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Abstract

Using a computational testbed, we theoretically predict and experimentally show
that in the minimum effort coordination game, as the cost of effort increases, 1) the
game converges to lower effort levels, 2) the convergence speed increases, and 3) the
average payoff is not monotonically decreasing. In fact, the average profit is an U-shaped
curve as a function of cost. Therefore, contrary to the intuition, one can obtain a higher
average profit by increasing the cost of effort.
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Designing Experiments with Computational
Testbeds:
Effects of Convergence Speed in Coordination Games

Noah Myung* Julian Romero!

1 Introduction

This paper makes two contributions: First, we use a computational testbed to determine
the experimental parameters. Testbeds are useful because they allow us to run many
simulations over wide range of parameters very cheaply instead of experimenting with
the parameters via pilot sessions. Second, we run the actual experiment using subjects
in a laboratory setting to test the predictions made using our testbed. We make the
following three predictions using the testbed which are indeed confirmed by subjects in
experimental laboratory.

In a minimum effort coordination game, increasing the cost of effort causes:

1. The game converge to a lower minimum effort.
2. An increase in convergence speed to an equilibrium.

3. A non-monotonic change in average payoffs.

The intuition behind the results of the minimum effort coordination game is that
there are both negative and positive effects on welfare as cost increases. We use the
standard notion of welfare; total surplus or in our case, average payoff. The negative
effects of higher cost are in two parts. First, lower payoffs are obtained from the same
strategy profile for a higher cost in effort. In addition, the game also converges to a lower
effort, which causes a lower payoff in general. The positive effects of higher costs is the
faster rate of convergence to an equilibrium. Therefore, there is less wasted effort from
agents searching for the equilibrium to converge. In sum, the average payoff increases
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if positive effects outweigh the negative effects, while the average payoff decreases if the
negative effects outweigh the positive effects.

One reason why we implement computation testbed is the general difficulty in deter-
mining the specific parameters to use for the results stated above. One may guess and
run many pilot sessions to guess the exact parameters but this can be a costly proce-
dure. We propose that a computational testbed, which is often used in other areas of
experimental science such as chemistry, offers an alternative solution to this problem.

1.1 Agenda

We first start with the theory section where we introduce the minimum effort coordi-
nation game, computational testbed, and our theoretical predictions. The details of the
computational testbed and its algorithm are provided in the Appendix. Next, we proceed
with testable hypotheses and our experimental design. We then provide the experimental
results and concluding remarks.



2 Theory

2.1 Minimum Effort Coordination Game

Minimum effort coordination game, also known as a weakest-link game, takes the follow-
ing form: Given N agents, every agent chooses an effort level s; € {1,2,..., M}, M finite,
with payoff function

pi =« <m1]51{s]}> —c(s;) + 0 where « > ¢ > 0,0 € R for all agentsi € N (1)
J€

Best response in this game is for agent ¢ to match the lowest effort from everyone else:

= )

Notice that the minimum effort coordination game is a game of strictly complementarity.
In turn, it has multiple equilibria. For this particular class of game, we get pure strategy
equilibria that are pareto ranked. The Nash Equilibria for this game are any strategy
profile that satisfies the following condition: o = {s1,..., sy} where s; = s = ... = sy.
For example, everyone choosing s; = 3 Vi € N is a Nash Equilibrium. Among these M
pure strategy equilibria, a strategy profile o = {s1,...,sn} = {M,..., M} is the payoff
dominant equilibrium, while o = {s1,...,sy} = {1,...,1} is the worst, but is a risk
dominant equilibrium.

Please refer to Myung (2008 Working Paper) for a more detailed review and the
experimental background of this particular game.

2.2 Computational Testbed

A computational testbed is a computer environment that allows us to run simulations in
order to make predictions about human behavior. Though these testbeds will likely never
be able to perfectly predict human behavior, they are still a useful tool for making these
predictions. These testbeds allow us to run simulations of an experiment over a wide
variety of parameters. Based on the simulations, we can develop behavioral hypothe-
ses in these games, as well as select interesting parameters to be used in a laboratory
experimental setting.

Others have developed computational testbeds in order to design experiments. Ar-
ifovic and Ledyard (2005 Working Paper) build computational agents to be used as a
testbed for experiments on the Groves-Ledyard mechanism. In particular, the mechanism
has one parameter that plays an important role in the speed of convergence. Arifovic
and Ledyard make predictions about optimal values of this parameter with their com-
putational testbed, and then confirm these predictions with experiments. Their learning
algorithm is a combination of a genetic algorithm with some behavioral intuition. Their



computational agents are able to converge quickly, on average in 20 rounds. Their algo-
rithm strongly favors convergence to a single point. Therefore in a game like battle of
the sexes, their algorithm cannot support the commonly observed behavior where play-
ers learn to alternate meeting places. Our algorithm uses pattern recognition, and is
therefore able to capture this behavior.

For our study, the algorithm determines which choice each agent makes in each period
of a repeated game. This choice depends on the history of play as well as the agent’s
current state. After each agent made their choice, the choices and payoffs are revealed
to all agents. The agents then update their history and current state, and make their
choice for the following round.

