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Modeling Dynamics in Time-Series–Cross-Section

Political Economy Data∗

Nathaniel Beck Jonathan N. Katz

Abstract

This paper deals with a variety of dynamic issues in the analysis of time-
series–cross-section (TSCS) data. While the issues raised are more general,
we focus on applications to political economy. We begin with a discussion
of specification and lay out the theoretical differences implied by the various
types of time series models that can be estimated. It is shown that there is
nothing pernicious in using a lagged dependent variable and that all dynamic
models either implicitly or explicitly have such a variable; the differences be-
tween the models relate to assumptions about the speeds of adjustment of
measured and unmeasured variables. When adjustment is quick it is hard to
differentiate between the various models; with slower speeds of adjustment
the various models make sufficiently different predictions that they can be
tested against each other. As the speed of adjustment gets slower and slower,
specification (and estimation) gets more and more tricky. We then turn to a
discussion of estimation. It is noted that models with both a lagged depen-
dent variable and serially correlated errors can easily be estimated; it is only
OLS that is inconsistent in this situation. We then show, via Monte Carlo
analysis shows that for typical TSCS data that fixed effects with a lagged de-
pendent variable performs about as well as the much more complicated Kiviet
estimator, and better than the Anderson-Hsiao estimator (both designed for
panels).

1. INTRODUCTION

Clearly the analysis of time-series–cross-section (TSCS) data is an important issue
both to students of comparative political economy and students of political methodology.

∗For research support we thank the National Science Foundation. And earlier version was presented
at the Annual Meeting of the Society for Political Methodology, Stanford University, Stanford, CA., July
29-31, 2004. We thank Geof Garrett, Evelyne Huber and John Stephens for providing data and many
colleagues who have discussed TSCS issues with us and allowed us to present in various forums.



While there are a variety of issues related to TSCS data, a number of important ones
relate to the dynamics (time series) properties of the data. Obviously many of these
issues are similar to those for a single time series, but the context of comparative polit-
ical economy and the relatively short lengths of the TSCS time periods make for some
interesting special issues. We assume that the reader is familiar with the basic statisti-
cal issues of time series data; since various specification issues are covered for political
scientists elsewhere (Baker, 2008; Beck, 1985, 1991; De Boef and Keele, 2008; Keele and
Kelly, 2006) we go fairly quickly over the basic issues, spending more time on the issues
on the interpretation of lagged dependent variables.1 We then deal with estimation is-
sues, concentrating on the issue of estimating models with lagged dependent variables
and fixed effects.

We begin with some notation and consider the difference between panel and TSCS
data. Section 3 is the heart of the paper, dealing with the interpretation of alterna-
tive dynamic specifications. This section deals only with stationary data. We then
briefly deal with non-stationary data in Section 4 where we argue the literature on unit
roots/integration is less useful for modeling political economy data. In Section 5 we ex-
amine the performance of OLS in the presence of fixed effects and a lagged dependent
variable. We then provide two examples of dynamic modeling with political economy
TSCS data in Section 6 and offer some general conclusions in the final section.

2. NOTATION AND NOMENCLATURE

Let yi,t be a observation for unit i at time t for the time series y, where i = 1, . . . , N
and t = 1, . . . , T . We assume that y is measured as a continuous variable, or at least is
close enough that we can take it as continuous. Since in what follows we typically do
not care if we have one or more than one independent variable or variables, let xi,t be
either an observation on a single independent variable or a vector of such variables; if
the latter, it is assumed that the dynamics apply similarly to all the components of that
vector. Where we need to differentiate dynamics, we use a second variable (or vector of
variables), zi,t. Since the constant term is typically irrelevant for what we do, we omit it
from our notation.

We distinguish two types of error terms; νi,t refers to an independent identically
distributed (“iid”) error process, whereas εi,t refers to a generic error process that may
or may not be iid. Unless specifically stated, we restrict non-iid processes to simple first
order autoregressions; this simplifies notation with no loss to our argument; it is simple
to extend our argument to more complicated error processes. Since coefficients are only
interpretable in the context of a specific model, we superscript coefficients to indicate the
specification they refer to whenever confusion might arise.

1At various points we refer to critiques of the use of lagged dependent variables in an unpublished
paper of Achen (2000). While it is odd to spend time critiquing an eight year old unpublished paper, this
paper has been influential (182 Google Scholar cites as of this writing). We only deal with the portions
of Achen’s paper relevant to issues raised here.
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Since this paper deals only with dynamics, we assume that all cross-sectional issues
will be dealt with separately. While cross-sectional and temporal issues are not totally
separable (e.g. fixed effects to deal with cross-sectional variation has implications for
how one estimates a model with lagged dependent variables), conceptually the issues
are separable. In any event, any failure to deal correctly with dynamics can only be
more serious when there all also cross-sectional complications. Some ways of dealing
with dynamic issues make it more difficult to deal wit cross-sectional issues; thus in
evaluating some different approaches, we shall take into account which allow for simpler
treatment of important cross-sectional issues. While there is no hard and fast rule, it
will, in general, be better for analysts to first model the dynamics appropriately before
dealing with cross-sectional issues, since correct modelling of the dynamics may eliminate
some cross-sectional issues (such as the need for fixed effects (Beck and Katz, 2001)).

Since the paradigmatic applications are to comparative political economy, we will
often refer to the time periods as years and the units as countries. To simplify notation,
we are also assuming that the data set is rectangular, that is, each country is observed
for the same time period. This assumption is benign; it should cause no problems if some
units start or end a year or two later than do others.

When relevant, we use L as the lag operator, so that

Lyi,t = yi,t−1 if t > 1 (1)

and Lyi,1 is missing. The first difference operator is then ∆ = 1− L.

Stationarity

We initially, and for most of the article, assume that the data are drawn from a
stationary process. A univariate process is stationary if its various moments and cross-
moments do not vary with the time period. In particular, the initial sections assume that
the data are drawn from a “covariance stationary” process, that is

E(yi,t) = µ (2a)

Var(yi,t) = σ2 (2b)

E(yi,tyi,t−k) = σk (2c)

(and similarly for any other random variables).

Stationary processes have various important features. In particular, they are mean
reverting, and the best long-run forecast for a stationary process is that mean. Thus we
can think of the mean as the “equilibrium” of a stationary process.

TSCS vs panel data
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Any TSCS specification could look equally like a specification for “panel” data; our
previous work has stressed that these are different, though various analysts have ques-
tioned this distinction. In his defining article, Stimson (1985)) distinguished between
temporally and cross-sectionally dominated data sets (with T >> N and N >> T ).
This for us is not the relevant distinction. For the purposes of this article, the critical
issue is whether T is large enough so that averaging over time yields stable results, and
also whether it is large enough to make some statistical issues disappear. While there
is no magic cutoff level here, we note that “panel” studies almost invariably have single
digit T ’s (with 3 being a common value) while the comparative politics TSCS data sets
we work with commonly have T ’s of twenty or more. As we shall see, some issues that
arise for small T disappear as T gets to the range usually seen in political economy stud-
ies, and various dynamic specification issues that are irrelevant in panel analysis become
relevant n TSCS analysis.

3. DYNAMIC SPECIFICATION: STATIONARY DATA

There are a variety of specifications for any time series model (Beck, 1991; De Boef
and Keele, 2008) and all of these specifications have identical counterparts in TSCS
models. Since these specifications appear in any standard text, we discuss these issues
without citation and without claiming that the presentation here is of new research. We
can either think of testing between these specifications or seeing if theory can tell us
which one we should use, though the former more commonly works in practice.

