as noisy measurements of subjects’ beliefs, which affect their choices.

Figure 2 contains the scatter plot of Zb,t versus Zg,t. The symmetric distribution

around the 45-degree line in Figure 2 indicates that subjects are not intrinsically biased

toward a certain color: the existing literature has reported that human subjects exhibit

a “right side bias”, tending to gaze towards the right side more frequently. However, our

experimental data contains no significant evidence of such a bias. In our empirical work,

we will discretize the eye-movement measure Zp; to avoid confusion, in the following

we use Zp to denote the undiscretized eye-movement measure, and Z the discretized

measure, which we describe below.

2 Econometric model

In this section, we describe our econometric model of dynamic decision-making in the

two-armed bandit (probabilistic reversal learning) experiment described above, and also

discuss the identification and estimation of this model. We introduce the variable X∗
t ,

which denotes the agent’s round t beliefs about the current state St; obviously, agents

know their beliefs X∗
t , but these are unobserved by the researcher. In what follows, we

assume that both X∗ and Z are discrete, and take support on K distinct values which,

without loss of generality, we denote {1, 2, . . . , K}. We make the following assumptions

regarding the subjects’ learning and decision rules:

Assumption 2 Subjects’ choice probabilities P (Yt|X
∗
t ) only depend on current beliefs.

Moreover, the choice probabilities P (Yt = y|X∗
t ) varies across different values of X∗

t (ie.

beliefs affect actions).

Assumption 3 The law of motion for X∗
t , which describes how subjects’ beliefs change

over time given the past actions and rewards, is called the learning rule. This is a

controlled first-order Markov process, with transition probabilities P (X∗
t |X

∗
t−1, Rt−1, Yt−1).

11Furthermore, in order to control for subject-specific heterogeneity, we normalize Zp,t across subjects

by dividing by the subject-specific standard deviation of Zp,t, across all rounds for each subject.
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These two assumptions pose very little loss in generality, and hold for many varieties

of Bayesian as well as reinforcement learning models.

Assumption 4 The auxiliary measure Zt is a noisy measure of beliefs X∗
t , with the

measurement probabilities P (Zt|X
∗
t ). We assume that:

(i) For all t, the K×K matrix GZt|Zt−1
, with (i, j)−th entry equal to Pr(Zt = i|Zt−1 = j),

is invertible.

(ii) E[Zt|X
∗
t ] is increasing in X∗

t .

The invertibility assumption 4(i) is made on the observed matrix GZt|Zt−1
with ele-

ments equal to the conditional distribution of Zt|Zt−1; hence it is testable. Assumption

4(ii) “normalizes” the beliefs X∗
t in the sense that, because large values of Zt imply that

the subject gazed longer at blue, the monotonicity assumption implies that larger values

of X∗
t denote more “positive” beliefs that the current state is blue.12 The large corre-

lation of 0.76 between Zt and Yt (as reported in Table 1 above) provides some indirect

evidence favoring this monotonicity assumption.

The final assumption justifies pooling the data across all subjects and trials for esti-

mating the model:

Assumption 5 The choice probabilities P (Yt|X
∗
t ), learning rules P (X∗

t |X
∗
t−1, Rt−1, Yt−1),

and measurement probabilities P (Zt|X
∗
t ) are the same for all subjects, blocks, and trials

t.

Remark 6 (stationary in learning models): An important benefit of considering a

“probabilistic reversal” model (in which the identity of the “good” slot machine changes

stochastically across trials) rather than the simpler standard multi-armed bandit model

(in which the identity of the “good” arm is fixed across all trials) is that in the latter

case, the subject’s uncertainty regarding the identity of the “good” arm is decreasing

across trials, so that learning rule must also condition on some measure of the subject’s

uncertainty (such as the number of times a particular arm has been pulled before a

given trial) in order to satisfy the stationarity Assumption 4.13 In a probabilistic reversal

12The model can be easily extended to allow for conditional serial correlation in the auxiliary measure

Zt (ie. a law of motion P (Zt|X
∗

t , Zt−1)), and also to the case P (Zt|X
∗

t , Yt−1), where eye-movements can

also track previous choices. For Zt as a measure of eye-movements, as in this paper, the conditional

independence assumption across trials appears reasonable, especially given the imposed fixation at the

beginning and end of each trial (cf. Figure 1). However, for auxiliary measures in other settings (such

as brain activity for fMRI studies), conditional dependence may be more realistic.
13For empirical applications of such learning rules in the Bayesian setting, see Ackerberg (2003) or

Crawford and Shum (2005).
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setting, however, a subject’s uncertainty does not decrease across trials. This is an

attractive feature because, in our nonparametric estimation approach, conditioning on

additional variables decreases the precision of the estimates.

Given these assumptions, we next describe the nonparametric identification argument.

2.1 Nonparametric identification

In this section, we will use the shorthand notation f(· · · ) to denote generically a proba-

bility distribution. For identification, we exploit the following relationship: conditional

on (Rt−1), we have

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t) = f(Yt, Zt, X

∗
t |Yt−1, Rt−1, X

∗
t−1). (3)

Abusing terminology somewhat, we call this a “first-order Markov” property, because

the model exhibits only a one-period history dependence:

f(Yt, Zt, X
∗
t |Y<t, Z<t, R<t, X

∗
<t)

=f(Yt|Zt, X
∗
t , Y<t, Z<t, R<t, X

∗
<t) · f(Zt|X

∗
t , Y<t, Z<t, R<t, X

∗
<t) · f(X∗

t |Y<t, Z<t, R<t, X
∗
<t)

=f(Yt|X
∗
t ) · f(Zt|X

∗
t ) · f(X∗

t |X
∗
t−1, Rt−1, Yt−1)

=f(Yt, Zt, X
∗
t |Yt−1, Rt−1, X

∗
t−1).

In the above, the second equality applies Assumptions 1, 2, and 3.