Two main features of this algorithm are the pattern recognition scheme and the
agent’s states. The experiments of Sonsino and Sirota (2003) show that subjects are
able to sustain patterns of Nash equilibria (alternate, not randomly mixed, between
multiple equilibria). Even in 2-by-2 games, the probability of sustaining a pattern of
Nash equilibria for n rounds by random choice decreases exponentially as n increases;
yet subjects are still able to sustain these patterns. People’s ability to sustain these
patterns of equilibria provide evidence that they are in fact recognizing these patterns.
Therefore, pattern recognition is a natural feature when modeling human behavior in
repeated interactions. Our pattern recognition scheme is a modification of the k-nearest
neighbor classification algorithm from machine learning (Dasarathy 1991). Patterns are
recognized by first identifying the current play (the most recent choices in the history)
and then finding previous plays that are similar to the current play. The prediction
for next round is a weighted average of the outcomes of these similar plays. In each
round, agents make their choice based on their current state, which are given by two
parameters, v and o. The v parameter represents an agent’s current level of confidence.
This is determined by how well that agent predicts what the other agents will do. The o
parameter represents the agent’s satisfaction of the current play of the game. If the agent
is not satisfied and wants to change what is happening in the game, then o is close to 1.
If the agent is satisfied with how the game is going then o is close to 0. When all agents
have high values of v and low values of o, then each agent’s choice has low variance and
each agent is satisfied with the predicted outcome of their choice, so the algorithm has
converged.

Another important aspect in the algorithm is that agents are not able to calculate
exact best-responses to their predictions. Instead, agents determine best responses by
randomly sampling from the strategy space, and keeping the strategy that gives the
highest payoff. This is important for two reasons. First, it allows for completely general
payoff functions. Because the explicit best response function isn’t required, the payoff
functions need not be continuous nor differentiable. Also, it allows agents to have different
levels of intelligence by changing the number of samples they take. For example, a very
intelligent agent has a good grasp of the payoff function, and therefore is able to find the
best response. This can be modeled by an agent who takes a large number of random
samples to find the best response. Conversely, a very unintelligent agent is not able to



find the best response. This can be modeled as an agent that takes a very small number
of samples to find the best response.

For a more detailed description of computational testbeds in economics, see Romero
(2008 Working Paper). We have attached the algorithm and a detailed mathematical
description in the Appendix.



3 Prediction

We run simulations using the algorithm on the minimum effort coordination games and
develop testable experimental hypotheses. The benefit of using computational agents
is that simulations are essentially costless, which allows us to run many trials for each
parameter value.

Previous experiments on the minimum effort coordination game have focused on dif-
ferences in cost and group size. The experiments have typically compared two different
parameter values: a low and high cost or a small and large group (Goeree and Holt 2005).
Experiments examining a large set of parameters are difficult due to constraints on the
number of subjects in a given subject pool, as well as monetary costs for running large
experiments. Simulations using the algorithm provide a testbed to simulate these exper-
iments for many different parameter values. Unlike the binary comparisons, examining
a larger set of parameters will give us a better understanding of the behavior which may
have been overlooked in the past.

From the minimum effort coordination game defined in the previous section using
equation 1, we run simulations with o = 1, 6 = 0, s; € [0, 1] for groups of four agents
with 9 different costs, varying from ¢ = 0.1 to ¢ = 0.9. At each parameter value, we run
300 simulations lasting for 50 rounds.

Convergence Point: We find that higher costs lead to lower convergence points.
Convergence points are the average play over the last 10 periods of the repeated game.
The convergence points of these simulations are displayed in Figure 1. This is consistent
with experimental results from minimum effort coordination games as shown in Goeree
and Holt (2005).

Convergence Speed: We then examine the effect of different costs on speed of
convergence. !

Based on the simulations, we find that the number of rounds required to converge
increases with ¢. A plot of convergence as a function of ¢ is displayed in Figure 2 (higher
bars mean slower convergence). The intuition for increase in speed of convergence for
higher cost is simple; it is more expensive for agents to search for different outcomes or
experiment with different strategies.

Average Payoff: These convergence results have some interesting effects on the
agent’s payoffs. When agents do not all choose the same effort (i.e., best respond), the
outcome is pareto inefficient. If all agents chose the minimum effort for a given strategy
profile, then everyone’s payoff would be weakly higher, with at least one receiving a
strictly higher payoff. Since it is inefficient when all agents are not choosing the same
effort, slow convergence may lead to lower average payoffs. The average payoff per agent
for different costs is displayed in Figure 3. It is difficult to compare the welfare between

'We will use convergence in 7 as a measure of convergence. See Appendix.
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two experiments with different costs because they have different payoff functions. Even
though welfare is difficult to compare, the payoff for any given strategy profile is lower
when the cost of effort is higher. Intuition thus suggests that higher cost of effort should
lead to lower average payoffs in the repeated game. However, we argue that higher cost
can actually lead to higher payoffs. The increase in payoffs due to faster convergence
outweighs the decrease in payoffs due to higher cost. Note that the difference in average
payoff shrinks as number of rounds increases in Figure 3. This result is due to the fact
that the positive welfare of faster convergence gets averaged out by the negative welfare
of higher cost in effort as the game is played for more periods.
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Figure 3: Average Payoffs for Different Costs in Minimum Effort Coordination Game as
a Function of Number of Rounds

3.1 Hypotheses

We test the following three hypotheses that were generated by the computational testbed
in the experimental laboratory:

Hypothesis 1. Convergence Point: The game will converge to a pareto dominated
payoff as the cost of effort increases.