In our own prior work (Beck and Katz, 1996) we argued that a specification with
a lagged dependent variable (LDV) is often adequate; since that has sparked some dis-
cussion (Achen, 2000; Keele and Kelly, 2006), we spend some time on this issue. After
discussing specification, we briefly discuss estimation, postponing the issue of estimation
with a lagged dependent variable and fixed effects until Section 5.

Dynamic specifications

The generic static equation is

yi,t = βsxi,t + νi,t. (3)

This equation is static because any changes in x or the errors are felt instantaneously
with the effect also dissipating instantaneously; there are no delayed effects.2

2It may be that xi,t is measured with a lag, so the effect could be felt with a lag, but the model is
still inflexible in that the effect is completely and only felt at the one specified year; any of the models
we discuss could have xi,t measured a some previous time point. Since the initial lag is specified a priori,
this does not make any of the specifications any more general, nor does it make Equation 3 “dynamic.”
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There are a variety of ways to add dynamics to the static equation, Equation 3. The
simplest is the “finite distributed lag model” (FDL) which assumes that the impact of
x sets in over two (or a few) periods, but then dissipates completely. This specification
has:

yi,t = βf1xi,t + βf2xi,t−1 + νi,t. (4)

with the obvious generalization for higher ordered lags. Obviously Equation 3 is nested
inside Equation 4 so testing between the two is simple in principle (though the correlation
of x and its lags makes for a number of practical issues).

A commonly used dynamic specification is to assume that the errors follow a first
order autoregressive (AR1) process (rather than the iid process of Equation 3). If we
assume that the errors follow an AR1 process, we have

yi,t = βar1xi,t + νi,t + θεi,t−1 (5a)

= βar1xi,t +
νi,t

1− θL
(5b)

= βar1xi,t + θyi,t−1 − βar1θxi,t−1 + νi,t. (5c)

The advantage of the formulation in Equation 5c is that it makes clear the dynamics
implied by the model and also makes it easier to compare various models.

Another commonly used model is the “lagged dependent variable” (LDV) model (with
iid errors)

yi,t = βldvxi,t + φyi,t−1 + νi,t. (6a)

= βldv xi,t

1− φL
+

νi,t

1− φL
. (6b)

As the Equation 6b makes clear, the LDV model simply assumes that the effect of x
decays geometrically (and for a vector of independent variables, all decay geometrically
at the same rate. Note also that the compound error term is an infinite geometric sum
(with the same decay parameter as for x); this error term is equivalent to a first order
moving average (MA1) error process.

Both the AR1 and LDV specifications are special cases of the “autoregressive dis-
tributed lag” (ADL) model,

yi,t = βadlxi,t + µyi,t−1 + γxi,t−1 + νi,t (7)

where Equation 5c imposes the constraint that γ = −βadlµ and Equation 6a assumes that
γ = 0. The nesting of both the LDV and AR1 specifications within the ADL specification
allows for testing between the various models.3

3While it is not particularly relevant for our purposes, the ADL model can be rewritten as the single
equation “error correction model” (Davidson, Hendry, Srba and Yeo, 1978),

∆yi,t = βec∆xi,t − θ(yi,t−1 − γxi,t−1) + νi,t (8)
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Interpretation

To see how the various specifications differ, we turn to unit and impulse response
functions. Since x itself is stochastic, assume the process has run long enough for it to
be at its equilibrium value (stationary implies the existence of such an equilibrium). We
can then think of a one time shock in x (or ε) of one unit, with a subsequent return to
equilibrium (zero for the error) the next year; if we then plot y against this, we get an
impulse response function (IRF). Alternatively, we can shock x by one unit and let it
stay at the new value; the plot of y against x is a unit response functions (URF).

The static specification assumes that all variables have an instantaneous and only
instantaneous impact. Thus the IRF for either x or ν is a spike, associated with an
instantaneous change in y, and if x or ν then returns to previous values in the next
period, y immediately also returns to instantaneous values. The URF is simply a step
function, with the height of the single step being βs.

The finite distributed lag model simply generalizes this, with the URF having two
steps, of height βf1 and βf1 + βf2, and the interval between the steps being one year.
Thus, unlike the simple static model, if x changes, it takes two years for the full effect
of the change to be felt, but the effect is fully felt in those two years. Thus it may
take one year for a party to have an impact on unemployment, but it may be the case
that after that year the new party in office has done all it can and will do in terms of
changing unemployment. Similarly, an institutional change may not have all of its impact
immediately, but the full impact may occur within the space of a year.

Note that the FDL has fallen out of favor with most time series analysts. This is
because they typically work with higher frequency (quarterly , monthly, or higher) data
than typically used in TSCS studies of political economy. Given that economic time
series are often highly correlated, it becomes very hard for the analyst to tease out the
lag structure with an FDL specification.4 However, the nature of TSCS data, it may well
be that a model with one or two lags might both not overtax the data and also better
fit theoretical notions. It is unlikely that interesting institutional changes have only an
immediate impact, but the FDL model might be appropriate. It surely should be borne
in mind in thinking about appropriate specifications.

The AR1 model has a different IRF for x and the error. The IRF for x is a spike,
identical to that of the static model; the IRF for the error is that of a declining geometric,

which allows for the nice interpretation that short tun changes in y are a function of both short run
changes in x and how much x and y are out of equilibrium, with y changing to move back towards
equilibrium at at rate θ. Since the error correction model is just an algebraic rewriting of the ADL
model, and given what we will say about non-stationary processes in political economy, we do not
pursue this interpretation other than noting it can be most useful.

4This led to the work on polynomial distributed lags and such, but these too have fallen out of favor
amongst standard time series econometricians. For our purposes, the short lag structures typically found
in TSCS models with annual data makes the precise estimation of long distributed lags irrelevant.
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with rate of decay θ. It seems odd that all the omitted variables have a declining geometric
IRF but the x we are modeling has only an instantaneous impact. Maybe that is correct,
but it does seem odd as the default specification. Obviously it can be made less odd by
moving to the FDL specification by adding more lags of x, but we would still have very
different dynamics for x and the unobserved variables in the “error” term. One should
clearly have a reason to believe that dynamics are of this form before using the AR1
specification.

The LDV model has an IRF for both x and the error that has a declining geometric
form; the initial response is βldv (or 1 for the error); this declines to zero geometrically
at a rate φ. While the effect never completely dissipates, it becomes tiny fairly quickly
unless φ is almost one. The URF starts with an effect βldv immediately, increasing to
βldv

1−φ
. If φ is close to one, the long run impact of x can be 10 or more times the immediate

impact.

While the ADL specification appears to be much more flexible, it actually has an IRF
similar to the LDV specification, other than in the first year (and is identical for a shock
to the error process). Initially y changes by βadl units, then the next period the change
is βadlµ+ γ which then dies out geometrically at a rate µ. Thus the ADL specification is
only a bit more general than the LDV specification. It does allow for the maximal impact
of x to occur a year later, rather than instantaneously (or, more generally, the effect of
x after one period is not constrained to be the immediate impact with one year’s decay).
This may be important in some applications. A comparison of the various IRFs and
URFs is in Figure 1. These clearly show that the difference between the specifications
has simply to do with the timing of the adjustment to y after a change in x.

