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Abstract

In this paper, we provide a formal framework for studying the empirical content of

a given theory. We define the falsifiable closure of a theory to be the least weakening

of the theory that makes only falsifiable claims. The falsifiable closure is our notion

of empirical content. We prove that the empirical content of a theory can be exactly

captured by a certain kind of axiomatization, one that uses axioms which are universal

negations of conjunctions of atomic formulas. The falsifiable closure operator has the

structure of a topological closure, which has implications, for example, for the behavior

of joint vis a vis single hypotheses.

The ideas here are useful for understanding theories whose empirical content is well-

understood (for example, we apply our framework to revealed preference theory, and

Afriat’s theorem), but they can also be applied to theories with no known axiomatization.

We present an application to the theory of multiple selves, with a fixed finite set of selves

and where selves are aggregated according to a neutral rule satisfying independence of

irrelevant alternatives. We show that multiple selves theories are fully falsifiable, in the

sense that they are equivalent to their empirical content.

JEL classification numbers: A10,D00

Key words: Falsifiability; Empirical Content ; Revealed preference; Afriat’s Theorem;

First-order logic; Model Theory



The Axiomatic Structure of Empirical Content∗

Christopher P. Chambers Federico Echenique Eran Shmaya

1 Introduction

Falsifiability has been a hallmark of the scientific method at least since Popper (1959).

The predictive power of a theory is only as good as the falsifiable claims that it makes.

Any two theories making the same falsifiable claims are observationally equivalent. This

paper is an axiomatic study of the empirical content of a theory.

Most economic theories make some falsifiable claims, but not all its claims may be

falsifiable. An example that would be familiar to most economists is the theory of utility

maximization. If we imagine that we can observe data on choices among pairs, then we

can test for the transitivity of preference: transitivity is a testable implication of the

theory of utility maximization. But we cannot test for the existence of a rationalizing

utility. In fact, it turns out that the theory of utility maximization has the same empirical

content as the theory of preference maximization.1 In the terminology of our paper,

the theory of preference maximization is the falsifiable closure of the theory of utility

maximization. The falsifiable closure is our notion of empirical content.

Some theories make only falsifiable claims. Such theories are called falsifiably com-

plete; one example is the theory of preference maximization (although this depends on

the possible data taken as primitive, as we explain below). A theory is falsifiably com-

plete if all claims it makes can be refuted empirically. One can weaken a theory by, in a

sense, discarding some of its claims, until it becomes falsifiably complete. The falsifiable

∗Chambers and Echenique acknowledge support from the NSF through grant SES-0751980.
1Our discussion in the introduction is necessarily very loose. Example 3 presents these theories more

rigorously.



closure of a theory is the least such weakening. A theory is falsifiably complete if it coin-

cides with its falsifiable closure; eliminating any of its claims results in an observationally

distinct theory.

Our main result is a syntactic characterization of falsifiable closure, and of falsifiably

complete theories. This allows us to understand the syntax (the formal structure) of

axioms that ensure falsifiable completeness, and that characterize the empirical content

of a theory. We apply our results to theories from behavioral economics and social choice;

theories that were not previously known to be fully testable.

The data that can be observed is a primitive of our model. For example, consider

again the theory of preference maximization. It matters whether we believe that we can

observe weak preference only (an alternative x is weakly preferred to y), or if we can also

observe strict preference. It also matters whether we can observe absence of preference:

do we allow observations of the type “x is not preferred to y?”

We restrict the possible data by assuming a language. For example, if we want to

assume that we can observe preference and absence of preference, then we can assume

that we have two symbols R and R̃; we intend to use R to denote a binary relation

expressing weak preference, and R̃ to denote absence of weak preference.2 We may

hypothesize the seemingly tautological statement that between any pair, there is either

preference or absence of preference, and never both. This illustrates the role language

plays in our framework. The key here is that our language needs to be rich enough to

allow us to discern between absence of an observation of preference, and the observation

of absence of preference.

Given a language, we can write axioms expressed in the symbols of the language.

These are the first-order sentences that can be expressed in the language, a notion from

mathematical logic. An axiomatization of a theory is a collection of sentences which hold

at, and only at, each of the particular instances of the theory. We prove that axioms that

have a certain form (universal negations of conjunctions of atomic formulas, or UNCAF)

characterize the empirical content of a theory. So the falsifiable closure of a theory is

axiomatized by UNCAF sentences.

For example, if we use the language with the symbols R and R̃, an UNCAF axiom is

2This is similar to being able to observe both preference and strict preference; however, for formal
exposition, these turn out to be the most tractable primitives, for reasons that will become apparent.
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the following sentence:

∀x∀y∀z¬[(x R y) ∧ (y R z) ∧ (z R̃ x)];

an axiom expressing transitivity.

We show that the falsifiable closure is a topological closure operator on theories. This

is important, as it implies that the intersection of an arbitrary number of falsifiably

complete theories is also falsifiably complete. In other words, no new implications can

be derived from the intersection of the theories; other than those which follow as logical

consequences of the implications already present. On the other hand, the empirical

content of joint hypotheses may be strictly more (i.e. imply stronger restrictions) than the

intersection of the content of each individual hypothesis, but only when these individual

theories are not falsifiably complete.

Our paper formalizes existing ideas and notions. The formalization raises new and

subtle issues, and our results are readily applicable to economic theories. First, we

demonstrate this by characterizing the empirical content of a large body of theories

which as of yet have resisted axiomatization: the theory of multiple selves. We model

the multiple selves hypothesis by assuming a fixed and finite set of selves, each of whom

has a strict preference. The preferences of these selves are aggregated according to a

preference aggregation rule satisfying two very simple hypotheses (neutrality and IIA).

We in fact demonstrate that all such models are equivalent to their empirical content:

they are falsifiably complete, and thus possess an UNCAF axiomatization. This is by

no means a trivial or well-known result, as a special case of it is closely related to the

unsolved dimension problem of order theory: our result shows that the class of orders

having dimension less than n for any fixed n has a very special type of axiomatization;

we believe this result to be previously unknown (see Trotter (1992)).

Secondly, while the results we discuss seem intuitive and many might feel they are

already familiar with the ideas, there are many subtleties involved. In fact, no results can

be true without hypotheses; and in fact, uncovering hypotheses which render the result

true is, in this case, a nontrivial task. For example; Popper (1959) essentially regarded

falsifiable theories and universal theories as equivalent.3 We have shown that universality

of a theory is not in general strong enough to imply falsifiable completeness. We hope that

our formal presentation will aid in understanding the appropriate relationship between

3A universal theory is one which has a universal axiomatization; relying only on universal quantifi-
cation
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observable data, hypotheses, and the axiomatic approach, at least for positive economics.

We do not wish to suggest that theories which are not falsifiably complete are not

economically interesting. Many normative studies recommend situations which cannot

be empirically falsified. An example of an interesting normative theory which is not falsi-

fiable is the theory of egalitarian-equivalence of Pazner and Schmeidler (1978).4 Egalitar-

ian equivalence is a theory of private goods consumption which requires that there exists

some reference bundle for which everyone is indifferent between her own consumption

and the reference bundle. Such a requirement is clearly meant to be prescriptive, rather

than descriptive.

1.1 The basic formal idea

To study the structure of axioms, we need to have a way of talking about axioms as formal

mathematical concepts. The mathematical field of model theory provides us with tools

for such an analysis. Our paper uses definitions and basic ideas from model theory. We

model the data we can observe by a first order language, involving relation and function

symbols. The relation and function symbols should be chosen to correspond to things we

think of as primitive observables. For example if we believe we can observe a preference

between a pair of alternatives, we need to include a relation for that preference; and if we

believe we can observe the absence of preference, we need to include a separate relation

corresponding to absence of preference.

When we speak of a finite data set, we mean a finite set equipped with relations (cor-

responding to the relations) and partial functions (a function whose domain is a subset

of the finite set–corresponding to the function symbols of our language). The data set

involves all elements we have observed to stand in a given relation, as well as the image

of certain elements of our domain under certain functions. In the preference example, we

have no function symbols, and a data set is simply a set with a pair of binary relations

(relating to weak preference and absence of weak preference). The binary relations repre-

sent all observed comparisons. The example illustrates a critical assumption underlying

our work: we do not want to equate non-observation of a relation with the observation of

a negation of the relation. In the example, non observation of x being weakly preferred

to y does not mean we have observed x is not weakly preferred to y.

4This theory though, is easily verified ; see Appendix A.
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We define a theory as a class of structures for the language, which is closed under

isomorphism. The idea is that a theory postulates a class of structures which we believe

may represent the real world. We do not know which, if any, of these structures actually

represents the real world; this will be something we have to test. That theories must

be closed under isomorphism is postulated for technical reasons, but it is fairly intuitive

that a class of structures which is not closed under isomorphism would be strange indeed.

The reason is that, given our language, we can only describe how certain things interact,

but we cannot refer to specific structures themselves. Any two structures whose objects

interact in the same way will be indistinguishable. This notion of theory is therefore

as general as could possibly be while still being a meaningful concept. Theories will be

denoted T and T ′.

Because as economists we often want to assume that a certain theory of behavior is

implicit, we provide relative definitions of falsifiability. Our main results are a character-

ization of falsifiably complete theories and characterizations of falsifiable closure (as well

as properties of the falsifiable closure operator). We define a theory T to be falsifiably

complete with respect to T ′ if every structure in T ′ which is not in T contains a finite

data set which falsifies T , in the sense that no structure in T contains the same data set.

To see why this definition makes sense, theory T predicts that any structure outside of

T makes untrue claims. If this prediction can be empirically falsified, it means that any

structure in T ′ but not in T should generate some finite data set which is inconsistent

with T . This is precisely what our definition requires.

