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Choice and individual welfare

Christopher P. Chambers Takashi Hayashi

Abstract

We propose an abstract method of systematically assigning a “rational” ranking of
outcomes to choice data which may not be rationalizable in any sense. An individual
welfare functional maps stochastic choice functions into weak orders. A stochastic choice
function gives the empirical frequency of choices for any possible opportunity set (framing
factors may also be incorporated into the model); we call such general choice functions
“choice distributions.” We require that for any two alternatives x and y, if our individual
welfare functional recommends x over y given two distinct choice distributions, then it
also recommends x over y for any mixture of the two choice distributions. Together
with some mild technical requirements, such an individual welfare functional must weight
every opportunity set and assign a utility to each alternative x which is the sum across all
opportunity sets of the weighted probability of x being chosen from the set. It therefore
requires us to have a “prior view” about how important a choice of x from a given
opportunity set is.
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Choice and individual welfare ∗

Christopher P. Chambers Takashi Hayashi

1. Introduction

1.1. Behavioral welfare debates

Standard welfare economics is grounded on the assumption that each individual has a
single and consistent preference ranking over social outcomes or her own consumption.1

In such a context, leaving aside the problem of strategic misrepresentation of preference,
what is better or worse for a given consumer is obvious. — Ask him, or just let him
choose.

The assumption that individuals rank outcomes consistently has long been challenged
by the community of experimental psychologists. They find various types of behavioral
anomalies and biases.2 Recently, the community of economists has seriously addressed
such challenges; and the research program of “behavioral economics” (or psychology and
economics) has become established as an accepted framework of descriptive analysis.

This development, however, brings up a new issue. How should welfare analysis be
conducted when behavior may be inconsistent with the maximization of some preference?
When choices are inconsistent, the concepts of “better” or “worse” become meaningless
for individuals (let alone for groups). Let us illustrate this through the following example.

Example 1 You are going to give a gift to your friend. You know that they make the
following choices: they choose x out of set {x, y}, and they choose y out of set {x, y, z}.
Which one of x, y and z should you give them? �

Two natural arguments could be put forth. Perhaps y should be given, as it is chosen
from a larger set. On the other hand, perhaps x is better, as it beats y in a direct
comparison. Within the standard framework of revealed preference, we can say nothing.

∗We would like to thank Colin Camerer, Jeff Ely, and Matt Rabin for helpful discussions and com-
ments. All errors are our own.

1In general, such a preference need not be complete or transitive.
2Since there is a huge literature about it, here we just cite some books, Kahneman, Slovic and Tversky

[14], Kahneman and Tversky [15], and Thaler [29].



Which view should be taken, if either, cannot be answered with the tools of classical
economics. Any ranking of the two outcomes amounts to an outside value judgment. In
any case, no theoretical examination has been undertaken studying how we can weight
different choice situations.

Recently, Thaler and Sunstein [30, 31] have proposed what they call “libertarian pa-
ternalism,” which has been quite controversial (see for example Mitchell [22]). It (very)
roughly states that choice should be respected whenever it is consistent, but intervention
by an authority becomes necessary when individuals exhibit choice inconsistency. When
individuals exhibit inconsistency, something must be done, and in this sense paternalism
is somehow necessary. They do not provide any investigation as to whether the inter-
section of ‘libertarianism’ and ‘paternalism’ is nonempty, or to understand rules meeting
both of these conditions. Our approach is to work in an abstract environment, making
systematic recommendations for a paternalistic social planner.

Thaler and Sunstein can be criticized by saying that “irrational behavior” is simply
an artifact of misspecification of the choice setting. It is quite often the case that certain
actions appear to be ‘irrational’ or ‘paradoxical’ simply because the observer fails to
account for all the relevant factors. For example, there are many economic instances in
which an action is irrational in the short-run but rational in the long-run. In such cases,
seemingly irrational or paradoxical behavior can be rationalized by including the missing
factors or by suitably redefining the choice domain.

We make no judgment here about whether all behavior can be rationalized in such
manner. However, we need to be prepared for the case that choices are not rationalizable
even when all the relevant factors are taken into account.

There is another issue: Even if choice is rationalizable by means of a single consistent
preference ranking, it may not immediately equate to the notion of welfare. A number of
authors claim that economists should make a distinction between ‘decision utility’ that
governs choice, and ‘experienced utility’ that determines subjective level of welfare (see
for example Kahneman, Wakker and Sarin [16]), although retrospective evaluation of
outcomes brings up a methodological problem such as rationalization.

Also, a number of studies in neighboring disciplines such as neuroscience claim that
choices have rather little to do with subjective perception of welfare, and that it is
determined by (or at least related to) the amount of certain chemicals in brain [4].

Thus, many behavioral economists would argue that individuals systematically make
many mistakes and hence choice and welfare may not be related. Economic problems
consist of choice data, and thus economists have traditionally used choice as a proxy for
individual welfare. To some extent, the issue is tautological. Welfare is whatever we
define it to be, and economists usually define welfare through choice. Our approach is
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similar in spirit to the revealed preference paradigm. Given observed choice data, what
preference is reasonable to use as a proxy for individual welfare?

1.2. Our approach

In this paper, we consider choice data as the only data available to an economist that
can be used to determine individual welfare. We do not deny that observations other
than choice, such as retrospective evaluation and brain activities, may be important and
useful in evaluating welfare. Instead, we try to understand what we can say using choice
data alone. Our approach does not a priori preclude the possibility of using data other
than choice.

We take an axiomatic approach, so as to systematically characterize the economist’s
possibilities. We imagine that the economist should follow a certain rule in providing
welfare prescriptions for inconsistent choice data. Such a rule is modeled as a function
mapping arbitrary choice data into a ranking over alternatives. The data is taken to
be a list of empirical distributions of choices indexed by choice situations. In general,
these empirical distributions may or may not be rationalized either in the deterministic
or stochastic sense. Let us call such a rule an individual welfare functional.

We interpret this individual welfare functional as a “suitable” proxy for individual
welfare; however we do not necessarily mean to imply that the assigned preference is
a “true” or “correct” preference (it is not even clear that a true preference exists for
an individual). However, if individual choice is rationalizable in the standard revealed
preference framework, given that we only observe choice data, we believe it is natural
that the assigned ranking should coincide with the rationalizing preference.

This paper is not concerned with why choice may be irrational. Common arguments
are that there is some true, underlying, rational preference and that individuals merely
make mistakes, or that there are multiple selves and individuals aggregate these selves
according to some rule. If we know these statements to be true, then the underlying
problem is one of inference. However, discussions of “true preference” and mistakes are
tautological when choice is the only available data. We cannot distinguish an individual
who makes mistakes from an individual who simply has no consistent preference. Even
if it were known the individual was making mistakes, the nature of the mistakes would
have to be understood before being able to identify true preference, necessarily requiring
a degree of faith in the economist. With this in mind, we take an agnostic position on
this issue and view our individual welfare functional as a normative prescription.

We now discuss our axioms. Our basic axiom is called Combination. It is a consistency
requirement in aggregating situation dependent choices. It roughly says, if two choice
situations both support x over y, then the choice data obtained by joining the two also
supports x over y.
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Our main result is as follows. The combination axiom, combined with other technical
axioms, implies a form of linear aggregation. The ranking of alternatives is determined by
a utility function. The utility of any alternative in our representation is merely a linear
function of the distributions. In general, the utility of x can depend on the probability
that some alternative y is chosen, where y may not even be present in any situation where
x is present.