Before getting to slightly more complicated models, this analysis tells us several
things. The various models differ in the assumptions they impose on the dynamics that
govern how x and the errors impact y. None can be more or less right a priori. Later we
will discuss some econometric issue, but for now we can say that various theories would
suggest various specifications. The most important issue is whether we think a change in
some variable is felt only immediately, or whether its impact is distributed over time; in
the latter case, do we think that a simple structure, such as a declining geometric form,
is adequate? How would we expect an institutional change to affect some y of interest
in terms of the timing of that effect? If only immediately or completely in one or two
years, the AR1 model or the FDL model seems right; if we expect the maximal effect
to be immediate, but then to continue with some monotonic decline, the LDV or ADL
model seems more reasonable. But there is nothing “atheoretical” about the use of a
lagged dependent variable, and there is nothing which should lead anyone to think that
the use of a lagged dependent variable causes incorrect “harm.” It may cause “correct”
harm, in that it may keep us from incorrectly concluding that x has a big effect when it
does not, but that cannot be a bad thing. As has been well known, and as Hibbs (1974)
showed three decades ago for political science, the correct modeling and estimation of
time series models often undoes seemingly obvious finding.
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Figure 1: Comparison of impulse and unit response functions for four specifications: Au-
toregressive Distributed Lag (ADL, yi,t = 0.2xi,t + 0.5yi,t−1 + 0.8xi,t−1 ), Finite
Distributed Lag (FDL, yi,t = 1.5xi,t + 0.5xi,t−1), Lagged Dependent Variable
(LDV, yi,t = 1.0xi,t + 0.5yi,t−1), and Autoregressive Errors (AR1, yi,t = 2xi,t)

Similarly, the LDV or its generalization is not bad because, as claimed by Huber and
Stephens (2001, 59), these models are essentially models of first differences (when φ or
µ is close to one) and hence not useful if we want to model levels. When these dynamic
parameters are close to one, the interpretation is that the impact of a change in x sets
in slowly, and the long run impact may be many times larger than the initial impact.
This may or may not be the correct model, but there is nothing that a priori tells us
that such a specification is inferior.5 In short, one cannot prefer, a priori, a model which

5We can, of course, always subtract yi,t−1 from both sides of a specification to turn a model of levels
into one of differences; alternatively, one can add a lagged y to turn a model of differences into one of
levels. This is clearly seen by the equivalence of Equations 7 and 8. While it may be easier to interpret
the latter, the two forms are mathematically equivalent, so one cannot be better than the other.
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explicitly contains the lagged dependent variable over a model which implicitly does so.

Higher order processes and other complications

We can generalize any of these models to allow for non-iid errors and for higher
ordered serial correlation. Since our applications typically use annual data, it is often the
case that first order error processes suffice and it would be unusual to have more than
second order processes. Since, as we shall see, it is easy to test for higher order error
processes, there is no reason to simply assume that errors are iid or only follow a first
order process. For notational simplicity we restrict ourselves to second order processes,
but the generalization is obvious.

Consider the LDV model with AR1 errors, so that

yi,t = βldvxi,t + φyi,t−1 +
νi,t

1− ωL
. (9)

After multiplying through by (1− ωL) we get a model with two lags of y, x and lagged
x and some constraints on the parameters; if we generalize the ADL model similarly, we
get a model with two lags of both y and x and more constraints. The interpretation of
this model is similar to the model with iid errors.

If we assume that the “errors,” which are usually omitted or unmeasured variables
follow a first order moving average (MA1) process with the same dynamic parameter, φ
(which may or may not be reasonable), we then have

yi,t = βldvxi,t + φyi,t−1 + (1− φL)νi,t (10a)

= βldv xi,t

1− φL
+ νi,t. (10b)

This is a model with a geometrically declining impact of x on y and iid errors. It is
surely more likely that the “errors” (omitted variables) are correlated than that they
are independent. Of course the most likely case is that the errors are neither iid nor
MA1 with the same dynamics as x, so we should entertain a more general model with
the errors following an unconstrained MA1 process. We return to this when we discuss
econometrics.

More complicated dynamics - multiple independent variables

We typically have more than one independent variable. How much generality can we
allow for? The models above easily generalize to a vector of independent variables, as
long as the dynamics for each variable are identical. The generalization of this can easily
be seen if we have two independent variables, x and z which are adjoined to the various
models. Thus for the AR1 model, both x and z have only immediate impact, for the
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LDV model they have different immediate impact but the same rate of geometric decline,
etc.

The more general model, with separate speeds of adjustment for both independent
variables (and the errors) is

yi,t = β
xi,t

1− φxL
+ γ

zi,t

1− φzL
+

νi,t

1− φνL
. (11)

Obviously each new variable now requires us to estimate two additional parameters.
Also, on multiplying out the lag structures, we see that with three separate speeds of
adjustment we have a third-order lag polynomial multiplying y, which means that we
will have the first three lags of y on the right hand side of the specification (and two lags
of both x and z) and an MA2 error process. While there are many constraints on the
parameters of this model, the need for 3 lags of y costs us 3 years worth of observations
(assuming the original data set contained as many observations as were available). With
k independent variables, we would lose k+1 years of data; for a typical problem where T
is perhaps 30 and k is perhaps 5, this is non-trivial. Thus we are unlikely to ever be able
to (or want to) estimate a model where each variable has its own speed of adjustment.

But we might get some leverage by allowing for two kinds of independent variables;
those where adjustment is instantaneous or at least relatively fast (x) and those where
the speed of adjustment is slower (z).6 Since we are trying to simplify here, assume the
error process shows the same slower adjustment speed as z; we can obviously build more
complex models but they bring nothing additional to this discussion. We then would
have

yi,t = βxxi,t + βz
zi,t

1− φL
+

νi,t

1− φL
(12a)

= βxxi,t − φβxxi,t−1 + βzzi,t + φyi,t−1 + νi,t. (12b)

Thus at the cost of one extra parameter, we can allow some variables to have only an
immediate or very quick effect, while others have a slower effect, with that effect setting
in geometrically. With enough years we could estimate more complex models, allowing
for multiple dynamic processes, but such an opportunity is unlikely to present itself in
studies of comparative political economy. We could also generalize the model by allowing
for the lags of x and z to enter without constraint. It is possible to test for whether these
various complications are supported by the data, or whether they simply ask too much
of the data. As always, it is easy enough to ask the data and then make a decision.

Estimation issues

6We will use the words “fast” and “slow” to indicate how long it takes for a system that is perturbed
either to return to equilibrium or reach a new equilibrium; for stationary models there is always some
equilibrium (by definition). Thus, if x changes by one unit for one year only (an impulse change), how
long will it take for y to return to its previous equilibrium value; for a unit change that persists, fast or
slow refers to how quickly y approaches its new equilibrium.
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As is well known a specification with no lagged dependent variable but serially corre-
lated errors is easy to estimate using any of several variants of feasible generalized least
squares (FGLS). The Cochrane-Orcutt iterated procedure is probably the most com-
monly used variant. It is also easy to estimate such a model via maximum likelihood,
breaking up the full likelihood into a product of conditional likelihoods.

The LDV model with iid errors is optimally estimated by OLS. However, it is also
well-known that OLS yields inconsistent estimates of the LDV model with serially cor-
related errors. Perhaps less well-known is that Cochrane-Orcutt or maximum likelihood
provides consistent estimates of the LDV model with serially correlated errors.(Hamilton,
1994, 226).7 Thus the use of a lagged dependent variable with serially correlated errors
only requires care in using a correct estimation method; it causes no other econometric
problems.