We show that a theory T is falsifiably complete with respect to T ′ if and only if it has

a very specific type of axiomatization. Namely, all axioms should be universal negations

of conjunctions of atomic formulas–we call this an axiomatization by UNCAF formulas.

While this sounds complicated, it actually corresponds very closely with our intuition.

A universal theory is, as it sounds, a theory which postulates a given relationship hold

universally; that is, it is an axiom formulated with a collection of ∀ symbols coming at

the beginning of the formula.

The proof that all falsifiably complete theories can be axiomatized by UNCAF for-

mulas can be naively explained as follows. Each data set that is ruled out by our theory

can be used to specify an axiom. This axiom states roughly that the observed data set

should not occur. As each data set consists of a number of statements about the primi-

tive elements of our language, this axiom can be written in an UNCAF form. That is, it

rules out the conjunction of all statements true in the data set holding simultaneously;
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and as each data set is finite, it constitutes a meaningful sentence. While this intuition is

roughly correct, the proof is slightly subtle and relies on the formal definition of a theory.

Our theorem is related to the standard intuition on falsifiability; but once it is for-

malized, falsifiability raises some subtle issues. Popper (1959) claimed that all scientific

theories must be universal, as only universal theories could be falsifiable. Popper (fa-

mously) compared two theories; the theory “all swans are white” is universal and falsifi-

able, while the theory “there is a non-white swan” is existential and not falsifiable. Most

practitioners identify falsifiability with universality.

In fact, all falsifiably complete theories are universal, but the converse is not true.

Sometimes our language lacks the expressive power to falsify our hypotheses. In other

words, our data is not of the type necessary to falsify the theory. This is why we also

require that the axioms be negations of conjunctions of atomic formulas (UNCAF). To

understand this, suppose our theory only allows us to observe weak preference, but does

not allow us to observe absence of weak preference. Consider an axiom which is simply

a negation of a single atomic formula. Such an axiom might express ∀x∀y,¬x R y. The

atomic formula here is x R y: note that the atomic formula comes in exactly the form

our data comes in. Consequently, we falsify the axiom whenever we observe a pair being

compared. By contrast, if our language only allows us to observe R, then we could never

falsify the universal axiom: ∀x∀y, x R y, as we could never observe when a pair is not

compared.

1.2 Falsifiable closures

Our results on falsifiable completeness are important as they help us to characterize the

falsifiable closure of a given theory. The falsifiable closure of T with respect to T ′ is

defined to be the largest subtheory of T ′ with respect to which T is not falsifiable. We

show that, in fact, this is a topological closure operation: it can be equivalently defined

as the smallest falsifiably complete subtheory of T ′ containing T . So, if a theory is

falsifiably complete, it is its own falsifiable closure. The relevance of this concept is that

it provides the entire empirical content of a given theory. Therefore, any two theories with

identical falsifiable closures are empirically indistinguishable. Hence, the theory of utility

maximization and the theory of weak order are not empirically distinguishable. Other

such results exist in the literature: Afriat (1967) showed that, in the theory of locally

non-satiated preference maximization on budget sets, the theory of concave, monotonic
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utility representation of preference is empirically vacuous (see Section 6.2).

Because the falsifiable closure is a topological closure, we know that the falsifiably

complete theories are closed under arbitrary intersection. Thus, for an axiomatic theory,

if each axiom generates a falsifiably complete theory, then the theory characterized by all

the axioms is itself falsifiably complete. We present examples to show that a collection

of axioms may have more empirical content taken jointly than the intersection of their

individual empirical contents, but this can only happen when falsifiable completeness

fails.

1.3 Previous literature

We are not the first to formally discuss notions of falsifiability and empirical content in an

abstract sense. Results exist in the mathematical psychology literature, as well as among

philosophers. Adams, Fagot, and Robinson (1970) seems to be the first work discussing

empirical content in a formal sense (see also Pfanzagl, Baumann, and Huber (1971) and

Adams (1992)). This work defines two theories to be empirically equivalent if the set of

all formulas (of a certain type) consistent with one theory is equivalent to the set of all

formulas (of a certain type) consistent with the other. Just as in our work, the notion

of empirical equivalence necessarily depends on what is allowed as data. The distinction

is that these works do not provide a general characterization of the axiomatic structure

of empirical content, but rather focus on characterizing the empirical content of specific

theories. Pfanzagl, Baumann, and Huber (1971) (p. 106-119) for example, simply define

testable formulas to be exactly the universal formulas.

Simon and Groen (1973) present a formal study of the testable implications of scien-

tific theories. The focus in their work is when a theory that involves theoretical terms can

be reduced to statements about observables by a process known as a Ramsey elimination.

Apart from the questions that they investigate, the main difference from our work lies in

their definition of data. They consider substructures (in the sense of mathematical logic)

to be data. Our notion of data, on the other hand, is broader. The notion of substructure

does not allow for “partial” observation, whereas our notion does. For example, given

revealed preference observations of the type x is revealed preferred to y and y is revealed

preferred to z, Simon and Groen would not allow the data to be silent about the relation

x and y stands to each other. Our notion of data allows for such partial observation, and

we believe this aspect is crucial. We discuss the alternative definition in Section 5.1, and

7



argue that it is inadequate as a notion of data in economics.

Finally, some of our formal arguments are close to results by Tarski (1954). Tarski’s

main results deal with languages involving no constant or function symbols. In such

a framework, he characterizes those theories that have a universal axiomatization. As

we demonstrate below, the issue of universal axiomatization is related to falsification,

but Tarski never explored this aspect of the results. In all, our results are hardly novel

contributions to Mathematical Logic or Model Theory. Rather, we have formalized some

questions that economists in particular care about, and obtained a characterization of

the empirical content of a theory.

The presentation of the paper is as follows. Section 2 discusses our general notion of

theory, building from concepts in model theory. Section 3 discusses our semantic notions

of data, falsifiability, falsifiable completeness, and falsifiable closure. Section 4 contains

our main results: syntactic characterizations of the notions presented in Section 3. The

culmination of this section is Section 4.2, where we present our general results relating

to relative notions of falsifiability. In Section 5, we present some related works involving

Tarski. Section 6 is devoted to two applications: one involves unknown results on multiple

selves; the other is a presentation of Afriat’s theorem in our context. Section 7 discusses

the relation of our work to the work of Simon and Groen. Lastly, Section 8 concludes.

Appendix A shows how our results on falsifiability can be presented by the dual notion

of verifiability, and Appendix B discusses the basic notions from mathematical logic and

model theory which are required to understand our paper.

2 Theories and structures

We use standard notions from mathematical logic and model theory. To make our pa-

per self-contained, we have included an appendix with the relevant definitions: see Ap-

pendix B. The definitions are taken quite literally from Marker (2002). At the very

least, the reader should be familiar with the notions of language, structure, truth, and

isomorphism of structures.

The language we choose should correspond to those objects which we believe to be

observable as data in our theory. There are important and subtle issues involved in the

formulation of a language. For example, for studying the basic theory of rational choice,

we want a language that–at a minimum–allows us to express the observation “x is pre-
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ferred to y.” Thus we need a language which includes a binary relation symbol intended

to represent (revealed) preference. Now, if we can observe the absence of preference, “x

is not preferred to y,” we need to include a separate relation symbol corresponding to the

absence of preference. This is an important point because the absence of preference does

not need to follow from the absence of an observed preference. To incorporate the obser-

vation of absence of preference, we need to incorporate this extra relation symbol. Our

notion of data set (below) allows us to distinguish between the absence of observation

and the observation of absence; the distinction turns out to be important.

1 Remark. We use the term ‘class’ for a collection that can be described by some formula

in the language of set theory, but which may be ‘too large’ to be a set. Thus we can talk

about the ‘class of all sets’ and ‘the class of all structures of a language L’, even though

these classes are not themselves sets. For a formal treatment, see Levy (2002).

2 Definition. Let L be a language. A theory T over L is a class of structures that is

closed under isomorphism. Elements of T are called models of T .

3 Example. Consider the language L = 〈R, R̃〉 with two binary relations:

• R, which is intended to express weak preference,

• and R̃, which is intended to express absence of weak preference.

A structure of L is a triple M = (M,RM, R̃M), where M is a set, and RM and R̃M are

binary relations on M .

The theory of rationality is the theory of weak-order maximization, denoted by Two.

This is specified as the class of all structures (M,RM, R̃M) for which RM is complete

and transitive, and for all x, y ∈ M , x R̃M y if and only if x RM y is false. That is, RM

expresses weak preference, while R̃M expresses the absence of weak preference.

We can write this more carefully as follows: Two is the class of all L-structures for

which the following axioms are true:

1. ∀x∀y, (x RM y) ∨ (x R̃M y)

2. ∀x∀y,¬[(x RM y) ∧ (x R̃M y)]

3. ∀x∀y∀z,¬[(x R y) ∧ (y R z) ∧ (x R̃ z)]

4. ∀x∀y,¬[(x R̃ y) ∧ (y R̃ x)].
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The first axiom expresses that there must be either preference or absence of prefer-

ence between all pairs. The second axiom expresses consistency between preference and

absence of preference: if there is a preference between x and y, there cannot be absence

of a preference. The third formalizes transitivity, and the last formalizes completeness.

For future reference, we denote the class of all structures for which axioms 2,3, and 4

are true by Tw.

We distinguish Two from the theory of utility maximization, which is the class of

L-structures Tu for which there exists a real-valued function u : M → R such that

x R y ↔ u(x) ≥ u(y) and x R̃ y ↔ u(x) < u(y).

Finally, we can define the “vacuous theory” Tv of all the structures of L. Note that

Tu ⊆ Two ⊆ Tw ⊆ Tv. So we can express that one theory is more restrictive than another

by set containment.

4 Remark. Marker and other model theory textbooks only study first-order theories (See

Definition 17 below). In our definition of theory we follow Tarski (1954).

