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Abstract

We characterize the structure of the set of core matchings of an assignment game

(a two-sided market with transfers). Such a set satisfies a property we call consistency.

Consistency of a set of matchings states that, for any matching ν, if, for each agent i

there exists a matching µ in the set for which µ (i) = ν (i), then ν is in the set. A set of

matchings satisfies consistency if and only if there is an assignment game for which all

elements of the set maximize the surplus. We also identify conditions under which we

can assume the assignment game has nonnegative values.

JEL classification numbers: C61,C71
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The Core Matchings of Markets with Transfers ∗

Christopher P. Chambers Federico Echenique

1 Introduction

In matching markets, the data we observe are the matchings themselves. Preferences of

agents over each other, cardinal utility, or monetary transfers are typically not observed.

In many matching markets, such as the market which matches hospitals to interns, no

transfers in fact take place. But in other markets, such as housing markets, buyers and

sellers are matched, and transfers do in fact take place. In yet other markets, such as

organ donations, transfers may, but should not, take place. In this paper, we ask how we

can empirically distinguish between these two types of markets with data on matchings

alone.

∗We are grateful to Kim Border for explaining the integer/real version of Farkas’ Lemma, and to
Haluk Ergin for his detailed comments. We also thank Guilherme de Freitas and Sang Mok Lee for
excellent research assistance. Our research was supported by the National Science Foundation through
grant SES-0751980.



We study the testable implications of the standard model of two-sided markets with

flexible prices: the so-called assignment game. The assignment game was introduced

by Koopmans and Beckmann (1957) and Shapley and Shubik (1971). It is the basis

for a body of modern economic theories; auction theory being the best known of these.

Theoretical work on the assignment game has focused on the model’s predicted utilities.

Empirical work, on the other hand, deals almost exclusively with matchings, as utilities

and transfers are often unobservable.

We characterize the sets of matchings (i.e. the data on who buys from whom) which

can be generated by the model. An assignment game specifies two sets of economic

agents, usually understood as buyers and sellers; but, following tradition, we will refer to

men and women. Agents have quasilinear preferences over each other and money. Men

can match to women; agents can also remain unmatched. Because of quasilinearity, each

pair consisting of a man and a woman (a couple) generates some surplus. The games

always have nonempty core. Core payoff vectors divide the maximal possible surplus

among the set of agents. We will say a matching is a core matching if it is one which

maximizes this surplus. Our aim in this paper is to understand the structure of the set

of core matchings.

We propose a joint test on observed matchings of the hypotheses that i) utility is freely

transferable and ii) matchings are chosen to maximize aggregate surplus. We do this by

characterizing the exact structure of sets of core matchings of assignment games. If we

therefore know the set of possible matchings that might arise, we can verify whether or not

they could have been generated by a transferable utility model and surplus maximization.

We show that a set of matchings can be the set of core matchings for an assignment

game if and only if a simple property, which we call consistency, is satisfied. Consistency

of a set of matchings E states the following. Take any matching ν of men to women.

Suppose that if a man is matched to a woman under ν, then there exists µ ∈ E which
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matches this man to the same woman. Suppose that if a man is unmatched under ν, there

exists µ ∈ E for which he is unmatched. Suppose similar statements hold for women.

If ν satisfies these properties, then ν must itself be an element of E. Consistency thus

might be viewed as the following: allow each agent x to choose some µx ∈ E. If the

function ν (x) = µx (x) is itself a matching, then ν must be an element of E as well.

Consistency is a necessary and sufficient condition for a set of matchings to be the

core of some assignment game. In fact, more is true. Consistency is satisfied if and

only if a set of matchings is the core of some assignment game with integer values.

Obviously, if matchings are the only observable, these are the only things we can test.

Our results illustrate that, from the point of view of observing matchings, the complete

testable implications of the assignment game come in the form of consistency of the set

of possible matchings.

Consistency has the property that for any set of matchings, there is a unique smallest

consistent extension (with respect to set inclusion). The intersection of an arbitrary

collection of sets of consistent matchings is itself consistent. This property is useful in

environments in which we may observe a set of matchings E and want to verify whether

they can be core matchings for some game. If we know that some matchings F are

necessarily not elements of the core, then for E to be possible core matchings, we simply

need to find the smallest consistent extension of E and verify that it is disjoint from F .

For example, if we generate matchings which are patently inefficient (e.g. by breaking

up matches which should be profitable), we can see if these can be generated from the

matchings in E.

We also characterize the set of matchings which coincide with the core of an assign-

ment game where all surpluses are nonnegative. This requires a somewhat more restric-

tive notion of consistency (which we term monotone consistency) which is nonetheless

simple to verify.
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Three aspects of our results are worth emphasizing.

Firstly, we provide the first characterization of core matchings in the assignment

game. For the model without transferable utility, the Gale-Shapley marriage market, a

characterization has been known for a long time (Knuth, 1976): the core matchings have

a lattice structure. The lattice characterization has been very useful in the study of these

markets. Our result is, in a sense, a counterpart to the lattice result for the model with

transfers.

Secondly, a well-known mathematical observation is that if surpluses are drawn from

an absolutely continuous distribution, then the set of core matchings is generically a

singleton. To this end, many researchers have focused on the case in which in fact there

is a unique core matching. Of course, there is no foundation for the hypothesis surpluses

are drawn from an absolutely continuous distribution. We believe that the hypothesis

is not justified empirically, or mathematically. In fact, casual observation implies that

surpluses in fact come in discrete units (pennies, for example).

Thirdly, in order to practically use our results, we must be able to observe more than

one matching. In practice, this may be difficult to do. In Section 5 we explain how to

use our result in realistic econometric settings.