It is often the case that the inclusion of a lagged dependent variable eliminates almost
all serial correlation of the errors. To see this, start with the AR1 equation:

yi,t = βar1xi,t + εi,t (13a)

εi,t = νi,t + θεi,t−1. (13b)

Remember, as is common, the error term is simply the error of the observer, that is,
everything that determines yi,t that is not explained by xi,t. If we adjoin yi,t−1 to the
specification, the error in that new specification is εi,t − φyi,t−1 where εi,t is the original
error in Equation 13a, not some generic error term. Since the εi,t are serially correlated
because they contain a common omitted variable, and yi,t−1 contains the omitted variables
at time t− 1, including yi,t−1 will almost certainly lower the degree of serial correlation,
and often will all but eliminate it. But there is no reason to simply hope this happens; we
can simply estimate the LDV model assuming iid errors (so by OLS), and then test the
null that the errors are iid by a Lagrange multiplier test (which only requires that OLS be
consistent under the null of iid errors, which it is).8. If, as often happens, we do not reject
the null that the remaining errors are iid, we can continue with the OLS estimates; if we
reject the null of iid errors we can simply use Cochrane-Orcutt or maximum likelihood.
Thus lagged dependent variables present no estimation issues. 9 The only minor problem
left is what happens if we have a lagged dependent variable and fixed effects. We turn
to that issue in the next section.

7The Cochrane-Orcutt procedure may find a local minimum, so analysts should try various starting
values. This is seldom an issue in practice, but it is clearly easy enough to try alternative starting values.

8The test is trivial to implement. Take the residuals from the OLS regression and regress them
on the appropriate number of lags of those residuals and all the independent variables including the
lagged dependent variable; the relevant test statistics if NTR2 from this auxiliary regression, which is
distributed χ2 with degrees of freedom equal to the number of lags

9Why are we so sanguine about LDV’s when Achen is so worried about them. First, since the Lagrange
multiplier test allows us to assess the degree of remaining serial correlation in the LDV model, we do
not simply have to worry, we can test. But, more importantly, Achen makes the mistake of thinking
that the serial correlation in the errors is a fixed characteristic of the model, whereas it varies strongly
between the specifications because the “errors” mean different things in the different specifications.
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Discriminating between models

We can use the fact that the ADL model nests the LDV and AR1 models to allow
the data to speak on which specification better fits the data. The LDV model assumes
that γ = 0 in Equation 7 whereas the AR1 model assumes that γ = −µβadl. Thus we
can estimate the full ADL model and test whether γ = 0, which would tell us that the
data do not reject the LDV model or γ = −µβadl which indicate the same thing for
the AR1 model. If the data reject both simplifications, we can simply retain the more
complicated ADL model.10 Even in the absence of a precise test, the ADL estimates will
often indicate which simplification is not too costly to impose.

Note that for fast dynamics (where µ is close to zero), it will be hard to distinguish
between the LDV and AR1 specifications, or, alternatively, it does not make much dif-
ference which specification we use. To see this, note that if the AR1 model is correct,
but we estimate the LDV model, we are incorrectly omitting the lagged x variable, when
it should be in the specification, but with the constrained coefficient, µβ. As µ goes to
zero, the bias from failing to include this term goes to zero. Similarly, if we incorrectly
estimate the AR1 model when the LDV model is correct, we have incorrectly included in
the specification the lagged dependent variable, with coefficient −µβ. Again, as µ goes
to zero, this goes to zero. Thus we might find ourselves not rejecting either the LDV or
AR1 specifications in favor of the more general specification, but for small µ it matters
little. As µ grows larger the two models diverge, and so we have a better chance of having
the data speak as to which is preferred.

Interestingly, this is different from the usual logic on omitted variable bias, where
it is normally thought to be worse to incorrectly exclude than to incorrectly include a
variable. This difference is because both models constrain the coefficient of the lagged
x, and so the AR1 model “forces” the lagged x to be in the specification. But if we
start with the ADL model and then test for whether simplifications are consistent with
the data, we will not be misled. This testing of simplifications is easy to extent to more
complicated models, such as Equation 12b, where we can test whether some variables
have only the instantaneous impact implied by the AR1 logic, while others have the
declining exponential impact implied by the LDV logic.

4. NON-STATIONARITY IN POLITICAL ECONOMY TSCS DATA

10Starting with the ADL model and then testing whether simplifications are consistent with the data
is part of the idea of general to simple testing (the encompassing approach) as espoused by Hendry and
his colleagues (Hendry and Mizon, 1978; Mizon, 1984). Note that this approach would start with a more
complicated model with higher order specifications, but given annual data, the ADL model is often the
most complicated one that need be considered. Of course if analysts believe that the simplifications of
the ADL model are not consistent with the data, they are free to start with more complicated models.
Nothing in our discussion precludes that, and there are no real interpretative issues raised by such a
strategy.
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During the last two decades, with the pioneering work of Engle and Granger (1987),
time series econometrics has been dominated by the study of non-stationary series. While
there are many ways to violate the assumptions of stationarity presented in Equation 2,
most of the work has all dealt with the issue of unit roots or integrated series in which
shocks to the series accumulate forever. These series are long-memoried since even distant
shocks persist to the present. The key question is how to estimate models where the data
are integrated (we restrict ourselves to integration of order one with no loss of generality).
Such data, denoted I(1), are not stationary but their first difference is stationary. The
simplest example of such an I(1) process is a random walk, where

yi,t = yi,t−1 + νi,t. (14)

Integrated data look very different from data generated by a stationary process. Most
importantly they do not have equilibria, since there is no tendency to return to the
mean, even in the long run. Accordingly, the best prediction of an integrated series
many periods ahead is just the current value of that series.

There is a huge literature on estimating models with integrated data. Such methods
must take into account that standard asymptotic theory does not apply, and also that

lim
t→ ∞

Var(yi,t) =∞. (15)

Thus if we wait long enough, any integrated series will wander “infinitely” far from its
mean. Much work on both diagnosing and estimating models with integrated series builds
heavily on both these issues. Our interest is not in the estimation of single time series,
but rather TSCS political economy data.11

Political economy data is typically observed annually for relatively short periods of
time (often 20-40 years). Of most relevance, during that time period, we often observe
very few cycles. Thus, while the series may be very persistent, we have no idea if a
longer time period wold show the series to be stationary (though with a slow speed of
adjustment) or non-stationary. These annual observations on, for example, GDP or left
political control of the economy are very different than the daily observations we may
have on various financial rates. So while it may appear from an autoregression that
some political economy series have unit roots, is this the right characterization of these
series? For example, using Huber and Stephens’ (2001) data, an autoregression of social
security on its lag yields a point estimate of the autoregressive coefficient of 1.003 with a
standard error of 0.009; a similar autoregression of Christian Democratic party cabinet
participation of 1.03 with a standard error of 0.001. It does not take heavy duty statistical
testing to see we cannot reject the null that the autoregressive coefficient is one in favor
of the alternative that it is less than one (so the series is stationary). But does this mean
that we think the series might be I(1)?

Making an argument similar to that of Alvarez and Katz (2000), if these series had
unit roots, there would be tendency for them to wander far from their means and the

11There is a literature on panel unit roots (Im, Pesaran and Shin, 2003; Levin, Lin and Chu, 2002),
but at this point the literature is still largely about testing for unit roots.
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variance of the observations would grow larger and larger over time. But by definition
both the proportion of the budget spent on social security and Christian Democratic
cabinet participation are bounded between zero and one hundred per cent, which then
bounds how large their variances can become. Further, if either series were I(1), then we
would be equally likely to see an increase or decrease in either variable regardless of its
present value; do we really believe that there is no tendency for social security spending
to be more likely to rise when it is low and to fall when high, or similarly for Christian
Democratic cabinet strength? Note that in the data set, social security spending only
ranges between 3% and 33% with similar numbers for Christian Democratic cabinet
strength being zero and 34%. While these series are very persistent, they simply cannot
be I(1), Therefore, the impressive apparatus built over the last two decades to estimate
models with I(1) series does not provide the tools needed for many, if not most, political
economy TSCS datasets.