3 Falsifiable Closure: Semantics

5 Definition. Let L be a language. A data set D over L is given by:

1. A non-empty set D (the domain of D)

2. An n-ary relation PD over D for every n-ary relation symbol P of L

3. A function fD : Dom(fD) ⊆ Dn → D for every n-ary function symbol f of L.

4. A set C(D) of constant symbols of L and an element cD ∈ D for every c ∈ C(D).

A data set D is finite if the domain D and the sets {P |PD 6= ∅}, {f |Dom(fD) 6= ∅},
and C(D) of, respectively, relation symbols, function symbols and constant symbols that

appear in D are finite.

There are some subtle issues in the definition of data set. In particular, as we explain

in detail in Section 5.1, a data set does not impose that one observe all the theoretically

possible relations among objects in the data set. This imposition would result in a rather

unrealistic notion of data set, and our definition avoids it. We model data sets in this

way in order to capture the idea of partial observability.
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6 Definition. Let L be a language. A structureM of L contains a data set D, denoted

D ⊆M if the following conditions are satisfied:

1. D ⊆M , where D and M are the domains of D and M.

2. PD ⊆ PM for every relation symbol P

3. fD is the restriction of fM to Dom(fD) for every function symbol f .

4. cD = cM for every constant symbol c ∈ C(D).

Observe that we do not require PD to be the restriction of PM to D (and similarly

for functions). Consider the language in Example 3, and the structure M = (R,≥, <)

of Two, where ≥ is the usual order on R. Then the data set D with domain {1, 2, 3} and

the binary relation RD = {(2, 1)}, is contained in M.

7 Definition. Let L be a language.

1. A data set D falsifies a theory T if no model of T contains D.

2. LetM be a structure. A theory T is falsifiable at M ifM contains a data set that

falsifies T .

A theory T is falsified at a structureM if some claim that T makes is is incompatible

with data that could be observed if M was the structure that represents the real world.

The following lemmas establish some simple properties which are useful later.

8 Lemma. If T1 ⊆ T2 are theories and T2 is falsifiable at a structure M then T1 is also

falsifiable at M.

9 Lemma. If T1, T2 are theories that are falsifiable at a structure M then T1 ∪ T2 is

falsifiable at M.

10 Lemma. If a theory T is falsifiable at a structure M then T is falsifiable at every

isomorphic copy M′ of M.

Proof of Lemma 8. Let D ⊆ M be a finite data set that falsifies T2. Then D falsifies

T1.

Proof of Lemma 9. Let D1 and D2 be finite data sets that are contained inM and falsify

T1 and T2 respectively. Let D1 ∪D2 be the data set with domain D1 ∪D2 and such that

pD1∪D2 = pD1 ∪ pD2 for every relation symbol p, fD1∪D2 = fD1 ∪ fD2 for every function

symbol f and C(D1 ∪ D2) = C(D1) ∪ C(D2). Note that fD1 ∪ fD2 defines a function

because D1 and D2 are contained in M. Then D1 ∪ D2 falsifies T1 ∪ T2.

11



Proof of Lemma 10. Let η : M′ → M be an isomorphism, and let D ⊆ M be a finite

data set with domain D that falsifies T . Let D′ ⊆ M′ be the data set with domain

D′ = η−1(D), and such that the relations and functions of D′ are the pullbacks by η of

the corresponding relations and functions of D, C(D′) = C(D) and cD
′

= η−1
(
cD
)

for

every c ∈ C(D). Then it follows from the fact that T is closed under isomorphisms that

D′ falsifies T .

11 Definition. A theory T is falsifiable if there exists some data set that falsifies T .

A theory T is falsifiable if T makes at least one claim that can be demonstrated to be

false. Consider Example 3. The theory Tu of utility maximization is falsifiable: the data

set D = (D,RD, R̃D) with domain D = {a, b} and where RD = ∅ and R̃D = {(a, b), (b, a)}
falsifies Tu.

On the other hand, while Tu is falsifiable, not all its claims are falsifiable. For an

example, consider the structure Mlex = (R2
+,≥lex, <lex), where ≥lex is the lexicographic

order on R2
+. It is well-known thatMlex 6∈ Tu, but no finite data set inMlex falsifies Tu.

Thus, we may be interested in theories all of whose claims are falsifiable, and more

importantly, in the empirical content of a theory such as Tu. These observations motivate

the following definitions.

12 Definition. A theory T is falsifiably complete if T is falsifiable at every structure

which is not a model of T .

13 Definition. Let T be a theory. The falsifiable closure of T , denoted fc(T ) is the class

of all structures M such that T is not falsifiable at M.

From Lemma 10 it follows that fc(T ) is a theory (i.e. closed under isomorphism).

The theory fc(T ) captures our idea of empirical content. In particular, T is falsifiably

complete if and only if fc(T ) = T .

14 Example. Consider again Example 3. Then fc(Tu) = fc(Two) = Tw. Thus, the

theory of utility maximization and the theory of preference maximization are empirically

indistinguishable. In addition, the empirical content of Tu and Two is, in a sense, contained

in axioms 2-4 of Example 3. Axiom 1 expresses a non-falsifiable property, and the

additional hypotheses implicit in Tu are also non-testable.

15 Lemma. If a theory T is falsifiable at a structure M then fc(T ) is also falsifiable at

M.
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Proof. Let D be a finite data set that is contained inM and falsifies T . By Definition 13

no model of fc(T ) contains D (since D falsifies T ). By Definition 7 this means that D
falsifies fc(T ). Since M contains D it follows that fc(T ) is falsifiable at M.

The following proposition says that the operator T 7→ fc(T ) over theories T has

the properties of a topological closure. The theory ∅ is the theory which contains no

structures.

16 Proposition. The falsifiable closure has the following properties.

Extensiveness T ⊆ fc(T ) for every theory T .

Idempotence fc(fc(T )) = fc(T ) for every theory T .

Preservation of Nullary Union fc(∅) = ∅.

Preservation of Binary Union fc(T1 ∪ T2) = fc(T1) ∪ fc(T2) for all theories T1, T2.

Proof. Extensiveness follows from the fact that T is not falsifiable at its own models.

Idempotence from Lemma 15: If M /∈ fc(T ) then T is falsifiable at M and therefore

fc(T ) is falsifiable at M, i.e. M /∈ fc(fc(T ). Preservation of nullary union follows as

every model contains a data set falsifying ∅. Preservation of binary union follows from

Lemma 9.

4 Syntax

We now formalize the assertions that can be expressed using the language L to describe

properties of L-structures. This follows the details in Appendix B. The only departure we

make from classical model theory is the inclusion of a symbol ‘ 6=’ in our meta-language,

which is always interpreted in the “correct” way. Hence, expressions in our language are

strings of symbols built from the symbols of L, variable symbols v1, v2, . . . , the equality

and inequality symbols =, 6=, Boolean connectives ¬,∨,∧, quantifiers ∃,∀ and parentheses

(, ). As we allow the symbol 6= to appear in our sentences, we need to make small changes

in our definitions of term, formula, sentence, and truth. The changes necessary should

be obvious to those familiar with mathematical logic; again, details are presented in

Appendix B.
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17 Definition. For a set Γ of sentences of L, let T (Γ) be the theory of all structuresM
of L such that all the formulas in Γ are true in M. Theories of the form T (Γ) for some

set Γ of formulas are called first-order theories. We also say that Γ axiomatizes T (Γ).

18 Example. In Example 3, the theory Two is a first order theory. The theory Tu is not

a first order theory. That Tu has no first order axiomatization may not be immediately

obvious, but follows from classical results in model theory.

19 Definition. Let L be a language. A universal negation of a conjunction of atomic

formulas (UNCAF) sentence of L is a sentence of the form

∀v1∀v2 . . . ∀vn¬ (φ1 ∧ φ2 · · · ∧ φm)

where φ1, φ2, . . . , φm are atomic formulas with variables v1, . . . , vn.

The following result provides the syntactic characterization of the semantic concept

of falsifiable completeness. Falsifiably complete theories are exactly those which have an

UNCAF axiomatization. This is our main result.

20 Theorem. A theory T is falsifiably complete if and only if it admits an UNCAF

axiomatization.

The following corollary is an immediate consequence of Theorem 20 and Definition 12.

It will be of interest to us later, in comparing our work with that of Tarski (1954).

21 Corollary. Let L be a language and T a theory over L. Then T admits an axiomati-

zation by UNCAF sentences if and only if the following condition is satisfied: For every

structure M, if every finite sub data-set of M is contained in some model of T then M
is a model of T .

The following corollary deals with finite axiomatizations. One should not necessarily

expect a theory to have a finite axiomatization, as it is equivalent to a uniform bound on

the size of a falsifying data set. For example in classical demand theory (Section 6.2), the

theory axiomatized by the weak axiom of revealed preference can always be falsified by

two observations; the strong axiom, on the other hand, is an infinite collection of axioms,

and there is no bound on a falsifying data set. We took the main idea in Corollary 22

from Vaught (1954); the proof follows from the proof of Theorem 20 and it is omitted.

22 Corollary. Let L be a language with finitely many symbols, and T a theory over L.

Then T admits an axiomatization by finitely many UNCAF sentences if and only if the

following condition is satisfied: There is an n such that, for every structure M, if every

finite sub data-set of M, whose domain has at most n elements, is contained in some

model of T then M is a model of T .
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For a theory T denote by uncaf(T ) the set of UNCAF formulas that are true in all

models of T .