Hypothesis 2. Convergence Speed: The game will converge faster to an equilibrium
as the cost of effort increases.

Hypothesis 3. Average Payoff: The average payoff does not monotonically decrease
as the cost of effort increases.



4 Experimental Design

4.1 Overview

The experiments were conducted at the California Social Science Laboratory (CASSEL)
located in the University of California, Los Angeles (UCLA). A total of 60 subjects
participated in the experiments. The average performance-based payment was 20USD.
All students were registered as subjects with CASSEL (signed a general consent form) and
the experiment was approved by the local research ethics committee at both universities.
These labs consist of over 30 working computers divided into a cubicles, which prevents
students from viewing another student’s screen.

The experiment was programmed and conducted with the experiment software z-Tree
(Fischbacher 2007). The instructions were available both in print as well as on screen
for the participants, and the experimenter explained the instruction in detail out-loud.
Participants were also given a brief quiz after instruction to insure proper understanding
of the game and the software. A copy of the instruction, as well as the payoff tables, are
available on the author’s website.

The subjects were randomly assigned to their roles in the experiment. Furthermore,
no one participated in more than one experiment. The identity of the participants as
well as their individual decisions were kept as private information. However, each groups
knew their own minimum effort. Experiment used fictitious currency called francs. The
participants were fully aware of the sequence, payoff structure, and the length of the
experiment. All participants filled out a survey immediately after the experiment.

4.2 Details of the Experiment

A total of 20 subjects participated in each session. These 20 subjects were split into
5 groups of 4, and each group used a different cost parameter. The entire session was
divided into 5 blocks, and each block was divided into 15 rounds. After each block, the
subjects were randomly rematched (with replacement) to another group of 4 and were
randomly reassigned another payoff parameter (with replacement). See Figure 4 for the
time line.

Block 1 Block 2 Block 3 Block 4 Block 5
15 Rounds 15 Rounds 15 Rounds 15 Rounds 15 Rounds

L | | | | |

I I I I
Rematch Rematch Rematch Rematch

Figure 4: Timeline and Matching Structure for the Experiment

Subjects played a minimum effort coordination game per round. Their task was to
choose an effort level,
S; € {1, . 7}

9



and their payments were determined by the following payoff function

In each block, there were 5 groups each with a different payoff matrix based on

p; = 1000 (min{sj}> — c(s;) + 5950
jEN

c € {50, 500,900, 950,990}

The subjects were shown the payoff table displayed in Table 1, with the calculation
already completed for the subjects. The group size, randomization, and the fact that
everyone in the group were using the same payoff table were common knowledge. How-
ever, the group’s own minimum effort was private information to the group and was not
available to the outside members.

Minimimum effort of all agents

1’s Effort 7 6 5 4 3 2 1
7 12950 — 7c | 11950 — 7c | 10950 — 7c | 9950 — 7c | 8950 — Tc | 7950 — Tc | 6950 — 7c
6 = 11950 — 6¢ | 10950 — 6¢ | 9950 — 6Gc | 8950 — 6¢ | 7950 — 6¢ | 6950 — 6¢
5 — — 10950 — 5¢ | 9950 — 5e | 8950 — 5¢ | 7950 — be | 6950 — He
4 — — — 9950 — 4c¢ | 8950 — 4c | 7950 — 4c¢ | 6950 — 4c
3 — — — — 8950 — 3¢ | 7950 — 3¢ | 6950 — 3¢
2 — — — — — 7950 — 2¢ | 6950 — 2¢
1 — — — — — — 6950 — ¢

Table 1: Sample Payoff Table that was used in the Experiment

Calculations were already filled in for the subjects
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5 Experimental Results

Figure 5 illustrates sample results from one of the block of sessions. Figure 5 (a) is an
example where there is a high level of coordination (converging to an effort level of 7)
and Figure 5 (b) is an example where there is a low level of coordination (converging to
an effort level of 1).

L L ) L L )
0 5 10 15 0 5 10 15
Round Round

(a) Coordination to High Effort (b) Coordination to Low Effort

Figure 5: Sample Results From One of The Block of Session for Illustration Purpose

The thin lines represent individual choices and the thick line represents the group’s minimum choice

5.1 Convergence Points

First, we test the hypothesis that higher costs will lead to lower convergence points
and provide the results in Table 2, Table 3, and Figure 6. These results are taken
from the average choice of the last 5 rounds and it supports the hypothesis that the
average choice drops as the cost parameter increases. While the cost parameter between
¢ € {50,500} provides a high level of average choice around 4.5 to 5, the average choice
drops significantly lower to 1 to 1.2 for cost parameter between ¢ € {900,950,990}.
Although we do not get a significant difference between the means from ¢ = 900 and
¢ = 950, we do obtain significant differences in the right direction for the rest of the
mean comparisons.