The unknown functions we want to identify and estimate are:

(i) f(Yt|X
∗
t ), the choice probabilities;

(ii) the learning rule f(X∗
t |X

∗
t−1, Yt−1, Rt−1); and

(iii) the measurement probabilities f(Zt|X
∗
t ), the mapping between the auxiliary measure

Zt and the unobserved beliefs X∗
t .

The nonparametric identification of these elements follows from an application of re-

sults from Hu (2008), and follows two main steps. Before presenting it, we note that, de-

spite its simplicity, this model is not straightforward to estimate: given data on subjects’

choices and rewards, we need to estimate choice probabilities conditional on subjects’

beliefs, even though these beliefs are not only unobserved, but also changing over time.

Step one: identification of choice probabilities P(Yt|X
∗
t
) and measurement

probabilities P(Zt|X
∗
t
). Consider the joint density f(Zt, Yt|Zt−1), which is solely a

11



function of variables observed in the data. We can factor this density as follows:

f(Zt, Yt|Zt−1) =
∑

X∗

t

f(Zt, Yt, X
∗
t |Zt−1)

=
∑

X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt, X

∗
t |Zt−1)

=
∑

X∗

t

f(Zt|Yt, X
∗
t , Zt−1)f(Yt|X

∗
t , Zt−1)f(X∗

t |Zt−1)

=
∑

X∗

t

f(Zt|X
∗
t )f(Yt|X

∗
t )f(X∗

t |Zt−1)

where the last equality applies assumptions 1 and 3.

For any fixed Yt = y, then, we can write the above in matrix notation as:

Ay,Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
CX∗

t |Zt−1

where A, B, C are all K ×K matrices, and D is a K ×K diagonal matrix. These are

defined as:

Ay,Zt|Zt−1
=

[

fYt,Zt|Zt−1
(y, i|j)

]

i,j

BZt|X∗

t
=

[

fZt|X∗

t
(i|k)

]

i,k

CX∗

t |Zt−1
=

[

fX∗

t |Zt−1
(k|j)

]

k,j

Dy|X∗

t
=













fYt|X∗

t
(y|1) 0 0

0 fYt|X∗

t
(y|2) 0

0
. . . 0

0 0 fYt|X∗

t
(y|K)













(4)

Similarly to the above, we can derive that

GZt|Zt−1
= BZt|X∗

t
CX∗

t |Zt−1

where G is likewise a K ×K matrix, defined as

GZt|Zt−1
=

[

fZt|Zt−1
(i|j)

]

i,j
. (5)

From Assumption 4(i), we combine the two previous matrix equalities to obtain

Ay,Zt|Zt−1
G−1

Zt|Zt−1
= BZt|X∗

t
Dy|X∗

t
B−1

Zt|X∗

t
. (6)

This is an eigenvalue decomposition of the matrix Ay,Zt|Zt−1
G−1

Zt|Zt−1
, which can be com-

puted from the observed data sequence {Yt, Zt}.
14 This shows that from the observed

14Note that, from Eq. (5), the invertibility of G (which is Assumption 4(i)) implies the invertibility

of B.
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data, we can identify the matrices BZt|X∗

t
and Dy|X∗

t
, which are the matrices with entries

equal to (respectively) the measurement probabilities P (Zt|X
∗
t ) and choice probabilities

P (Yt|X
∗
t ).

In order for this identification argument to be valid, the eigendecomposition in Eq.

(6) must be unique. This requires the eigenvalues in this decomposition (corresponding

to choice probabilities P (y|X∗
t )) to be distinctive; that is, P (y|X∗

t ) should vary in X∗
t .

This is ensured by Assumption 2. Furthermore, even if the eigendecomposition is unique,

the representation in Eq. (6) is invariant to the ordering (or permutation) and scalar

normalization of eigenvectors. Assumption 4(ii) imposes the correct ordering on the

eigenvectors: specifically, it implies that columns with higher average value correspond

to larger value of X∗
t . Finally, because the eigenvectors in the decomposition correspond

to the conditional probabilities P (Zt|X
∗
t ), it is appropriate to normalize each column

so that it sums to one. Hence, the uniqueness of the eigendecomposition, coupled with

the ordering and normalization assumptions, ensure that the choice probabilities, mea-

surement probabilities, and learning rules can be uniquely identified from the observed

matrices A and G.

Step two: identification of learning rule probabilities P(X∗
t+1
|X∗

t
,Rt,Yt). Again,

start with a factorization

f(Zt+1, Yt, Rt, Zt) =
∑

X∗

t

∑

X∗

t+1

f(Zt+1, X
∗
t+1, Yt, X

∗
t , Rt, Zt)

=
∑

X∗

t

∑

X∗

t+1

f(Zt+1|X
∗
t+1)f(X∗

t+1|Yt, X
∗
t , Rt)f(Zt|X

∗
t )f (Yt, X

∗
t , Rt)

=
∑

X∗

t

∑

X∗

t+1

f(Zt+1|X
∗
t+1)f(X∗

t+1, Yt, X
∗
t , Rt)f(Zt|X

∗
t )

where the second equality applies assumptions 1, 2, and 3. Then, for any fixed Yt = y

and Rt = r, we have the matrix equality

HZt+1,y,r,Zt
= BZt+1|X∗

t+1
LX∗

t+1
,X∗

t ,y,rB
′
Zt|X∗

t
.

The matrices H and L are K ×K matrices defined as

HZt+1,y,r,Zt
=

[

fZt+1,Yt,Rt,Zt
(i, y, r, j)

]

i,j

LX∗

t+1
,X∗

t ,y,r =
[

fX∗

t+1
,X∗

t ,Yt,Rt
(i, j, y, r)

]

i,j
.

(7)

Assumption 5 ensures that BZt+1|X∗

t+1
= BZt|X∗

t
. Hence, we can obtain LX∗

t+1
,X∗

t ,y,r (cor-

responding to the learning rule probabilities) directly from

LX∗

t+1
,X∗

t ,y,r = B−1
Zt+1|X∗

t+1

HZt+1,y,r,Zt
[B′

Zt|X∗

t
]−1. (8)
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This result implies that two periods of data (Zt, Yt, Rt), (Zt−1, Yt−1, Rt−1) are sufficient

to identify and estimate this learning model.