While the general family of individual welfare functionals may be interesting for many
environments, oftentimes it may be unnatural to allow the utility of an alternative to
depend on the probability that unrelated alternatives are chosen. To remedy this situa-
tion, we impose an additional axiom, binary independence, specifying that the ranking
between two alternatives should not be affected by empirical choice probabilities of other
alternatives. A related axiom, binary monotonicity, specifies that utility of an alterna-
tive should respond positively to the probability that it is chosen. The additional axioms
deliver a more structured class of individual welfare functionals. In this class, every
pair consisting of a situation and a choice from that situation has its own weight. This
weight specifies a prior view about how important it is to choose that alternative in that
situation. The utility of the alternative is then just the sum across all situations of the
corresponding weight times the probability the alternative was chosen in that situation.

The requirement that the individual welfare assignment should respect choice narrows
down the possible range of prior weights. That is, the role of the weights is only in
balancing inconsistent choices. They have no implication when individual choice is indeed
consistent. Thus, while our individual welfare functional is necessarily paternalistic when
choice data is inconsistent, it is also libertarian whenever possible.

1.3. Related literature

In a recent paper, Green and Hojman [9] consider an individual as a ‘society’ that is
populated with multiple personalities who may have conflicting preferences. They apply a
scoring rule as the method of aggregating the conflicting preferences, determining a choice
function. The scoring rule approach is then used to make statements about individual
welfare, assuming cardinal information on the utilities of the multiple selves. Thus, they
must first discuss the question as to which functions can be rationalized by this type
of “multiple selves” model. They find that the model has little in the way of testable
implications; and further, that it is not in general identified. Several lists of multiple
selves may induce the same choice functions. Hence, only bounds on welfare statements
are available in this model. Our work may be viewed as a complement to theirs. However,
we consider a general situation where the source of possible choice inconsistency may be
of any kind–as opposed to inconsistency which can be rationalized by the multiple selves
approach.

Bernheim and Rangel [2, 3] also discuss welfare when choice may not be rationalizable.
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Their approach is to define several binary relations through choice. They also consider
different framing factors, and essentially define an individual to be unambiguously better
off with x over y if she ever chooses x when y is available and always chooses x if y is
chosen. Such relations can be highly incomplete and often provide no deterministic pre-
scription for ranking a given pair of alternatives. In this sense, the approach of Bernheim
and Rangel does not allow us to conclude when an individual is “better off” except in
very limited circumstances. Except for very basic principles such as Pareto optimality,
much of welfare economics is grounded on principles which requiring alternatives to be
compared. Our work complements the Bernheim-Rangel approach by providing resolute
prescriptions for such comparisons.

There is a huge literature on revealed preference theory characterizing conditions
under which choice can be rationalized by maximization of preference. The classic papers
are by Samuelson [26, 27], who first provided the rationalizability condition in the market
setting. For abstract choice functions, Chernoff [6], Arrow [1] and Sen [28] provide the
conditions in the deterministic setting under which observed choice is rationalizable. In
the setting of stochastic choice function, Luce [20] provides the conditions under which
the choice probability of an alternative is proportional to some cardinal utility assigned to
it. Falmagne [7] provides the conditions under which there is a probability measure over
preferences such that the choice probability of an alternative is given by the probability
of preferences in which it is maximal.

Recent papers consider rationazability in more general senses. Kalai, Rubinstein and
Spiegler [17] provide a condition under which observed choice is rationalizable as a max-
imal element according to multiple criteria, in which choices need not come from a single
objective. Tyson [32] provides a condition under which observed choice is explained as
if it is obtained by satisficing an underlying preference, which is a milder procedural ra-
tionality requirement than maximization. Masatlioglu and Ok [23] consider an extended
domain of choice functions in which a choice problem comes in the form of a pair of
a set and a reference point. They provide a condition under which observed choice is
rationalizable by maximizing preference with a bias toward the reference point. Rubin-
stein and Salant [24] consider the setting that an individual makes choice from a list,
in which the order of appearances of alternatives may matter, and provide a generalized
rationalizability condition. Further, Rubinstein and Salant [25] studies rationalizability
analysis in a general setting in which a choice problem comes in the form of a pair of a
set and an arbitrary framing factor.

We consider arbitrary choice data, which may or may not be rationalizable in any
sense. We are interested in how we can assign preference in a normative or prescrip-
tive sense, rather than in the descriptive sense that individual indeed makes choice by
maximizing or satisficing it.

Our model and analysis are similar to those in expected utility theory in the context of
games (Gilboa-Schmeidler [13]), inductive inference (Gilboa-Schmeidler [12]), case-based
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decision making (Gilboa-Schmeidler [10]) and social aggregation of preferences (Young
[33]). One technical difference, though, is that our domain is larger in the sense that
choice distributions are conditioned by different situations, which makes it difficult to
establish the uniqueness of the obtained individual welfare functional.

2. Model and basic axioms

Let X be a finite set of alternatives. Let B ⊂ 2X be a family of observable opportunity
sets. We assume |B| ≥ 2 for all B ∈ B. For each B ∈ B, let F (B) be a set of possible
framing factors associate with B, and let F =

⋃
B∈B F (B).

Example 2 Let B = {x, y, z}. Then one may for example think of F (B) being a set of
linear orderings over {x, y, z}. Let >∈ F (B) be one such order, where z > y > x. Then,
the pair (B, >) corresponds to presenting the set {x, y, z}, in the form of an ordered triple
(z, y, x). This allows choice to depend on the order of appearance of alternatives. �

Example 3 Let B = {x, y, z}. Then one may for example think of F (B) = X being a
set of reference points (in any sense). Let a ∈ F (B) be one such reference point. Then,
the pair (B, a) corresponds to presenting the set {x, y, z} together with the reference
point a. �

Let Θ be the set of observable pairs of choice opportunity and framing factors; namely,
let Θ ⊂ B × F be defined as Θ = {(B, f) ∈ B × F : f ∈ F (B)}.3 We call elements
of Θ situations. Each element θ ∈ Θ therefore specifies (Bθ, fθ) with fθ ∈ F (Bθ). Let
P =

∏
θ∈Θ ∆(Bθ) be the set of all possible empirical distributions of choice, where p(x|θ)

refers to the empirical probability (relative frequency) of x ∈ Bθ being chosen in the
choice situation θ = (Bθ, fθ). An element in P is called a situation-dependent choice
distribution, or simply a choice distribution. Such empirical distributions are arbitrary,
and may or may not satisfy any deterministic choice consistency conditions (Chernoff
[6], Sen [28], Arrow [1]) or stochastic consistency conditions (Luce [20], Falmagne [7]).
They may even violate more general conditions (Kalai, Rubinstein and Spiegler [17],
Masatlioglu and Ok [23], Rubinstein and Salant [24, 25], Tyson [32]).

Remark 4 Why do we pick situation-dependent choice distributions as the primitive,
rather than choice data itself? To illustrate, consider data in which the choice problem
{x, y} appears ten times and the choice problems {y, z} and {x, z} each appear just
once. A simple kind of scoring rule, say, simply counting the number of times each
alternative is chosen, likely supports x and y over z simply because z does not appear in
choice problems very frequently. We avoid this type of bias due to sampling, taking the
frequency of choice problems to be normalized.