11



c=50|c=500|c=900|c=950|c=990
Choice | 4.8485 | 4.5000 | 1.2864 | 1.2606 | 1.1242
SE 0.0932 | 0.0975 | 0.0363 | 0.0391 | 0.0244

Table 2: Average Choice for Different Cost Parameters

Hs0 > 500 | H500 > 900 | 900 = [950 | Hos50 > M990
p-value | 0.0126 0 0.1677 0.0023
t-value 2.2428 21.2006 —0.9642 2.8422

Table 3: Average Choice Comparison

Average Convergence Points

50 500 900 950 990

Cost

Figure 6: Average Convergence Points for Different Cost Parameters

12




5.2 Convergence Speed

Comparing convergence speed is bit trickier than comparing convergence points. Consider
the following example in Figure 7. If one were to use a rule that the convergence occurs
when there are no deviations (i.e., everyone is best responding), then there won’t be any
convergence until round 13 in the example. When studying experimental results with
subjects from a laboratory, this may be too conservative of a criterion. Noisy choice in
human behavior is often expected in experiments. Whether these noises are rational or
not is another story. However, there are many different ways of modeling noisy choices,
such as the Quantal Response Equilibrium (McKelvey and Palfrey 1995), the Level-K
Model, and the Cognitive Hierarchy Model (Camerer, Ho, and Chong 2004), among
others.

N
T

Choice

Round

Figure 7: A Sample Result From a Block of Session

The thin lines represents individual choices and the tick line represents the group’s minimum choice

Here, we provide two means of measuring convergence. First, we use a more quan-
titative measure of convergence called v-bounded condition. Then we introduce a more
qualitative and intuitive measure of convergence called the similarness condition.

Definition: We say that the game has converged to a particular equilibrium at round
t under v-bounded condition if the variance of number of strategies chosen is always less
than v for every round starting from ¢. Specifically, vary i, (o1, ...,0,) < v, Ym > 0.

For example, if the strategy profile o consists of [3,3,3,4], this will require that
a variance parameter of v > 0.25 will be needed to consider this strategy profile as
converged under the v-bounded condition. See Table 4 for other samples of strategy
profile and its required variance parameter for v-bounded condition.

13



o Minimum v
3,3,3,4] 25
3,3, 4, 4] 33
2,3,3,4] .66
3,3,4,4] .92
3,3,3,5] 1

Table 4: Samples of Strategy Profile and its Required v Parameter for v-bounded Con-
dition

Using the v-bounded condition criterion for the notion of convergence, Figure 8 illus-
trates the average rounds it took for the game to converge.2Although convergence speed
seems to be increasing as the cost parameter increases, differences are not statistically
significant. Consider the following example from Figure 7 to illustrate why the v-bounded
condition may not be a good criterion: We would require v > 9 in order to allow this
particular example to be considered converged under v-bounded condition due to a large
jump in choice of effort by one of the players in round 12. This does not take into account
that the deviation is by one person for only one period. However, intuitively, one may
think that this game has converged at round 4.

Therefore, we use a more intuitive and qualitative measure of convergence. We con-
sider the number of different strategies being used from the strategy profile for a given
round. We say the game has converged to a particular equilibrium if a high proportion of
people use the same strategy. We define this as similarness condition. The added benefit
of the similarness condition is that it does not unreasonably penalize cases where one
person may deviate significantly away from the best response for just one period. By the
same token, it also means that this measure treats the following two strategy profiles as
equally converged: [2,2,2,3] and [1,1,1,7].

Figure 9 shows the frequency of different strategies played for various cost of effort. If
the game is indeed converging faster under the similarness condition, we expect to see a
higher frequency of blue and sky-blue, which indicates everyone playing the same strategy
and three people playing the same strategy, respectively. As the cost of effort increases,
we observe an increase in frequency of blue and sky-blue. This increase in frequency
holds true for any given round. Furthermore, the frequency of blue and sky-blue also
increases as the experiment proceeds (number of round increases). In other words, there
are many different strategies being played in the initial round but subjects learn to best
respond.

Using this similarness condition as a convergence criterion, we conclude that the game

2We drop the last round deviation because there may be end game effects.
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Figure 8: Number of Rounds Needed for Convergence for v < 0.5

converges faster to a particular equilibrium as the cost of effort increases.
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Figure 9: Frequency of Different

Strategies Played for Various Costs
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5.3 Average Payoff

Finally, we analyze the behavior of the average payoff as the cost increases. Refer to
Figure 10 and Table 5 and 6 to see the average payoff and their mean comparisons up
to 4 rounds for each of the cost parameters from the experiment. What we observe, and
is statistically significant, is that the average payoff does decrease from sy = 9088 at
¢ =50 to pgs0 = 4846 at ¢ = 950. However, as the simulation has predicted, the average
payoff at ¢ = 990 of pggg = 5136 is significantly higher than the average payoff at ¢ = 950
of poso = 4846 (p < 0.05). Although the average payoff of 9o = 4968 at ¢ = 900
is higher than the average payoff of 950 = 4846 at ¢ = 950, they are not statistically
different.