3 Estimation

For the estimation, we assume that the variables Zt and X∗
t are discrete, and take either

two or three values. Since the eye-movement measure Zt is continuous, we must discretize

it for estimation. We leave the details of our discretization procedure in Appendix B.

Our estimation procedure mimics the two-step identification argument from the pre-

vious section. That is, for fixed values of (y, r), we first form the matrices A, G, and H

(as defined previously) from the observed data, using sample frequencies to estimate the

corresponding probabilities. Then we obtain the matrices B, D, and L using the matrix

manipulations in Eqs. (6) and (8).

One technical feature is that, because all the elements in the matrices of interest

B, D, and L correspond to probabilities, they must take values within the unit interval.

However, in the actual estimation, we found that occasionally the estimates do go outside

this range. In these cases, we obtained the estimates by a least-squares fitting procedure,

where we minimized the elementwise sum-of-squares corresponding to Eqs. (6) and (8),

and explicitly restricted each element of the matrices to lie ∈ [0, 1]. This was not a

frequent recourse; only a handful of the estimates reported below needed to be restricted

in this manner.

In addition, while the identification argument above was “cross-sectional” in nature,

being based upon two observations of {Yt, Zt, Rt} per subject, in the estimation we ex-

ploited the long time series data we have for each subject, and pooled every two time-

contiguous observations {Yi,r,τ , Zi,r,τ , Ri,r,τ}
τ=t

τ=t−1 across all subjects i, all blocks r, and

all trials τ = 2, . . . , 25. Formally, this is justified under the assumption that the pro-

cess {Yt, Zt, Rt} is stationary and ergodic for each subject and each block; under these

assumptions, the ergodic theorem ensures that the (across time and subjects) sample

frequencies used to construct the matrices A, G, and H converge towards population

counterparts.

Before presenting the results, we present some Monte Carlo simulation results in

Table 2, for simulated datasets around the same size as the datasets drawn from our

experiments. These show that the estimation procedure produces accurate estimates of

the model components, with the differences between the estimated and actual values
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usually on the order of magnitude of 10−1 times the parameter value.

3.1 Estimation results

3.1.1 Two-value estimates

In Table 3, we present estimates in the specification where X∗
t and Zt are assumed to

be binary variables taking values ∈ {1, 2}. The standard errors, shown in parentheses,

were computed using block bootstrap resampling (using 1000 iterations, resampled from

all 168 blocks).

Starting from the top of the table, we see that the choice probabilities are reasonable,

and very much aligned with beliefs. When X∗
t = 1 (associated with beliefs that “green

is currently the good state”), then the green slot machine is pulled 98% of the time.

Similarly, when X∗
t = 2, then the blue slot machine is chosen 94% of the time. In

many learning settings (including reinforcement learning, cf. Sutton and Barto (1998,

pg. 28), as well as Bayesian learning), an optimal decision rule require choices to not be

completely in line with current beliefs; to avoid getting “stuck” at suboptimal choices,

subjects should explore with some small probability. However, as we noted before (cf.

remark 1), this incentive for exploration is reduced in our reversal learning experiment,

and so the small estimate of ǫ here is reasonable.

Remark 7 (What do the beliefs {X∗
t } mean?) As we discussed earlier in Remark 1,

in the standard multi-armed bandit model, subjects’ choices of which arm to pull depends

on the dynamic allocation, or “Gittins” index, which depends not only on current beliefs

about which arm yields a higher return, but also on the informational value in pulling an

arm which may not be currently optimal, but which may yield information useful in future

decisions. However, in our reversal learning setting, because the returns in the two arms

are negatively correlated, this informational value term is nonexistent. Therefore, in the

context of such a model, we can quite confidently interpret the unobserved variables X∗
t ,

which completely determine subjects’ choices in our learning model, as a measurement of

subjects’ current beliefs regarding which arm is currently the “good” one. Thus another

benefit of a reversal learning model is the unambiguity in interpreting the unobserved

“beliefs” X∗
t in this setting.

The second panel in Table 3 contains the measurement probabilities. The estimates

imply that beliefs closely track the eye-movement measures, with (for instance) beliefs

favoring green leading to longer gazes at the green slot machine on the computer screen

around 92% of the time.
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Table 2: Monte Carlo Results. (2500 iterations, median, “”= true value)

Each cell contains the median parameter value across all iterations, and the actual parameter

value in double quotes. Standard deviations across all iterations are in parentheses. Note that

columns sum to one.

P (Yt|X
∗
t )

X∗
t 1(green) 2(blue)

Yt = 1 0.9502 0.0500
(green) “0.9500” “0.0500”

(0.0250) (0.0245)
2 0.0498 0.9500

(blue) ”0.0500” ”0.9500”

P (Zt|X
∗
t )

X∗
t 1(green) 2(blue)

Zt = 1 0.9002 0.1002
(green) “0.9000” “0.1000”

(0.0221) (0.0228)
2 0.0998 0.8998

(blue) “0.1000” “0.9000”

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.3997 0.1782
(green) “0.4000” “0.1500”

(0.0314) (0.1959)
2 0.6003 0.8218

(blue) “0.6000” “0.8500”

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.8002 0.7073
(green) “0.8000” “0.7000”

(0.0283) (0.2031)
2 0.1998 0.2927

(blue) “0.2000” “0.3000”

Note: Learning rule for y = 2(blue) is practically the same as for y = 1(green), so we
omit them for the sake of brevity.
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Table 3: Two-value estimates: Specification where X∗
t and Zt are binary

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses.

Note that each column sums to one.