3Rubinstein and Salant [25] consider a model in which a choice problem comes in the form of such
pair, and investigate a rationalizability condition for choice functions defined over the extended domain.
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Even after normalizing the choice frequencies for each given θ, there may be more
θ’s with x ∈ Bθ than there are θ’s with y ∈ Bθ. This issue should be resolved by
appropriately weighting the pair (x, θ).

An individual welfare functional is a function that maps a situation-dependent choice
distribution to a complete and transitive binary relation over X. Equivalently, it is given
as a family of binary relations indexed by choice distributions, {%p}p∈P , where %p is a
complete and transitive ordering over X for each p ∈ P .

First, we impose the following three axioms.

Combination: For every p, q ∈ P and λ ∈ (0, 1),

x %p y and x %q y imply x %λp+(1−λ)q y,

and
x �p y and x %q y imply x �λp+(1−λ)q y.

The combination axiom requires that the ranking specified by the concatenation of
two choice distributions is consistent with the rankings specified by the original choice
distributions. Imagine an individual who is facing the same choice situations every day.
On weekdays, he behaves in one fashion, and on weekends, he behaves in another fashion.
Suppose that according to the weekday data, x is ranked at least as good as y. Also,
according to the weekend data, x is at least as good as y. Then x is at least as good as
y overall.

Diversity: For every list of four distinct alternatives x, y, z, w ∈ X, there is p ∈ P such
that x �p y �p z �p w.

Continuity: For every x, y ∈ X, the set {p ∈ P : x %p y} is closed.

Continuity is also a technical requirement.

Definition 5 A series of vectors in R
∑

θ∈Θ |Bθ|, denoted {ux}x∈X , is said to be diversified
if there are no distinct four elements x, y, z, w and non-negative numbers α, β and a
vector r ∈ R|Θ| with the property that
(i)

uz(θ, b)− uw(θ, b) = α(ux(θ, b)− uy(θ, b)) + β(uy(θ, b)− uz(θ, b)) + r(θ)

and ∑
θ∈Θ

r(θ) = 0

or,
(ii)

uz(θ, b)− uw(θ, b) 5 α(ux(θ, b)− uy(θ, b)) + β(uy(θ, b)− uz(θ, b)) + r(θ)

and ∑
θ∈Θ

r(θ) 5 0.
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The following is our main theorem. It states that whether or not x is ranked at least
as good as y depends linearly on the choice probabilities of every alternative in every
situation. That is, for every alternative x, for every situation θ and every alternative
b ∈ Bθ there is a real number ux(θ, b) by which the probability that b is chosen in
situation θ is multiplied. Thus, the choice probabilities of alternatives other than x and
y in arbitrary choice situations may be relevant for determining the ranking between x
and y. In a later section, we will explore conditions which free our individual welfare
functional from such dependence. However, for now, a preference for apples over oranges
may be determined by the probability that bananas are chosen.

Theorem 6 Individual welfare functional {%p}p∈P satisfies Combination, Diversity and
Continuity if and only if there exists a diversified series of vectors in R

∑
θ∈Θ |Bθ|, denoted

{ux}x∈X , such that for every x, y ∈ X and p ∈ P ,

x %p y ⇐⇒
∑
θ∈Θ

∑
b∈Bθ

ux(θ, b)p(b|θ) =
∑
θ∈Θ

∑
b∈Bθ

uy(θ, b)p(b|θ).

Moreover, when another series of vectors {vx}x∈X satisfies the above condition, there is
a positive scaler λ and a series of vectors {βx}x∈X in R

∑
θ∈Θ |Bθ|

vx(θ, b) = λux(θ, b) + βx(θ, b),

where for all x, y ∈ X:
(i) βx(θ, b)− βy(θ, b) = βx(θ, b′)− βy(θ, b′) for all θ ∈ Θ, b, b′ ∈ Bθ;
(ii)

∑
θ∈Θ

∑
b∈Bθ

βx(θ, b) =
∑

θ∈Θ

∑
b∈Bθ

βy(θ, b).

3. Binary Independence

3.1. Binary Independence

Thus far, we have been concerned only with the combination axiom; and our resulting
representation theorem is very general. This is because we have required no axiom to
rule out dependence of the ranking of a pair of alternatives from the choice probabilities
of other alternatives. In this section, we propose just such a notion. The axiom of binary
independence states formally that a ranking depends only on the probabilities of the
alternatives under consideration. Binary monotonicity states that this ranking should
somehow depend positively on these probabilities; that is, if x is ranked above y for one
distribution, and the probability of x only increases to another distribution (where the
probability of y may decrease), then we should not claim that y is ranked above x for
the new distribution.

Binary Independence/Monotonicity: For every x, y ∈ X and p, q ∈ P :
(i) if p(x|θ) = q(x|θ) for all θ ∈ Θ with x ∈ Bθ and p(y|θ) = q(y|θ) for all θ ∈ Θ
with y ∈ Bθ, then x %p y if and only if x %q y;
(ii) if x %p y and p(x|θ) 5 q(x|θ) for all θ ∈ Θ with x ∈ Bθ and p(y|θ) = q(y|θ) for
all θ ∈ Θ with y ∈ Bθ, and at least one of these inequalities are strict, then x �q y.
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3.2. Result on the domain of multinomial choices

In this subsection, we assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 3 for all θ ∈ Θ.

The next property states that any alternatives which are never chosen should be
ranked indifferent.

Dummy: For every x, y ∈ X, if p ∈ P is such that p(x|θ) = 0 for all θ ∈ Θ with x ∈ Bθ

and p(y|θ) = 0 for all θ ∈ Θ with y ∈ Bθ, then x ∼p y.

For each x ∈ X, let Θx = {θ ∈ Θ : Bθ 3 x}.

Definition 7 A series of vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each

x, is said to be diversified if the series of vectors ũx in R
∑

θ∈Θ |Bθ|, which is given by
ũx(θ, x) = ux(θ) for each θ ∈ Θx and zero elsewhere, is diversified.

The next theorem is similar to Theorem 6, however, the utility representation of
the induced ranking states that the utility of an alternative depends only on the choice
probabilities of that alternative.

Theorem 8 Assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 3 for all θ ∈ Θ. Then,
an individual welfare functional {%p}p∈P satisfies Combination, Diversity, Continuity,
Binary Independence/Monotonicity and Dummy, if and only if there exists a diversified

series of strictly positive vectors {ux}x∈X , where ux is an element in R|Θx|
++ for each x,

such that for all x, y ∈ X,

x %p y ⇐⇒
∑
θ∈Θx

ux(θ)p(x|θ) =
∑
θ∈Θy

uy(θ)p(y|θ)

for every p ∈ P .
Moreover, {ux}x∈X is unique up to common positive scaler multiplications.

The following example shows that the diversity axiom is independent of the other
axioms used in the characterization.

Example 9 Let X = {x, y, z, w} and Θ = {θ1, θ2}, where Bθ1 = {x, y, z} and Bθ2 =
{z, y, w}. Consider the scoring rule given by

U(x) = p(x|{x, y, z}) + p(x|{x, y, w}), U(y) = p(y|{x, y, z}) + p(y|{x, y, w})

and
U(z) = p(z|{x, y, z}), U(w) = p(w|{x, y, w}).