Given that we observe a non-monotonicity in average profit as a function of cost of
effort in the first 4 rounds, we test the significance after the entire block of the experiment
(15 rounds). The result is displayed in Figure 11 and Table 7 and 8. Again, we observe a
similar pattern to the results from the first 4 rounds. The average payoff of pig99 = 5650
at ¢ = 990 is significantly greater than the average payoff of pg50 = 5560 at ¢ = 950
(p < 0.1). Furthermore, the average payoff in this setting is the lowest at ¢ = 950, which
is also lower than the average payoff of jgpo = 5652 at ¢ = 900 (p < 0.1).

Another topic worth mentioning is that the difference between the average payoff
when ¢ = 990 and ¢ = 950 diminishes as more rounds are played. This confirms the
prediction made by the simulation in Figure 3. As more rounds are played, the positive
welfare from the lower cost averages out the negative welfare from the wasted effort. For
example, after 4 rounds, the difference in average payoff is pggg — 1950 = 288.9583. But,
after 15 rounds, the difference decreases to fig9o — 1950 = 90.1889. In other words, the
non-monotonicity of average payoff is most salient at the initial phase of the game.

c=50{c=500|c=900|c=950|c=990
I 9088 6527 4968 4846 5136
SE, | 118.05 | 103.36 | 115.42 | 124.51 | 106.56

Table 5: Average Payoffs for Different Cost Parameters After 4 Rounds

Hs0 > 500 | H500 = 900 | 900 > 950 | Hos50 < H99o
p-value 0 0 0.2366 0.0393
t-value 16.3234 10.05 0.7178 1.7632

Table 6: Average Payoffs Comparison After 4 Rounds

17
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Figure 11: Average Payoff After 15 Rounds
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c=50|c=500|c=900|c=950|c=990
I 9791 7489 5652 5560 5650
SE, | 76.23 53.75 38.61 43.66 35.02

Table 7: Average Payoffs for Different Cost Parameters After 15 Rounds

M50 > 500 | 500 > 900 | H900 = M50 | Hos50 < H990
p-value 0 0 0.0557 0.0536
t-value | 24.6797 27.75 1.5928 1.6114

Table 8: Average Payoffs Comparison After 15 Rounds

6 Conclusion

We utilize a computational testbed to design a laboratory experiment to better under-
stand the behavior of the minimum effort coordination game. Using the computational
testbed, we are able to make predictions of interesting and un-intuitive behavioral fea-
tures of the minimum effort coordination game. First, the game converges to a pareto
dominated equilibrium as the cost of effort increases. Second, the game converges faster
to an equilibrium as the cost of effort increases. Lastly, the average payoff does not
monotonically decrease as cost of effort increases. Had we not used the testbed, the
likelihood of running across these behavioral features would have been low and the cost
of running multiple sessions to figure out the parameters would have been expensive.

Another important contribution from this research is to show that the testbed we
have designed effectively predicts human behaviors in the minimum effort coordination
game.

We focused primarily on the behavior of the minimum effort coordination game as a
function of cost. However, our results also suggest predictions from changing the number
of players in the game. These are testable hypotheses we encourage others to pursue.
Furthermore, we have focused mainly on minimum effort coordination game but we are
hopeful that our computational testbed would generalized to other class of coordination
games such as battle of the sexes.
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7 Appendix

The explanation of the algorithm is divided up into four parts: notation, preliminary
initialization, round k action, and preparation for round k£ + 1. For notational purposes,
the superscript typically denotes the agent and the subscript denotes the round.

7.1 Notation

Each agent has a database of information that is used to help make their choice in each
round. At the start of each round, each agent has two parameters in their database, the
confidence parameter v and the satisfaction parameter o. These parameters for agent
i in round k are denoted by 7} and oi. The agents use these parameters to help make
their choice. Agent i’s choice in round k is represented by x;(i). The choice of all agents
in round % is given by xj, which yields payoffs ; (x;) = %, for agent i.

After the agents make their choices, they update their database of information in
preparation for the next round. Each agent makes a prediction about what the other
agents will play in the following round. Let X (j) be agent i’s prediction for agent j’s
play in round k. The full prediction vector, X%, consists of predictions for all of the other
agents.

As the game progresses, each agent creates a quasi-best-response matrix. Agent i’s
quasi-best response matrix at round k is denoted by @%. This matrix helps the agent
determine what they should choose after they have made their prediction. To do this,
the agent groups similar strategy profiles together in the quasi-best-response matrix.
The agent then determines which play is best against these similar strategy profiles by
randomly sampling responses from the strategy space. In the future, when a similar
strategy profile arises, the agent uses this quasi-best-response matrix to help remember
what they did in the past. From this quasi-best-response matrix, the agent determines
the quasi-best-response for their prediction for round k, which is denoted by x%". More
details about the quasi-best-response are given below in the description of the algorithm
in the preparation for round k + 1 section.