Fortunately, the modeling issue is not really about the univariate properties of any
series, but the properties of the stochastic process that generated the y’s conditional on
the observed covariates (that is, the error process). Even with data similar to Huber
and Stephens’, the errors may appear stationary and so the methods of the previous
section can be used. Modeling highly persistent time series is complicated, but the
critical issues remain those of specification and we typically need not worry about non-
stationary (Dickey-Fuller) distributions. Thus the lessons of the previous section often
(perhaps usually) apply.

5. FIXED EFFECTS WITH LAGGED DEPENDENT VARIABLES

In this section, we consider the problems introduced by the presence of fixed unit
effects in a dynamic model of TSCS data. Thus we consider the autoregression

yi,t = φyi,t−1 + αi + εi,t (16)

which generalizes easily to a specification including other exogenous variables. The obvi-
ous way to estimate Equation 16 is with OLS, which is exactly equivalent to first centering
each yi,t around its unit mean and then regressing the centered variables on the lagged
centered variables. In the context of fixed effects, OLS is thus known as least squares
dummy variables (LSDV) and we will use that terminology here, but remembering that
LSDV is exactly OLS.

This induces a correlation between the demeaned lagged y and the demeaned error
term. This point was made long ago for a single time series by Hurwicz (1950), and was
generalized to TSCS (or panel) data by Nickell (1981). The algebra is trivial. Let ỹ and

14



ε̃ be the centered y and the error,

ỹi,t−1 = yi,t−1 −
1

Ti

Ti∑
t=1

yi,t−1 (17a)

ε̃i,t−1 = εi,t −
1

Ti

Ti∑
t=1

εi,t. (17b)

But then clearly E[ỹi,t−1ε̃i,t] 6= 0. The error term, εi,t−1 is contained with weight 1 − 1
Ti

in ỹi,t−1 and with weight 1
Ti

in ε̃. This correlation renders the LSDV estimators of φ and
β biased. Nickell (1981) derived the asymptotic bias (as N →∞) and showed that it is
O(T−1). Note that the bias gets smaller as we increase T , that is move from the “panel”
world to the TSCS world. Clearly the bias term is huge for two or three wave panels; is it
similarly an issue for typical political economy data? And is the cure that is commonly
used in panel situations worse than the disease in TSCS situation?

Many cures to the problem have been proposed. Perhaps the most common approach
is to use instrumental variables (IV) as suggested by Anderson and Hsiao (1982). The
Anderson-Hsiao (AH) estimator begins by handling the unit effects by first differencing
Equation (16). As with the demeaning procedure, this eliminates the unit effect but in-
troduces correlation between the transformed errors and lagged transformed dependent
variable. This correlation is then handled by using an instrumental variable that is cor-
related with the lagged first differenced but not the differenced error term. AH proposed
using either the second lag of the dependent variable, yi,t−2, or the second lag of the
differenced lagged dependent variable. The consensus is that the level instrument works
better, so we will only consider it here. A central problem with any IV estimator is that
while it is unbiased it may dramatically increase mean squared error if the instrument
is not highly correlated with the problematic variable. That is, the researcher needs to
understand the cost of correcting the biases. We might be trading a small reduction in
bias for a large decrease in efficiency.

We should also note that since the instrument proposed by AH is weak, there have
been several alternative IV estimators proposed within the general method of moments
(GMM) framework. GMM estimators can handle different numbers of instruments for
each observation. Therefore, Arellano and Bond (1991) suggested using all available
lags at each observation as instruments. This estimator is more efficient than the AH
estimator but has not seen much use in political science.

A completely different approach is taken by Kiviet (1995). While LSDV is biased, it
often has a smaller mean squared error than the proposed IV estimators (as we will see
below). Therefore, if the bias of the LSDV could be estimated and used to correct the
estimate, it might prove superior to either the uncorrected LSDV or the AH estimators.
Kiviet (1995) derives a formula for the bias of the LSDV which has an O(N−1T−3/2)
approximation error.

However, applying Kiviet’s procedure is not straight forward. First, the calculations
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needed to compute the bias approximation are complex. Second, the formula requires
knowledge of the true parameters in Equation (16), which are not known (otherwise why
would we be doing estimation?). Kiviet suggests plugging in values from a consistent
estimator of the model, such as AH discussed above, but this will add noise to the
estimate. Third, the approximation formula implicitly assumes the data are balanced —
i.e., all units are fully observed for the same number of time periods. To the best of our
knowledge, the approximation has never been extended to the case of unbalanced data.
Lastly, we have no direct way to calculate standard errors using this correction. The
mostly likely approach to measure uncertainty in this case would be a (block) bootstrap
method. However, care would need to be taken to maintain the proper dynamic structure
of the data.

The motivating case for the development of all of these dynamic panels models was
the case of very short panels with T’s in the single digits. In that context, a bias of
O(T−1) is extremely problematic. In fact, the Monte Carlo study in Kiviet (1995) are
for the cases of T = 3 and T = 6, where the alternatives to LSDV perform substantially
better that it. But with TSCS data we have much larger T’s. It is not clear in these
cases that the proposed fixes are worth their costs, either in terms of mean square error
or not allowing researchers to pursue other issues. We will evaluate these fixes in our
own Monte Carlo experiments for the more typical cases seen in TSCS data.

Monte Carlo experiments

The Monte Carlo experiments we ran are based on those from Kiviet (1995) but with
T and N chosen to match TSCS data as seen in typical political science. We are going to
explore how the LSDV, AH, and Kiviet Correction (KC) perform in finite samples where
the data generating process is very clean. In fact, the experiments are similar to those
presented by Judson and Owen (1999) with similar conclusions.

The data were generated according to Equation (16) with the following additional
assumptions:

ε
iid∼ N(0, σ2

ε)

αi
iid∼ N(0, σ2

α)

σα = µ(1− φ)σε

xi,t = δxi,t−1 + γ(1− δ)αi + ωi,t

ωi,t
iid∼ N(0, σ2

ω)

i = 1, 2, . . . , N

t = 1, 2, . . . , T.

These assumptions are fairly standard in the literature. The parametrization of σα lets
µ give the relative importance of the unit effects in relation to the idiosyncratic errors
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Figure 2: Monte Carlo Results for estimates of φ as a function of T from LSDV, Kiviet
Correction, and Anderson-Hsiao estimators. Simulation parameters: N = 20,
β = 1, φ = 0.6, δ = 0.5, σω = 0.6, µ = 1, γ = 0.3, and σε = 1

.

in a straight forward manner. Further, the inclusion of γ(1− δ)αi induces a correlation
between the unit effects and the exogenous variable, xi,t. This is not crucial in these
experiments, since all of the estimators can handle correlation between the unit effects and
the regressors (unlike the random effects estimator), but we think that such correlation is
common in actual data. We are particularly interested in how the estimators perform as
both T and φ vary. The other parameters were fixed at a single value for the experiments,
since they did not qualitatively change the findings.

We are interested in two criteria for evaluating the proposed estimators: bias and
root mean square error. However, root mean square error is more important since it
incorporates both bias and estimation variability. That is, we might be willing to use a
slightly biased estimator that has dramatically smaller sampling variance.

The experiments proceed by drawing the error terms and constructing the autore-
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Figure 3: Monte Carlo Results for estimates of β as a function of T from LSDV, Kiviet
Correction, and Anderson-Hsiao estimators. Simulation parameters: N = 20,
β = 1, φ = 0.6, δ = 0.5, σω = 0.6, µ = 1, γ = 0.3, and σε = 1. Note that in
the RMSE graph, the Kiviet Correction and LSDV have practically the same
value so cannot be seen separately on the graph.

gressive series, xi,t and yi,t. Since we do not want to worry about the impact of initial
conditions, we let the process run for T +50 periods and discard the first 50 observations.
Then given the data we estimate the model using the three proposed estimators. This is
repeated 1000 times.