P (Yt|X
∗
t )

X∗
t 1(green) 2(blue)

Yt = 1 0.9756 0.0573
(green) (0.0115) (0.0165)

2 0.0244 0.9427
(blue)

P (Zt|X
∗
t )

X∗
t 1(green) 2(blue)

Zt = 1 0.9093 0.0888
(green) (0.0156) (0.0116)

2 0.0907 0.9112
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.5401 0.2950
(green) (0.0279) (0.1588)

2 0.4599 0.7050
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2(blue)

X∗
t+1 = 1 0.8695 0.2471
(green) (0.0256) (0.2160)

2 0.1305 0.7529
(blue)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 2(blue)

X∗
t 2(blue) 1(green)

X∗
t+1 = 2 0.5407 0.6836
(blue) (0.0263) (0.2249)

1 0.4593 0.3164
(green)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 2(blue)

X∗
t 2(blue) 1(green)

X∗
t+1 = 2 0.9003 0.6146
(blue) (0.0242) (0.2287)

1 0.0997 0.3854
(green)
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Finally, the remaining panels present the learning rule probabilities for all four con-

figurations of (Rt, Yt) ∈ {(1, 1), (2, 1), (1, 2), (2, 2)}. Note that the columns and rows are

ordered differently across the panels, for ease of interpreting the results. Generally, the

left column of each panel makes sense. Comparing the third and fourth panels in Table

3, we see that given the choice of “green” (Yt = 1) and given beliefs in favor of green

(X∗
t = 1), a higher reward leads to more intense updating of beliefs towards green in the

next trial; that is:

0.87 = P (X∗
t+1 = 1|X∗

t = 1, Rt = 2, Yt = 1)

>>P (X∗
t+1 = 1|X∗

t = 1, Rt = 1, Yt = 1) = 0.54.

Similarly, comparing the bottom two panels, we see that if the subject is predisposed

towards blue (X∗
t = 2) then choosing blue Yt = 2 and obtaining the higher reward

Rt = 2 leads subjects to place a belief of 90% on “blue” the following trial, vs. only 54%

if this led to the lower reward Rt = 1.

On the other hand, the right columns in these panels are a bit puzzling. They indicate

a great deal of state dependence in beliefs, when one chooses actions which are contrary

to beliefs. For example, the third and fourth panels indicate that when X∗
t = 2 (so

current beliefs favor “blue”), but the subject chooses Yt = 1 (“green”), then the updated

beliefs are not affected much by the reward: with a high reward, beliefs switch to “green”

(X∗
t+1 = 1) with only 25% probability, but with a low reward, beliefs switched to “green”

with the slightly higher probability of 30%, which is puzzling. Similarly, in the bottom

two panels, when current beliefs favor “green” (X∗
t = 1), but the blue slot machine was

chosen (Yt = 2), then the probability that beliefs switched to “blue” (X∗
t+1 = 2) is slightly

higher following a low rather than high reward.

At face value, this suggests that subjects do not update their beliefs properly following

“exploratory” (ie. contrary to belief) actions. However, as we will see now, these puzzling

results are less apparent when we allow beliefs to take three distinct values.

3.1.2 Three-value estimates

Tables 4 and 5 present results from a specification where X∗
t is assumed to take three

values {1, 2, 3}, and likewise Zt is discretized to take these three values. We interpret

X∗ = 1, 3 as indicative of “strong beliefs” favoring (respectively) green and blue, while

the intermediate value X∗ = 2 indicates that the subject is “not sure”.

Table 4 contains the estimates of the choice and measurement probabilities.15 The

15We also considered a robustness check against the possibility that subjects’ fixations immediately
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Table 4: Three-value estimates: Specification where X∗
t and Zt take three values

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses.

Note that each column sums to one.

Choice probabilities:
P (Yt|X

∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Yt = 1 0.9866 0.4421 0.0064
(green) (0.0561) (0.1274) (0.0146)

2 0.0134 0.5579 0.9936
(blue)

P (Zt|X
∗
t )

X∗
t 1(green) 2(not sure) 3(blue)

Zt = 1 0.8639 0.2189 0.0599
(green) (0.0468) (0.1039) (0.0218)

2 0.0815 0.6311 0.0980
(middle) (0.0972) (0.1410) (0.0369)

3 0.0546 0.1499 0.8421
(blue) (0.0581) (0.1206) (0.0529)

first and last columns of the panels in this table indicate that choices and eyes movements

are closely aligned with beliefs, when beliefs are sufficiently strong (ie. are equal to either

X∗ = 1 or X∗ = 3). Specifically, in these results, the “exploration probability” is smaller

than in the two-value results, being equal to 1.3% when X∗
t = 1, and only 0.64% when

X∗
t = 3. As we discussed in Remark 1 above, such small probabilities can be consistent

with optimal behavior, in our reversal learning environment, where subjects have little

incentive to experiment.

When X∗
t = 2, however, suggesting that the subject is unsure of the state, there is a

slight bias in choices towards “blue”, with Yt = 2 roughly 56% of the time. The bottom

panel indicates that when subjects are not sure, they tend to gaze in the middle of the

screen, around 63% of the time.

The learning rule estimates are presented in Table 5. The results are similar to

the two-value results, but most of the problems from those results disappear when we

before making their choices coincide exactly with their choice. While this is not likely in our experimental

setting, because subjects were required to indicate their choice by pressing a key on the keyboard, rather

than clicking on the screen using a mouse, we nevertheless re-estimated the models but eliminating the

last segment of the reaction time in computing the Zt. The results are very similar to the reported

results, both qualitatively and quantitatively.

19



Table 5: Three-value estimates: Specification where X∗
t and Zt take three values

Each cell contains parameter estimates, with bootstrapped standard errors in parentheses.

Note that each column sums to one.