Theorem 20 is an immediate consequence of Proposition 23

23 Proposition. For every theory T one has fc(T ) = T (uncaf(T )).

Let L be a language and D a finite data set. For every d ∈ D \ C(D) let vd be a

variable, and let zd for every d ∈ D be the term given by zd = c if d = cD for some

c ∈ C(D) and zd = vd if d ∈ D \ C(D). Let φD be the following UNCAF formula of L:

φD = ∀v̄¬φ̄D(v̄), where

φ̄D(v̄) =
(∧

(zd 6= zd′)
∧

P
(
zd1 , . . . , zdn

)
∧
∧

f
(
zd1 , . . . , zdn

)
= zfD(d1,...,dn)

)
,

(1)

The first conjunction ranges over all pairs d 6= d′ ∈ D; the second conjunction ranges

over all relation symbols P that appear in D and every (d1, . . . , dn) ∈ PD; and the third

conjunction ranges over all function symbols f that appear in D and every (d1, . . . , dn) ∈
Dom(fD).

24 Lemma. Let D be a finite data set. Then φD is not true in M if and only if D is

contained in some isomorphic copy of M.

Proof of Proposition 23. We divide the proof into two steps:

Step 1: If M∈ T (uncaf(T )) then M∈ fc(T ).

Let D be a data set that falsifies fc(T ). Then from Lemma 24, and the fact that T

is closed under isomorphism it follows that φD ∈ uncaf(T ). Therefore M |= φD, as by

hypothesis M ∈ T (uncaf(T )). By Lemma 24 again it follows that M does not contain

D. ThereforeM does not contain any data set that falsifies D, so that T is not falsifiable

at M, i.e. M∈ fc(T ) as desired.

Step 2: If M /∈ T (uncaf(T )) then M /∈ fc(T ).

Let φ ∈ T (uncaf(T )) be not true in M. Let v̄ = (v1, . . . , vn) be the variables of φ so

that φ = ∀v̄¬φ̄(v̄) ∈ T (uncaf(T )) where φ̄(v̄) is a conjunction of atomic formulas.
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Since φ is not true in M, it follows that then φ̄[d̄] is true in M for some d̄ =

(d1, . . . , dn). Let D be the finite data set defined as follows: The domain D ⊆M of D is

the set of all elements of the form t[d1, . . . , dk] where t is some term that appears in φ̄.

For every relation symbol P ,

PD = {(t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) |P (t1, . . . , tn) appears in φ̄}.

For every function symbol f ,

Dom(fD) = {(t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) |f [t1, . . . , tn] appears in φ̄},

and for every (t1, . . . , tn) such that the atomic formula t = f(t1, . . . , tn) appears in φ̄

fD (t1[d1, . . . , dk], . . . , tn[d1, . . . , dk]) = t[d1, . . . , dk].

If there are two different atomic formulas that appear in φ̄ with the same arguments of

f then we choose one of them arbitrarily to define the corresponding value of fD.

Then D is a data set that is contained inM and φ̄[d1, . . . , dk] is true in every structure

that contains D, and, in particular, φ is not true in any structure that contains D. But

φ is is true in every model of T , and therefore D falsifies T . Thus, we proved that M
contains the data set D that falsifies T and therefore M /∈ fc(T ).

Proof of Lemma 24. If a structure M contains D then substituting d for vd we get that

φ̄D[d̄] is false in M and therefore φD is not true in M. Since truth is preserved under

isomorphism, it follows that if an isomorphic copy of M contains D then φD is not true

in M.

Assume now that M is a structure of L such that φD is not true in M, and assume

without loss of generality that the domains M and D ofM and D are disjoint (otherwise

replace M with an isomorphic structure). Let m̄ = (md)d∈D be elements of M such

that φ̄D[m̄] is false in M. Consider the isomorphic structure of M′ which is obtained

by replacing every element md with d. Then φ̄D[d̄] is false in M′. It follows that all the

corresponding substitutions of d̄ in the atomic formulas in the conjunctions that makes

up φD in (1) are true. In particular, (d1, . . . , dn) ∈ PM′ for every relation symbol P that

appears in D and every (d1, . . . , dn) ∈ PD. Thus, PD ⊆ PM′ for every relation symbol P

that appears in D, and so property (2) in Definition 6 is satisfied. The other properties

are proved by similar argument. ThereforeM′ is an isomorphic copy ofM that contains
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D.

4.1 Joint hypotheses

We present a trivial example establishing that the falsifiable closure operator does not

commute with respect to intersection. While the falsifiable closure of two falsifiably

complete theories is the intersection of the closures, this is not true of theories that are

not falsifiably complete.

25 Example. Let the language L = 〈R, S〉 involve two unary relations. T ′ is the

vacuous theory of all structures with two unary relations. T1 is the theory axiomatized

by ∀x,R(x). T2 is the theory axiomatized by ∀x,R(x)→ ¬S(x). Note that the falsifiable

closure of T1 is T ′, while the falsifiable closure of T2 is T2 itself. Consequently, the

intersection of the falsifiable closures is T2.

However, the UNCAF axiom ∀x,¬S(x) is true in T1∩T2, while it is not true in either

T1 or T2. Consequently the falsifiable closure of T1 ∩ T2 is a proper subtheory of the

intersection of the individual falsifiable closures.

The example is trivial, but captures the essence of a familiar problem. It is possible

that two theories imposed jointly imply stronger hypotheses than just those which follow

logically from each of the two theories. Our results imply that this only happens for

theories which are not falsifiably complete.

4.2 Relative notions

It is often useful to have a relative notion of falsifiability. In some cases, there is a theory

which we postulate to be a “base” theory, and we want to test some additional hypothesis

(a stronger theory). For example, consider the theories in Example 3. We may ask about

additional empirical content in the Tu, relative to Two; and conclude that the hypotheses

that Tu adds to Two have no additional empirical content.

The theories we have been describing up until now must be necessarily completely

specified, and everything that these theories postulate must be open to testing–including

the primitives. Our results do not require such a detailed description.

To take a trivial example, we may know that there are at least three alternatives

over which an agent forms a preference. We could formalize this by ensuring that all
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structures in our theory have universes with at most three elements. It turns out that so

long as our theory is not vacuous, this theory could never be falsifiably complete. The

reason is that, if we are given any model M of our theory, and consider a substructure

M∗ ⊆M of this theory with a universe containing only two elements, thenM∗ is clearly

not a model of our theory. But our theory is also not falsifiable at M∗, as M∗ ⊆ M.

This is only a trivial example, of course, but it illustrates the need to allow for some

hypotheses to be taken as “given.”5

To discuss relative notions of falsifiability, in this section we fix two theories T ⊆ T ′.

We assume that T ′ is a “base”, or known, theory. We say that T is falsifiable with respect

to T ′ if T is falsifiable at some model of T ′. Thus a theory T is falsifiable with respect

to a weaker theory T ′ if some claim that T makes in addition to T ′ is incompatible with

data that could be observed if T ′ were true. T is falsifiably complete with respect to T ′ if

T is falsifiable at every model of T ′ which is not a model of T . The falsifiable closure of

T in T ′, denoted fcT ′(T ), is given by fcT ′(T ) = T ′ ∩ fc(T ), the class of all models M of

T ′ such that T is not falsifiable at M. Note that T is falsifiably complete with respect

to T ′ if and only if fcT ′(T ) = T . We have the following theorem:

26 Theorem. Suppose T ⊆ T ′. Then T is falsifiably complete with respect to T ′ if and

only if there exists a set Σ of UNCAF sentences of L such that T = T ′ ∩ T (Σ).

Proof of Theorem 26. If T is falsifiably complete with respect to T ′, then by Proposi-

tion 23

T = fcT ′(T ) = T ′ ∩ fc(T ) = T ′ ∩ T (Σ),

where Σ = uncaf(T ).

Assume now that T = T ′ ∩ T (Σ) for some set Σ of UNCAF sentences. In particular,

every sentence in Σ is true in every model of T and therefore Σ ⊆ uncaf(T ). It follows

that

T ′ ∩ fc(T ) = T ′ ∩ T (uncaf(T )) ⊆ T ′ ∩ T (Σ) = T,

where the first equality follows from Proposition 23 and the inclusion from the fact that

Σ ⊆ uncaf(T ). Since in addition T ⊆ T ′ ∩ fc(T ), we get that T = T ′ ∩ fc(T ), so that T

is falsifiably complete with respect to T ′.

27 Proposition. Let T ⊆ T ′ be theories. Then fcT ′(T ) is the smallest theory that

contains T and is falsifiably complete with respect to T ′.

5We may also decide to take some mathematical objects as given, so that our axiomatization only
needs to characterize economically meaningful hypotheses.
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Proof. From the fact that fc is idempotent and monotone (Proposition 16), we conclude

that

fcT ′(fcT ′(T )) = fc(fc(T ) ∩ T ′) ∩ T ′ ⊆ fc(fc(T )) ∩ T ′ = fc(T ) ∩ T ′ = fcT ′(T ).

Therefore fcT ′(T ) is falsifiably complete with respect to T ′. Assume now that T ⊆ T̃ ⊆ T ′

and T̃ is falsifiably complete with respect to T ′. Then

fcT ′(T ) ⊆ fcT ′(T̃ ) = T̃ ,

where the first inclusion follows from monotonicity of the closure and the fact that T ⊆ T̃

and the equality from the fact that T̃ is falsifiably complete with respect to T ′.

28 Example. Consider again the language L = 〈R, R̃〉. We define the theory of orders,

To, as the class of all structures satisfying

∀x∀y, [(x RM y)↔ ¬(x R̃M y)].

Then fcTo(Tu) = fcTo(Two) = Two. That is, if we assume that every pair is either ranked

or unranked (in fact, this assumption would usually be implicit), then the theory of weak

order is falsifiably complete. The theory of weak order is the falsifiable closure of the

theory of utility maximization. The idea that numerical representation of preference

is without empirical content is well-known, but it is comforting that our formal notion

coincides with our intuition in this case.