A complete set of results for the Monte Carlo may be found in the on-line appendix.
We will look at some graphs of selected results to get a feel for what is occurring. We
will first examine what happens as T varies. φ was fixed at an intermediate level of 0.6.
Figure 2 shows the results for the estimates of φ. We see from the results on bias, that
as expected both the AH IV and the KC estimators are essentially unbiased, but there
is substantial bias in LSDV, particularly for small T . The picture changes when we look
at RMSE. Here the KC estimator continues to dominate, but the AH estimator pays a
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high cost in terms of sampling variability to get unbiasedness. In terms of RMSE, LSDV
is superior to AH. The advantage of the Kiviet estimator over LSDV declines as T gets
larger, though even for T = 40 the advantage of Kiviet is discernible albeit far from
enormous.

The picture for LSDV continues to improve if we look at the results for β, typically
the parameter of interest in most analysis. Figure 3 graphs out bias and RMSE for the
estimates of β as a function of T . Here again, the AH estimate is unbiased, but is clearly
dominated in terms of RMSE by both the KC and LSDV, even though both are slightly
biased. The RMSE of both the LSDV and KC estimators are virtually identical.

In addition, if one looks at the estimated long run impact of the x (that is, β
1−φ

) is
often the quantity of interest, the graph would look very similar to Figure 3, with LSDV
doing as well as the much more complicated KC estimate.12

Which method to use?

Given the results from these simulations the AH estimator should not be used for
TSCS data. While it is clearly unbiased, the cost for this is very high. The picture with
regard to the Kiviet correction versus the simpler LSDV estimator is less straightforward.
It is clear for our results, and those of others, that the Kiviet correction works well to
lower the bias, particularly of the estimate of φ, with little cost in terms of RMSE.

That said, as discussed above, there are real costs in using the Kiviet correction, not
the least of which is that it will not currently work with unbalanced data and standard
errors will need to be calculated by some sort of block bootstrap. Given these costs
and relatively good performance of LSDV for longer TSCS data that we typically see in
applications, we see little reason, in general, not to prefer LSDV over the Kiviet estimator
when T is twenty or more. The LSDV performs relatively well and is flexible enough to
allow other estimation and/or specification problems to be dealt with.13

6. EXAMPLES

In this section we consider two examples to explore the practical issues in estimating
dynamics in political economy TSCS datasets. The first example looks at the impact of
political variables on the growth of GDP; as we shall see, the dynamics here are fast.
The second example looks at the political determinants of capital taxation rates; here we
see much slower adjustment.

12These results are in the on-line appendix which also contains a figure showing similar results as the
autocorrelation in the dependent variable changes.

13The Kiviet estimator has been almost exclusively used in the panel situation, and so our advice here
is nothing new. Similar advice is given by Judson and Owen (1999).
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The growth of GDP

Our first example relates to political economy explanations of the growth of GDP in
14 OECD nations observed from 1966–1990, using data from Garrett (1998).14 We use
one of his models, taking the growth in GDP as a linear additive function of political
factors and economic controls. The political variables are the proportion of cabinet posts
occupied by left parties (LEFT), the degree of centralized labor bargaining as a measure
of corporatism (CORP) and the product of the latter two variables (LEFTxCORP); the
economic and control variables are a dummy marking the relatively prosperous period
through 1973 (PER73), overall OECD GDP growth, weighted for each country by its
trade with the other OECD nations, (DEMAND), trade openness (TRADE), capital
mobility (CAPMOB) and a measure of oil imports (OILD). Some specifications contain
lagged growth (GDPL).

Garrett included fixed effects in his model. Given our discussion above, we simply
estimated using OLS (LSDV), eschewing the more complicated methods that we saw
were no better (and often worse) than LSDV. For simplicity, we just mean centered each
variable (centering around the unit mean); this is identical to OLS/LSDV. Given mean
centering, there is no constant term in the model, and we do not report the fixed effects
estimated.

GDP growth appears stationary, with an autoregressive coefficient of 0.32. Thus
all specifications are expected to show relatively fast dynamics, with quick returns to
equilibrium. Turning to models with explanatory variables, results of estimating various
specifications are in Table 1.15

The simple static (OLS) model showed modest serial correlation of the errors; a La-
grange multiplier test showed we could clearly reject the null of serially independent
errors (χ2

1 = 8.6, p < .001); substantively, the serial correlation of the errors is small
(0.10). Because of the small, albeit significant, amount of serial correlation of the er-
rors, the OLS results are similar to the slightly more correct results in the two dynamic
specifications.

Given the rapid speed of adjustment (the coefficient on the LDV is 0.16), it is not
surprising that all three specification show similar estimates. Very few coefficients are
significant in any of the specifications, but the two variables that show a strong im-
pact in the static specification continue to show a strong impact in the two dynamic
specifications.

The similarity of the AR1 and LDV estimates is not surprising; because of the fast
dynamics the two models are not really very different. After one period the various
independent variables in the LDV specification have only 3% of their original impact;

14Details on the data are available in that book.
15For simplicity we report OLS standard errors. These are within a few percent of the panel corrected

standard errors.
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Table 1: Comparison of AR1 and LDV estimates of Garrett’s model of economic growth
in 14 OECD nations, 1966–1990 (country centered)

OLS AR1 Errors LDV

Variable β̂ SE β̂ SE β̂ SE
DEMAND 0.007 0.001 0.007 0.001 0.007 0.001
TRADE −0.02 0.02 −0.02 0.02 −0.02 0.02
CAPMOB −0.19 0.22 −0.26 0.23 −0.24 0.22
OILD 7.86 6.26 −6.69 6.66 −5.85 6.21
PER73 1.75 0.32 1.76 0.34 1.45 0.33
CORP 0.45 0.57 0.43 0.60 0.30 0.57
LEFT −0.08 0.18 −0.08 0.19 −0.08 0.18
LEFTxCORP 0.10 0.65 0.10 0.68 0.17 0.64
GDP−L 0.16 0.05
φ 0.10

N 350 336 336

the long-run effects in the LDV specification are only 18% larger than the immediate
impacts. Thus the two specifications are saying more or less the same things, and the
estimated coefficients are quite similar. Substantively, it appears as though GDP growth
in a country is largely determined by GDP growth in its trading partners, and politics
appears to play little if any role.

Both specifications were tested against the full ADL specification that contained all
the one year lags of the independent variables. Standard hypothesis tests do not come
near to allowing rejection of the simpler AR1 or LDV models in favor of the ADL model;
the usual tests show (very decisively) that we cannot reject either the LDV or AR1 error
model in favor of the full ADL model. The F-statistic for that test was only 0.3. In
short, the data are consistent with very short run impacts, and it does not particularly
matter how we exactly specify those dynamics.

Finally, in terms of the critique of the use of lagged dependent variables (Achen, 2000),
there are two predictors of GDP that are strong in the AR1 model; they remain about
equally strong in the LDV model. As the previous section showed, there is nothing about
LDVs which “dominate a regression” or which make “real” effects disappear. Given the
nature of dynamics, this will always be the case when variables adjust quickly (that is,
the serial correlation of the errors or the coefficient on the lagged dependent variable is
small). We now turn to a second example where variables adjust much more slowly.
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Capital taxation rates

Our second example models capital taxation rates in 17 OECD nations from 1961–93,
using the data and specification as in Garrett and Mitchell (2001).16 Obviously tax rates
move relatively slowly over time; the autoregressive coefficient of tax rates is 0.77. Thus,
while tax rates are clearly stationary, it will take some number of years for the system
to fully adjust.