Learning Rule updating probabilities:
P (X∗

t+1|X
∗
t , y, r), r = 1(lose), y = 1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.5724 0.3075 0.1779
(green) (0.0694) (0.0881) (0.2257)

2 0.0000 0.3138 0.4002
(not sure) (0.0662) (0.1042) (0.2284)

3 0.4276 0.3787 0.4219
(blue) (0.0624) (0.0945) (0.2195)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 1(green)

X∗
t 1(green) 2 (not sure) 3(blue)

X∗
t+1 = 1 0.8889 0.6621 0.8242
(green) (0.0894) (0.1309) (0.2734)

2 0.0000 0.2702 0.1758
(not sure) (0.0911) (0.1297) (0.1981)

3 0.1111 0.0678 0.0000
(blue) (0.0340) (0.0485) (0.1876)

P (X∗
t+1|X

∗
t , y, r), r = 1(lose), y = 2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.5376 0.2297 0.2123
(blue) (0.0890) (0.0731) (0.1436)

2 0.0458 0.2096 0.1086
(not sure) (0.0732) (0.0958) (0.1524)

1 0.4166 0.5607 0.6792
(green) (0.0874) (0.0968) (0.1881)

P (X∗
t+1|X

∗
t , y, r), r = 2(win), y = 2(blue)

X∗
t 3(blue) 2 (not sure) 1(green)

X∗
t+1 = 3 0.8845 0.6163 0.6319
(blue) (0.1000) (0.1136) (0.1647)

2 0.0000 0.3558 0.3566
(not sure) (0.0968) (0.1160) (0.1637)

1 0.1155 0.0279 0.0116
(green) (0.0499) (0.0373) (0.0679)
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allow beliefs to take three values. The left columns show how beliefs are updated when

“exploitative” choices (ie. choices made in accordance with beliefs) are taken. When

current beliefs indicate “green” (X∗
1 = 1) and green is chosen (Yt = 1), beliefs are quite

responsive to the reward: if Rt = 1 (the low reward), then beliefs stay at green with

probability 57%, but if Rt = 2 (high reward), then this probability is much higher, at

89%. On the other hand, even after positive (ie. high reward) exploitative choices, beliefs

may still update towards “blue” (X∗
t+1 = 3) with an 11% chance, rather than staying at

the intermediate level X∗
t+1 = 2. This non-smooth “extremal” updating is a distinctive

feature of our learning rule estimates, and is consistent with optimal belief-updating in a

probabilistic reversal context: even if the subject were completely sure that “green” after

a high reward, she still must consider the possibility that the good state could change to

“blue” by the next trial, due to the stochastic evolution of the state process.

The results in the right-most columns, describing belief updating following “explo-

rative” choices (contrarian to current beliefs), are on the whole more sensible than in the

two-value estimates. For instance, considering the top two panels, when current beliefs

are favorable to “blue” (X∗
t = 3), but “green” is chosen, beliefs update more towards

“green” (X∗
t+1 = 1) after a low rather than high reward (82% vs. 18%).

The second columns in these panels show how beliefs evolve following (almost-) ran-

dom choices. Again considering the top two panels, we see that when current beliefs are

unsure (X∗
t = 2), there is stronger updating towards “green” when green choice yielded

the higher reward (66% vs. 31%). The results in the bottom two panels are very similar

to those in the top two panels, but describe how subjects update beliefs following choices

of “blue” (Yt = 2).

4 Comparing nonparametric vs. standard learning models

In this section, we compare the beliefs implied by our estimated learning model (which we

will refer to as the “nonparametric” model, for convenience), to those implied by alter-

native learning models. We consider two alternative parametric learning rules: Bayesian

and reinforcement learning. Given that our learning rule was estimated nonparametri-

cally, and in that sense encompasses the other two models, we examine which of these two

popular alternative models is closer to our nonparametric learning model. Appendix A

contains additional details on how the beliefs were derived for each of these three learning

models.

Figures 3-5 contains the raw histograms for the (noisy) measurements of beliefs from

21



the three learning models: Figure 3 contains the histogram of the eye tracking measure,

which is used to pin down beliefs in our nonparametric learning model. Figure 4 contains

the histogram of the Bayesian posterior probabilities, computed given our experimental

design and the observed data. Finally, Figure 5 contains the histogram for the difference

in the calibrated valuation measures for the “blue” vs. “green” slot machine, from a

temporal difference (TD)-learning reinforcement learning model (see Appendix A for a

description of this model).

A noteworthy feature is that the histograms for the eye-tracking measure Zp and

the TD-learning valuations look similar: both are trimodal. The Bayesian posterior

mean measure, on the other hand, is unimodel. As we will see later, this implies that

beliefs from the nonparametric model will be closer to the RL model, than the Bayesian

model. Moreover, we will also see that the Bayesian learning model tends to predict

“smoother” choice behavior than what we observe in the data, while the beliefs from the

nonparametric model are “jumpy” in comparison.

Overall summary statistics In Table 6, we present some summary statistics for the

implied beliefs from our nonparametric learning model (denoted X∗
t ), vs. the Bayesian

beliefs B∗ and the valuations V ∗ in the RL learning model. For simplicity, we will abuse

terminology somewhat and refer in what follows to X∗, V ∗, and B∗ as the “beliefs”

implied by, respectively, our nonparametric model, the RL model, and the Bayesian

model. This table contains eight panels.

Panel 1 gives the total tally, across all subjects, blocks, and trials, of the number of

times the nonparametric beliefs X∗ took each of the three values. Subjects’ beliefs tended

to favor green and blue toughly equally, with “not sure” lagging far behind. The close

split between “green” and “blue” beliefs is consistent with the notion that subjects have

rational expectations, with flat priors on the unobserved state S1 at the beginning of

each block. The second panel shows analogous statistics for the beliefs from the RL and

Bayesian models. The RL valuation measure V ∗ appears largely symmetric and centered

around zero, while the average Bayesian B∗ lies also around 0.5. Thus, on the whole, all

three measures of beliefs appear equally distributed between “green” and “blue”.