Then, x %p w and y %p w always imply w %p z, which cannot satisfy the diversity
axiom. �
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3.3. Result on the domain including binary choices

For technical reasons, when the choice situations can involve binary choices, a few more
axioms are needed to characterize individual welfare functionals as in Theorem 8. To see
why this is the case, imagine a domain in which all choice situations involve only binary
choices. Then binary independence/monotonicity is clearly vacuous, and extra structure
is needed. The axioms in this section deliver this extra structure.

Given p ∈ P , θ ∈ Θ and qθ ≡ q(·|θ) ∈ ∆(Bθ), let (qθ, p−θ) be the situation dependent
choice distribution that coincides with qθ at θ and with p elsewhere.

Proportionality: For every x, y, z ∈ X and p ∈ X such that y ∼p z �p x, any θ ∈ Θ
with Bθ = {x, y}, and qθ ∈ ∆(Bθ),
if

x ∼(1−λ)p+λ(qθ,p−θ) z,

then
x ∼(1−λ

2 )p+λ
2
(qθ,p−θ) y.

Strong Dummy: For every x, y ∈ X, if p ∈ P is such that p(x|θ) = 0 for all θ ∈ Θ
with x ∈ Bθ and Bθ 6= {x, y}, p(y|θ) = 0 for all θ ∈ Θ with y ∈ Bθ and Bθ 6= {x, y},
and p(x|θ) = p(y|θ) for all θ ∈ Θ with Bθ = {x, y}, then x ∼p y.

Also, let Θ{x,y} = {θ ∈ Θ : Bθ = {x, y}}.

Theorem 10 Assume that Θx 6= ∅ for all x ∈ X. Then, an individual wel-
fare functional {%p}p∈P satisfies Combination, Diversity, Continuity, Binary Indepen-
dence/Monotonicity, Proportionality and Strong Dummy if and only if there exists a

diversified series of strictly positive vectors {ux}x∈X , where ux is an element in R|Θx|
++ for

each x, such that for all x, y ∈ X,

x %p y ⇐⇒
∑
θ∈Θx

ux(θ)p(x|θ) =
∑
θ∈Θy

uy(θ)p(y|θ)

for every p ∈ P , and
∑

θ∈Θ{x,y}
ux(θ) =

∑
θ∈Θ{x,y}

uy(θ) holds.

Moreover, {ux}x∈X is unique up to common positive scaler multiplications.

The following example shows that the diversity axiom may not follow from the others.

Example 11 Let X = {x, y, z, w} and Θ = {θ1, θ2}, where Bθ1 = {x, y} and Bθ2 =
{z, w}. Consider the scoring rule given by

U(x) = p(x|{x, y}), U(y) = p(y|{x, y}), U(z) = p(z|{z, w}), U(w) = p(w|{z, w}).

Then, we have x %p z if and only if w %p y, which cannot satisfy the diversity axiom. �
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4. Narrowing down the weights

We are mostly concerned with a formal consistency requirement or informational effi-
ciency requirement about how to map choice data into a preference, and away from
substantive views about which weights should be used. Of course, the Diversity and
Dummy axioms rule out certain lists of potential weights.

Here we propose several ways to narrow down the weights, in order to respect choice
and eliminate unnecessary or unjustified paternalism. The idea is that one should avoid
putting a larger prior weight on a particular alternative without any sufficient reason. Of
course, what is meant by ‘sufficient’ reason depends on what kind of choice frames are
in present. Hence we do it case by case.

4.1. Weights on opportunities

Our representation theorems allow us to weight situations by how many elements are
available. That is, the economist may have a certain prior weight about how much being
chosen from a larger set is more (or less) important.

For simplicity, here we assume that for all B ∈ B, F (B) is a singleton; so that Θ may
be formally identified with a class of elements of B; without loss of generality, assume
Θ ⊂ B. For all permutations π : X → X and for all B ∈ Θ, we require that π(B) ∈ Θ.
For p ∈ P , the probability of x being chosen from B is written as p(x|B).

Given p ∈ P and π, a permutation over X, define pπ by

pπ(x|B) = p(π−1(x)|π−1(B)).

Neutrality: For all p ∈ P , x, y ∈ X and any permutation π over X,

x %p y ⇐⇒ π(x) %pπ π(y).

Corollary 12 An individual welfare functional as characterized in Theorem 8 or 10
further satisfies Neutrality if and only if there exists a function u : {|B| : B ∈ B} → R++

such that
ux(B) = u(|Bθ|)

for all x ∈ X and B ∈ B with x ∈ B.

One may here give a solution to the problem in the leading example. Being chosen
from larger sets is more important whenever u is increasing. Being chosen in direct
comparisons is of highest importance when u(2) > u(k) for all k 6= 2.

This individual welfare functional respects choice. For simplicity, assume Θ = {B ∈
2X : |B| = 2}. Suppose now that there exists a strict preference � such that x1 � x2 �
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· · · � xn, and that choice is made according to this ranking in a deterministic manner.
Then, the score given to alternative xk, which is the k-th best element, is

U(xk) =
n−k+1∑

l=2

C(n− k, l − 1)u(l).

This is obviously decreasing in k, and the assigned ranking agrees with �, whatever u is.
Here u has nothing to say.

4.2. Weights on framing factors

Let F (B) be the set of linear orderings over B, which describe possible orders of appear-
ance. Given B ∈ B, an order >∈ F (B), and x ∈ B, let r(x, B, >) be the rank of x in B
with regard to the order >. For example, r(x, B, >) = 1 if x is the first element to be
presented from B according to >, and r(x, B, >) = |B| if it is the last one.

In this case, one can impose additional structure to the previous example, so as to
incorporate weights on framing, by writing ux(θ) as a function of |Bθ| and r(x, Bθ, >θ),
say ux(θ) = u′(|Bθ|, r(x, Bθ, >θ). We believe it is sensible for the function u′ to be
nondecreasing in its second argument. This might be because it an alternative which is
listed in the back is less likely to be chosen, so that being chosen nevertheless is valued
more.4

4.3. Adjusting to the number of appearance

When some alternative appears in more situations than others, that is, when |Θx| is
not equal across x’s, one may worry about the possibility that x is valued highly simply
because of this. The class of individual welfare functionals we obtain allows one to
adjust weights according to how many choice problems in which an alternative appears,
by letting for example

ux(θ) =
u′(x, Bθ, fθ)

|Θx|
for all x ∈ X, θ ∈ Θx.

5. Concluding comments

In the paper we have discussed how to prescribe a preference ranking for a given individual
based on observed choices when these choices may be inconsistent. We consider a function
that maps choice data (a situation dependent empirical distribution) into a complete and
transitive ordering over alternatives.

4Though, it also allows that u has a sudden drop or spike, when for example being the last one has
a focal-point effect.
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The main axiom we impose is Combination, which basically says if both of two choice
data respectively support x over y, then the choice data obtained by joining the two also
supports x over y.

Together with other mild axioms, we obtain a scoring type rule, where we have to
have a prior view about which choice situation is more (or less) important in forming the
preference that should be assigned.

The additional axioms, Binary Independence above all, deliver a more structured class
of scoring rules, where the score for a given alternative depends only on its empirical
choice probability.