We drop a few variables from the Garrett and Mitchell specification (that were in-
significant in all specifications and not particularly substantively interesting). We thus
regress the capital tax rate (CAPTAX) on unemployment (UNEM), economic growth
(GDPPC), the dependency ratio, that is the proportion of the population that is elderly
(AGED), vulnerability of the workforce as measured by low wage imports (LOWWAGE,
foreign direct investment (FDI), and two political variables, the proportion of the cabi-
net portfolios held by the left (LEFT) and the proportion held by Christian Democrats
(CDEM). Since Garrett and Mitchell used fixed country effects in all specifications, as in
the previous example, we centered all variables by country (which again leads to a model
with no constant term). Following Garrett and Mitchell, we also mean centered by year
(that is, used year as well as country fixed effects). As in the previous example, we first
show the static OLS, AR1 and LDV results in Table 2.17

The simple static model is clearly wrong; a Lagrange multiplier test for serial cor-
relation of the errors strongly rejects the null hypothesis of serially independent errors.
Either the LDV or AR1 models are strongly preferred to this static model. This is the
type of model that worries Achen; the AR1 model shows a strong effect of AGED on
capital taxation; the LDV model cuts the impact of this variable by a factor of three
with a t-ratio barely exceeding one. Note that other variables that are important in the
AR1 estimation (FDI, GDPPC) remain important in the LDV specification; the magni-
tudes of the coefficients and standard errors for these two variables is similar for both
specifications. The coefficient on LOWWAGE is also cut in half, though it is statistically
significant in both specifications.

Interestingly, UNEM has both a larger effect, and one that is statistically significant,
in the LDV specification, as compared to the AR1 specification. (Neither political vari-
able has a strong or significant impact in either specification). But whatever is going on,
the LDV simply does not destroy all interesting relations between variables.

We compare both of these specifications to the full ADL model (the last columns of
Table 2), we note that the lagged coefficients on LOWWAGE, UNEM and FDI are of

16The data set is not rectangular; some countries only report tax rates for a portion of the period
under study. Details on the data are in Garrett and Mitchell (2001).

17We omit checks of the various specifications. Each specification shows a small but statistically
significant amount of remaining serial correlation of the errors. Estimates correcting for this are almost
identical to those shown in the table and to keep our eyes on the main point, we only show the results
of the simpler specifications here.
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Table 2: Comparison of AR1, LDV and ADL estimates of Garrett and Mitchell’s model
of capital taxation in 17 OECD nations, 1967–1992 (country and year centered)

OLS AR1 Errors LDV ADL

Variable β̂ SE β̂ SE β̂ SE β̂ SE
LOWWAGE −0.16 0.07 −0.21 0.09 −0.09 0.05 −.028 0.12
FDI 0.44 0.26 0.52 0.22 0.34 0.19 0.59 0.23
UNEM 0.20 0.17 −0.21 0.20 −0.35 0.13 −0.68 0.30
AGED 1.66 0.29 1.34 0.40 0.34 0.22 0.26 0.74
GDPPC −0.89 0.14 −0.68 0.09 −0.59 0.10 −0.80 0.12
LEFT 0.004 0.009 0.004 0.009 0.006 0.006 0.003 0.01
CDEM 0.023 0.023 0.017 0.028 0.014 0.017 0.015 0.03
TAXL 0.70 0.04 0.76 0.04
LOWWAGEL 0.21 0.11
FDIL −0.55 0.25
UNEML 0.48 0.30
AGEDL 0.24 0.75
GDPPCL 0.29 0.11
LEFTL 0.005 0.01
CDEML 0.005 0.03
φ 0.66

N 338 338 330 322

the opposite sign as the contemporaneous coefficient (and either statistically significant
or close). Based on our prior discussion, this shows that the impact of these three
variables is more or less instantaneous, with said impact almost disappearing in a year.
While the lagged coefficient on GDPPC is significant and of the opposite sign as the
contemporaneous coefficient, it is much smaller than that contemporaneous coefficient,
indicating that the impact of the growth of GDP dissipates more or less exponentially,
though a bit more quickly than exponentially in the first year. Neither of the two political
variables shows any effect in any of the specifications.

Thus AGED is the only variable that seems like it “ought” to determine tax rates,
that appears to strongly determine tax rates in the AR1 specification but fails to show
any impact in either the LDV or ADL specification. It may be noted that while AGED
perhaps “ought” to effect tax rates, its coefficient in the AR1 specification “seems” a bit
large; would a one point increase in the aged population be expected to lead to over a
one point increase in capital taxation rates? Thus perhaps it is not so simple to discuss
which results make “sense.”

Note that AGED is itself highly trending (its autoregression has a coefficient of 0.93
with a standard error of 0.01). While we can reject the null that AGED has a unit
root, it, like the capital tax rate, changes very slowly. Thus we might suspect that the
simple contemporaneous relationship between the two variables is spurious (in the sense
of Granger and Newbold (1974)). Of course we cannot know the “truth” here, but it is
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not obvious that the ADL (or LDV) results on the impact of AGED are somehow foolish.
Note that the ADL specification seems “sensible” for all the other variables. Here is one
garden variety model where the use of a lagged dependent variable, in what appears to
be a correct specification, is consistent with perfectly reasonable results, and subject to
a perfectly clear interpretation.

7. CONCLUSION

There is no cookbook for modeling the dynamics of TSCS models; instead, careful
examination of the specifications, and what they entail substantively, can allow TSCS
analysts to think about how to model these dynamics. Well known econometric tests
help in this process, and validated methods make it easy to estimate the appropriate
dynamic model. Modeling decisions are less critical where variables equilibrate quickly;
as the adjustment process slows, the various models imply more and more different char-
acteristics of the data. Analysts should take advantage of this to choose the appropriate
model. Analysts should be very cautious about using ideas about integrated series unless
it is plausible that the data could have properties consistent with such processes.

Being more specific, we have provided evidence that, unlike the claim made by Achen,
there is nothing pernicious in the use of a model with a lagged dependent variable. Obvi-
ously attention to issues of testing and specification are as important here as anywhere,
but there is nothing about lagged dependent variables that make them generically harm-
ful. As we have seen, there are a variety of generic dynamic specifications, and researchers
should choose amongst them using the same general methodology they use in other cases.

For typical comparative TSCS data, it does not appear that OLS with fixed effects
and a lagged dependent variable (LSDV) is problematic. It is clearly better than the
instrumental variable alternatives proposed. The Kiviet correction to LSDV might be
considered if estimating the dynamics is crucial for the application, but using this es-
timator makes it very difficult to treat other complications of the model, and is likely
infeasible for many researchers given the present state of software.

The brief conclusion of this paper is that issues of dynamics are substantive issues,
and that researchers should so think of them. Thus, the dynamic issues confronting
political economists using TSCS data are not technically formidable, but they do require
matching the political economy models to the choice of dynamic specification.
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A. ON LINE APPENDIX: COMPLETE MONTE CARLO RESULTS

This appendix presents the complete results for the Monte Carlo experiments. Sim-
ulation parameters: N = 20, β = 1, δ = 0.5, σω = 0.6, µ = 1, γ = 0.3, and σε = 1.