Panel 3 contains the pairwise correlation among (X∗, V ∗, B∗), the beliefs from the

three models. The correlation between X∗ and V ∗ (0.59) exceeds that between X∗ and

B∗ (0.53). This shows that the nonparametric beliefs X∗ are, stochastically, more similar

to the RL beliefs V ∗ than to the Bayesian beliefs B∗. This finding confirms the evidence

from the histograms, as described above. The Bayesian model is the most restrictive one,
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Figure 3: Histogram of Zp

Figure 4: Histogram of Bayesian Belief B∗

Figure 5: Histogram of V ∗ = Vb − Vg in RL
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Table 6: Summary statistics for the three models

Panel 1:
X∗ 1(green) 2(not sure) 3(blue)

1878 366 1956

Panel 2:
mean median std. 1/3 quantile 2/3 quantile

B∗ (Bayesian Belief) 0.4960 0.5000 0.1433 0.4201 0.5644
V ∗(= Vb − Vg) -0.0035 0 1.1152 -0.6588 0.6068

Panel 3: Correlations in the three models
Corr.(X∗, V ∗) 0.5874 (0.0014)∗

Corr.(X∗, B∗) 0.5274 (0.0013)
Corr.(B∗, V ∗) 0.8271 (0.0006)

∗: bootstrapped standard error in parentheses

Panel 4: Correlations with observed choices Y (all samples)
Corr.(Y, X∗) 0.7552
Corr.(Y, V ∗) 0.5560
Corr.(Y, B∗) 0.5175

Panel 5: Correlations with choices Y (excluding intermediate beliefs)
Corr.(Y, X∗) 0.7906 (keep only X∗ =1,3)
Corr.(Y, V ∗) 0.6786 (keep only V ∗ 6∈ [1/3 quant., 2/3 quant.])
Corr.(Y, B∗) 0.6252 (keep only B∗ 6∈ [1/3 quant., 2/3 quant.])

Panel 6: Correlations with choices Y (last 10 trials, first 5 trials)
last 10 first 5

Corr.(Y, X∗) 0.7474 0.6908
Corr.(Y, V ∗) 0.5582 0.5201
Corr.(Y, B∗) 0.5267 0.4678

Panel 7: Number of “explorative” (belief non-congruent) choices Y
Nonparametric 402

Reinforcement Learning 455
Bayesian 543

Panel 8: Correlations with noisy measure Z (NB: Corr.(Z, Y ) = 0.7738)
Corr.(Z, X∗) 0.8575
Corr.(Z, V ∗) 0.4717
Corr.(Z, B∗) 0.4296
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and imposes the highest degree of rationality on subjects, which may explain its inferior

fit, relative to the RL model, to our nonparametric learning rule.

However, the correlations between our nonparametric beliefs X∗ and B∗ and V ∗ are

markedly lower than that between B∗ and V ∗ (which is 0.82). This indicates that,

informationally, the beliefs from the Bayesian and RL models are very similar.

The next panel shows that the correlation of X∗ with the observed choices Y is

higher (0.7552) than the correlation of choices with the beliefs from the other models.

This superior performance of the nonparametric beliefs in predicting subjects’ choices is

not too surprising, since the beliefs are estimated from the data, whereas the other two

models are only calibrated to the data. The next two panels break down the correlation

between the observed choices and the difference measures of beliefs, for subsamples of the

data. Panel 5 only considers subjects’ choices when the implied beliefs are strong (in the

sense of taking extreme values). For the nonparametric model, we omitted observations

when X∗ was estimated to be “not sure”, while for the other two models, we omitted

observations when beliefs lay between the 1/3 and 2/3 quantile. The results show that

when beliefs are strong, the nonparametric model continues to predict choices better

than the Bayesian and RL models. Panel 6 shows that predicted choice behavior is more

accurate (using all three models) during the last ten rounds of each subject’s data, and

less accurate during the first five rounds. This supports the notion that subjects behaved

more haphazardly at the beginning of the experiments.16

The better predictive fit of the nonparametric beliefs X∗ implies that our nonparamet-

ric model should classify fewer choices as “exploratory” ones (where exploratory behavior

is generally defined as making contrarian choices in the face of strong beliefs). This intu-

ition is confirmed in Panel 7, which shows that the nonparametric model classifies only

405 (10.5%) of the subjects’ choices as exploratory. The RL model which, as pointed

above, is closer to our nonparametric model, classifies 455 of the choices as exploratory,

while the Bayesian model classifies 543 choices as such.

Finally, the bottom panel shows the sample correlation between the eye-movement

measure, and the implied beliefs. Not surprisingly, the correlation is much higher for the

nonparametric beliefs X∗ (since identification of the nonparametric model relies on the

monotonicity condition in Assumption 3). The Bayesian and RL beliefs, which do not

16While the predictions using the nonparametric model reported here were “in sample” (that is, the

estimation and prediction were done using the same sample), we also considered out of sample prediction

(where the estimation and prediction were performed on different subsamples of subjects) and the results

were very similar.
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require Z to compute, exhibit a smaller correlation with Z.

A closer look at individual blocks To look more closely at the differences between

the three learning models, we plot, in Figures 6-9, the actual choices, as well as subjects’

beliefs regarding which slot is better, from the three learning models, for four represen-

tative subject-blocks of choices. The actual choices are plotted in crosses (+’s), with

higher crosses (at 0.25) signifying “blue” and lower crosses (at -0.25) signifying “green”.

The subject’s beliefs from the three models, all recentered and rescaled around zero, are

plotted; X∗
t as a solid line, B∗

t dotted, and V ∗
t dashed.17

Figure 6, for trial #4 of subject #6, is typical. Comparing the predicted choices, we

see that, generally, all three models perform reasonably well. The choice of “blue” in trial

#18 was unanticipated by all three models, and would be classified as “exploratory” in

each case. In this block, the Bayesian and RL beliefs move in tandem. Hence, the choice

of “green” in trial #8 was a surprise to the nonparametric model, but predicted by the

other two models. On the other hand, the choice of “green” in trial #9 was predicted by

the nonparametric beliefs, but not by the Bayesian and RL models.

Figure 7, which shows subject (#4) and block (#6), presents an example where the

Bayesian and RL beliefs diverge, at the end of the block. It is noteworthy here that

the Bayesian model “misses” the final run of “green” choices. On the other hand, the

nonparametric and RL beliefs are able to predict these choices. Also note here that

when the Bayesian and RL beliefs diverge, then the nonparametric beliefs are closer to

the RL beliefs, which was apparent from the summary statistics discussed earlier, which

indicated a stronger correlation between the nonparametric and RL beliefs, than between

the nonparametric and Bayesian beliefs.