Each agent also keeps track of their best and worst outcomes. To do this, each agent
randomly chooses J strategy profiles from the uniform distribution on the joint strategy
space S = [0, I]N. Next, they calculate the payoffs for each of these profiles, and save
the strategy profiles which yield the highest and lowest payoffs, xi and x%, respectively.
These are referred to as the highest and lowest known choices for agent ¢ in round k. The
payoffs for these strategy profiles, 7i and x%, are referred to as the highest and lowest
known payoffs for agent ¢ at round k.

All of this information is stored in the agent’s database, and is available when they
are making their choice in round k.
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7.2 Initialization

Many learning algorithms contain multiple initialization periods, where the agents choose
randomly in the strategy space. Since the focus of this paper is not long run convergence,
but rather short run behavior, the initialization period has to be short. Before the
first choice is made, the agents randomly choose J strategy profiles to determine their
initial highest and lowest known payoffs, X} and x{, respectively. Each agent then makes
the initial predictions about the other agents by randomly drawing a number from the
uniform distribution on [0, 1], that is x}{(j) ~ U [0, 1]. Finally, each agent starts with the
lowest possible confidence level, 44 = 10. They also start with the highest satisfaction
parameter, 0! = 1, because they have no reason to try to change the outcome of the
game yet. With these initial parameters, the algorithm is ready to run.

7.3 Round k

Entering round k, agent ¢ has a database of information which is used to make a choice in
round k. The choice in round £ is a random number from a beta distribution with mean
p and variance v2. The mean of the distribution is a convex combination of the quasi-
best-response, ', and the strategy which yields the highest known payoff for agent i at
round k, Z%. The weight on each term is determined by the current level of satisfaction.
If the agent’s satisfaction level is high ( of = 1) then they play the quasi-best-response
for their prediction. If the agent is not satisfied ( o} < 1), then they try to move the
outcome towards the point which yields their highest known payoff. That is,

p=ofa'y + (1 - o)z,

The variance of the distribution is inversely proportional to the current level of con-
fidence®. The proportionality constant is p, so the variance is,

9 1

V= —
Pk

As the confidence level of the agent increases, the choice distribution has lower variance,
and therefore the choice is more accurate. When the agent is not confident about what
the other agents will do, then his choice distribution has high variance, and his choice is
not as accurate.

After all agents have made their choices as described above, the payoffs are calculated.
The agents then learn the choices of the other agents as well as the payoffs of all agents.
At this point, the agents begin their preparation for round k + 1 by updating their
database of information.

3Tt is not possible to have a distribution over a closed region, if the variance is high, and the the
mean is sufficiently close to the endpoints. If this is the case, then it is corrected by using a modified
beta distribution with mass point on the endpoint.
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7.4 Preparation for Round £k + 1

The agents have a variety of tasks to perform in preparation for round k + 1.

Update extremes As the game progresses the agents become more acquainted with
the payoff function. To model this, each round the agents update their highest and
lowest known payoffs by taking J random samples from the joint strategy space. For
each random sample z;, the payoff vector is calculated. If the payoff for agent 7 from the
sample is higher than the highest known payoff for agent ¢ in round k, then the agent
sets the highest known choice for round k+1 to Xj_, = z; and the highest known payoff
round k+ 1 to @, = m; (z;). If none of the payoffs from the J sample points are higher
than the highest known payoff for agent i at round £, then the highest known choice and
payoff from round k are carried over to round k + 1, i.e., X}, = X} and 7}, = 7. The
same update is performed for the lowest known play and payoff.

Prediction for round k£ + 1 In order to make a choice in round k + 1 it is useful for
the agents to have some prediction about what their opponents are going to do in round
k+1. The prediction scheme used by the agents is a modification of the nearest neighbor
classification algorithm from machine learning. The goal of the prediction scheme is to
make a prediction for x;,;. Since there are N agents, the agents’ choices at round k are
given by the vector x; € RY. A pattern is vector combining one or more of these choice
vectors. For example, a pattern of length 3 is [ X Xpy1 Xigt2 |. The agents divide
the history of choice into the current pattern, previous patterns, and outcomes. Each
previous pattern has a corresponding outcome. The algorithm makes a prediction for the
outcome of the current pattern. The agents determine which of the previous patterns
are closest to the current pattern. Then the agents’ prediction is a weighted sum of the
outcomes of the closest patterns. The agents repeat this process for patterns of different
lengths, n. After the agent has done this for all values of n, he compares them, and
determines which pattern length provides the best prediction.

For example, consider a two-player game with the history of play after eight rounds,

(0,0),(1,1),(1,1),(0,0),(1,1),(1,1),(0,0),(1,1)

Let’s examine the prediction by agent 1 of what agent 2 will play in the ninth round.
First, agent 1 considers patterns of length 1. The current pattern is the most recent play,
(1,1). This has been played four previous times in rounds 2, 3, 5, and 6. These are the
closest patterns. When these closest patterns have been played in the past, agent 2 has
responded by playing 1, 0, 1, and 0 in the respective following rounds. These are the
outcomes for the four closest patterns. This is not good, because agent 2 has played 0
half the time, and 1 half the time, so it is difficult to predict what agent 2 will play in
the next round based on patterns of length 1.
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Next, agent 1 looks at patterns of length 2. The current pattern in this case is the
play in the previous 2 rounds, (0,0), (1,1). This pattern has been played twice before in
the past, in rounds 1-2 and 4-5. In response to this pattern, agent 2 has played 1 in both
rounds 3 and 6. After patterns of length 2, agent 2 always chose 1. Therefore, patterns
of length 2 are better for prediction that patterns of length 1.