1.1 Related Literature

Shapley and Shubik (1971) first studied the core of assignment games. They establish

results on the set of core imputations (utilities) in the associated transferable utility

game. In particular, they characterize core imputations through a linear programming

argument. This characterization implies that a matching is a core matching if and only

if it supports any core imputation, with each couple sharing their surplus only amongst

themselves. They also show that the set of core imputations restricted to M (or W )
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form a lattice under the pointwise ordering. Shapley and Shubik present no results on

the structure of core matchings.

More recently, Sotomayor (2003) (and later Wako (2006)) establish a relationship

on the cardinality of the set of core matchings and the structure of the set of core

imputations. In particular, these authors establish that if there is only one core matching,

then the set of possible imputations is infinite (the converse is not true in general). Nuñez

and Rafels (2006) study the dimension of the core in the space of imputations.

Related to this work is an earlier paper by Echenique (2008), which studies a match-

ing model in which transfers cannot be made, but each side of the market has strict

preferences over the other side. Echenique establishes conditions that are necessary and

sufficient for a collection of matchings to be a subset of core matchings for some such

preference profile. Strictness of preference in this environment is critical; if preferences

are allowed to be weak, all sets of matchings can be the subset of a set of core matchings

for some preference profile (the profile in which all agents are indifferent between every-

thing). In our work, there is no trivial analogue of the statement that preferences are

strict, and hence statements about subsets of core matchings require instead knowledge

that some matchings cannot be core matchings.

Section 2 provides the model and main results, while Section 3 is devoted to proofs.

Section 4 concludes.

2 The Model

LetM andW denote disjoint finite sets of agents. A matching is a function µ : M∪W →

M ∪W such that for all m ∈ M , µ (m) ∈ W ∪ {m}, for all w ∈ W , µ (w) ∈ M ∪ {w},

and for all i ∈M ∪W , µ (µ (i)) = i. An agent i ∈M ∪W is single in µ if µ(i) = i.
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If a matching µ satisfies the property that for all m ∈ M , µ (m) ∈ W and for all

w ∈ W , µ (w) ∈ M , we will say it is a complete matching ; i.e. a matching µ is

complete if no agent is single in µ. Denote the set of matchings by M and the set of

complete matchings by Mc.

An assignment game α is a matrix [αm,w] ∈ RM×W . The interpretation is that

αm,w is the surplus generated by m and w if they match. We will say an assignment

game α is integer valued if for all (m,w) ∈M ×W , αm,w ∈ Z. We say it is nonnegative

if for all (m,w) ∈M ×W , αm,w ≥ 0.

A matching µ is a core matching of assignment game α if

µ ∈ arg max
ν∈M

∑
m∈M

∑
w∈W

1ν(m)=wαm,w.

For an assignment game α, denote the set of core matchings by C (α). Our aim is to

understand exactly which sets of matchings coincide with core matchings of some game

α.

We proceed to describe a general model of coalition formation with transfers; two-

sided assignment games are a special case of this model.

Let N be a set of agents; a characteristic function game is a function v : 2N → R.

A coalition structure over N is a partition of N . Let P be a family of partitions of

N .1

We interpret P as the set of feasible coalitions. For example, in the assignment game

N = M ∪W and P corresponds to the partitions into pairs and singletons defined by

some matching. Another example is the roommate game, where P corresponds to all

partitions (Si) of N with |Si| ≤ 2.

1Kaneko and Wooders (1982) is an early reference on this model.
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If Π is a coalition structure over N , we associate with Π the value

∑
S∈Π

v(S).

A partition Π ∈ P is optimal if its value is maximal in P . Let O (v) denote the set

of all optimal partitions for v.

3 The Results

3.1 General assignment games and consistency.

We will say that a set E ⊆M is consistent if, whenever ν ∈M has the property that

for all i ∈ M ∪ W , there exists µ ∈ E for which ν (i) = µ (i), then ν ∈ E. We can

rephrase the definition as follows. Say that a set E of matchings generates a matching

ν ∈ M if, for all i ∈ M ∪W , there is µ ∈ E with ν(i) = µ(i). A set E is consistent if

any matching that it generates is in E.

Theorem 1. Let E ⊆M. The following statements are equivalent.

i) There exists an integer valued assignment game α such that E = C (α).

ii) There exists an assignment game α such that E = C (α).

iii) The set E is consistent.

The proof of Theorem 1 is in Section 4. There is a simple constructive proof of the

statement that iii) implies i) in the case where all matchings in E are complete. In that

case, one can construct an assignment game by letting αij = 1 if there is µ ∈ E with

µ(i) = j, and αij = 0 otherwise. It is easy to verify that consistency implies E = C(α)

with this construction. There is also a simple proof that ii) implies iii) in the non-negative
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case (Section 3.2); the proof involves using Shapley and Shubik’s (1971) theorem on the

core payoffs.2

Our proof uses a different approach, based on Linear Programming techniques (differ-

ent from the LP problem in Shapley and Shubik (1971)). Our proof reflects the method

we used to discover Theorem 1. Once the result is know, simpler proofs may be feasible.

We prefer to present the proof in Section 4 as a transparent guide to the results; in

addition, it allows a unified treatment of Theorems 1, 4 and 6. As we explain in Sec-

tion 3.4, it shows explicitly (by a version of the Birkhoff von-Neumann Theorem) where

the two-sidedness of the assignment game matters.

Proposition 2. For any set of matchings there is a unique smallest consistent set which

contains it.

Proof. First note that if E and E ′ are consistent sets of matchings, then E ∩ E ′ is

consistent: Let ν ∈M have the property that for all i there exists µ ∈ E ∩E ′ for which

ν(i) = µ(i). Then, ν is generated by E and by E ′. By consistency, ν ∈ E∩E ′. The result

follows because M is a consistent set of matchings, as the set of consistent supersets of

E if nonempty and closed under intersections.

Note that the smallest consistent set which contains E can be constructed by succes-

sively adding matchings that are generated by E.