However, the role of such weights is only in balancing inconsistent choices, and has
nothing to say when choices are indeed consistent.

5.1. Directions for future research

Our work serves as a first approach to the problem of evaluating welfare when choice
data is inconsistent. There are several obvious paths to follow in this direction.

Firstly, we have throughout assumed that our individual welfare functional satisfies
Diversity. This condition requires that the output of an individual welfare functional is
non-imposed on the individual who makes choices. It is similar to the citizen’s sovereignty
requirement of social choice. In the interest of libertarianism, such a requirement is natu-
ral. However, in order to allow our individual welfare functional to be more paternalistic,
we may wish to force certain preferences on individuals. For example, many individuals
may choose to start consuming an addictive substance, and once they start consuming
they never stop. Our notion of individual welfare functional would then say that the
consumption of this substance makes the individual better off. However, such an indi-
vidual may not feel better off in the long run. We might therefore imagine a program
which leads this individual to be addicted to the substance to be a bad one, even though
it is one which he himself would choose. Our axioms at this stage do not allow such
recommendations.

Secondly, there is a question of time-dependence. Individuals may make repeated
choices, say between x and y. In an environment where they have never before consumed
these types of alternatives, they must experiment. Suppose we observe an individual who
has consumed x in the first five periods, but then consumed y in the last five. It seems
plausible to suspect that this individual has learned that they prefer y to x. However,
the primitive of our model (a probability distribution over choices) does not allow us to
make such conclusions.

Lastly, there is the question as to what rationality actually means. Our work has
taken as given that rationality is rationalizability by a complete and transitive preference.
However, weaker (and stronger) notions of rationality certainly exist. In more structured
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environments, for example, in the theory of choice over lotteries, satisfaction of the
independence axiom is often understood as a basic tenet of rationality. This is an issue
of the specification of the range of our individual welfare functional (related is the issue of
domain specification; however it seems natural to allow our individual welfare functional
to take as input any stochastic choice function).

6. Proofs

6.1. Proof of Theorem 6

Given p ∈ P and a vector u ∈ R
∑

θ∈Θ |Bθ|, let

u · p =
∑
θ∈Θ

∑
b∈Bθ

u(θ, b)p(b|θ)

Lemma 13 There exists a series of vectors in R
∑

θ∈Θ |Bθ|, denoted {uxy}x,y∈X,x 6=y, such
that for every x, y ∈ X,
(i) {p ∈ P : uxy · p = 0} = {p ∈ P : x %p y};
(ii) {p ∈ P : uxy · p > 0} = {p ∈ P : x �p y};
(iii) {p ∈ P : uxy · p 5 0} = {p ∈ P : y %p x};
(iv) {p ∈ P : uxy · p < 0} = {p ∈ P : y �p x};
(v) neither uxy = 0 or uxy 5 0;
(vi) uyx = −uxy.
Moreover, if another vector series of vectors {vxy}x,y∈X,x 6=y delivers the above properties,
then there is a series of positive numbers {λxy}x,y∈X,x 6=y and a series of vectors in R|Θ|,
denoted {rxy}x,y∈X,x 6=y, such that for every x, y ∈ X,
(1)

vxy(θ, b) = λxyuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;
(2)

∑
θ∈Θ rxy(θ) = 0;

(3) λxy = λyx;
(4) ryx = −rxy.

Proof : Existence: Fix x, y ∈ X, and let Cxy = {p ∈ P : x %p y} and Cyx similarly. By
the diversity axiom and continuity axiom, both have nonempty interiors relative to P ,
and relintCxy = {p ∈ P : x �p y} holds. By completeness, Cxy ∪ Cyx = P . Also, we
have Cxy ∪ relintCyx = ∅ and similarly for the reverse combination.

Claim 14 If d, e ∈ Φxy, then d + e ∈ Φxy.

Proof : Without loss of generality, let d, e ∈ Cxy−Cyx, and let d = p1−p2 and e = q1−q2,
where p1, q1 ∈ Cxy and p2, q2 ∈ Cyx. By the combination axiom, p1+q1

2
∈ Cxy and

p2+q2

2
∈ Cyx. Therefore d+e

2
= p1+q1

2
− p2+q2

2
∈ Cxy − Cyx. Therefore d + e ∈ Φxy.
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Let Φxy = {λ(p− q) : λ = 0, p ∈ Cxy, q ∈ Cyx}, and define a binary relation %xy over
P by

p %xy q if p− q ∈ Φxy

Since Cxy and Cyx are compactly generated cones by continuity, Φxy is closed, hence %xy

is a closed binary relation.

Claim 15 %xy is complete.

Proof : Case 1: The claim is obvious when p ∈ Cxy and q ∈ Cyx.
Case 2: Suppose p, q ∈ Cxy. Pick any r ∈ relintCyx. Then, there exists λ ∈ [0, 1) such
that both (1 − λ)p + λr and (1 − λ)q + λr are in Cxy and at least one of them is in
∂Cxy = Cxy ∩ Cyx. Without loss, suppose (1− λ)q + λr ∈ ∂Cxy, then we have

[(1− λ)p + λr]− [(1− λ)q + λr] = (1− λ)(p− q) ∈ Φxy,

which implies p− q ∈ Φxy.
Case 3: Similarly for the case that p, q ∈ Cyx.

Claim 16 %xy is transitive.

Proof : Suppose p %xy q and q %xy r. Since p − q ∈ Φxy and q − r ∈ Φxy, from the
previous claim we have p− r = (p− q) + (q − r) ∈ Φxy.

Claim 17 For every p, q, r ∈ P and λ ∈ (0, 1), p %xy q if and only if λp + (1− λ)r %xy

λq + (1− λ)r.

Proof : It follows from (λp + (1− λ)r)− (λq + (1− λ)r) = λ(p− q).

Since %xy satisfies the state-dependent version of Anscombe-Aumann subjective ex-
pected utility theorem (see Kreps [19], Karni-Schmeidler-Vind [18]), there is a vector
ũxy ∈ R

∑
θ∈Θ |Bθ| such that

p %xy q ⇐⇒ ũxy · p = ũxy · q

for every p, q ∈ P .
Moreover, the vector ũxy is unique in the sense that if there is another vector ṽxy that
delivers the above condition then there exist a positive number λxy and a vector r̃xy ∈ R|Θ|

such that ṽxy(θ, b) = λxyũxy(θ, b) + r̃xy(θ) for every θ ∈ Θ and b ∈ Bθ.

Fix any p∗ ∈ Cxy ∩ Cyx, and let αxy = ũxy · p∗. Define a vector uxy ∈ R
∑

θ∈Θ |Bθ| by
uxy(θ, b) = ũxy(θ, b)− αxy

|Θ| for every θ and b ∈ Bθ. Then, it satisfies

uxy · p = 0 ⇐⇒ x %p y
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for all p ∈ P . This delivers the properties (i)-(iv).

To show property (v), suppose uxy = 0. Then, since uxy · p = 0 for all p ∈ P , we have
x %p y for all p ∈ P , which is a contradiction to diversity. The similar contradiction is
obtained for the case uxy 5 0.