4.3 A result on axiomatizations using unobservables

Often, a theory has an axiomatization involving unobservables. Obviously, such an ax-

iomatization cannot directly lead to empirical falsification. We find conditions under

which a theoretical axiomatization can be “projected” on observables to yield a falsifi-

ably complete theory.

Let F ⊆ L be languages, such that L contains all the symbols of F and possibly

additional relation symbols. The idea is that the additional symbols in L are meant

to signify theoretical and unobservable terms. For every L-structure M, we denote by

F (M) the F -structure induced from M by forgetting the relations that corresponds

relation symbols not in F . For every L-theory T we denote by F (T ) the theory of all

structures of the form F (M) for some model M of T .
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29 Proposition. If T is a falsifiably complete L-theory then F (T ) is a falsifiably complete

F-theory.

So a theory that is falsifiably complete when we say that theoretical objects are

observable is automatically falsifiably complete in the correct observable form—as long

as the observable structures are obtained by “projection” from unobservables as in the

proposition.

5 Relation to Tarski

5.1 Data sets vs. substructures

Our notion of data sets have an important feature. One may only be able to observe some

relations among the data, not all of them. For example, for data on revealed preferences,

if one observes that x is revealed preferred to y, and that y is revealed preferred to z, one

may not know (not observe) the direction of revealed preference between x and z. Our

notion of data sets accommodates this feature of real-world data sets. The competing

notion of substructures as data sets (see the discussion in Section 7) does not.

5.2 Tarski’s result on relational systems

An UNCAF sentence is a special case of a universal sentence, i.e. a sentence of the form

∀v1 . . . vnφ(v1, . . . vn),

where φ is quantifier-free formula. A theory T admits a universal axiomatization if

T = T (Σ) for some set Σ of universal sentences.

Tarski (1954) proved the following theorem:

30 Theorem. Let L be a language without constants and function symbols and let T be

a theory over L. Then T admits axiomatization by universal sentences if and only if the

following conditions are satisfied:

1. T is closed under substructures.

2. For every structure M, if every finite substructure of M is a model of T , then M
is a model of T .
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The similarity of our condition in Corollary 21 and Tarski’s second condition is clear:

In our framework data sets replace substructures. Indeed; the reason we are able to

prove a theorem axiomatizing theories with function symbols whereas Tarski could not

is that the notion of data set allows a function to be defined on a subdomain of the

universe under consideration. In general; however, if we consider a function restricted to

an arbitrary subset of a universe, the function may not take values in that subset, and

hence the resulting object will not be a substructure. In a sense, the distinction between

functions and relations in mathematical logic is made because of the way these objects

relate across structures: in our context, they can be considered the same type of object

(any function is a relation).

We now turn to formalize the relationship between the syntactic notions of UNCAF

and universal axiomatization.

Let us say that a language L supports negation of relations if its relation symbols are

divided into pairs (P, P̃ ). The idea is that P̃ should represent the relation ‘P does not

hold’. If L supports negation of relations, we denote by ΛL the set of sentences of the

form

∀v1 . . . ∀vn¬P (v1, . . . , vn)↔ P̃ (v1, . . . , vn)

for all n-ary relation symbols p in the language. We say that a theory T respects negation

of relations if T ⊆ T (ΛL), so that P̃ is interpreted as ‘P does not hold’ in all models of

T .

31 Lemma. Let L be a language that supports negation of relations. Then for every

universal sentence φ in L there exist UNCAF sentences φ1, . . . , φn such that ΛL ` φ ↔
φ1 ∧ · · · ∧ φn.

32 Corollary. Let L be a language that supports negation of relations, and let T ⊆
T (ΛL). Then there exists a set of universal sentences Σ such that T = T (ΛL) ∩ T (Σ) if

and only if there exists a set of UNCAF sentences Σ′ such that T = T (ΛL) ∩ T (Σ). T

admits a universal axiomatization relative to T (ΛL) if and only if T admits an UNCAF

axiomatization relative to T (ΛL).

Thus, for theories that respect negation of relations our theorem and Tarski’s provide

the same type of axiomatization.

Proof of Lemma 31. We give a purely syntactic proof: Consider the universal sentence

∀v̄φ̄(v̄), where φ is quantifier free and v̄ are the variables that appear in φ. Writing φ̄ in
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its conjunctive normal form, we get that φ is equivalent to a formula of the form

∀v̄
m∧
i=1

n∨
j=1

φi,j

where each φi,j is a literal, i.e. an atomic formula or a negation of an atomic formula.

Changing the order of the conjunction and the universal quantifier we obtain a formula

of the form
m∧
i=1

∀v̄
n∨
j=1

φi,j.

Using De Morgan’s law and replacing each φi,j with its negation we get a formula of the

form
m∧
i=1

∀v̄¬
n∧
j=1

φi,j. (2)

Finally, under ΛL every literal is equivalent to an atomic formula: for every term

t0, t1, . . . , tk, ¬f(t1, . . . , tk) = t0 is equivalent to f(t1, . . . , tk) 6= t0, and ¬P (t1, . . . , tk)

is equivalent to P̃ (t1, . . . , tk). Therefore we can change the formulas φi,j in (2) to atomic

formulas and so we arrive at a conjunction of UNCAFs, as desired.

In fact, for the theory of falsifiability, it is often important that our theory support

negation of relations. Recall Popper’s theory “all swans are white.” Clearly, such a

theory could never be falsified if it were impossible to observe a swan which was not

white. The following example is our example of weak order maximization, recast in a

language involving only one relation.

33 Example. Let L = 〈R〉 be a language involving only one binary relation, interpreted

as weak preference. Consider the theory T ∗wo, where M = (M,RM) ∈ T ∗wo if and only if

RM is a weak order on M . Let T ∗v denote the vacuous theory, consisting of all structures

with binary relations. We claim that fc(T ∗wo) = T ∗v . This means, in particular, that the

theory of weak order has no empirical content unless one can reasonably observe absence

of preference.

To see why this is the case, let D = (D,RD) be a data set, and let M = (D,RM),

where RM is the binary relation which ranks all pairs. Then D ⊆M, and M∈ T ∗wo.

The result seems surprising, but it says nothing more than the well-known fact that

the preference which is indifferent between all alternatives can rationalize any choices

whatsoever when choices are not fully observable.
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5.3 The theorem of  Loś-Tarski

Theorem ( Loś-Tarski). A first order theory is closed under substructures if and only

if it admits a universal axiomatization.

We now turn to give an analogue of  Loś-Tarski’s theorem for the case of UNCAF

axiomatizations. Let L be a language. Let M and N be structures of L with domains

M and N respectively. Recall that M is a weak substructure of N if there exists an

embedding η : M → N such that

1. η
(
fM(a1, . . . , an)

)
= fN (η(a1), . . . , η(an)) for every n-ary function symbol f

2. (a1, . . . , an) ∈ RM only if (η(a1), . . . , η(an)) ∈ RN for every n-ary relation symbol

R

3. η(cM) = cN for every constant symbol c.

34 Theorem. A first order theory is closed under weak substructures if and only if it

admits an UNCAF axiomatization.

The proof is similar to the proof of  Loś-Tarski’s Theorem and is omitted.

6 Applications

6.1 Application: Multiple selves preferences

We apply our concepts to a popular model without a known axiomatization, the model

of multiple selves. The purpose of this exercise is to demonstrate that the concepts we

introduce are useful for studying theories which have no known axiomatizations (and

hence whose empirical content is not completely understood). Models of multiple selves

are motivated by empirical observations (see e.g. Ambrus and Rozen (2008), Green and

Hojman (2008), Manzini and Mariotti (2007), O’Donoghue and Rabin (1999) or Fuden-

berg and Levine (2006)), but often they lack an axiomatization in terms of observables.

Here we exhibit a broad class of such models which are falsifiably complete.

Given is a fixed and finite set of agents, the “selves.” Given is also a rule for aggregat-

ing agents’ preferences into a single preference. The interpretation is that an individual

has conflicting preferences (perhaps different preferences for different motivations) and
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reconciles these preferences with a preference aggregation rule. We observe an aggregate

preference (a revealed preference), and we would like to know whether it could be gener-

ated by the rule for some profile of agents’ preferences.6 We want to test whether or not a

specific group of selves uses a particular preference aggregation rule in making decisions,

only having observed the aggregate ranking. This question is the correct formulation of

the standard revealed-preference exercise for the multiple selves model.

Multiple selves theories are an excellent example of how hard it can be to show fal-

sifiability. The theories have a trivial existential (second-order) axiomatization: Given

a preference aggregation rule, the theory is the collection of observables for which there

exists preferences for individual selves generating the observable behavior. Leaving aside

the second-order nature of this axiomatization, the problem with an existential axioma-

tization is that we cannot conclude that the theory is falsifiable. Recall the example of

Popper (1959): the theory that there is a non-white swan is not testable because we would

need to examine all the swans in the universe. Here, for a given observed behavior, we

would need to check all possible preferences that the selves might have; for an infinite set

of alternatives, this set of preferences is vast. The fact that the axiomatization is second

order means we have to search over preference profiles–themselves extremely complicated

objects. We present a class of aggregation rules that lead to falsifiably complete theories;

theories with an UNCAF axiomatization.

We require a finite cardinality of agents, and any preference aggregation rule which

is neutral and satisfies independence of irrelevant alternatives. We show that the theory

is falsifiably complete, given that we can observe both aggregate preference and absence

of aggregate preference (and that these relations behave in the proper way).

The models relate to the theory of social choice, where there have been efforts to

axiomatize relations which are so rationalizable. When the society can be arbitrarily

large, it is known that any transitive antisymmetric relation is the Pareto relation for

some society (which may be large)–this is essentially the Szpilrajn theorem. Because

of this, any complete binary relation with a transitive asymmetric part is the result

of the Pareto extension rule for some society (we identify indifferent alternatives for the

Pareto extension rule with unranked alternatives for the Pareto ordering–see Sen (1969)).