Observe that by Proposition 2, we can test whether or not a set of observed matchings

could be a subset of the set of core matchings of some assignment game. In particular,

we may observe some matchings, but be unsure whether or not there are other matchings

which could potentially observed. In order to test this hypothesis, there must be some set

of matchings F which we know are not core matchings. Let E ′ be the smallest consistent

2Eran Shmaya pointed this out to us.
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set containing E. Then there is a game α with E ⊆ C(α) and F ⊆M\ C(α) if and only

if F ⊆M\ E ′. This observation yields the following corollary:

Corollary 3. Let E and F be nonempty disjoint sets of matchings. There is an assign-

ment game α with E ⊆ C(α) and F ⊆M\ C(α), if and only if there is no ν ∈ F that is

generated from E.

As a simple application of Theorem 1, note that the matchings defined by the n

cyclic permutations, with n = |W | = |M |, cannot be the core of an assignment game.

Indeed, let M = {mk : k = 1, . . . , n}, W = {wk : k = 1, . . . , n} and consider the set E of

matchings defined by µk(wi) = mi+k mod n, k = 0, . . . , n − 1. Let ν(wi) = µ1(wi) for all

i = 3, . . . n and let ν(mi) = w3−j, j = 1, 2. Then ν is generated by E, but ν is not a

cyclic permutation.

3.2 Nonnegative assignment games and monotone consistency.

We may further ask whether there are additional conditions which are required on a set

of matchings E to imply that E is the set of core matchings of an assignment game with

nonnegative entries. Indeed such additional conditions exist. Observe that it is implicit

in the definition of core matchings that single agents generate zero surplus: they do not

contribute to the sum being optimized. It is then to be expected that the additional

conditions on E involve single agents.

We say that a set of matchings E is monotone consistent if and only for all ν ∈M,

if for all i ∈ M ∪W , either there exists µ ∈ E for which µ (i) = ν (i), or there exists µ,

µ′ ∈ E for which µ (i) = i and µ′ (ν (i)) = ν (i), then ν ∈ E.

Monotone consistency then requires that E not only contain the matchings which are

generated from E, but also those matchings ν for which ν(i) /∈ {µ(i) : µ ∈ E} for some

i, as long as both i and ν(i) are single in some (possibly different) matchings in E.
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Theorem 4. Let E ⊆M. The following statements are equivalent.

i) There exists a nonnegative integer valued assignment game α such that E = C (α).

ii) There exists a nonnegative valued assignment game α such that E = C (α).

iii) The set E is monotone consistent.

The proof of Theorem 4 is in Section 4.

Example 5. This simple example illustrates the difference between consistency and mono-

tone consistency. Let M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4}. Consider the

matchings µ1 and µ2 with µ1(mk) = wk for k = 1, 2, 3 and µ2(mk) = wk−1 for k = 2, 3

while µ2(m1) = w3 while µ1(m4) = µ2(m4) = m4. Let E = {µ1, µ2}. There is no

nonnegative assignment game α for which E = C (α). On the other hand, E satisfies

consistency. In order to obtain a monotone consistent set of matchings, we would need

to add the matching ν(mk) = wk to E.

The statements in Proposition 2 and Corollary 3 corresponding to monotone consis-

tency are true, and have very simple proofs.

3.3 General coalition formation with transfers.

We present a characterization for general coalition formation games. The result is simple

and the characterization probably not surprising; its value lies in the contrast with the

results on the assignment game. The characterization for assignment games (Sections 3.1

and 3.2) involves a stronger and more intuitive condition. We wish to emphasize how

the two-sided structure of the assignment games makes an important difference here.

Let (Πi)
n
i=1 and (Π′i)

n
i=1 be sequences of partitions in P . Say that (Π′i)

n
i=1 is an ar-

rangement of (Πi)
n
i=1 if, for all S, the number of times S is a cell of some partition in

(Πi)
n
i=1 is the same as the number of times it is the cell of some partition in (Π′i)

n
i=1.
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The idea is that the partitions (Π′i)
n
i=1 are constructed using only cells from the

partitions in (Πi)
n
i=1, and such that a cell must be available in (Πi)

n
i=1 as many times as

it is used in (Π′i)
n
i=1. Thus, (Π′i)

n
i=1 is an arrangement of (Πi)

n
i=1 if for all Πi of which S

is a cell, there is a distinct Π′i of which S is a cell; and vice versa for all S, for all Π′i of

which S is a cell, there is a distinct Πi of which S is a cell.

For example, with N = {1, 2, 3, 4, 5}, consider the following partitions.

Π1 : {1, 2} {3, 4} , {5}

Π2 : {1} {2, 5} , {3} , {4}

Π3 : {1, 2, 3} {4, 5}

Π′1 : {1, 2} , {3} , {4, 5}

Π′2 : {1} , {2, 5} , {3, 4}

Π′3 : {1, 2, 3} , {4} , {5}

Note how (Π′1,Π
′
2,Π

′
3) is an arrangement of (Π1,Π2,Π3).

A set of partitions E ⊆ P is closed under arrangements if, whenever (Π′i)
n
i=1 is

an arrangement of partitions in E, we have Π′i ∈ E, i = 1, . . . , n.

Theorem 6. Let E ⊆ P. The following statements are equivalent.

i) There exists an integer valued characteristic function game v : 2N → Z such that

E = O (v).

ii) There exists a characteristic function game v : 2N → R such that E = O (v).

iii) The set E is closed under arrangements.

The proof of Theorem 6 is in Section 4. The proof is simple. Optimality involves

maximizing a sum of values which only depend on the cells of the partition. Hence, an

arrangement must provide the same value as any sum of maximizing partitions.
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The result in Theorem 6 is not surprising. In assignment games, though, the two-sided

structure of the problem provides a stronger characterization.

3.4 Assignment games and general coalition-formation games.

The two-sided nature of assignment games is responsible for the stronger results in theo-

rems 1 and 4. The following is the crucial consequence of two-sidedness (for our purposes).