More formally, at the end of the k" round, each agent considers patterns of different
lengths n. For each length, there are k—n previous patterns of length n/N each. The agent

forms the previous patterns matrix X € R¥="*"V and the output matrix Y € RF"*N |
X1 o Xp X1 Xn+1
xo | 2 XQ andy = | "2
Xk'—n T Xk:.—l Xz Xk

Each row of the previous patterns matrix is a single pattern, and these are denoted
by X,, for m =1,...,k —n. The current prediction is the vector ¢ € R™V

c= [ Xg—n41 -0 Xg ]
Next, the agent finds the j rows of X which are closest to the current pattern ¢ in

terms of Fuclidean distance. To do this, the agent forms the distance vector by finding
the length between the current point and each of the previous points,

X1 —¢f
q- ||X2'— c
[ Xk—n —c|

Let J be the set of indices of the j smallest terms in the distance vector d. That is
d; < dj for j € J and k # J. These indices correspond to the j rows of X which are
closest to the current point c.

The agent now determines which pattern length gives the best prediction. As exhib-
ited in the above example, the agent wants to choose the pattern length with the most
similar outcomes. To determine the optimal pattern length for each n, the agent takes
the outcome of the j closest points, and calculates the average of these points, Y. Then
the agent computes the variance of these j closest points,

V=3 Y, - 7]

jeJ

Now, the agent compares the variance for all considered pattern lengths and chooses
the pattern length with the smallest variance. If there is a tie, then the agent chooses
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the shorter pattern. Note that average variances are higher in higher dimensions. This
is not corrected for, which gives an additional benefit to the shorter patterns, because
shorter patterns are easier to recognize.

Once the agent has selected which pattern length to use, he forms a weighted average
of the closest outcomes. The closer the pattern is to the current outcome, the higher the
weight is. The patterns are weighted using a logistic function. The prediction for the
next period is thus,

~d ZjGJ Y}ed(j)
Xp+l = ™~  _d)
0TS e

Therefore, if the distance to each of the j closest patterns is 0, then the prediction is
just the average outcome from those j closest patterns. The agent makes their choice for
period k + 1 based on this prediction.

Quasi-Best-Response The quasi-best-response helps the agent determine the best
response for his prediction for round k£ + 1. To do this the agent updates the quasi-
best-response matrix from the previous period, Q. Each row of the quasi-best-response
matrix consists of three items: prediction about what the other agents will do, what
agent ¢ should do given that prediction, and the payoff given that strategy profile. More
formally row m has the terms,

Qr=1a% a4 m(q",qm) ]

Here, g™, are the choices of the other agents, and q}" is the choice of agent 7. Agent
i updates Q% as follows. First, agent ¢ determines if the current prediction is similar to
any of the entries already in the quasi-best-response matrix. To do this, agent ¢ chooses
a set, R, of random strategies. For each row of the quasi-best-response matrix, agent ¢
calculates the payoff difference,

pdm = Z ‘ﬂ-z' (7’, qu) - T <T7 )A(;c+1)‘
reR

Next, the agents find the minimum payoff distance, pd* = min pd,,. If the distance
is small, i.e., pd* < ¢, then the two strategies are similar, and therefore are combined in
the quasi-best-response matrix. If pd* > §, then the two strategies are not similar, so a
new entry is created in the quasi-best-response matrix. Let the threshold ¢ be a fraction
of the difference between the highest and lowest payoff,



If pd* < 9, then the agent updates the row of the quasi-best-response matrix corre-
sponding to pd*, call this row m*. The agent takes the set of R strategies, and calculates
the payofts m; (r Xk+1> Let r* denote the strategy from R which maximizes m; (r xk“)
If this new strategy yields a higher payoff than the current qua81 best-response, i.e.,

m (r, %) > m (g, g™), then the row m* is updated to ™ = %t

and Q7" = r*.
If pd* > ¢, then the agent creates a new row for the quasi-best-response matrix, call

this row M 4+ 1. Again, the agent calculates the payoffs 7; (r xkﬂ) for all r € R, with

r* being the strategy which yields the maximum payoff. The agent then updates the

quasi-best-response matrix by setting ¢ = ¥ and g} = r*.

Update 7 The parameter v measures the current level of confidence of the agent.
When the agent makes accurate predictions, his confidence increases. In preparation for
round k41, the agent compares his prediction for round k£ that was made in round £ —1,
X}, with the actual play from round k, x;. Based on this prediction and outcome, the
agent updates his confidence as follows,

651

1% = il +

Ve+1 = Tk

Therefore, if the Euclidean distance between the prediction and the actual outcome
is less than oy — aw, then the confidence increases. The maximum possible increase in
confidence is @1/as.