Uniqueness : Suppose vxy satisfies

vxy · p = 0 ⇐⇒ x %p y

for all p ∈ P . Then, vxy also forms a representation for %xy, where vxy · p∗ = 0 holds for
p∗ ∈ Cxy ∩Cyx. By the uniqueness of representation of %xy above, there exist a positive
number λxy and a vector r̃xy ∈ R|Θ| such that

vxy(θ, b) = λxyũxy(θ, b) + r̃xy(θ)

= λxy

(
uxy(θ, b)− αxy

|Θ|

)
+ r̃xy(θ)

= λxyuxy(θ, b) + rxy(θ)

for every θ ∈ Θ and b ∈ Bθ, where rxy is defined by rxy(θ) = r̃xy(θ) − αxy

|Θ| for each θ.

Since vxy · p∗ = uxy · p∗ = 0, we have
∑

θ∈Θ rxy(θ) = 0.

Lemma 18 For every distinct x, y, z ∈ X and ε, η ∈ R, if εuxy + ηuyz 5 0, then
ε = η = 0.

Proof : Since neither uxy = 0 or uxy 5 0 holds, if either of ε and η is zero, so is the other.
Suppose both are non-zero. Without loss of generality, suppose that ε, η > 0. Then, we
have εuyx 5 −ηuyz = ηuzy. Therefore, z %p y implies y %p x, contradicting Diversity.
Similar contradictions are obtained for the other cases.

Lemma 19 Let {uxy}x,y∈X,x 6=y be the series of vectors obtained in the previous lemma.
Then, for every three distinct x, y, z, there are unique number α, β > 0 and r ∈ R|Θ| such
that

uxz(θ, b) = αuxy(θ, b) + βuyz(θ, b) + r(θ)

for all θ ∈ Θ and b ∈ Bθ, and ∑
θ∈Θ

r(θ) = 0.

Proof : As for all p ∈ P , %p is transitive, there does not exist p ∈ P such that

uxy · p = 0, uyz · p = 0 and − uxz · p > 0.

For each θ ∈ Θ, let 1θ ∈ R
∑

θ∈Θ |Bθ| be that vector whose coordinate is 1 at all (θ, ·)
and 0 elsewhere. Also, for each θ ∈ Θ and b ∈ Bθ, let 1θ,b ∈ R

∑
θ∈Θ |Bθ| be that vector

whose coordinate is 1 only at (θ, b) and 0 elsewhere.
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By a nonhomogeneous version of the Farkas’ lemma (see Proposition 4.2.3 of [8]),
there exist non-negative numbers α, β, {λθ,b}θ∈Θ,b∈Bθ

, {µθ}θ∈Θ and {νθ}θ∈Θ such that

uxz = αuxy + βuyz +
∑
θ∈Θ

∑
b∈Bθ

λθ,b1θ,b +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

and ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ = 0.

Hence,

uxz = αuxy + βuyz +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ.

Note that for all p ∈ P ,
(∑

θ∈Θ µθ1θ −
∑

θ∈Θ νθ1θ

)
· p = 0.

Consequently, if α = 0, then for all p ∈ P , y %p z implies x %p z, contradicting
Diversity. Hence α > 0. Similarly, β > 0.

A symmetric argument applied to −uxy, −uyz and uxz delivers δ, γ > 0 and nonneg-
ative numbers {ρθ}θ∈Θ and {τ θ}θ∈Θ such that

uxz 5 δuxy + γuyz +
∑
θ∈Θ

ρθ1θ −
∑
θ∈Θ

τ θ1θ

, where ∑
θ∈Θ

ρθ −
∑
θ∈Θ

τ θ 5 0.

By taking the sum of these inequalities, we have(∑
θ∈Θ

ρθ1θ −
∑
θ∈Θ

τ θ1θ

)
−

(∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

)
= (α− δ)uxy + (β − γ)uyz.

Therefore, for all p ∈ P ,

0 = (α− δ)uxy · p + (β − γ)uyz · p.

By the same logic as in the previous lemma, appealing to Diversity, we conclude α = δ
and β = γ. This further implies that∑

θ∈Θ

µθ −
∑
θ∈Θ

νθ =
∑
θ∈Θ

ρθ −
∑
θ∈Θ

τ θ = 0.

Then define r(θ) = µθ − νθ, for example.
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Define uxy and uyz by

uxy(θ, b) = αuxy(θ, b) +
α

α + β
r(θ), uyz(θ, b) = αuyz(θ, b) +

α

α + β
r(θ),

and rename them by uxy and uyz, respectively. Repeat such scalar multiplications and
translations (one can finish it in finite steps since X is finite). As is true in Gilboa-
Schmeidler [11], we need the full diversity condition for four elements here. Consequently
we obtain

Lemma 20 There exist a series of vectors {uxy}x,y∈X,x 6=y, as in Lemma 13, such that
for every three distinct x, y, z the condition uxy + uyz = uxz holds.
Moreover, when another series of vectors {vxy}x,y∈X,x 6=y satisfies the above condition,
there is a positive number λ and a series of vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such
that for every x, y, z ∈ X,
(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;
(2)

∑
θ∈Θ rxy(θ) = 0;

(3) ryx = −rxy;
(4) rxy + ryz = rxz.

Proofs about diversity
First we show that the diversity condition implies the desired property.

The diversity condition implies that for all distinct x, y, z, w ∈ X, there is p ∈ P such
that

uxy · p = 0, uyz · p = 0, uzw · p = 0

By Proposition 4.2.3 of [8], there do not exist non-negative numbers α, β,
{λθ,b}θ∈Θ,b∈Bθ

, {µθ}θ∈Θ and {νθ}θ∈Θ such that

uzw = αuxy + βuyz +
∑
θ∈Θ

∑
b∈Bθ

λθ,b1θ,b +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

and ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ = 0.

This implies that there cannot exist non-negative numbers α, β and a vector r ∈ R|Θ|

such that
uzw(θ, b) = αuxy(θ, b) + βuyz(θ, b) + r(θ)

and ∑
θ∈Θ

r(θ) = 0.
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Likewise, there cannot exist non-negative numbers α, β and a vector r ∈ R|Θ| such
that

uzw(θ, b) 5 αuxy(θ, b) + βuyz(θ, b) + r(θ)

and ∑
θ∈Θ

r(θ) 5 0.

Now we show that the diversity condition follows from the property of {uxy}x,y∈X , x 6=
y. Suppose the diversity condition is not met, then there does not exist p ∈ P such that

uxy · p > 0, uyz · p > 0, uzw · p > 0.

In other words, for all p ∈ P

uxy · p > 0, uyz · p > 0 =⇒ −uzw · p = 0.

By a continuity argument, we have that for all p ∈ P ,

uxy · p = 0, uyz · p = 0 =⇒ −uzw · p = 0.

By Proposition 4.2.3 of [8], there exist non-negative numbers α, β, {λθ,b}θ∈Θ,b∈Bθ
,

{µθ}θ∈Θ and {νθ}θ∈Θ such that

−uzw = αuxy + βuyz +
∑
θ∈Θ

∑
b∈Bθ

λθ,b1θ,b +
∑
θ∈Θ

µθ1θ −
∑
θ∈Θ

νθ1θ

and ∑
θ∈Θ

µθ −
∑
θ∈Θ

νθ = 0.

However, this contradicts Diversity.

Establishing the representation
Now, fix e ∈ X, and define ue ≡ 0 ∈ R

∑
θ∈Θ |Bθ|, and for any other x ∈ X, define ux = uxe.