In general coalition-formation games, one may “generate” a partition from some se-

quence (Πi)
n
i=1 in a way that the remaining coalitions cannot be re-arranged into n − 1

partitions. For example, consider a roommate model with N = {1, 2, 3} and the parti-

tions

Π1 : {1} {2, 3}

Π2 : {2} {1, 3}

Π3 : {3} {1, 2} ;

these generate (in the obvious sense) the partition into singletons: {1}, {2}, {3}. But the

remaining cells, {2, 3}, {1, 2}, {1, 3}, cannot be arranged into a collection of partitions.

In assignment games, this situation cannot arise. If we generate a matching from n

matchings, then the remaining pairs can always be collected into n − 1 matchings; this

is the main thrust of the proof of Theorem 1.

For example, if E = {µ1, µ2, µ3} generates ν /∈ E, then Step 1 in the proof of Theo-

rem 1 guarantees that, with the pairs (and singletons) that are left after generating ν, we

can always generate two matchings ν ′ and ν ′′. Since surpluses only depend on individual

pairs, the sum of payoffs in all matchings in {ν, nu′, ν ′′} has to equal the sum of payoffs

in all matchings in E. This contradicts that E is the set of core matchings.
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3.5 Assignment games and matching markets with no transfers

We present some examples to clarify the relationship between assignment games and

matching markets without transfers.

First, we show that there are sets of matchings E which can be the core of one model

but not the other. One might initially believe that the model with transfers should have

more predictive power than the model without. This turns out to be false; our first

example shows that the stable matchings for a model without transfers may never be

the core of an assignment game. Second, we present a consistent set of matchings that

cannot be stable, for any preferences in the model without transfers.

The following is a succinct description of the model without transfers (Gale and

Shapley, 1962; Roth and Sotomayor, 1990): Let M and W be finite, disjoint, sets. For

m ∈M , a preference , P (m), is a linear order over W∪{m}. For w ∈ W , a preference ,

P (w), is a linear order over M ∪ {w}.

Given lists of preferences (P (m))m∈M and (P (w))w∈W , a matching µ is stable if,

i) for all i ∈M ∪W with µ(i) 6= i, µ(i) P (i) i;

ii) there is no (m,w) ∈M ×W with w 6= µ(m) and w P (m) µ(m) and mP (w) µ(w).

Example 7. This example describes an inconsistent set E which is nevertheless a set of

stable matchings. Hence there are sets of stable matchings which cannot be the core of

an assignment game. Let M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4}. Consider

the preferences:

P (m1) : w1 w2 w3 w4

P (m2) : w2 w1 w4 w3

P (m3) : w3 w4 w1 w2

P (m4) : w4 w3 w2 w1

P (w1) : m4 m3 m2 m1

P (w2) : m3 m4 m1 m2

P (w3) : m2 m1 m4 m3

P (w4) : m1 m2 m3 m4
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Then the matchings

m1 m2 m3 m4

µ1 : w2 w4 w1 w3

µ2 : w2 w1 w3 w4

µ3 : w3 w4 w2 w1

are stable.3 The table means that where µ1(m1) = w2, µ3(m1) = w3, and so on. The

matching

m1 m2 m3 m4

ν : w2 w4 w3 w1

is generated from {µ1, µ2, µ3} but it is not stable, as w2P (m4)w1 = ν(m4) and m4P (w2)

m1 = ν(w2).

There are more stable matchings than those in E, but since ν is generated by E, it is

generated by the set of stable matchings. Since ν is unstable, the set of stable matchings

is inconsistent.

Example 8. Our second example is of a consistent set of matchings that cannot be stable

under any preference profile. Let M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4}.

Consider the set E = {µ1, µ2, µ3} of matchings described as follows:

m1 m2 m3 m4

µ1 : w1 w2 w3 w4

µ2 : w1 w3 w4 w2

µ3 : w2 w3 w1 w4,

The set E is rationalizable as the core of an assignment game, but not as the core of a

marriage matching model. We show that E is consistent. If ν is a matching generated

by E we must have ν(m1) ∈ {w1, w2}. Say that ν(m1) = w1. We must have ν(m2) ∈

{w2, w3}. If ν(m2) = w2, then ν(m4) = w4 and so ν = µ1. If ν(m2) = w3 then ν(m3) = w4

3Our example is taken from the example in Figures 1.9 and 1.10 in Gusfield and Irving (1989)
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(as ν(m1) = w1) so ν(m4) = w2 and ν = µ2. On the other hand, if ν(m1) = w2 we must

have ν(m2) = w3 and ν(m4) = w4. Hence ν(m3) = w1 and ν = µ3.

On the other hand, the matchings in E cannot be the set of stable matchings of a non-

transferable-utility marriage market. Suppose, by way of contradiction, that (P (m))m∈M

and (P (w))w∈W are preference profiles such that the matchings in E are all stable (admit-

ting that more matchings than those in E might be stable). Say that w2 P (m2)w3. This

rules out the possibility that w2 P (m4)w4, as µ2 would then be unstable if m2 P (w2)m4

and µ1 would be unstable if m4 P (w2)m2. So we must have that w4 P (m4) w2. In turn,

this implies that w3 P (m3) w4 by a similar argument. Now, the stability of µ1 and µ3

and w2 P (m2) w3 implies, by the same argument as above, that w1 P (m1) w2. Then we

obtain that w3 P (m3) w1. Finally, w1 P (m1) w2 and the stability of µ2 and µ3 obtains

that w4P (m3)w1. But we established that w4P (m4)w2, so if m3P (w4)m4 µ3 is unstable,

and if m4 P (w4)m3 then µ2 is unstable.

Note that we obtain the same conclusion if we assume instead that w3 P (m2) w2.

The previous example is particularly interesting because all matchings in E are com-

plete. There are simpler examples based on the property that any two stable match-

ings must have the same set of single agents. For example, with two men and two

women, consider the matchings defined by µ1(m1) = µ2(m2) = w1 and µ1(m2) = m2

and µ2(m1) = m1. This set is evidently consistent, but the two matchings could not be

stable.