The two remaining figures (8 and 9) contain additional instances of choices which

all three learning models would classify as “exploratory”. These are trials #12, #15 in

Figure 8, and trials #11 and #13 in Figure 9. Note that across all four figures here, the

nonparametric beliefs X∗ jump between favoring “blue” and “green”, and rarely take the

intermediate value “not sure”. This is consistent with the estimates of the learning rule,

especially the left-hand side columns of the panels in Table 5, which place zero probability

on X∗ = 2 following choices congruent with current beliefs. Both the Bayesian and RL

model posit a smoother belief updating process. This “jumpiness” in the nonparametric

17That is, the Bayesian beliefs were plotted as B∗

t − 0.5, while the RL beliefs were plotted as V ∗

t =

0.25 ∗ (V t
b − V t

g ). The nonparametric beliefs were plotted as 0.25 ∗ (X∗

t − 2).
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Figure 6: Subject 6, block 4 Figure 7: Subject 4, block 6

Figure 8: Subject 5, block 8 Figure 9: Subject 1, block 3
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learning rule represent another important qualitative difference relative to the standard

learning models.

5 Conclusions

In this paper, we estimate learning rules nonparametrically from data drawn from exper-

iments of multi-armed bandit problems. The experimental data are augmented by mea-

surements of subjects’ eye movements from an eye tracker machine, which play the role

of auxiliary measures of subjects’ beliefs. Our estimated learning rules have some distinc-

tive features – notably, non-smooth updating following positive “exploitative” choices. A

comparison of the nonparametric learning rules with “standard” learning models shows

that our estimates are closer to the reinforcement learning model, than to a Bayesian

model. Altogether, our analysis points out some deficiencies in the Bayesian model as a

descriptive model, thus echoing previous findings in both the experimental and finance

literatures.

Our nonparametric estimator for subjects’ choice probabilities and learning rules is

easy to implement. Potentially, it can also be applied to other experimental settings

where auxiliary measures of subjects’ beliefs and valuations are available, such as the

typical neuroscience fMRI setting.
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Appendix A Appendix: Details on computation of

beliefs in the nonparametric, Bayesian, and RL

models

In section 4, we compared belief dynamics in the nonparametric model (X∗) with counter-

parts in other two benchmark learning models, the Bayesian belief (B∗) and the valuation

in the reinforcement learning model (Vb−Vg). Here we provide additional details for how

the beliefs for each of the three models were computed.

A.1 Belief dynamics X∗ in the nonparametric model

The values of X∗, the belief process in our nonparametric learning model, were obtained

by maximum likelihood. For each block, using the estimated choice and measurement

probabilities, as well as the learning rules, we chose the path of beliefs {X∗
t }

25
t=1 which

maximized P ({X∗
t } | {Zt, Rt}), the conditional (“posterior”) probability of the beliefs,

given the observed sequences of eye-movements and rewards. Because

P ({X∗
t , Zt} | {Yt, Rt}) = P ({X∗

t } | {Zt, Rt}) · P ({Zt} | {Yt, Rt}),

where the second term on the RHS of the equation above does not depend on X∗
t , it

is equivalent to maximize P ({X∗
t , Zt} | {Yt, Rt}) with respect to {X∗

t }. Because of the

Markov structure, the joint log-likelihood factors as:

log L({X∗
t , Zt}|{Yt, Rt}) =

24
∑

t=1

log
[

P (Zt|X
∗
t )P (X∗

t+1|X
∗
t , Rt, Yt)

]

+ log(P (Z25|X
∗
25)).

(9)

We plug in our nonparametric estimates of P (Z|X∗) and P (X∗
t+1|X

∗
t , Rt, Yt) into the

above likelihood, and optimize it over all paths of {X∗
t }

25
t=1 with the initial condition

restriction X∗
1 = 2 (beliefs indicate ”not sure” at the beginning of each block). To

facilitate this optimization problem, we derive the optimal sequence of beliefs using a

dynamic-programming (Viterbi) algorithm; cf. Ghahramani (2001).

Note that, in the above, we treated the choice sequence {Yt} as exogenous, and left

the choice probabilities P (Yt|X
∗
t ) out of the log-likelihood function (9) above. This was

because, given our estimates that P (Yt = 1|X∗
t = 1) ≈ P (Yt = 2|X∗

t = 3) ≈ 1 in Table 4,

maximizing with respect to these choice probabilities would leads to estimates of beliefs

{X∗} which closely coincide with observed choices; we wished to avoid such an artificially

good “fit” between the beliefs and observed choices.
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For robustness, however, we also estimated the beliefs {X∗} under two alternative

scenarios: (i) treating the choice sequence {Yt} as endogenous, and hence including the

choice probabilities P (Yt|X
∗
t ) in the likelihood function; (ii) treating both {Yt, Zt} as ex-

ogenous, and hence omitting both the choice probabilities P (Yt|X
∗
t ) and the measurement

probabilities P (Zt|X
∗
t ) from the likelihood function. Not surprisingly, the correlation be-

tween choices and beliefs Corr(Yt, X
∗
t ) = 0.99 under (i), while under (ii) the correlation

falls to 0.56. However, in both of these alternative specifications, we still find that

Corr(X∗
t , V

∗
t ) > Corr(X∗

t , B
∗
t ) – that is, the nonparametric beliefs are “closer” to the RL

model than the Bayesian model. Thus this finding appears robust across a number of

different approaches to recovering the nonparametric beliefs {X∗
t }.