Table A.1: Monte Carlo Results for β

LSDV Anderson-Hsiao Kiviet

T φ RMSE Bias RMSE Bias RMSE Bias

4 0.00 0.287 0.056 0.467 −0.010 0.285 0.044
4 0.20 0.284 0.073 0.601 −0.011 0.281 0.060
4 0.40 0.279 0.082 1.426 −0.008 0.275 0.069
4 0.60 0.269 0.074 3.262 −0.061 0.267 0.062
4 0.80 0.252 0.031 10.827 0.209 0.252 0.018
4 0.90 0.246 −0.018 16.843 −0.107 0.268 −0.034
10 0.00 0.128 0.040 0.172 0.000 0.129 0.041
10 0.20 0.131 0.047 0.170 −0.000 0.131 0.048
10 0.40 0.132 0.051 0.168 −0.001 0.132 0.052
10 0.60 0.129 0.046 0.165 −0.001 0.130 0.048
10 0.80 0.122 0.017 0.163 −0.002 0.122 0.020
10 0.90 0.124 −0.026 0.168 −0.000 0.123 −0.023
20 0.00 0.084 0.016 0.117 −0.002 0.083 0.016
20 0.20 0.085 0.021 0.116 −0.002 0.084 0.020
20 0.40 0.085 0.024 0.114 −0.002 0.085 0.023
20 0.60 0.085 0.026 0.112 −0.002 0.085 0.025
20 0.80 0.083 0.023 0.111 −0.002 0.082 0.022
20 0.90 0.080 0.014 0.113 −0.001 0.079 0.011
30 0.00 0.066 0.009 0.093 −0.007 0.066 0.009
30 0.20 0.066 0.012 0.093 −0.006 0.066 0.012
30 0.40 0.067 0.015 0.092 −0.006 0.067 0.015
30 0.60 0.067 0.017 0.091 −0.006 0.067 0.018
30 0.80 0.066 0.018 0.089 −0.005 0.066 0.018
30 0.90 0.064 0.012 0.089 −0.005 0.064 0.013
40 0.00 0.058 0.006 0.086 −0.005 0.058 0.006
40 0.20 0.058 0.009 0.086 −0.005 0.058 0.009
40 0.40 0.059 0.011 0.085 −0.005 0.059 0.011
40 0.60 0.059 0.013 0.084 −0.005 0.059 0.013
40 0.80 0.058 0.014 0.082 −0.005 0.058 0.015
40 0.90 0.057 0.011 0.082 −0.005 0.057 0.011
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Table A.2: Monte Carlo Results for φ

LSDV Anderson-Hsiao Kiviet

T φ RMSE Bias RMSE Bias RMSE Bias

4 0.00 0.303 −0.275 0.765 0.012 0.216 0.162
4 0.20 0.347 −0.321 2.021 0.076 0.194 0.119
4 0.40 0.381 −0.355 2.927 0.013 0.185 0.089
4 0.60 0.403 −0.379 22.710 −0.146 0.185 0.072
4 0.80 0.424 −0.401 25.756 0.902 0.181 0.054
4 0.90 0.426 −0.404 39.220 −1.528 0.180 0.056
10 0.00 0.105 −0.083 0.109 0.008 0.075 −0.027
10 0.20 0.115 −0.095 0.119 0.006 0.074 −0.022
10 0.40 0.121 −0.105 0.128 0.004 0.070 −0.010
10 0.60 0.127 −0.114 0.137 0.002 0.069 0.011
10 0.80 0.141 −0.131 0.154 −0.001 0.076 0.033
10 0.90 0.157 −0.148 0.191 0.004 0.078 0.037
20 0.00 0.059 −0.039 0.073 0.007 0.048 −0.014
20 0.20 0.063 −0.046 0.080 0.007 0.047 −0.012
20 0.40 0.064 −0.051 0.086 0.006 0.043 −0.006
20 0.60 0.064 −0.054 0.093 0.006 0.039 0.006
20 0.80 0.063 −0.056 0.110 0.005 0.045 0.029
20 0.90 0.063 −0.058 0.135 0.006 0.057 0.047
30 0.00 0.044 −0.024 0.055 0.002 0.039 −0.008
30 0.20 0.045 −0.028 0.059 0.003 0.037 −0.006
30 0.40 0.045 −0.030 0.064 0.003 0.034 −0.002
30 0.60 0.043 −0.032 0.068 0.004 0.031 0.007
30 0.80 0.039 −0.033 0.074 0.005 0.033 0.023
30 0.90 0.038 −0.034 0.084 0.006 0.043 0.038
40 0.00 0.035 −0.018 0.048 0.003 0.031 −0.006
40 0.20 0.036 −0.021 0.052 0.003 0.030 −0.005
40 0.40 0.035 −0.024 0.056 0.003 0.027 −0.002
40 0.60 0.034 −0.025 0.059 0.003 0.024 0.004
40 0.80 0.031 −0.026 0.064 0.003 0.025 0.016
40 0.90 0.030 −0.026 0.070 0.002 0.031 0.027

ii



Table A.3: Monte Carlo Results for β/(1− ρ)

LSDV Anderson-Hsiao Kiviet

T φ RMSE Bias RMSE Bias RMSE Bias

4 0.00 0.287 0.056 0.467 −0.010 0.285 0.044
4 0.20 0.355 0.091 0.751 −0.013 0.351 0.075
4 0.40 0.465 0.136 2.377 −0.013 0.459 0.115
4 0.60 0.672 0.186 8.156 −0.152 0.668 0.154
4 0.80 1.259 0.157 54.134 1.045 1.261 0.091
4 0.90 2.458 −0.185 168.433 −1.073 2.683 −0.338
10 0.00 0.128 0.040 0.172 0.000 0.129 0.041
10 0.20 0.164 0.059 0.213 −0.000 0.164 0.061
10 0.40 0.220 0.084 0.280 −0.001 0.221 0.087
10 0.60 0.323 0.115 0.412 −0.003 0.325 0.120
10 0.80 0.608 0.084 0.813 −0.009 0.610 0.098
10 0.90 1.240 −0.263 1.684 −0.000 1.235 −0.230
20 0.00 0.084 0.016 0.117 −0.002 0.083 0.016
20 0.20 0.106 0.026 0.145 −0.003 0.106 0.025
20 0.40 0.142 0.040 0.190 −0.003 0.142 0.039
20 0.60 0.212 0.065 0.280 −0.005 0.212 0.062
20 0.80 0.414 0.116 0.553 −0.009 0.412 0.108
20 0.90 0.798 0.136 1.131 −0.012 0.794 0.115
30 0.00 0.066 0.009 0.093 −0.007 0.066 0.009
30 0.20 0.083 0.015 0.116 −0.008 0.083 0.015
30 0.40 0.111 0.025 0.153 −0.010 0.111 0.025
30 0.60 0.166 0.043 0.227 −0.015 0.167 0.044
30 0.80 0.329 0.088 0.447 −0.026 0.330 0.091
30 0.90 0.640 0.123 0.892 −0.047 0.641 0.131
40 0.00 0.058 0.006 0.086 −0.005 0.058 0.006
40 0.20 0.073 0.011 0.107 −0.006 0.073 0.011
40 0.40 0.098 0.018 0.141 −0.008 0.098 0.018
40 0.60 0.147 0.033 0.209 −0.012 0.147 0.033
40 0.80 0.292 0.072 0.411 −0.023 0.292 0.073
40 0.90 0.573 0.113 0.817 −0.047 0.573 0.115
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Figure A.1: Monte Carlo Results for estimates of φ as a function of φ from LSDV, Kiviet
Correction, and Anderson-Hsiao estimators. Simulation parameters: N =
20, T = 20, β = 1, δ = 0.5, σω = 0.6, µ = 1, γ = 0.3, and σε = 1
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Figure A.2: Monte Carlo Results for estimates of β as a function of ρ from LSDV, Kiviet
Correction, and Anderson-Hsiao estimators. Simulation parameters: N =
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