4 Proofs

We start with the following lemma, whose proof was shown to us by Kim Border. 4

4Kim Border claims the result is well-known, but we were unable to find a reference. The lemma is a
simple consequence of the standard Farkas’s Lemma and of the rational version of Farkas’s Lemma (see
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Lemma 9. (Integer-Real Farkas) Let {Ai}Ki=1 be a finite collection of vectors in Qn. Then

one and only one of the following statements is true:

i) There exists y ∈ Rn such that for all i = 1, ..., L, Ai · y ≥ 0 and for all i =

L+ 1, ..., K, Ai · y > 0.

ii) There exists z ∈ ZK
+ such that

∑K
i=1 ziAi = 0, where

∑K
i=L+1 zi > 0.

Proof. It is clear that both i) and ii) cannot simultaneously hold. We therefore establish

that if ii) does not hold, i) holds. By Theorem 3.2 of Fishburn (1973), if ii) does not hold,

there exists q ∈ Qn such that for all i = 1, ..., L, Ai · q ≥ 0 and for all i = L + 1, ..., K,

Ai · q > 0. Hence, q ∈ Rn.

Lemma 10. Let {Ai}Ki=1 be a collection of vectors in Qn. Then there exists y ∈ Rn such

that for all i = 1, ..., L, Ai · y ≥ 0 and for all i = L + 1, ..., K, Ai · y > 0 if and only if

there exists z ∈ Zn such that for all i = 1, ..., L, Ai · z ≥ 0 and for all i = L + 1, ..., K,

Ai · z > 0.

Proof. Immediate from Theorem 3.2 of Fishburn (1973) and Lemma 9.

4.1 Proof of Theorem 1

We first establish the equivalence of i) and ii). The existence of an assignment game α

is equivalent to the existence of α ∈ RM×W for which for all µ ∈ E and all ν ∈M,

∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w ≥ 0, (1)

Gale (1960) and Fishburn (1973) or Fishburn (1971)). It is crucial since it allows one to relate a primal
involving real numbers with a dual involving integers.
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and for all µ ∈ E and all ν /∈ E

∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w > 0. (2)

As each of the vectors
(
1µ(m)=w − 1ν(m)=w

)
m,w

are rational valued, the claim follows from

Lemma 10.

Now, we establish the equivalence of ii) and iii).

Step 1: A characterization of sums of matrices associated with matchings,

using Hall’s Theorem.

The result in this step is closely related to the well-known Birkhoff-von Neumann

Theorem, but is distinct from this result. Let µ ∈ M be a matching. Associated with

this matching is the matrix (
1µ(m)=w

)
m,w

.

Note that by definition, for all w ∈ W ,

∑
m∈M

1µ(m)=w ≤ 1;

this follows as if µ (m′) = µ (m) = w, then m = µ (µ (m)) = µ (w) = µ (µ (m′)) = m′.

Likewise, for all m ∈M , ∑
w∈W

1µ(m)=w ≤ 1;

this follows simply as µ as a function. Consequently, if {µ1, ..., µn} is a finite list of

matchings, then for all w ∈ W ,

n∑
i=1

∑
m∈M

1µi(m)=w ≤ n
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and for all m ∈M ,
n∑
i=1

∑
w∈W

1µi(m)=w ≤ n.

Conversely, suppose that A ∈ ZM×W
+ satisfies for all w ∈ W ,

∑
m∈M

Am,w ≤ n

and for all m ∈M , ∑
w∈W

Am,w ≤ n,

then there exists a list of matchings {µ1, ..., µn} for which for all (m,w) ∈M ×W ,

Am,w =
n∑
i=1

1µi(m)=w.

To see this, we construct a matrix A′ ∈ Z(M∪W )×(M∪W )
+ defined so that for all m ∈M ,

w ∈ W , A′m,w = A′w,m = Am,w, for all m,m′ ∈ M for which m 6= m′, A′m,m′ = 0, for all

w,w′ ∈ W for which w 6= w′, Aw,w′ = 0, for all m ∈ M , A′m,m = n −
∑

w∈W Am,w, and

for all w ∈ W , A′w,w = n −
∑

m∈M Am,w. Note in particular that the matrix A′ has the

property that for all x ∈M ∪W

∑
y∈M∪W

A′x,y =
∑

y∈M∪W

A′y,x = n.

Now, consider the correspondence Γ : M ∪W ⇒ M ∪W defined by

Γ (x) =
{
y : A′x,y > 0

}
.

We first show that there exists a function γ : M ∪W → M ∪W for which i) for all

x ∈M ∪W , γ (x) ∈ Γ (x) and ii) for all x, x′ ∈M for which x 6= x′, γ (x) 6= γ (x′). To do
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so, we will use the Theorem of König and Hall, which states that the existence of such a

γ will follow if we can establish that for all F ⊆M ∪W ,

∣∣∣∣∣⋃
x∈F

Γ (x)

∣∣∣∣∣ ≥ |F |(see e.g. Berge

(2001), Chapter 10).

We proceed by induction on the cardinality of F . If |F | = 1, then the result is trivial:

let F = {x}, then as
∑

y∈M∪W A′x,y = n, there exists y for which A′x,y > 0.

Now suppose the statement is true for all F ⊆ M for which |F | ≤ k − 1, and let

F ′ ⊆M have cardinality |F ′| = k. We shall prove that

∣∣∣∣∣ ⋃
x∈F ′

Γ(x)

∣∣∣∣∣ ≥ k. Fix x′ ∈ F ′; note

that by the induction hypothesis

∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ ≥ k − 1.

If in fact

∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ > k − 1, then as

∣∣∣∣∣ ⋃
x∈F ′

Γ (x)

∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ ≥ k, we have

established the claim. So suppose that

∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ = k − 1.