A.2 Bayesian Learning Model

A Bayesian learner uses Bayes rule to update her beliefs. Let B∗
t denote the prior prob-

ability that the blue slot machine is the good one at the start of the trial t. After her

choice Yt, she observes reward Rt, and updates her belief that the blue slot machine is

good to B′∗
t ; by Bayes’ rule, this updated probability is:

B′∗
t =

P (Rt|Yt, St = 1) · B∗
t

P (Rt|Yt, St = 1) · B∗
t + P (Rt|Yt, St = 2) · (1−B∗

t )
(10)

Additionally, at the end of each trial, the state St may change with 15% probability. The

Bayesian learner takes this into account, so that the prior probability on “blue” at the

start of trial t + 1 is equal to the probability at the end of trial t, B′∗
t , weighted by the

state transition probabilities:

B∗
t+1 = P (St+1 = 1|St = 1) · B′∗

t + P (St+1 = 1|St = 2) · (1− B′∗
t ). (11)

In this way, given the initial beliefs B1 = 0.5, we can use Eqs. (10) and (11) to compute

the sequence of Bayesian beliefs, {B∗
t }, corresponding to the observed sequences of choices

and rewards {Yt, Rt}. The corresponding choice rule from the Bayesian model would be

to choose “blue” at trial t iff B∗
t ≥ 0.5.

A.3 Reinforcement Learning Model

We employ a variant of the TD (Temporal-Difference)-Learning models (Sutton and

Barto (1998), section 6). The value of an action is learned by the reward that is expected

after taking that action. Let V t
b(g) denote the “current” (ie. beginning of trial t) action

value function for the blue (green) slot machine. The value updating rule for a one-step
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TD-Learning model is defined as:

V t+1
Yt
←− V t

Yt
+ αδt. (12)

where Yt denotes the choice taken in trial t, α denotes the learning rate, and δt denotes

the “prediction error” for trial t (defined below). The prediction error δt is equal to

δt = (Rt + γE[V t
Yt+1
|t])− V t

Yt
(13)

the difference between (Rt + γE[V t
Yt+1
|t]) (the observed reward in trial t plus the dis-

counted expected value from the next trial), and V t
Yt

(the current expected valuation).

For instance, for Yt = 2 (for “blue”), then the TD learning rule implies that Vb is up-

dated by an amount equal to the prediction error δt, weighted by the learning parameter

α (with larger values of α indicating an increased sensitivity to the outcome of trial t).

In trial t, there is no updating of the valuation for the choice that was not taken.

The variant of TD-Learning (SARSA, short for “state-action-reward-state-action”)

used here (Sutton and Barto (1998), p. 149) computes the expected value function

E[VYt+1
|t] using the current choice probabilities of choosing the future action Yt+1 (which

is unknown at trial t). P t
c , the current probability of choosing action c, is assumed to

take the conventional “softmax” (ie. logit) form with the inverse temperature parameter

β:

P t
c = eβV t

c /

[

∑

c′

eβV t
c′

]

(14)

With this functional form for the choice probabilities, the expected value function from

trial t + 1 is computed as,

E[VYt+1
|t] =

∑

c′∈(b,g)

P t
c′V

t
c′. (15)

We estimated the parameters β and α using maximum likelihood. For greater model

flexibility, we allowed the parameter α to differ following positive vs. negative rewards.

(We fixed the discount rate γ = 0.9.) The estimates we obtained from the data were:

β = 0.7584

α for positive reward (Rt = 2) = 1.6531

α for negative reward (Rt = 1) = 1.0552.

(16)

We plug in these values into Eqs. (12), (13), (14) and (15) to derive a sequence of valua-

tions
{

V ∗
t ≡ V t

b − V t
g

}

. The choice function (Eq. (14)) can be rewritten as a function of
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the difference V ∗
t ; i.e. the choice probability for the blue slot machine is,

P t
b =

eβ(V t
b
−V t

g )

1 + eβ(V t
b
−V t

g )
=

eβV ∗

t

1 + eβV ∗

t

(17)

and P t
g = 1 − P t

b . Hence, V ∗
t plays a role in the TD-Learning model analogous to the

belief measures X∗
t and B∗

t from, respectively, the nonparametric and Bayesian learning

models.

Appendix B Appendix: Details on discretization

In this section, we present additional discussion on the discretization of the eye-movement

measure, and some evidence that a three-valued discretization (which we used in our pre-

ferred empirical specifications) is sufficient to capture most of the variation in this mea-

sure. Let Zp,t denote the continuous-valued eye-tracking measure, and Zt the discretized

version, both for trial t. For the two-value discretization, we discretize as follows:

Zt =

{

1 if Zp,t < 0

2 if Zp,t ≥ 0

For the three-value discretization, we discretize Zp,t as follows:

Zt =











1 if Zp,t < −σz

2 if −σz ≤ Zp,t ≤ σz

3 if σz < Zp,t

(18)

where σz denotes a constant used to discretize Zp,t. As the baseline, we set σz = 0.20.

However, we do not find any difference in the estimation results either qualitatively nor

significantly if we vary σz from 0.05 to around 0.40, suggesting that the model is robust

for different classifications. Table 1 contains the summary statistics for both the two-

and three-value discretizations. Table 7 shows the sample frequencies of the discretized

measure Zt for three different values of σz.

Figure 3 is the histogram of Zp,t, which is apparently trimodel, with peaks at -1, 0

and 1, which suggest that a three-value discretization of Zp indeed captures most of its

variation. Moreover, Table 7 shows the correlations between Y and Zp, broken up into

the three ranges of Zp corresponding to the three discretized values Z ∈ {1, 2, 3}, and

also for three different values of the σz parameter. Although the correlation in the whole

sample is 0.7647, the correlations within each of the three ranges of Zp drop significantly,

ranging from even negative values to values around 0.30. Because most of the variation

in choices is across the different discretized values of Z, rather than within these values,

it appears the three-valued discretization is sufficient.
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Table 7: Correlations between (Y , Zp) in different subsamples

Size Corr(Y, Zp)
Full sample 4200 0.7647

σz = 0.20 (baseline):
Z = 1 (green) 1887 0.2845

2 (not sure) 540 0.2156
3 (blue) 1773 0.1706

σz=0.05:
Z = 1 (green) 2015 0.3223

2 (not sure) 255 -0.0599
3 (blue) 1930 0.2346

σz=0.40:
Z = 1 (green) 1725 0.1462

2 (not sure) 869 0.2777
3 (blue) 1606 0.0991

Note: Zp refers to the undiscretized eye-movement measure, as defined in Eq. (2), and Z

refers to the discretized version, as defined in Eq. (18).
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