Results for majority rule are even weaker: McGarvey (1953) showed that any complete

binary relation is the majority rule relation for some society of agents (which again may

6In this paper, we focus on preferences which are linear orders; however the results apply more
broadly.
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be large). Kalai (2004) generalizes this result to a much broader class of social choice

rules.

The current behavioral literature interprets the society as a group of conflicting ten-

dencies within an individual decision maker: multiple selves. This literature attempts to

understand the empirical content of such assumptions. In particular, Green and Hojman

(2008) generalize McGarvey’s program to choice functions. Ambrus and Rozen (2008)

give sufficient conditions (stated in terms of number of “violations” of classical rational-

ity) for a choice function to be rationalizable by conflicting selves for a fixed number of

agents. DeClippel and Eliaz (2009) provide a full characterization of choice rules which

can result from a specific social choice rule–the fallback solution on a fixed pair of agents.

We only consider preference relations and not choice functions here; however, we show

that the predictions of nearly every such model can be empirically falsified even in the

case where we hypothesize a finite and known cardinality of “selves.”7

There are very few results like ours, assuming a fixed and finite population of selves.

Dushnik and Miller (1941) give necessary and sufficient conditions for a binary relation to

be the intersection of a pair of linear orders; this can dually be seen as an axiomatization

for binary relations which are the image of the Pareto extension rule for two agents.

This characterization theorem both relies on existential quantification, and is not a first

order characterization.8 Dushnik and Miller (1941)’s existential axiomatization cannot

be the basis for falsification.9 Sprumont (2001) provides a similar characterization in

a restricted case. Both of these results are of interest as those relations which are the

intersection of a pair of linear orders are exactly those relations which can be rationalized

by the Pareto-extension rule.

We work with neutral preference aggregation rules which satisfy independence of

irrelevant alternatives. By working with such preference aggregation rules, we need not

specify what the global set of alternatives is in advance. A set of agents N is fixed and

finite. A preference aggregation rule is therefore defined to be a mapping carrying any set

of alternatives X and any N vector of linear orders10 (termed a preference profile) over

those alternatives (R1, ..., Rn) to a complete binary relation over X. We write Rf(R1,...,Rn)

for the binary relation which results (suppressing notation for dependence on X). We

7It is surprisingly more difficult to axiomatize such models for a fixed and known set of selves, than
for an arbitrary set of agents.

8That is, it involves quantification over relations.
9In particular, the theory of Pareto relations for n agents was not known to be falsifiably complete.

Our Theorem 36 demonstrates that it is.
10A linear order is complete, transitive, and anti-symmetric
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assume the following property:

35 Definition. (Neutrality and Independence of irrelevant alternatives): For all sets X

and Y , for all x, y ∈ X and all w, z ∈ Y and all preference profiles (R1, ..., Rn) over

X and (R′1, ..., R′n) over Y , if for all i ∈ N , x Ri y ⇔ w R′i z, then x Rf(R1,...,Rn) y ⇔
w Rf(R′1,...,R′n) z.11

This hypothesis embeds both the neutrality and independence of irrelevant alterna-

tives assumptions. These assumptions seem to be the minimal assumptions needed to

apply Theorem 30.

Given f , we will say that a binary relation R on a set X is f -rationalizable if there

exists a profile of linear orders (R1, ..., Rn) for which R = Rf(R1,...,Rn).

Denote by L = 〈R, R̃〉 the language involving two binary relations, and let T (ΛL) be

the theory of all structures satisfying the axiom

∀x∀y, xRMy ↔ ¬xR̃My.

A structure is f -rationalizable if RM is f -rationalizable and xRMy ↔ ¬xR̃My. The

class of f -rationalizable structures is denoted Tf . Note that Tf is in fact a theory, as it

is closed under isomorphism (this is the content of neutrality).

36 Theorem. For every f , Tf is falsifiably complete with respect to T (ΛL).

37 Remark. If absence of ranking is unobservable, that is if we consider the language

that include only a single relation symbol R, then the theory of all structures in which

R is an aggregation of n linear orders is not falsifiably complete. The easiest example is

when the aggregation rule is such that xRf(R1,...,Rn)y for every x, y, R1, . . . , Rn. Then the

theory is axiomatized by ∀x∀yxRy, which is not falsifiably complete.

Proof. We first show that Tf has a universal axiomatization; the result then follows

immediately from Corollary 32.

We use Theorem 30 to show that Tf is universally axiomatizable.

We must verify that Tf satisfies the following two properties:

11Formally, neutrality means that social rankings should be independent of the names of alternatives,
and independence of irrelevant alternatives means that the social preference between a pair of alternatives
should depend only on the individual preferences between that pair. We have collapsed these two
hypotheses into one larger condition.
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1. Closure under substructures: If A ∈ T , and A′ is a substructure of A, then A′ ∈
T .12

2. Finite substructure property: If for all finite substructures A′ of A, A′ ∈ T , then

A ∈ T .13

The first property is obviously satisfied; it follows from the neutrality and IIA as-

sumption.

To prove that the second is satisfied, let A be an arbitrary structure for the language

L, and suppose that for all finite substructures A′ of A, A′ ∈ T . A structure consists of

a set X and a complete binary relation RM on X, where R̃
M

is a binary relation which

is the complement of RM. The assumption that for all finite substructures A′, A′ ∈ T
means that for all finite subsets Y ⊆ X, RM|Y is f -rationalizable. We need to show that

RM on X is also f -rationalizable.

To this end, consider {0, 1} endowed with the discrete topology. Identify the set of

binary relations on X with B = {0, 1}X×X and topologize with the product topology.

Then B is a compact topological space. Denote the set of f -rationalizable binary relations

on X by Bf . For x, y ∈ X, let Bx,y = {B ∈ Bf : B(x, y) = RM(x, y)}. Note that for

all (x, y), Bx,y is nonempty.14 We now seek to show that it is a closed subset of B.

To see this, note that for all B ∈ Bx,y, by definition, there exists a preference profile

(R1, ..., Rn) for which B = Rf(R1,...,Rn). For each B ∈ Bx,y, choose one such profile.

Suppose {Bλ}λ∈Λ ⊆ Bx,y is a net converging to some B. By compactness of B, we may

without loss of generality assume that (R1
λ, ..., R

n
λ) → (R1, ..., Rn) (see Kelley (1955), p.

71). In particular, it is easy to verify that each Ri is a linear order (by definition of

product topology convergence). Also by definition limλ∈ΛRf(R1
λ,...,R

n
λ) = B. The limit can

be passed through f .15 Conclude that Rf(R1,...,Rn) = B. Clearly, B(x, y) = RM(x, y).

Conclude that B ∈ Bx,y, so that Bx,y is closed.

12A structure A′ = (X ′, R′) is a substructure of A = (X,R) if X ′ ⊆ X and R|X′ = R′.
13A structure A = (X,R) is finite if X is finite.
14This follows from the fact that RM|{x,y} is f -rationalizable. This implies that there exist linear

orders (R1, ..., Rn) on {x, y} for which Rf(R1,...,Rn) = RM|{x,y}. The argument now follows from the
Szpilrajn theorem, by taking appropriate extensions of Ri for all i and appealing to independence of
irrelevant alternatives.

15To see this, note that for all x, y ∈ X by definition of convergence, there exists λ∗ ∈ Λ for which
for all λ ≥ λ∗ and for all i ∈ N , Riλ(x, y) = Ri(x, y). Recall that for a pair x, y ∈ X for which x 6= y

and a linear order R over X, R|{x,y} is determined by R(x, y). As Riλ(x, y) = Ri(x, y) for all i ∈ N
and λ ≥ λ∗, we may conclude that Rf(R1

λ,...,R
n
λ)|{x,y} = Rf(R1,...,Rn)|{x,y} for all such λ. Therefore,

Rf(R1
λ,...,R

n
λ) → Rf(R1,...,Rn).
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Now, we claim that
⋂

(x,y)∈X×X Bx,y 6= ∅. To show this, we will show that for every

finite set Z ⊆ X×X,
⋂

(x,y)∈Z Bx,y 6= ∅ and appeal to the finite intersection property. So,

let Z ⊆ X ×X be finite. Let Y = Z1 × Z2, where Zi denotes the projection of Z on the

ith coordinate. Note that Y is finite; so by hypothesis, RM|Y is f -Pareto rationalizable.

Let (R1, ..., Rn) be linear orders on Y for which Rf(R1,...,Rn) = RM|Y . Each of these can

be extended to linear orders on all of X by the Szpilrajn theorem, say to Ri∗. Then

Rf(R1∗,...,Rn∗)|Y = RM|Y (this follows from the neutrality and independence of irrelevant

alternatives hypothesis). In particular, for all (x, y) ∈ Z, Rf(R1∗,...,Rn∗)(x, y) = RM(x, y),

so that
⋂

(x,y)∈Z Bx,y 6= ∅. This verifies the finite intersection property, and as each Bx,y

is closed and B is compact, we conclude that
⋂

(x,y)∈X×X Bx,y 6= ∅. This establishes that

RM ∈ Bf .

The above discussion assumes that preferences are linear orders, but many of the

multiple-selves papers put different restrictions on the selves’ preferences. While the

proof above does not directly apply, it is easy to see that the theorem is true on different

domains of preference profiles: Any domain of preference profiles which is closed in the

product topology as defined above will work.

6.2 Application: Afriat’s theorem

Afriat’s theorem (Afriat, 1967; Varian, 1982) states that consumption data are rationaliz-

able by a monotonic, continuous, and concave utility if and only if they are rationalizable

by a locally nonsatiated preference. Similarly, for demand data satisfying Walras’ Law,

data which are rationalizable at all are rationalizable by a monotonic, continuous, and

concave utility. We shall recast his theorem, using our results, as a statement about the

empirical content (the falsifiable closure) of the theory of concave utility maximization.