As for all x ∈ F ′\ {x′} and all B such that Γ (x) ⊆ B,

∑
y∈B

A′x,y = n,

we obtain ∑
x∈F ′\{x′}

 ∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

A′x,y

 = n (k − 1) . (3)

On the other hand, for all y ∈
⋃

x̃∈F ′\{x′}
Γ (x̃),

∑
x∈M∪W A′x,y = n. Hence,
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∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ = k − 1 implies that

∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

[ ∑
x∈M∪W

A′x,y

]
= n (k − 1) .

Reversing sums in the latter equality, and using (3), obtains

∑
x∈M∪W

 ∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

A′x,y

 = n (k − 1) =
∑

x∈F ′\{x′}

 ∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

A′x,y

 .
Consequently,

∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

A′x′,y ≤
∑

x/∈(F ′\{x′})

 ∑
y∈

S
x̃∈F ′\{x′} Γ(x̃)

A′x,y

 = 0.

Hence A′x′,y = 0 for all y ∈
⋃
x̃∈F ′\{x′} Γ (x̃). Conclude that there exists y /∈⋃

x̃∈F ′\{x′} Γ (x̃) for which Ax′,y > 0, so that Γ (x′) ⊆
⋃
x̃∈F ′\{x′} Γ (x̃) is false. Hence∣∣∣∣∣ ⋃

x∈F ′
Γ (x)

∣∣∣∣∣ >
∣∣∣∣∣∣
⋃

x∈F ′\{x′}

Γ (x)

∣∣∣∣∣∣ = k− 1, so that

∣∣∣∣∣ ⋃
x∈F ′

Γ (x)

∣∣∣∣∣ ≥ k = |F ′|, verifying the claim.

Let γ be the aforementioned mapping. Importantly, γ (M ∪W ) = M ∪ W . Now,

for all m ∈ M , define µ (m) = γ (m). For all w ∈ W , if w = µ (m) for some m ∈ M ,

define µ (w) = m. Otherwise, define µ (w) = w. To see that µ is a matching, note that

we only need to verify that µ (m) /∈ M\ {m}. Suppose by means of contradiction that

µ (m) = m′ ∈M\ {m}. Then in particular, µ(m) ∈ Γ(m), which implies that A′m,m′ > 0,

a contradiction.

We finish the proof of Step 1 by induction. We show that µ induces a matrix B ∈

ZM×W
+ such that A − B is a nonnegative integer valued matrix and for all m ∈ M and
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w ∈ W :

∑
w̃∈W

(Am,w̃ −Bm,w̃) ≤ n− 1 (4)

∑
m̃∈M

(Am̃,w −Bm̃,w) ≤ n− 1; (5)

thus A−B is under the hypotheses that allowed us to define the matching µ above. By

applying the argument inductively, we show that A defines a collection of matchings, as

stated in Step 1.

First, let B ∈ ZM×W
+ be the matrix [Bm,w] = 1µ(m)=w. We claim that B ≤ A; so let

(m,w) ∈ M ×W be arbitrary. If Bm,w = 0 then Bm,w ≤ Am,w by assumption on A.

If Bm,w = 1, then µ (m) = w; hence γ (m) = w and Am,w = A′m,w > 0. Consequently,

Bm,w ≤ Am,w. This proves that A−B is nonnegative.

Second, we show that (4) holds by showing that, for all m ∈ M , if
∑

w∈W Am,w = n,

then
∑

w∈W 1µ(m)=w = 1. This follows as if
∑

m∈M Am,w = n, then Am,m = 0, so that

Γ (m) ⊆ W , consequently, µ(m) = γ (m) ∈ W . So Bm,γ(m) = 1. Lastly, we show (5) by

showing that for all w ∈ W , if
∑

m∈M Am,w = n, then
∑

m∈M 1µ(m)=w = 1. So suppose

that
∑

m∈M Am,w = n. Then Aw,w = 0. As γ (M ∪W ) = M ∪ W , there exists some

x ∈M ∪W for which γ (x) = w. But it as Aw,w = 0, γ (w) = w is impossible. Conclude

that there exists some m ∈M for which γ (m) = w, or µ (m) = w; hence Bm,w = 1.

Step 2: A characterization of non-existence of a rationalizing assignment

game using the Integer-Real Farkas Lemma.

We will show that the converses of ii) and iii) are equivalent. The existence of an

assignment game α for which E = C (α) is equivalent to the existence of α for which for
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all µ ∈ E and all ν ∈M,

∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w ≥ 0,

and for all µ ∈ E and all ν /∈ E

∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w > 0.

Hence, the nonexistence of such an α is equivalent, by the Lemma 9, to the existence

of a vector z ∈ ZE×M
+ such that for some (µ, ν) ∈ E × (M\E), zµ,ν > 0, and for all

(m,w) ∈M ×W , ∑
(µ,ν)∈E×M

zµ,ν
(
1µ(m)=w − 1ν(m)=w

)
= 0.

Step 3: Some basic algebraic manipulation.

The non-existence of α with the above properties is equivalent to the existence of a

finite list of matchings {µ1, ..., µn} ⊆ E, and a finite list of matchings {ν1, ..., νn} ⊆ M

such that there exists j ∈ {1, ..., n} for which νj ∈M\E, such that for all (m,w) ∈M×W

n∑
i=1

(
1µi(m)=w

)
=

n∑
i=1

(
1νi(m)=w

)
.