Update ¢ The parameter o represents the agent’s satisfaction at the current state
of the game. If the agent is not satisfied with the current outcome, then he may try to
induce the other agents to play something else in order to change the current outcome.
If the agent’s attempt to move is unsuccessful, then he will stop trying. For example,
suppose two agents are coordinating at one of the equilibria repeatedly in the battle of
the sexes game. Agent 1 is at her optimal equilibrium, and Agent 2 is at his least favored
equilibrium. Agent 2 realizes that he can receive a higher payoff at the other equilibrium.
Therefore he will try to induce agent 1 to start playing the other equilibrium. However,
agent 1 may not change the way she is playing, even when agent 2 is starts playing
something else. If agent 2 has tried for a long time with no success, he will give up, and
start playing the original equilibrium. The entire process of trying to move and giving
up is called a moving session.

Agent ¢ will start with the highest satisfaction possible. The satisfaction will remain
at the highest level until some event causes agent ¢ to start a moving session. In order
for the agent to become dissatisfied, he has to have a good idea of what the other agents
are going to play. Therefore, agent ¢ must have a confidence greater than v,,¢ in order to
start a moving session. Given that agent ¢ has confidence greater than v,,¢, he will start
a moving session in two situations. If agent ¢ knows that all agents receive higher payoffs
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at his highest known play, then he will try to move there because everyone will receive a
higher payoff. Also if agent 7’s highest known payoff increases agent i’s payoff by a large
amount, and decreases the other agents’ payoffs by only a small amount, then he will try
to change the outcome. There are also some situations in which agent ¢ will not start a
moving session, even if his confidence is greater than v,,5. If moving to agent i’s highest
known play will increase agent i’s payoff by a small amount, but will decrease all other
agents payoffs by a large amount, then agent ¢ will not try to change the outcome. Also,
if agent ¢ has tried to move before unsuccessfully, then he will not try to move again until
he has found a better strategy.

Once the moving session has started, agent ¢ will try to induce the other agents to
play his optimal strategy. If the play of the game is moving away from the play at the
start of the moving session, and towards the highest play for agent ¢, then agent ¢ will
continue the moving session. If the play of the game does not move towards the highest
play for agent ¢, then that round will be considered a failure. If the total number of
failures become to high, then ¢ will stop the moving session.

To more formally define this event that triggers a moving session, consider the term,

i (X},) — i (%)

Y= —
T (R — m (xk)

¥4 will be referred to as the relative gain for agent ¢ in round k. Agent i’s payoff
at the highest known play is always greater than his payoff at the current play, because
the agent takes the current play into account when updating his highest known play.
Therefore, switching from the current play x; to agent i’s highest known play x} will
always increase agent i’s payoff. So the numerator of X} will always be weakly positive.

The agent will also keep track of the mazimum relative gain for round k, 3¢, and the
minimum relative gain for round k, ¥&. At the beginning of the game, agent i will start
with maximum relative gain of ¥} = 0 and minimum relative gain of X = —1. The
agent will update these extreme relative gains with the current relative gain when the
current relative gain is more extreme (higher than maximum or lower than minimum)
and confidence is greater than vy,,5. The role of the extreme relative gains is to ensure
that the agent does not continuously try to move to a point which the other agents refuse
to move to.

Based on the current relative gain, the extremes relative gains, and the confidence,
agent ¢ will determine whether or not to start a moving session. When the denominator
of Xt is positive, and hence Xt > 0, the other agents will benefit on average when
switching from x; to Xi. So, if Xi > 3¢ and 7. > s, then the agent will start a
moving session because all agents will have higher payoffs at xi. When the denominator
of 3¢ is negative, the other agents will get lower payoffs on average when switching from
Xy to Xi. However, if 3¢ is very negative, then the average decrease of the other agents
payoff will be small compared to the increase for agent i. So if i < X! and 7 > Yarg

26



then the agent will also start a moving session. To summarize, agent ¢ will try to move
if 5 ¢ [, 2] and 7} > vs.

In the first round of the moving session, agent ¢ will decrease from the full satisfaction
level ¢ = 1 to the level 0 = g¢p < 1. Agent ¢ will also set the number of failures to 0,
f = 0. Agent 7 should not expect the other agents to respond to this move until they
have seen the play in second round of the moving session and had a chance to respond
to it in the third round of the moving session. So the agent will remain with satisfaction
0 = 0y in the second round of the moving session, and this will not count as a failure.
Starting in the third round, agent ¢’s satisfaction and failures will depend on whether
the other agents are responding to agent ¢’s move. In particular, if the other agents are
responding, and play is moving toward the highest known payoff, i.e.,

e — %l > [t — %y |

then the satisfaction will increase, o1 = €0y, and the number of failures will stay
constant fry1 = fi (for some £ > 1). Alternatively, if the other agents are not responding,
so play is not moving toward agent i’s highest known payoff, i.e.,

¢ = %l < [1xps1 — Xy |

then the satisfaction will decrease, oy11 = {o} and the number of failures will increase
by one, fri1 = fr+ 1.

When the number of failures reaches the threshold f, = f, then the session ends
because the other agents are not responding to the move. After the session ends, the
amount of failures is set back to 0, and the satisfaction is set back to the highest level
o=1.
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