Given p ∈ P and x, y ∈ X, we have

x %p y ⇐⇒ uxy · p = 0 ⇐⇒ (uxe + uey) · p = 0 ⇐⇒ (uxe − uye) · p = 0

⇐⇒ ux · p = uy · p.

Uniqueness : Take the representation {ux}x∈X constructed above, where ue = 0. Suppose
another series of vectors {vx}x∈X satisfies the above condition. Then, the series of vectors
{vx−vy}x,y∈X,x 6=y satisfies the condition in the previous lemma. Hence there is a scaler λ
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and a a series of vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,
(1)

vx(θ, b)− vy(θ, b) = λ(ux(θ, b)− uy(θ, b)) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;
(2)
∑

θ∈Θ rxy(θ) = 0;
(3) ryx = −rxy;
(4) rxy + ryz = rxz.

Define βe = ve and βx = rxe + βe for every x 6= e.

6.2. Implication of Binary Independence

Lemma 21 For every θ ∈ Θ with |Bθ \ {x, y}| = 2, uxy(θ, b) = uxy(θ, b′) for all b, b′ ∈
Bθ \ {x, y}.

Proof : Without loss, pick any p∗ ∈ P such that uxy ·p∗ = 0. Fix θ ∈ Θ with |Bθ\{x, y}| =
2, and consider any {p(b|θ)}b∈Bθ\{x,y}, {q(b|θ)}b∈Bθ\{x,y} that satisfy

∑
b∈Bθ\{x,y} p(b|θ) =∑

b∈Bθ\{x,y} q(b|θ) =
∑

b∈Bθ\{x,y} p∗(b|θ). By condition (i) in the monotonicity axiom,

replacing {p∗(b|θ)}b∈Bθ\{x,y} by {p(b|θ)}b∈Bθ\{x,y} or {q(b|θ)}b∈Bθ\{x,y} does not change
the indifference condition. Hence we have∑

b∈Bθ\{x,y}

uxy(θ, b)(p(b|θ)− q(b|θ)) = 0.

Since {p(b|θ)}b∈Bθ\{x,y} and {q(b|θ)}b∈Bθ\{x,y} are arbitrary given the above restriction,
we have uxy(θ, b) = uxy(θ, b′) for all b, b′ ∈ Bθ.

Similar arguments deliver the following lemmata.

Lemma 22 uxy(θ, x) > uxy(θ, b) for all θ ∈ Θ with x ∈ Bθ and b ∈ Bθ \ {x}.

Lemma 23 uxy(θ, b) > uxy(θ, y) for all θ ∈ Θ with y ∈ Bθ and b ∈ Bθ \ {y}.

6.3. Proof of Theorem 8

Assume that Θx 6= ∅ for all x ∈ X, and |Bθ| = 3 for all θ ∈ Θ.

For each θ ∈ Θ, fix some b−xy(θ) ∈ Bθ \ {x, y}. The above lemma ensures that the
choice of b−xy(θ) does not matter. Define ûxy ∈ R

∑
θ∈Θ |Bθ| by

1. if x, y ∈ Bθ,

ûxy(θ, x) = uxy(θ, x)− uxy(θ, b−xy(θ))

ûxy(θ, y) = uxy(θ, y)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {x, y}
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2. if x ∈ Bθ and y /∈ Bθ,

ûxy(θ, x) = uxy(θ, x)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {x}

3. if x /∈ Bθ and y ∈ Bθ,

ûxy(θ, y) = uxy(θ, y)− uxy(θ, b−xy(θ))

ûxy(θ, b) = 0 for all b ∈ Bθ \ {y}

4. if x, y /∈ Bθ,

ûxy(θ, b) = 0 for all b ∈ Bθ

Lemma 24
ûxy · p = uxy · p

for all p ∈ P .

Proof : Let Θx = {θ ∈ Θ : x ∈ Bθ} and Θy = {θ ∈ Θ : y ∈ Bθ}. By Binary Independence,
we have∑

θ∈Θ

∑
b∈Bθ

uxy(θ, b)p(b|θ)

=
∑

θ∈Θx∩Θy

(
(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ) + (uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ))

)
+

∑
θ∈Θx\Θy

(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ)

+
∑

θ∈Θy\Θx

(uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ)

+
∑

θ∈Θ\(Θx∪Θy)

uxy(θ, b−xy(θ))

+
∑

θ∈Θx∩Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θx\Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θy\Θx

uxy(θ, b−xy(θ))

By Dummy, the terms from 4th to 7th on the right-hand-side add up to zero. Therefore
the right-hand-side is equal to ûxy · p.
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By construction, we have
ûyx = −ûxy

for all x, y ∈ X. Also, the above lemma guarantees that

ûxy · p + ûyz · p = ûxz · p

for all p ∈ P .

Lemma 25 For all x, y, z ∈ X and θ ∈ Θx,

ûxy(θ, x) = ûxz(θ, x).

Proof : Let Θ{x,y,z} = {θ ∈ Θ : Bθ = {x, y, z}}. Note that

ûxy · p
=

∑
θ∈Θ{x,y,z}

(ûxy(θ, x)p(x|θ) + ûxy(θ, y)p(y|θ) + ûxy(θ, z))

+
∑

θ∈Θx\Θ{x,y,z}

ûxy(θ, x)p(x|θ) +
∑

θ∈Θy\Θ{x,y,z}

ûxy(θ, y)p(y|θ),

ûyz · p
=

∑
θ∈Θ{x,y,z}

(ûyz(θ, x)p(x|θ) + ûyz(θ, y)p(y|θ) + ûyz(θ, z))

+
∑

θ∈Θy\Θ{x,y,z}

ûyz(θ, y)p(y|θ) +
∑

θ∈Θz\Θ{x,y,z}

ûyz(θ, z)p(z|θ)

and

ûxz · p
=

∑
θ∈Θ{x,y,z}

(ûxz(θ, x)p(x|θ) + ûxz(θ, y)p(y|θ) + ûxz(θ, z))

+
∑

θ∈Θx\Θ{x,y,z}

ûxz(θ, x)p(x|θ) +
∑

θ∈Θz\Θ{x,y,z}

ûxz(θ, z)p(z|θ).

Case 1: For θ ∈ Θx \Θ{x,y,z}, since one may vary p(x|θ) between 0 and 1 freely, we have

ûxy(θ, x) = ûxz(θ, x).

Case 2: For θ ∈ Θ{x,y,z}, since one may vary p(x|θ) linearly independently of other
numbers, we have

ûxy(θ, x) + ûyz(θ, x) = ûxz(θ, x).

On the other hand, by construction ûyz(θ, x) = 0, hence

ûxy(θ, x) = ûxz(θ, x).
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Now, define ux ∈ R|Θx| by
ux(θ) = ûxe(θ, x)

for each θ ∈ Θx. Then, we have∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θy

uy(θ)p(y|θ) = 0

⇐⇒
∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)−

∑
θ∈Θy

uy(θ)p(y|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)

 = 0

⇐⇒ ûxe · p− ûye · p = 0

⇐⇒ ûxe · p + ûey · p = 0

⇐⇒ ûxy · p = 0

⇐⇒ uxy · p = 0

⇐⇒ x %p y.

Uniqueness : Recall the uniqueness result in Lemma 13 that if there is another series of
vectors {vxy}x∈X satisfies the above condition, then there is a scaler λ and a a series of
vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,
(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;
(2)
∑

θ∈Θ rxy(θ) = 0;
(3) ryx = −rxy;
(4) rxy + ryz = rxz.