Suppose without loss of generality that νn ∈ M\E; we rewrite the preceding as for

all (m,w) ∈M ×W ,

[
n∑
i=1

(
1µi(m)=w

)]
−
(
1νn(m)=w

)
=

n−1∑
i=1

(
1νi(m)=w

)
. (6)

The sum on the right of Equality (6) equals a sum of n − 1 matchings. By Step 1,

then, the existence of the two sets of matchings satisfying Equality (6) is equivalent to
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the existence of a finite list of matchings {µ1, ..., µn} ∈ E and a matching ν ∈ M \ E

such that for all m ∈M

∑
w∈W

[[
n∑
i=1

(
1µi(m)=w

)]
−
(
1ν(m)=w

)]
≤ n− 1

and all w ∈ W ∑
m∈M

[[
n∑
i=1

(
1µi(m)=w

)]
−
(
1ν(m)=w

)]
≤ n− 1,

and all pairs (m,w) ∈M ×W ,
[∑n

i=1

(
1µi(m)=w

)]
−
(
1ν(m)=w

)
≥ 0.

The first inequality is satisfied if and only if whenever ν (m) = m, there exists i for

which µi (m) = m. The second inequality is satisfied if and only if whenever ν (w) = w,

there exists i for which µi (w) = w. The last inequality is satisfied if and only if whenever

ν (m) = w, there exists i for which µi (m) = w. The existence of such matchings therefore

occurs if and only if E is not consistent.

4.2 Proof of Theorem 4

That i) and ii) are equivalent follow similarly to Theorem 1. For the equivalence of ii)

and iii), note that the existence of a nonnegative valued assignment game α for which

E = C (α) is equivalent to the existence of α ∈ RM×W
+ for which for all µ ∈ E and all

ν ∈M, ∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w ≥ 0,

for all µ ∈ E and all ν /∈ E

∑
m∈M

∑
w∈W

(
1µ(m)=w − 1ν(m)=w

)
αm,w > 0,
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and for all (m,w) ∈M ×W ,

1m,wαm,w ≥ 0.

Hence, the nonexistence of such an α is equivalent, by Lemma 9, to the existence of

a vector z ∈ ZE×M
+ such that for some (µ, ν) ∈ E × (M\E), zµ,ν > 0, and a vector

z′ ∈ ZM×W
+ for which for all (m,w) ∈M ×W ,

∑
(µ,ν)∈E×M

zµ,ν
[
1µ(m)=w − 1ν(m)=w

]
+ z′m,w = 0.

As in the proof of Theorem 1, this is equivalent to the existence of a finite list of matchings

{µ1, ..., µn} ⊆ E, a finite list of matchings {ν1, ..., νn} ⊆ M such that there exists

j ∈ {1, ..., n} for which νj ∈ M\E, and for all (m,w) ∈ M ×W an integer zm,w ≥ 0 for

which for all (m,w) ∈M ×W ,

[
n∑
i=1

1µi(m)=w

]
=

[
n∑
i=1

1νi(m)=w − zm,w

]
.

Suppose without loss of generality that νn is not an element of E; let ν = νn. Therefore

the previous equality is equivalent to the existence of matchings {µ1, ..., µn} ⊆ E, a

matching ν ∈ M\E, and zm,w ≥ 0 for all (m,w) ∈ M ×W for which for all (m,w) ∈

M ×W [
n∑
i=1

1µi(m)=w − 1ν(m)=w

]
=

[
n−1∑
i=1

1νi(m)=w − zm,w

]
. (7)

For x ∈ R, define x+ = max {0, x}.

The right hand side of (7) satisfies that, for all m ∈M ,

∑
w∈W

[
n−1∑
i=1

1νi(m)=w − zm,w

]+

≤ n− 1

and for all w ∈ W ,
∑

m∈M
∑n−1

i=1

[
1νi(m)=w − zm,w

]+ ≤ n− 1. In contrast to Theorem 1,
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the values of the matrix on the right-hand side of (7) may be negative. However, analo-

gously to the proof of Theorem 1, it can be shown that if a matrix A ∈ ZM×W satisfies

for all m ∈M , ∑
w∈W

A+
m,w ≤ n− 1

and for all w ∈ W , ∑
m∈M

A+
m,w ≤ n− 1,

then there exist matchings {ν1, ..., νn−1} ⊆ M and a vector z ∈ ZM×W
+ for which for all

(m,w) ∈M ×W ,

[Am,w] =

[
n−1∑
i=1

1νi(m)=w − zm,w

]
.

This follows from the observation that [Am,w] =
[
A+
m,w

]
+
[
A−m,w

]
. Consequently, the

non-existence of α under our condition, is equivalent to the existence of a collection of

matchings {µ1, ..., µn} ⊆ E and ν ∈M\E such that for all w ∈ W ,

∑
m∈M

[([
n∑
i=1

1µi(m)=w

]
− 1ν(m)=w

)+]
≤ n− 1

and for all m ∈M ,

∑
w∈W

[([
n∑
i=1

1µi(m)=w

]
− 1ν(m)=w

)+]
≤ n− 1.

We claim that the first inequality is satisfied if and only if, for all w ∈ W :

1. if ν(w) = w then there is i ∈ {1, . . . , n} with µi(w) = w.

2. if ν(w) 6= w, then either there exists i ∈ {1, . . . , n} with µi(ν(w)) = w, or there is

i ∈ {1, . . . , n} with µi(w) = ν(w).

Consider case (1): note that ν(w) = w implies that for all m, 1ν(m)=w = 0. Hence
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the first inequality is equivalent to
∑

m

∑
i 1µi(m)=w ≤ n − 1. This is true iff there is µi

in which w is single.

For case (2), suppose that ν(w) = m̂ 6= w, and that for all i, µi(w) ∈ M . Then∑
m

∑
i 1µi(m)=w = n. So for the first inequality to hold there must be some i with

1µi(m)=w − 1ν(m)=w = 0; that is µi(w) = ν(w).

Similarly, the second inequality is satisfied if and only if for all m ∈M , if ν (m) = m,

then there exists i for which µi (m) = m, and if ν (m) = w, either there exists i ∈M for

which µi (m) = w or there exists i ∈M for which µi (m) = m.

But the existence of such matchings is equivalent to a violation of monotone consis-

tency.

4.3 Proof of Theorem 6

That i) and ii) are equivalent follow similarly to Theorem 1.