The language and definitions are similar to those of Example 3, but we need to make

some changes to model that preferences are revealed by demand choices at competitive

budgets.

Let Π ⊆ Rn
++ ×R+. A function d : Π→ Rn

+ that satisfies

1. p · d(p, I) = I, and
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2. d(p, I) = d(λp, λI) for all λ > 0 such that (λp, λI) ∈ Π

is a demand function.

Let L be a language with two binary relations, R and P . The language should also

include a constant symbol for every element of Rn
+ and R.16 We shall introduce three

theories: the theory T ′ of classical demand theory, the subtheory T ′wo of weak-order

maximization, and the subtheory Tc of concave utility maximization.

First, T ′ is the class of all structures isomorphic to some M of L with M = Rn
+, all

constant symbols refer to their named objects, and for which there is a demand function

d and Π ⊆ RN
++ ×R+, such that

• (x, y) ∈ R if and only if there is (p, I) ∈ Π such that x = d(p, I) and p · y ≤ I;

• (x, y) ∈ P if and only if there is (p, I) ∈ Π such that x = d(p, I) and p · y < I.

Second, the theory of weak order maximization is the subtheory T ′wo of T ′ defined as

structures isomorphic to some (Rn
+, R

∗, P ∗) in T ′ for which there is a complete, reflexive,

and transitive binary relation � on X such that

(x, y) ∈ R∗ ⇒ (x, y) ∈�

(x, y) ∈ P ∗ ⇒ (x, y) ∈� .

The theory of concave utility maximization is the subtheory Tc of T ′ that is the class

of all structures isomorphic to some (Rn
+, R

∗, P ∗) in T ′ for which there is a monotonic

and concave function u : Rn
+ → R such that

(x, y) ∈ R∗ ⇒ u(x) ≥ u(y)

(x, y) ∈ P ∗ ⇒ u(x) > u(y).

We obtain the following expression of Afriat’s (1967) theorem:

38 Theorem. T ′wo is the falsifiable closure of Tc with respect to T ′.

16We introduce constant symbols for each element of Rn
+ so that we do not need to worry about

describing consumption space and the relation ≥ , the function ·, etc. as part of the problem. The
technique of introducing a constant to represent every element in some concrete set is very useful in
a variety of contexts in which the underlying set is something whose behavior is well-understood, but
whose defining symbols are not meant to be taken as data. Otherwise, we would need to take ≥ and the
values of the function · as “observable data.”
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Proof. Consider the set Σ = {φn, : n = 2, . . .} of UNCAF formulas, where φn is

∀v1, . . . ,∀vn(¬(v1, v2) ∈ R ∨ ¬(v2, v3) ∈ R∨, . . . ,∨¬(vn, v1) ∈ P ).

By a well-known theorem (see Richter (1966) and Suzumura (1976)), if a structure

(X,R∗, P ∗) satisfies these sentences, then it is in T ′wo. And if a structure (X,R∗, P ∗) is

in T ′wo, it is clear to see it satisfies these sentences. So (X,R∗, P ∗) ∈ T ′wo if and only if it

is in T ′ and satisfies the formulas in Σ. Then, by Theorem 26 T ′wo = T ′ ∩ T (Σ) implies

that T ′wo is falsifiably complete with respect to T ′, as the formulas in Σ are all UNCAF.

Note that for (X,R∗, P ∗) in T ′, the interpretation of the sentences in Σ is that the

strong axiom of revealed preference holds.17 Note that it is meaningful to talk about

a finite data set as “satisfying” a collection of sentences in this case, so long as the

sentences do not refer to any constants. This is because there are no function symbols

in our language. A data set in this context is a structure for our language ignoring

constants. Formally, Afriat’s theorem then states that if a finite data set (D,RD, PD)

satisfies the sentences in Σ, there is a structure (X,R∗, P ∗) in Tc containing it.

Let (X,R∗, P ∗) be a structure in T ′wo \ Tc, and let D be a finite data set contained in

(X,R∗, P ∗). It is easy to verify that each of the axioms in Σ are true for D. So, there

exists M∈ Tc containing D by the argument implied by Afriat’s theorem.

Since T ′wo is falsifiably complete, we conclude that T ′wo is the falsifiable closure of Tc

with respect to T ′.

7 Other notions of refutability

We are not the first to formalize the notions of falsification and Popper’s logical posi-

tivism. We discussed the work of Adams, Fagot, and Robinson (1970), Adams (1992)

and Pfanzagl, Baumann, and Huber (1971) in the introduction. The excellent book by

Luce, Krantz, Suppes, and Tversky (1990) discusses these contributions. Here, we dis-

cuss an approach whose formalism is more similar to ours. In a series of papers, Herbert

Simon and coauthors (Simon and Groen, 1973; Simon, 1979, 1983, 1985; Rynasiewicz,

1983; Shen and Simon, 1993) discuss a notion of falsifiability, and the formal structure

17In first-order logic, the strong axiom is an infinite number of axioms, as we make evident here.

30



of falsifiable theories. The focus of this work, as we mentioned in the introduction, is on

the elimination of theoretical terms.

This literature has based the idea of falsification on the notion of data as a sub-

structure. We now discuss their notion of falsification, and argue that substructures are

inadequate as a notion of data. The definition of falsifiability was proposed by Simon

and Groen (1973).18 They intend their definition to capture the theories that can be

axiomatized using only universal quantifiers.

A structure M is finite if its domain M is finite.

39 Definition. A theory T is finitely testable if there is a structure M that is not a

model of T , and if, for every structure M that is not a model of T , M has a finite

substructure that is not a model of T .

40 Definition. A theory T is irrevocably testable if no model of T has a finite substruc-

ture that is not a model of T .

Thus T is finitely and irrevocably testable (FIT) if there is a structure that is not

a model of T , and if for every structure M, M is not a model of T if and only if M
contains a finite substructure that is not a model of T . That is,M is a model of T if and

only if every finite substructure of M is a model of T . Note that this latter condition

also appears in Theorem 30, on relational systems. FIT is the notion of falsifiability used

by Simon and Groen. It build on substructures as a notion of data. Note that a relative

definition exists: for T ⊆ T ′, T is FIT with respect to T ′ if there exists a structure in T ′

that is not a model of T , and if for every structure M ∈ T ′, M is not a model of T if

and only if M contains a finite substructure that is not a model of T .

41 Proposition. If a theory satisfies FIT then it is closed under substructures.

Proof. Let T satisfy FIT. Let M be a structure in T . If M has a substructure that is

not in T then this substructure has a finite substructure B that is not in T . But B is

also a substructure of M, so FIT implies that M is not in T . It follows that M cannot

have any substructure that is not a model of T .

By Proposition 41 and the  Loś-Tarski Theorem, FIT implies a universal axiomati-

zation whenever T is a first order theory. The relation between falsifiability and the

 Loś-Tarski Theorem is, we hope, clear from our results in Section 5.3.

18Rynasiewicz (1983) proposes a different notion, which he calls “finitely strongly falsifiable.” One
can show that example 42 presents a theory that is falsifiably complete, and closed under substructures,
but is not finitely strongly falsifiable.
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The following example shows that a theory T may be falsifiably complete with respect

to another theory T ′ [Definition 12], but fail to be FIT (with respect to T ′). The example

points out that FIT-ness may fail simply because there are no finite substructures of a

theory. This can occur for technical reasons related to the definition of substructure.

42 Example. Consider the language L = 〈0, q, <, f〉 where q is an unary relation symbol,

< is a binary relation symbol, f is a one-place function symbol, and 0 is a constant symbol.

Let T ′ be the class of structures isomorphic to some M = (Z, 0M, qM, <M, fM) where

0M is 0 in Z, <M is a linear order and x <M fM(x).

Let T be the class of structures in T ′ where the formula

∀x¬q(x)

is true. Then by Theorem 26, T is falsifiably complete with respect to T ′.

T is also closed under substructures because, if (Z, 0M, qM, <M, fM) is isomorphic to

a model of T and B is a substructure of M, then qB coincides with the qM on |B|.

On the other hand, no model of T ′ contains any finite substructures. Suppose, to the

contrary, that B is a substructure ofM∈ T ′ and that |B| is finite. Then |B| has a largest

element z̄ according to <B. Note that fB = fM||B| and z̄ <M fM(z̄) = fB(z̄) ∈ |B|. But

z̄, fB(z̄) ∈ |B| and z̄ <M fB(z̄) imply that z̄ <B fB(z̄), which contradicts that z̄ was the

largest element of |B|.

Consequently, if T were to satisfy FIT with respect to T ′, it must contain every model

of T ′, which is false. It follows that T does not satisfy FIT with respect to T ′.

A theory may satisfy FIT but fail to be falsifiably complete; a simple example involves

one unary relation R and theory T axiomatized by ∀R(x).

8 Conclusion

We have developed a theory of the empirical content of an economic theory. The leading

examples, throughout the paper, are borrowed from revealed-preference theory; they

should be familiar to most economists. We have also shown that the results are applicable

to less well-understood theories, and can give new substantive results. In particular, we

have illustrated the usefulness of our results by presenting conditions under which theories
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of multiple-selves in behavioral economics, and theories of preference aggregation in social

choice, are falsifiably complete. That is, all its claims are fully testable.

A recurring methodological issue in economics is the argument over unreal assump-

tions. There is an early literature, sparked by Milton Friedman’s 1953 position that the

truth of assumptions does not matter. Recent methodological discussions by Rubinstein

(2006), Gul and Pesendorfer (2008), Dekel and Lipman (2009), and Gilboa (2009), deal

with (among other issues) whether the truth of the “story” behind a theory is relevant.