Let {v̂xy}x∈X be the series of vectors obtained from {vxy}x∈X as in the current argu-
ment. Since all the terms in rxy are canceled out along the above procedure, we have
ûxy = λv̂xy for all x, y ∈ X.

6.4. Proof of Theorem 10

Lemma 26 For all x, y, z ∈ X and θ ∈ Θ with Bθ = {x, y},

uxy(θ, x)− uxy(θ, y)

2
= uxz(θ, x)− uxz(θ, y).

Proof : Given θ ∈ Θ with Bθ = {x, y}, let qθ be the distribution that is degenerated on
x. Let p ∈ P be such that

uyz · p = 0, uxy · p < 0, uxz · p < 0.
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Notice that uxz · p = uxy · p + uyz · p = uxy · p. Thus, let uxy · p = uxz · p = −c, where
c > 0 is a sufficiently small number.
— By Diversity and Continuity, one can find p1, p2 ∈ relintP such that y �p1 z �p1 x
and z �p2 y �p2 x, where |uxy · p1|, |uxz · p1|, |uxy · p2|, |uxz · p2| are sufficiently small. By
Combination, one can find µ so that p = (1−µ)p1 + µp2 ∈ relintP satisfies y ∼p z �p x,
where |uxz · p| is sufficiently small.

Let λ ∈ (0, 1) be such that

(uxy(θ, x)− uxy(θ, y))(1− p(x|θ))λ = c,

where x ∼(1−λ)p+λ(qθ,p−θ) y is the case. By Proportionality, we have x ∼(1−λ
2
)p+λ

2
(qθ,p−θ) z,

in which

(uxy(θ, x)− uxy(θ, y))(1− p(x|θ))λ
2

= c

holds. Thus we obtain the desired result.

For each θ ∈ Θ with Bθ 6= {x, y}, fix some b−xy(θ) ∈ Bθ \ {x, y}. The above lemma
ensures that the choice of b−xy(θ) does not matter.

Define ûxy ∈ R
∑

θ∈Θ |Bθ| by

1. if Bθ = {x, y},

ûxy(θ, x) = (uxy(θ, x)− uxy(θ, y))/2, ûxy(θ, y) = (uxy(θ, y)− uxy(θ, x))/2

2. otherwise, same as before

Lemma 27
ûxy · p = uxy · p

for all p ∈ P .

Proof : Let Θ{x,y} = {θ ∈ Θ : Bθ = {x, y}}, Θx = {θ ∈ Θ : x ∈ Bθ} and Θy = {θ ∈ Θ :
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y ∈ Bθ}. By Binary Independence, we have∑
θ∈Θ

∑
b∈Bθ

uxy(θ, b)p(b|θ)

=
∑

θ∈Θ{x,y}

(
uxy(θ, x)− uxy(θ, y)

2
p(x|θ) +

uxy(θ, y)− uxy(θ, x)

2
p(y|θ)

)
+

∑
θ∈Θx∩Θy\Θ{x,y}

(
(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ) + (uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ))

)
+

∑
θ∈Θx\Θy

(uxy(θ, x)− uxy(θ, b−xy(θ))p(x|θ)

+
∑

θ∈Θy\Θx

(uxy(θ, y)− uxy(θ, b−xy(θ))p(y|θ)

+
∑

θ∈Θ\(Θx∪Θy)

uxy(θ, b−xy(θ))

+
∑

θ∈Θ{x,y}

uxy(θ, x) + uxy(θ, y)

2

+
∑

θ∈Θx∩Θy\Θ{x,y}

uxy(θ, b−xy(θ))

+
∑

θ∈Θx\Θy

uxy(θ, b−xy(θ))

+
∑

θ∈Θy\Θx

uxy(θ, b−xy(θ))

By Strong Dummy, the terms from fifth to ninth on the right-hand-side add up to zero.
Therefore the right-hand-side is equal to ûxy · p.

By construction, we have
ûyx = −ûxy

for all x, y ∈ X. Also, the above lemma guarantees that

ûxy · p + ûyz · p = ûxz · p

for all p ∈ P .

Lemma 28 For all x, y, z ∈ X and θ ∈ Θx,

ûxy(θ, x) = ûxz(θ, x).

Proof : When θ is such that Bθ = {x, y}, it follows from

ûxy(θ, x) =
uxy(θ, x)− uxy(θ, y)

2
= uxz(θ, x)− uxz(θ, y) = ûxz(θ, x).

For the other cases, it follows from the same argument as before.
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Now, define ux ∈ R|Θx| by
ux(θ) = ûxe(θ, x)

for each θ ∈ Θx. Then, we have∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θy

uy(θ)p(y|θ) = 0

⇐⇒
∑
θ∈Θx

ux(θ)p(x|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)−

∑
θ∈Θy

uy(θ)p(y|θ)−
∑
θ∈Θe

ue(θ)p(e|θ)

 = 0

⇐⇒ ûxe · p− ûye · p = 0

⇐⇒ ûxe · p + ûey · p = 0

⇐⇒ ûxy · p = 0

⇐⇒ uxy · p = 0

⇐⇒ x %p y.

Uniqueness : Recall the uniqueness result in Lemma 13 that if there is another series of
vectors {vxy}x∈X satisfies the above condition, then there is a scaler λ and a a series of
vectors in R|Θ|, denoted {rxy}x,y∈X,x 6=y, such that for every x, y, z ∈ X,
(1)

vxy(θ, b) = λuxy(θ, b) + rxy(θ)

for all θ ∈ Θ and b ∈ Bθ;
(2)
∑

θ∈Θ rxy(θ) = 0;
(3) ryx = −rxy;
(4) rxy + ryz = rxz.

Let {v̂xy}x∈X be the series of vectors obtained from {vxy}x∈X as in the current argu-
ment. Since all the terms in rxy are canceled out along the above procedure, we have
ûxy = λv̂xy for all x, y ∈ X.

6.5. Proof of Corollary 1

Lemma 29 For all x, y ∈ X and B ∈ Θ with x, y ∈ B, ux(B) = uy(B).

Proof : Let p ∈ P be such that p(x|B) = p(y|B) = 1
2
, and x, y are never chosen elsewhere

and the distribution there is uniform over the other alternatives.
By applying Neutrality with regard to the permutation between x and y, we have x ∼p y,
which implies 1

2
ux(B) = 1

2
uy(B). Hence ux(B) = uy(B).

Thus, there exists a function u : B → R++ such that

ux(B) = u(B)

for all B ∈ B with x ∈ B. The remaining is to show that u(B) depends only on the
cardinality of B.
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Lemma 30 For all B, C ∈ B with |B| = |C|, u(B) = u(B′).

Proof : Pick x ∈ B \ C and y ∈ C \B. Let p ∈ P be such that
(i) p(x|B) = 1, p(y|C) = 1, p(x|{x, y}) = p(y|{x, y}) = 1

2
, and x, y are never chosen

elsewhere and the distribution there is uniform over the other alternatives. By applying
Neutrality with regard to the permutation between x and y, we have x ∼p y, which
implies u(B) + 1

2
u({x, y}) = u(C) + 1

2
u({x, y}). Hence u(B) = u(C).
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