Let Π ∈ P . We identify Π with the vector 1Π ∈ {0, 1}2N

defined by 1Π
S = 1 if and only

if S ∈ Π. We can also identify any characteristic function game v with a vector v̄ ∈ R2n
;

the property that Π is optimal in P is then expressed as, for all Π′ ∈ P , 1Π · v̄ ≥ 1Π′ · v̄.

Now, E = O (v) iff 1Π · v̄ ≥ 1Π′ · v̄ for all Π ∈ E and Π ∈ P ; and 1Π · v̄ > 1Π′ · v̄ for

all Π ∈ E and Π ∈ P \E. So the property E = O (v) is equivalent to v̄ being a solution

to the system of inequalities defined above; in this system, there is a weak inequality

associated with each pair (Π,Π′) ∈ E × P , and a strict inequality associated with each

pair (Π,Π′) ∈ E × P \ E.

There is a solution to the system iff there is are no collections of non-negative integers

(z(Π,Π′))(Π,Π′)∈E×P and (z′(Π,Π′))(Π,Π′)∈E×P\E, with at least one of the latter being strictly
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positive, s.t.

∑
(Π,Π′)∈E×P

z(Π,Π′)(1
Π − 1Π′) +

∑
(Π,Π′)∈E×P\E

z′(Π,Π′)(1
Π − 1Π′) = 0

The collections (z(Π,Π′))(Π,Π′)∈E×P and (z′(Π,Π′))(Π,Π′)∈E×P\E define a sequence Πi, i =

1 . . . n in E and a sequence Π′i i = 1 . . . n in P , with at least one Π′i ∈ P \ E, with the

property that
n∑
i=1

1Πi =
n∑
i=1

1Π′i . (8)

Property (8) says that (Π′i) is an arrangement of (Πi): The number of times a set

S ⊆ N appears as a cell of some Πi is the same as the number it appears as a cell of

some Π′i.

5 Econometric Implementations

One can use our results to test the assignment game with realistic data. For example,

consider data on a two-sided matching market where one identifies agents with the same

observable characteristics: the standard procedure in the empirical literature on matching

(Pollak, 1990; Choo and Siow, 2006; Dagsvik, 2000). This procedure gives a collection of

matchings E between a given set of agents.

It is natural to ask, as we have done here, if a constant α can rationalize all the

matchings in E. But in an empirical exercise one usually wants to allow for some un-

observed heterogeneity (in matching markets, see for example Chiappori, Fortin, and

Lacroix (2002), Heckman, Matzkin, and Nesheim (2005), Hitsch, Hortaçsu, and Ariely

(2006) and Fox (2007)).
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Suppose, then, that we want µk ∈ E be rationalized by some matrix

αk =
[
αij + εki + εkj

]
,

where εi and εj are individual error terms drawn from some known probability distribu-

tion. It should be clear that our results are still useful for this exercise. We proceed to

describe two possible tests.

First, if E is consistent, the set of rationalizing α is the set of solutions to a system

of linear inequalities ((1),(2)): these are easy to solve computationally and give bounds

on the location of individual αk. So E can be rationalized by multiple αk; these must lie

in the closed convex set of solutions to ((1),(2)).

If E is not consistent one can consider the maximal consistent subsets E ′: each of these

is associated with a set of solutions and one can compute the p-value of errors (εki ) and

(εkj ) comparing the value of the matchings in E ′ with the matchings in E \E ′. This gives

a simple way of testing for core matchings while allowing for unobserved heterogeneity.

Second, one can decide to use Corollary 3: decide on a set of necessarily inefficient

matchings and check for consistency. The linear programming formulation ((1),(2)) pro-

vides a set of possible rationalizations. One can use these to obtain bounds on α and

test for core matchings as described.

6 Conclusion

This work has studied the structure of the set of core matchings of assignment games.

This structure is relevant as in many real-world scenarios, transfers may not be observed,

but the actual matchings are. We discuss some related questions which may be analyzed

using similar techniques.
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First is the question of assortative matchings (Becker (1973)). Becker establishes

that, when men and women have equal cardinalities and each set is linearly ordered, if

the resulting function α is strictly supermodular and strictly positive, then the resulting

(unique) core matching is assortative. That is, it matches the “best” man with the “best”

woman, the second best man with the second best woman, and so forth. The converse of

this result is also easily seen to be true; that is, if a unique core matching is assortative,

then it can be rationalized with a strictly supermodular assignment game. Simply let α

be any strictly supermodular assignment game and note that there is a unique assortative

core matching, which is the matching under consideration. Generalizing this result to the

case of different cardinalities of men and women, and the case of weakly supermodular

and potentially negative α is an open question which is amenable to linear programming

analysis.

Related is the question which asks, given an assignment game α, which sets of ordinal

preferences are compatible with it? This question only makes sense if we explicitly model

the underlying transferable utility model which defines α. One standard example is when

M is a set of buyers of objects, and W is a set of sellers of objects. Each m ∈ W has

a valuation um (w) of the object w ∈ W is selling. Each w ∈ W has a valuation vw

of the object she sells. The surplus αm,w is then obviously um (w) − vw. The question

is then, given α, which lists of preferences (P (m))m∈M have utility representations um

which generate α? Further questions might be asked as to when is it the case that

vw (w) ≥ 0 (that is, when is it the case that each seller would rather keep her object

than throw it away?) Note that in particular that a utility representation must satisfy

the requirement that um (m) = 0. This question can also be addressed using linear

programming techniques. Similarly, one can ask a related question about synergistic

matching, in which each m ∈ M and each w ∈ W has preferences, and the surplus

associated with utility functions is given by αm,w = um (w) + uw (m).
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Also related is the question of efficient sets of matchings when preferences are not

necessarily quasilinear, which again only makes sense in a model where preferences over

objects sold are explicitly modeled. Such models are related to Alkan, Demange, and

Gale (1991) (for example).
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