In our results, assumptions and stories do not appear explicitly. They appear implicitly

in the specification of concrete theories (see for example the theories in Example 3, and

Sections 6.1 and 6.2). This is because we have focused on the testable implications of a

theory: an UNCAF axiomatization can be seen as a test for the theory.

However, the framework we have laid out is applicable to the treatment of theoretical

objects. We have already mentioned one venue for application using Proposition 29; this

result can in fact be applied to study the testable implications of Nash equilibrium or

Nash bargaining, something we omitted from the paper because the details are involved

and the paper is already long as it is. A second illustration lies in Paul Samuelson’s (see

Archibald, Simon, and Samuelson (1963)) response to Friedman’s position on assump-

tions. Samuelson effectively counters Friedman by using ideas that we have formalized

in our paper. Samuelson makes the point that assumptions matter because either a the-

ory T (described by its “assumptions”) is falsifiably complete and thus equivalent to its

empirical content, in which case Friedman’s point is moot; or it makes non-falsifiable

claims, in which case the failure to refute the theory is uninformative about the theory’s

non-falsifiable claims. In fact, Samuelson argues, by Occam’s Razor one should choose

the weaker theory, consisting of the empirical content of T (what we have formally termed

fc(T )), rather than unnecessary claims in T . Regardless of one’s position on the question

of realism, we hope that this example shows how our notions may be useful.

Finally, we have studied basic ideas from philosophical positivism. They are seen

as naive by some philosophers because researchers may have complicated agendas, and

be motivated by their environment, in ways that makes falsification not the focus of

their research. Philosophy of science since Popper has therefore focused on the sociology

of what drives actual research. We are not expert on these matters, of course, but it

seems to us that most economists still find the problem of falsification interesting. In

fact, the recent methodological discussions in Gul and Pesendorfer (2008), Dekel and

Lipman (2009), and Gilboa (2009), all take for granted that one wants to understand a
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theory’s empirical content (possible exceptions are Hicks (1983) and Rubinstein (2006)).

We believe that a formal understanding of empirical content is useful, independently of

the complexities involved in the actual production of research.19

19Gilboa (2009; Chapter 7.3) presents this viewpoint very convincingly.
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Appendix A The dual of falsifiable completeness

We have so far discussed falsifiability as a primitive notion, but falsifiability has a dual

concept: verifiability. The simplest way to explain these concepts using those we already

have is as follows. We can say that a theory T is verifiably complete with respect to T ′

if T ′\T is falsifiably complete with respect to T ′. Hence, just as falsifiable completeness

specifies that all claims of a theory should be falsifiable, verifiable completeness specifies

that all claims should be verifiable. Falsifying the complement of a theory is the same as

verifying the theory itself–in this sense, falsification and verification are dual.

We can then define the verifiable interior of a theory T with respect to T ′, viT ′(T ) =

T ′\fcT ′(T ′\T ). Thus, the verifiable interior of a theory T with respect to T ′ is the largest

subtheory of T which is verifiably complete. It corresponds to the weakest strengthening

of the hypotheses for which the theory becomes verifiably complete. Unsurprisingly, the

verifiable interior operation is a topological interior, corresponding to the same topology

as the falsifiable closure.

Lastly, we can define a sentence to be an ECAF (existential conjunction of atomic

formulas) if it is a sentence of the form

∃v1∃v2...∃vn(φ1 ∧ φ2... ∧ φn)

where each φi is an atomic formula.

The following result is a trivial consequence of Theorem 26.

43 Theorem. A theory T is verifiably complete with respect to T ′ if and only if there

exists a set of ECAF sentences, Λ, for which T = (
⋃
λ∈Λ T (λ)) ∩ T ′.

We present here a simple example of a theory which is verifiably complete.

44 Example. The example here is one in which we study a private-goods economy,

where each individual has her own consumption. We will thus speak of allocations. The

theory of egalitarian equivalence of some specified allocation, described by Pazner and

Schmeidler (1978), asks whether there is some fixed consumption bundle for which each

individual is indifferent between her private consumption and the fixed consumption.

To model this, we will suppose that each individual has a preference, and we will

consider some fixed allocation; this fixed allocation will be specified in our language by

constant symbols.
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The language L involves n binary predicates R1, ..., Rn and n constant symbols,

c1, ..., cn. The theory that (c1, ..., cn) is an egalitarian equivalent allocation is axioma-

tized by the following sentence:

∃x
n∧
i=1

(xRici ∧ ciRix)

.

This axiom is immediately seen to be of the ECAF form; hence the theory that

(c1, ..., cn) is egalitarian equivalent is a verifiably complete theory. This is intuitive, as to

verify that the theory holds, one must simply demonstrate the existence of x to which

each individual is indifferent.

Appendix B Basic definitions from Model Theory

The following definitions are taken, for the most part, quite literally from (Marker, 2002),

pp. 8-12. We refer readers to this excellent text for more details; but present the basics

here to keep the analysis self-contained. The x notation is here used to denote a list, or

vector, or elements (x1, ..., xm).

We first must specify our language L. The language is a primitive and specifies the

syntax, or the things we can say.

45 Definition. A language L is given by specifying the following:

1. a set of function symbols F and positive integers nf for each f ∈ F

2. a set of relation symbols R and positive integers nR for each R ∈ R

3. a set of constant symbols C.

The semantics are specified by concrete mathematical objects, called structures. Struc-

tures provide the appropriate framework for interpreting our syntax.

46 Definition. An L-structure M is given by the following:

1. a nonempty set M called the universe or domain of M

2. a function fM : Mnf →M for each f ∈ F
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3. a set RM ⊆MnR for each R ∈ R

4. an element cM ∈M for each c ∈ C.

When the language L is understood, we refer to an L-structure simply as a structure.

The elements fM, RM, and cM are called interpretations of the corresponding symbols

in the language L.

It is useful to be able to give a meaning to certain relations across structures. For

example, in our case, we have reason to study both the notion of substructure and

isomorphism. The following makes these precise.

47 Definition. Suppose that M and N are L-structures with universes M and N

respectively. An L-embedding η : M → N is a one-to-one map η : M → N that

preserves the interpretations of all symbols of L: specifically,

1. η(fM(a1, ..., anf )) = fN (η(a1), ..., η(anf )) for all f ∈ F and a1, ..., anf ∈M

2. (a1, ..., amR) ∈ RM if and only if (η(a1), ..., η(amR)) ∈ RN for all R ∈ R and

a1, ..., amR ∈M

3. η(cM) = cN for c ∈ C.
48 Definition. An isomorphism is a bijective L-embedding.

49 Definition. M is a substructure of N if M ⊆ N and the inclusion map ι : M → N

defined by ι(m) = m for all m ∈M is an L-embedding.

The following definition gives us the basic building blocks of our syntax. Note that

we include a countable list of “variables” to be used in this definition; these are not part

of the language per se, but rather part of a “meta language” in that they are present in

all languages.

50 Definition. The set of L-terms is the smallest set T E such that

1. c ∈ T E for each constant symbol c ∈ C

2. each variable symbol vi ∈ T E for i = 1, 2, ...,

3. if t1, ..., tnf ∈ T E and f ∈ F , then f(t1, ..., tnf ) ∈ T E .

The following definitions mark our departure from Marker. Specifically, we want to

allow atomic formulas to include expressions involving the 6= sign–and we want to include

this symbol as part of our meta-language, in the sense that it is present in every language.
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51 Definition. Say that φ is an atomic L-formula if φ is one of the following

1. t1 = t2, where t1 and t2 are terms

2. t1 6= t2, where t1 and t2 are terms

3. R(t1, ..., tnR), where R ∈ R and t1, ..., tnR are terms

52 Definition. The set of L-formulas is the smallest set W containing the atomic

formulas such that

1. if φ is in W , then ¬φ is in W

2. if φ and ψ, then (φ ∧ ψ) and (φ ∨ ψ) are in W

3. if φ is in W , then ∃viφ and ∀viφ are in W .

53 Definition. A variable v occurs freely in a formula φ if it is not inside a ∃v or ∀v
quantifier. It is bound in φ if it does not occur freely in φ.

54 Definition. A sentence is a formula φ with no free variables.

We are now prepared to define a concept of “truth” relating syntax and semantics.

We want to define what it means for a sentence to be true in a given structure. The

notion we define here is slightly different than Marker, as it again relies on the correct

interpretation of the 6= symbol, which is not a primitive there (nor in any other standard

text).

55 Definition. Let φ be a formula with free variables from v = (vi1 , ..., vim), and let

a = (ai1 , ..., aim) ∈ Mm. We inductively define M |= φ(a) as follows. The notation

M 6|= ψ(a) means that M |= φ(a) is not true.

1. If φ is t1 = t2, then M |= φ(a) if tM1 (a) = tM2 (a)

2. If φ is t1 6= t2, then M |= φ(a) if tM1 (a) 6= tM2 (a)

3. If φ is R(t1, ..., tnR), then M |= φ(a) if (tM1 (a), ..., tMnR(a)) ∈ RM

4. If φ is ¬ψ, then M |= φ(a) if M 6|= ψ(a)

5. If φ is (ψ ∧ θ), then M |= φ(a) if M |= ψ(a) and M |= θ(a)

6. If φ is (ψ ∨ θ), then M |= φ(a) if M |= ψ(a) or M |= θ(a)

7. If φ is ∃vjψ(v, vj), then M |= φ(a) if there is b ∈M such that M |= ψ(a, b)
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8. If φ is ∀vjψ(v, vj), then M |= φ(a) if for all b ∈M , M |= ψ(a, b).

56 Definition. M satisfies φ(a) or φ(a) is true in M if M |= φ(a).

Lastly, for our purposes, it is useful to have a notion of a universal sentence.

57 Definition. A universal sentence or universal formula is a sentence of the form

∀vφ(v), where φ is quantifier free.
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